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We study the joint distributions of translated measures supported on periodic orbits
that are expanded by subgroups of diagonal matrices and generalize (special cases)
of previous results of Kleinbock-Margulis, Dabbs-Kelly-Li, and Shi. More specifically,
we establish quantitative estimates on higher-order correlations for measures with
low regularities and derive error terms that only depend on the distances between

translations.

1 Introduction

Let us consider a jointly continuous action of a topological group G on a topological
space X. Given a finite Borel measure o on X, one is often interested in the asymptotic

behaviour of integrals of the form
o(pog) = /X<p(gX) do(x), with ¢ € Cj(X),
as g — oo in G, as well as in the asymptotic behaviour of integrals of the form
o(@p10g1 - ¢rog,) = /le(glx) o @(grx)do(x), withgy,..., ¢, € C(X),
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Effective Multiple Equidistribution 211

as g; — oo and gigj_1 — oo for i # j in G. The latter integrals are often called
r-correlations. In this paper, we will be interested in quantitative estimates on
r-correlations for actions on homogeneous spaces.

Basic models for the type of results that we are after can be found in [9, 11],
which deals with the equidistribution of closed horocycles on the modular surface. More
generally, one can consider the action of a partially hyperbolic one-parameter subgroup
(g9,) in SL;(R) on the homogeneous space X := SL;(R)/SL,4(Z), equipped with the (unique)
SL;(R)-invariant probability invariant measure u. Kleinbock and Margulis [6] showed
that in this case there exists § > 0 such that for every compactly supported smooth
probability measure o on an unstable leaf of (g,) and for every ¢ € C;°(X), there is a

constant C(o, ¢), such that

lo(pogy) — nip)| < Clo,p)e™ (1.1)

for all ¢t > 0. In fact, the result of [6] applies more generally to partially hyperbolic
flows on homogeneous spaces of semisimple Lie groups. Subsequently, Dolgopyat [5]
developed an inductive argument that allows one to deduce from the estimates of the
form (1.1) quantitative estimates on higher-order correlations. In the setting described

above, this argument tells us that there exists §' > 0 such that for every t;,...,t, >0

|o’((p1 ogtl .. .gpr ogtr) — M((pl) . H/((pr)| S C(al(plr~- . l(pr) e*éDr(tl ..... tr)

forall ¢;,...,¢, € C°(X), where
D.(t;,...,t.) :=min(t;,t, — t;,..., t, — t,_;).

The idea behind this argument in [6] goes back to Margulis’ thesis [8] and uses that the
flow (g,) is non-expanding transversally to the unstable leaves, so that one can “thicken”
the measure o to reduce the original problem to mixing estimates for the flow (g,) with
respect to the volume measure u.

The problem becomes significantly harder when the measure o is supported
on a proper submanifold of the unstable leaf. A particular instance of this problem was
investigated by Kleinbock and Margulis in [7]. They consider the case when ¢ is a smooth

measure, compactly supported on an orbit of the subgroup

I u
U, = [( m ) fue Matmxn(R)] , (1.2)
' 0 I,

which is translated by the multi-parameter flow

gy := diag(e”, ... em, e7tmi1, [ eTtmin)
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212 M. Bjorklund and A. Gorodnik

with >, t; = Zj"jnnﬂ t;. In this case, the orbits of U, , are unstable manifolds of g,

only whent; =-.-=t, - toocand t,,; =--- = t,,, — +oo, but not in general. The

n
main result in [7] states that there exists § > 0, which is independent of ¢, such that

lo(pogy) — n@| < Clo,p) et (1.3)

for all ¢ € C2°(X), where
[t] :==min(ty, ...ty pn)-

This result was generalized to homogeneous spaces of semisimple groups by Dabbs,
Kelly, and Li [4] and by Shi [10]. Quantitative estimates on higher order correlations

were also established in [10]: for every integer r > 1, there exists §' = §'(r) > 0 such that

lo(¢1 09, @00y ) — (@) - 1u(g)| < Clo,¢y,...,¢,) e 0 Pritieaitr) (1.4)

forall ¢y,..., ¢, € C°(X), where
D,.(ty,...,t) :=min ([t ], [t; —t],..., [t, —t,_{]).

We stress that this estimate only provides non-trivial information when the vectors
t;,...,t,. are completely ordered with respect to the function [-] and all gaps with
respect to this order go to infinity. This condition is too restrictive for some of the
applications to counting problems in multiplicative Diophantine approximation that
we have in mind [2].

In this paper, we generalize (a special case of) this result in two ways. Firstly, we
show that one can reduce the regularity assumptions on the measure o. Secondly, we
establish a favourable estimate, which only depend on [t,],...,[t;] and the pairwise
Euclidean distances ||t; — tll fori #j.

To formulate our first main result, we need some notation. Let Y be a compact
orbit of Uy, ,, in X. Then Y can be considered as a mn-dimensional torus, and we denote
by my the probability invariant measure on Y. We also write Y for the character group of
Y. Given a Borel measure o on Y, we write 6(x) := [, x do, x € Y, for the corresponding

Fourier coefficients. We say that o is a Wiener measure if

lollw =2 516001 < oo

Note that every Wiener measure on Y is absolutely continuous with respect to my, with
a continuous (but possibly nowhere differentiable) density. We denote by S, the family
of norms introduced in Section 3.2 below. In particular, one can take them to be the

C*-norm on Co°(X) for a fixed sufficiently large k.
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Effective Multiple Equidistribution 213

Theorem 1.1. For every r > 1, there exist d, € N and C,,5, > 0 such that for
every Wiener probability measure o supported on a compact orbit of U,, ,, in X, t,...,

t, e RT"™" and ¢y,..., ¢, € CX(X),

|0(‘P1 °G¢ " ¥ro gtr) — pu(py)--- M(‘Pr)| <C, ||f7||wsdr((/’1) e 'Sdr((Pr) e_arAr(tl""'tr),

where

Apty,. .. t) i=min ([t It; =t : 1 <i#j<7).

Remark 1.2. We stress that our proof techniques heavily use the assumption that

the U,, ,-orbit is compact.

Let us now formulate a more general version of this result. Let G be a connected
semisimple Lie group without compact factors and P a parabolic subgroup of G such
that the projection of P to every simple factor of G is proper. Let U be the unipotent
radical of P and A a maximal connected Ad-diagonalizable subgroup of P. We write a
and u for the corresponding Lie algebras and consider the adjoint action of a on u. Fix a
norm on a and let d denote the corresponding invariant distance function on A. Let ®(u)
denote the set of roots (characters of a) arising in this action. Let a*{ﬁ be the positive
cone in the dual a* spanned by the characters in ®(u). We use the usual identification
a* — a defined by the Killing form: « + s, given by (sa,a) = a(a) for a € a, and denote
by af; the corresponding cone in a given by this identification. The cone A}, := exp(af)
was introduced in [10] and is called the expanding cone for U. For a € A}, we denote by
laly the distance from a to the boundary of the cone Azr,. Let I' be an irreducible lattice
in G and X := G/TI" equipped with the invariant probability measure wu.

The main result of [10] is a generalization of the estimate (1.4) to compactly
supported smooth measures on an orbit of U in X. Let us additionally assume that U is
abelian and Y is a compact orbit of U in X. Given a Borel measure ¢ on U, we define
the Wiener norm as above. In this setting, we establish the following general version of

Theorem 1.1:

Theorem 1.3. For every r > 1, there exist d, € N and C,,§, > 0 such that for every
Wiener probability measure ¢ supportedon Y, t;,...,¢, € Azr,, and ¢;,...,¢, € CX(X),

lo(@y oty @pot,) — @y m@)| < CrllollySy (@1) -+ Sg (p,) @ Orrfim-tn),
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214 M. Bjorklund and A. Gorodnik

where

Ap(ty, ..., t) ==min ([t;]y, dt,t): 1<i#j< r).

As we clarify below, our method does not rely on particular properties of
the horospherical subgroup U and allows us to produce quantitative estimates on

o(pot, - -@ot,) once estimates on o (¢ ot) are available (see Theorem 2.1).

2 General Result

Let G be a real Lie group, U a closed connected subgroup of G, and T a closed connected
abelian subgroup of G that normalizes U such that the adjoint action of T on the Lie
algebra of U is proper and diagonalizable. Let X be a standard Borel space equipped
with measurable action of G. Let 1 be a G-invariant probability measure on X, and let
v be a U-invariant and U-ergodic measure on X. We assume that the measure v has
discrete spectrum. This means that there is an orthonormal basis of L?(v) consisting
of U-eigenfunctions and allows us to introduce a Wiener norm | - [l on L*(v) (see
Section 3.1 below).

We shall further assume that certain equidistribution properties hold for v, T
and a sub-algebra A of bounded functions on X, which is equipped with a family of
norms S, (see Section 3.2 below). For example, A could be C+CZ°(X) and S; could be the
Ck-norms for a fixed sufficiently large k.

Finally, we make the following two assumptions regarding quantitative equidis-

tribution on X in terms of a fixed suitable norm S :

e There exist T, CcT D,>1,4,€(0,1), and a function p : T, — [1,00) such
that

[v(@ot) — ()| <D, p(H7% Sy, (9), (EQ1)

forallp e AandteT,.
e There exist C > 1, and 0 < ¢ < 1/2 such that

|1L(@y 0 exp(W) - 9g) — (1)) | < Cmax (1, [lw])~* Sq,(®1) Sq, () (EQ2)
for all ¢;, ¢, € Aand w € Lie(U).

We fix an invariant metricd on T. Given r > 2 and t = (¢;,...,t,) € T, we define

pr(®) :==min (p(t,),...,p(t,)) and m.(t) = I?;Jn exp(d(t; t;)), (2.1)
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Effective Multiple Equidistribution 215

and for r > 1, we set

p(ty) ifr=1

(2.2)
min (p, (1), m,(0)) ifr=>2.

AL = [

Later on in our argument, we shall slightly modify the definition of m,. (see (3.8) below).
Our main theorem provides quantitative estimates on r-correlations in terms of
A .

re

Theorem 2.1. For every r > 1, there exist d, € N and D,, §, > 0 such that

v(¢o [Toi0t) = v@o) [T 10| = Do, ® ¥ ligollwe [T 54, @0,
i=1

i=1 i=1
forallt=(t;,...,t) € T, 9, € W), and ¢;,...,¢, € A.

We note that Theorem 1.3 follows immediately from Theorem 2.1. Indeed, every
Wiener measure on a torus has a continuous density, and the assumptions (EQ1) and
(EQ2) can been verified in this setting. In particular, (EQ1) was established in [11], and
(EQ2) is the well-known exponential mixing estimate (see, for instance, [6, Corollary
2.4.4]).

In Section 8 below, we also work out the parameters d,,D,,d, in Theorem 2.1

explicitly.

3 Notations
3.1 The Wiener algebra

We recall that the measure v is assumed to have discrete spectrum with respect to U,
that is, L?(v) has an orthonormal basis consisting of U-eigenfunctions: there exists a set
E of unitary characters on Lie(U) and an orthonormal basis {Y + § € E} of L%(v) such
that

Vg o exp(w) = E(W)rg, for all £ € E and w € Lie(U), (3.1)

where the identity is interpreted in the L?(v)-sense. Without loss of generality, ¥; = 1.

Furthermore, for every & € E,
Vel =1, v-almost everywhere, (3.2)

by the U-ergodicity of v.
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216 M. Bjorklund and A. Gorodnik

We denote by B(X) the x-algebra of bounded complex-valued measurable func-
tions on X under pointwise multiplication. The supremum norm on B(X) is denoted by

| - lo- For ¢ € B(X), we set

lellway = D Iv@- ¥, (3.3)

E€E
where {y, : £ € B} is a fixed orthonormal basis of L?(v).

We define the Wiener algebra
W(v) := {w € BX) : llgllwe) < oo}.
For o e W(v),

o= vip- V)V, (3.4)

Ecl

with convergence in the L*°(v)-sense, In particular,

@l wy < l@llway, forall p € W(v). (3.5)

3.2 A family of norms on the space X

Let A be a G-invariant sub-*-algebra of the algebra B(X). We assume that A is equipped

with an increasing family of norms
S, <Sy<---<S;<--
satisfying the following assumptions for fixed d, and for all d:
e Forall g € A,
l¢lloo < S, (@) (s1)
e There exist A > 1 and a > 0 such that
|l oexp(w) —g|  <A|w|*Sy (¢) forallp € Aandw € Lie(U). (S2)
e There exist B; > 1 and b; > max(1/2,a/4) such that
Sq(¢ o exp(w)) < By max (1, ||W||)bd S, () forall ¢ € Aand w € Lie(U). (S3)
e There exists M, > 1 such that
Salp192) = MgSg,q,(01)Sa4a,(@2), forallg;, ¢, € A (S4)

Since A is a G-invariant subalgebra, for ¢;,...,¢, € Aand g;,...,9, € G, we also have
that the product [[}_; ¢; o g; € A. We further assume that the norms S; are convex in the

following strong sense:

€20z AINr Z1 uo Jasn e|oxysBoH ejsIue L siowleyd A 9G108£9/01.2/1/EZ0Z/aI0nE/uIWl/Woo dno-olwapede/:sdpy woly papeojumod



Effective Multiple Equidistribution 217

For every ¢y,...,¢, € A, g;,...,9, € G, and compactly supported complex

finite measures w on G,

¢:=/ (H(piogi) dw(g;,....9,) € A, (S5)
G" \i=1

and

Sd(¢) = /;r Sd (H(pl Ogi) dw(g]:~ .. rgr)' (86)

i=1

We now provide several examples of norms for which our set-up applies when

X is a finite-volume homogeneous space of a Lie group G and A = C 4 C(X):

(i)

(ii)

(iii)

The simplest example to which our framework applies is a fixed C¥-norm
with k > 1:

S(@) := max |||l c.

In this case, there is no dependence on the index d. We note that here and
in the other examples, the properties (S5)-(S6) can be verified using the
dominated convergence theorem.

For some applications, one is required to approximate unbounded functions

on X. Then the following refined norms are useful. Let || - denote the

”Llp
Lipschitz norm A with respect to an invariant Riemannian metric and let
Il % denote the LP-Sobolev norm of order k. One can take the family of

norms

S4(¢) := max (I|¢||co, ol Lip: ”¢”Lid) . (3.6)

In this case, property (S3) holds with fixed B, b; depending only k, and
property (S4) with M, depending only on k and with d, = 1 follows from the
Cauchy-Schwarz inequality.

The third example is the Sobolev norms used in [1] (see [1, Subsection 2.2]).
In this case, d denotes the degree of the Sobolev norm, property (S3) holds
with B; = L‘li and b,; = {d for some L,,£ > 1, and property (S4) holds with
M, = Lg for some L, > 1.

Let us further assume that X = G/T", where G is connected semisimple Lie group

without compact factors and I' is an irreducible lattice in G. Then property (EQ2) is the

well-known exponential mixing estimate (see, for instance, [6, Corollary 2.4.4]), where
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218 M. Bjorklund and A. Gorodnik

the bound involves the Li—Sobolev norms of the test functions. Property (EQ2) has been
verified in [3, 7, 10] with respect to the norm S; defined in (3.6) (see, for instance,
[3, Th. 2.2]).

3.3 Norms on the group T

According to our assumptions on T and u := Lie(U), there exists a subset ® ¢ Hom(T, R*)

such that

u= @ua, with u, := {w eu : Ad@)w = a(t)w, forallte T}.

acd

We choose a basis of each subspace u,. This gives a basis of u. For w € u, we denote by

[w| the £°°-norm with respect to this basis. Given t € T, define

It := max { max (JAd@®)w||, [Ad®) " w]) : [w] =1}
= max { max (Ja(9)], |e(®)|?) : a € D). (3.7)
Note that ||t*1||* = ||lt|l, and |||, > 1 for all ¢ € T. Since the action of T on u is proper,
log || - ||, defines a norm on Lie(T). Then the invariant metric d(¢;,t,) on T is comparable

up to a constant to log ||t; tz_1 .. so thatitis sufficient to establish the estimates in terms

of || - ||,. From now on, we redefine m,. from (2.1) as
m,.(t) := m;n ||titj_1||*, fort = (t1,...,t,) € T",. (3.8)
i#]

4 Proof of the Main Theorems

Wefixr>1,¢9, € WV), ¢y,...,¢, € Aand t = (t;,...,t,) € T. We wish to estimate the

expression

v(0 [Toio £) - V(@) [Tro
i=1 i=1

4.1 Step I: expanding the function ¢,

By (3.4) we can write

QDO = ZV(¢O E§)¢§r

EelB
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Effective Multiple Equidistribution 219

where the series converges uniformly, and with the convention that ¢, = 1. Then

v(¢0 [Toie ) = v(0,) [Tr = v(¢0>(v(ﬁ¢i ot;) - ﬁu(wi))
i=1 i=1 i=1 i=1
+Zv((po-ws) Vs(ﬁ%“’ti)' (4.1)
i=1

£#1

where we used the notation
ve () == v (g - m), for n € B(X). (4.2)

Let us now define

Dg,(t; 1) := sup [ ‘V(ﬁfﬂi ° ti) - ﬁu(%’)
i=1 i=1

C Q1 Pp € .A, Sd((pl),.'-,sd((ﬂr) = 1] ’

(4.3)
and, for & #1,
-
Dy, (& €) = sup [ ‘vs(Hq)i o ti) 01 pn € A Sy(e)), ..., Sylpy) < 1} . @4
i=1
Finally, we set
E€E
Then it follows from (4.1) that
r r r
(o [Toi0t:) = v@o) [T 16| = Ear® 196wy [T Sato: (4.6)

i=1 i=1 i=1

Our goal from now on will be to estimate the quantity E;,.(¢). This will be

established through an elaborate induction scheme, so it will be convenient to define

E'd,r—l@) := max {Ed,p(til,...,tip) :1<p<r, {il,...,ip} C {1,...,r}}. (4.7)
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220 M. Bjorklund and A. Gorodnik
4.2 Step II: an upper bound on E; (base of induction)

In this section, we prove the Theorem 2.1 when r = 1. The assumption (EQ1) asserts that
Dy, ,(t;1) <D, p(t)%, forallteT,. (4.8)

We aim to estimate Ej;, ;(¢) for some suitably chosen d; > d,. In view of (4.5), it suffices

to bound
Eéil,l(t) :=supDy, (t;§).
£#£1

To do this we shall exploit the following U-equivariance of the complex measures v, in

combination with the equidistribution assumption (EQ2).
Lemma4.1. Forallé e Eandw €u,

exp(w)*vS = 5(—w)vs.
Proof. Indeed, it follows from (3.1) that for every ¢ € B(X),

exp(W), v () = v (¢ 0 exp(W)) = V(Y - ¢ 0 €XP(W)) = V(Y 0 eXP(—W) - %)

= 8w (Y - @) = E(=W)ve(9).
]

Letop € A, weu\{0},te T, and & # 1. Using Lemma 4.1, we conclude that for

every s € R,

ve(p ot) = E(sw)vg (g o t o exp(sw)) = &(sw)vg (¢ o exp(sAd(t)w) o t)

= &(sw)vg (¢ o exp(sAd(Hyw) o t — u(e)),
where we used that ve(1) = v(yg) =0 when & # 1. For L > 0, we set
1 L
o= 7 / E(sw) ((p o exp(sAd(H)w) — ,u((p)) ds. (4.9)
0
Then

Ve (9 o t) = ve ¢y o ). (4.10)
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Effective Multiple Equidistribution 221

Using that || = 1 v-almost everywhere, we deduce that

Ve (¢, 0 D) < v(lghy] 0 1) < v(lgpy]? 0 1)/

< 1Y% + [v(Igy 2 o t) — (i1 H)|2, (4.11)

where we used the inequality «'/? < /2 + |o — B|}/? with «, 8 > 0.

The required bounds on the two terms in (4.11) is provided by the following two

lemmas:
Lemma 4.2. Letc; := u(p)- %foLg(sw) ds.

@) ng = |¢L|2 - |CL|2 €A

(it) If LJAd(t)w]| > 1, then

/ 2b
Sa, () < By, (LIAA@®W])*7*% Syq (9)%,
where B =M, B3, +2Bg,.

Lemma 4.3. If L|Ad(®)w]| > 1, then

1(lgpl?) < 14C(LIIAd@OW]) ° Sy, ()2,

where C and c are the positive constants which are defined in (EQ2).

We postpone the proofs of the lemmas until Section 5 and continue with the
estimate (4.11). We note that since both v and u are probability measures and c; is a

constant, we have

[V(1¢zl? 0 ) — nlldy 1P| = [v(ng, o t) — u(ng)|.

Hence, using (EQ1) and Lemma 4.2, we deduce that

[v(lgpl? o 1) — u(l*)| < D, p(1) % Sy (ny)

’ b _
< DBy (LIAA@®W])*** p() 7% S,y (9)2,
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222 M. Bjorklund and A. Gorodnik

for all L > 0 such that L|Ad(t)w]| > 1. Combining this estimate with Lemma 4.3, we
deduce from (4.11) that

_ b _
[ve(p 0 ) =|ve (@, 0 0] < (4VC(LIAdDOWI) "+ /D,By, (LIAAOWI)* p(t) /) S,q,(p),
for all L > 0 such that L|Ad(t)w]| > 1.

It remains to find a suitable L > 0 to ensure that the right-hand side in the last
inequality decays like an inverse power of p(t). If we choose L > 0 so that

LIAd@®) W = p(t)%/ (€ +2b2do), (4.12)

then, since p(t) > 1, we see that L|Ad(t)w]| > 1, and thus the previous bounds are

available. We conclude that

V(¢ 0 )] <D} p(1) ™" Sy, (),

where

cs,
D, :=5ma ( /DB, ) and § 5 < 1.
1 x(VC, L 2(c+2b2d)< o=

Since this upper bound is uniform over all £ # 1, and the constants are independent of

teT,, we obtain that

Ejy (&) <Djp(®™", forallteT,.
Combining this bound with (4.8), we finally deduce that

Eyy () <D, p(®)™, forallteT,, (4.13)
where D, := max(D,, D).

4.3 Step IIL: choosing a suitable one-parameter subgroup

While the estimates in Step II involve averaging along an arbitrarily chosen one-
parameter subgroup of U, we will have to choose this subgroup more thoughtfully to

handle higher order correlations. We will carry out this task now.
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Letr>2andt = (t,...,t,) € T|. We define

M,(t) := max (I [ (4.14)
where | - ||, is given by (3.7). By the definition of | - ||, we can find indices i,j =1,...,r
and « € ® such that

M) = 1587 1], = le(t;t; D] = |Adtt; Dey 1,
where e, ; belongs to the (fixed) basis of u,. We set i; = i and pick indices i,,...,1,, all
distinct, such that
|adt, 6 e, | = |Ad(ty 6 e | = - = [Ad, 6 Ve, | 4.15)
In particular, there exists an indexl=1,...,r such that i; = j, and thus
1= |Ad@; 6 e, | = [Ade;, e, |- (4.16)

Since the expression Eg ,(¢) that we wish to estimate is invariant under permutations

of the elements in ¢, we may henceforth without loss of generality adopt the following

convention:

The indices are relabelled so that iy =k fork=1,...,r.

Assuming this convention, we set

W= Ad(tlfl)ea,1 and w® = Ad(tpw, fori=1,...,r. (4.17)
We note that
lw =M@ and [w?”]| <1,
and it follows from (4.15) and (4.16) that
Iw® == w?| and [w®|<M.@® " |wD]. (4.18)
We stress that the r-tuple w, ..., w is uniquely determined up to permutations of

indices by ¢.
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224 M. Bjorklund and A. Gorodnik
4.4 Step IV: a recursive estimate of E, in terms of E,_ (inductive step)

Letr>2,t=(t,...,t.) €T, ,and ¢;,...,¢, € A. For £ € E, we need to estimate

([Teo) = (e [Tos)

We exploit the invariance of the measure v under U and consider the one-parameter

subgroup exp(sw), where w is determined by the tuple t and is defined in (4.17). Then

r r r
Ve (H @; 0 ti) = v(l/fE o exp(sw) H(pi ot;o exp(sw)) = (é(sw) H‘pi o exp(sw(i)) o ti),
=1 i=1 i=1
where w® := Ad(t;)w. Therefore, for any L > O,
1 (@)
(H%ot) _vg( s(sw)Hgo,oexp(sw Yot ds) (4.19)
i=1
Our argument uses induction on the number of factors r. For an index 1 < p < r, we set

-
L= (H%’ o ti) / E(sw) H(pl oexp ( sw(‘) ot ds) H piot; |, (4.20)
i=1

i=p+1

I, = / E(sw) H(ploexp swd) o, —Hu(wl)ds) H giot |, @21

i=p+1
f:l n(e;) (V(Hfszrl @; 0 ti) - H£=p+1 M(‘Pi)) ife=1

L = . (4.22)
Hliozl w(g;) Vs(Hfsz @jo ti) ifé #£1

Then

1k ”(Hle ¢;© ti) —[li () ifé=1
Lg+De+ (Z/o E(sw) ds )l =
%(HLlﬁoﬁ) ife £1

Since |£] = 1, we see that when S;(¢;),...,S;(¢,) <1,

Eg,@®) <sup |l | +supll,¢| +supllgel (4.23)
E€lB el el

€20z AINr Z1 uo Jasn e|oxysBoH ejsIue L siowleyd A 9G108£9/01.2/1/EZ0Z/aI0nE/uIWl/Woo dno-olwapede/:sdpy woly papeojumod



Effective Multiple Equidistribution 225

We thus wish to prove that each term in (4.23) is small, provided that L > 0 and the
index p € [1,r) are chosen appropriately. An important ingredient towards achieving

this is the following technical proposition, whose proof we postpone until Section 6.
Proposition 4.4. ForeveryL > 0and 1 < p < r such that L|jw®| > 1,

(D supgeg I ¢l < FA(LIWPHV ) TiZ, Sg, ()
b —c/2
(D) supgez Ll < P ((PdLuw(”n)’ @tdo Dy oty by DY 4 r(E|w®]) )
. . 1/2bg+d,
[Ti=1 Sq+a,(¢;), where Py := /14C and Py := (MgBZ 4 +2B7) '“"*%.
(I supgeg el < Egpp(tpins -0t [1i=; Sale;) when d > d,,.

The key point of Proposition 4.4 is that it will eventually allow us to establish
an upper bound E,;,.(¢) in terms of E’d,rfl(g). Using induction, we can then use our
bound on E;, (and thus on E'd,l) from the previous steps to provide an upper bound

onkEg,.

4.5 Step V: minimize the bound with respect to p and L

Here we specify the parameters p and L for which estimates from Step IV will be applied.
The following version of the pigeonhole principle will be useful (see also Subsection 2.6

in [1] for a similar application).

Lemma 4.5. Fix an integer r > 2 and a real number 6 € (0, 1). Then, for every r-tuple

(By,...,B,) of non-negative real numbers, which satisfies
Br=---=p and B, <p0,
thereexist 1 <p <r—1and 0 < q <r — 2 such that
Boi1 < 519(q+1)/r < B 99T < Byp-
Proof. Let Y= B 09" for 0 < q < r. Since 0 € (0,1) and B, < B0, we have

Br<B10=y. <<y <¥o= B

€20z AINr Z1 uo Jasn e|oxysBoH ejsIue L siowleyd A 9G108£9/01.2/1/EZ0Z/aI0nE/uIWl/Woo dno-olwapede/:sdpy woly papeojumod



226 M. Bjorklund and A. Gorodnik

and thus the r distinct (and linearly ordered) points yj, ..., y,_; belong to the interval

(B, B1]. Let us partition this interval into r — 1 half-open (possibly empty) intervals as

r—1

Br B11 = || Bps1: Byl

p=1
Then, by the pigeonhole principle, there are two consecutive points that belong to same
partition interval, that is, there exist 1 <p <r—1and 0 < g < r — 2 such that

ﬁp+1 < yq+1 < yq = ﬂp!

which finishes the proof. |

Let t € T,. Throughout the rest of the argument, we assume that
M, () = max [t;t; ]|, > 1,
ij

or equivalently, that ¢; # ¢; for at least one pair (i,j) of distinct indices. We shall apply

Lemma 4.5 above to
oelM.@® ", 1) and B =Iw?|, i=1,..,r

where the elements w are defined in (4.17). Note that (4.18) implies that the conditions
in the lemma are satisfied. We conclude that there are indices 1 <p <r—1and0<qg <
r — 2 such that

1
Iw P < wD) @D/ < w99 < |wP,

and we set

L= ”W(l) ||—19—(Q+1/2)/r_

With this choice of L, we obtain

Liw®| = 9~@H/2/m < 971, (4.24)

(g+1/2)
LIw® | = [w® |~ g= @2/ jw®) = 9= 157 g7 = g1/ > 1, (4.25)
L||W(P+1)|| — ||W(1)||*1 9*(Q+1/2)/r||W(P+1)|| < 9 @+1/2)/rg(q+D)/r _ g1/2r (4.26)

We stress that these bounds are independent of the indices p and q.
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Let us now utilize these bounds in combination with Proposition 4.4. From (4.26)

and Proposition 4.4 (I), we see that
r
sup |1, ;| < rA0%?" [ ]Sy, (#)-
§eB i=1
Using (4.24), (4.25), and the trivial bound
Dd,p(tll ey, tp; 1) < E'd,r_l(z),
we deduce from Proposition 4.4(II) that
-
_1\7b =
2up |1—2'E| < P] ((Pdé? 1)7‘ d+do Ed,r—1(§)l/2 + \/;00/47‘) HSd-i-do((pi)'
€& i=1

Finally, since Eg,_,(t b)) < E'd,r—l(ﬁ) < 2, we conclude from Proposition 4.4(III)

p1r--
that
r r
sup lfy | < Eg, @] Sale) < V2Eq4, 1" [ ] Salen
€= i=1 i=1

Finally, using (4.23), we conclude that when Savd, @) Sara, (@) <1,

Ed+do ,r(z)

IA

sup |I; ¢| + sup I | + sup |I5 |
&€l &€l £€B

IA

2P (Py0~yPardoEy . (02 + 1009, (4.27)

forall t € T",, where Q := 2max(4, P;) and ¢, := min(a/2, ¢/4). We recall that this bound
holds under the standing assumptions that M,.(t) > 1 and 6 € [Mr(l_:)_l, 1).

4.6 Proof of Theorem 2.1

Given r > 2 and t = (¢;,...,t,) € T%, we use the quantities p,.(t), m.(t), and A,.(?)

introduced in (2.1), (2.2), and (3.8). Throughout the computation, we assume that
At) > 1. (4.28)
We note that for any exhaustion

{t;) Cl{ty b, C oo CHty, ot

r

b

where t;

iyre--,t; are distinct entries in the vector t, we have

Ap(ty) = Dylty b)) = ... = A1) > 1. (4.29)

11’
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In (4.13), we proved
Eg ,(t) <D, p(tp™™, foralli=1,...,r,
where d, :=2d,, and D, > 1 and §; € (0, 1) are explicit constants. Hence, by (4.29),
Eg (. t;,) <Dy A7, (4.30)

for all indices i, i,, where E'd,r is defined by (4.7).
We introduce the following inductive assumption:
Inpr: There existd,_; e N,D,_, > 1 and é,_; € (0,1) such that

Egy  ,1(t,...,t) <D A0, (4.31)

We note that (4.30) implies that the base of induction Ind, holds. In what follows,
we shall use our recursive bound (4.27) (for suitable 6) to show that for every integer

r>2
Indr = Indr+1,

and provide explicit estimates for constants d,, D,., §,.

We verify the inductive step (4.31) under the assumption A.(¢) > 1. Let
0:=A1)"" <1
with a parameter ¢, € (0, 1), which will be specified later. We have
M,®)' < M,@® " <m@®) " <A@B " =9,

and thus 0 € [M,(t)~!, 1), so the inequality (4.27) can be applied. Combining (4.31) with
(4.27), we conclude that

b o p—
Eg ya,r® < 2P (Py A (D)) P4atdeE, Y2+ raa o)
< 2P (g, A @) P41t DA AL (072 P QAL @) O

1/2

rba, 1 +do
<2PP 1

—(8p_1—2er7b 2 —e,
drr A @)1 4 p QA ()T

D
Let us choose

1)
2 r-1 , (4.32)
T + 2rbdr—1+da

d..=d,_;+d, and ¢,:=
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so that the two exponents in the last expression match. Since by | .4 > 1/2and §,_; €
(0,1), we have ¢, € (0, 1). Then we obtain

Edr,r(z) = DrAr(Digrl

where

c,0

.= 2P, P, D% +ra and s,

rb dr 1+do
—1

r—1
<8, 1, (4.33)
(201 +2rbd 71+d0) r—1

provided that A,.(f) > 1. Finally, we note that D, > 2 and E, < 2 on Tr, so the last

inequality holds trivially if A,(¢) = 1. This completes the proof of Theorem 2.1.

5 Proof of Lemmas 4.2 and 4.3

Proof of Lemma 4.2. To prove (i), we note that upon expanding the square, we have

| = L2/ / E((s]—S9)w)(¢ o exp(s; Ad(H)w) — u(9)) (¢ o exp(s,Ad(t)w) — u(p)) ds;ds,

= RL,l + RL,Z + |CL|21

where

1 L pL
Ry, = 17/0 /0 £((s] — Sp)W) - ¢ o exp(s;Ad(t)w) - ¢ o exp(s,Ad(t)w) ds, ds,,
and
1 L
R, ,:= —2Re (q —/ E(sw) - ¢ o exp(s Ad(HW) ds).
’ L 0
It readily follows from our assumption (S5) that Ry ;, Ry, , € A, so that
np = 19p)® = leg)* = Ryy + Ryp € A

This gives (i).

To prove (ii), we first note that our assumptions (S6) and (S4) imply that

1 L L
Sq,(Rp,1) < 17/ / Sa, ((p o exp(s; Ad(t)w) - ¢ o exp(sy Ad(t)w)) ds; ds,

Mdg

/ / Spq, (9 0 exp(s; Ad(H)w)) Spq, (¢ 0 exp(s, Ad(Hw)) ds, ds,

1 [ 2
=M, (—/ Sa4, (go o exp(s Ad(t)w)) ds) .
L Jo
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Similarly, by (S6),

1 L
Sa,(Ry,) < 2||(p||oo(z/ S, (¢ o exp(s Ad(Hw)) ds).
0
By (S3), we have
S34, (¢ 0 exp(s Ad(O)W)) < Byg, max (1, (s| Ad@)W[)P2e) Sy (0), (5.1)

for all s > 0.

Let us now assume that L|| Ad(t)w| > 1. Then,
max(1, (s| Ad(®)w])?2d0) < (L] Ad(t)w|)’2d for all s € [0, L],

so that we conclude from (5.1) that

1 L
- /0 Sy, (¢ 0 exp(s Ad()W)) ds < Byy_ (LIl Ad@®WI)?* Syy (¢).

L
Hence,
Sa,(Ryy) < My B3, (LI Ad(tywl)?P2 Sy ()2,
Furthermore, by our assumption (S1), ¢l < Sg, (¢), and thus
Sa,(Rr2) < 2By, (Ll Ad(tyw)bde Sd, (@2

We conclude that

Sq, (1) < Sg,(Rp1)+Sg, Ry 5) < (MdaBédo (L] Ad(®yw|)?P2do +-2B, (L]| Ad(t)wn)bdo)smo (0)*

< (Mg B3g +2B4) (L] Ad@®)w])*Pde Sy (@)?,
where we have used in the last inequality that L|| Ad(t)w|| > 1. This proves (ii). [ ]

Proof of Lemma 4.3. Setting ¥ := ¢ — u(¢), we obtain from (4.9) that

1

L /L
M(|¢L|2 < 17/0 /0 |M(W o exp(s; Ad()w) - ¢ o exp(s, Ad(t)w))| ds,ds,.
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Since the measure u is U-invariant,

M(lﬁ o exp(s; Ad(H)w) - ¥ o exp(s, Ad(t)w)) = M(tp o exp((s; — sy) Ad(t)w) @

= ju(p 0 exp((s, — sp) Ad(t)w) - @) — |(p)[?,
for all 5,,s, € R. It follows from (EQ2) that
(¢ 0 exp((s; — sy) Ad(®)w) - @) — |u(p)[*| < Cmax (1,s; — soll Ad(BOW)) Sy, (9)?.

Hence, we conclude that

1 L L _
u(|¢L|2>sc(L—2 / / max (1, [s; — s, | Ad(@®w]|) "dsldsz)sdo(go)2
0 0
—C(l /R/Rmax(l Is; — S,1) “ds;ds )S (9)?
R2 Jy Jo 1191 7 %2 1052 )94, (9)"

where R := L|| Ad(¢t)w|. We shall use the following integral estimate, which proof we

leave to the reader: for every R > 1 and ¢ € (0, 1),

1 R R 7R—C
—/ / max(1, |u —v|)~"¢dudv < .
RZ 0 0 1-c

Then we obtain that
2 7C —c 2 —c 2
wgrl) = T (LI Ad@Owl) "S(e)* < 14C(L] Ad®OWI) S, ()%,

where we used that ¢ < 1/2. This proves the lemma. |

6 Proof of Proposition 4.4
6.1 Upper bound on I ¢

We recall that v, ( [Ty @0 ti) can be rewritten using an additional average along a one-

parameter subgroup exp(sw) as in (4.19). Then

”S(ﬁ“’i”i) _”5((% /OLS(SW)IB[%”XP (sw®) o t; ds) ﬁ viot;)
=1 i=1

i=p+1

€20z AINr Z1 uo Jasn e|oxysBoH ejsIue L siowleyd A 9G108£9/01.2/1/EZ0Z/aI0nE/uIWl/Woo dno-olwapede/:sdpy woly papeojumod



232 M. Bjorklund and A. Gorodnik

equals

/ E(SW)H(plOEXp (sw®) o t; ( H ¢; o exp (sw?) o t; — H (pioti)ds).

i=1 i=p+1 i=p+1

Thus, since || =1 and [Pl =1 almost everywhere,

(6.1)

p
I el < (Hllgoilloo)~ sup H H ¢; o exp (sw?) o t; — H @;
i=1

sel0Ll 7 i=p+1

Furthermore,

r r
H H @; 0 eXp (sw(i)) ot; — H @; © ti

H H <ploexp sw(l) H i

i=p+1 i=p+1 i=p+1 i=p+1
p+1 -
< Z H( H @; 0 €Xp sw(l))) H ( H ;o exp ( sw(” )H(pl
k=r  i=p+1 i=k+1 i=p+1
p+1
< D lekoexp(sw®) =g, [ leils
k=r p+1<itk=r

From (S2), we have

|ox o exp (sw®) — o], < A(sIw®])Sy, ().

Therefore, using (S1) and (4.18), we conclude that

r r r
| T eioexpsw®) ot~ [T piots]_ <raw® 0 [] S0
i=p+1 i=p+1 o i=p+1

for all s > 0. Hence, using (S1) one more time, we conclude from (6.1) that

.
I el < FALIw® D) T S, (00)-
i=1

This verifies Proposition 4.4(I).
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6.2 Upper bound on I ¢

This proof here is similar to the argument in Section 4.2, but is more involved. Let us

introduce a function y/; : X? — C defined by

_ 1 I p ) p
T =1 [ esw([Toitexpow®ytxy - [Lnen) ds 6.2

i=1 i=1

for x = (Xl,...,Xp) € XP. We denote by y; the restriction of JL to the diagonal in XP,
that is,

Y (x) 1= @L(x, ...,x), forxeX.
Furthermore, we set A := Hf:p 4+19; o t;, so that we can write

Ly = ve(Yy, - 2) = v( - ¥y - 1),
Hence, by Cauchy-Schwarz inequality,

el < v(Wp )2 o 6.3)

1/2

Now, using that the inequality u'/? < |u — v|/? 4+ v/2 for all u, v > 0, we see that

1/2

v(IYHY2 < (yl® — w®P YLD + w®P (v D3, 6.4)

where ®P denotes the product measure on X? induced from pu.

6.2.1 Upper bound on |v(|yz]?) — M@’I’(IJLIZ)W2
Setting
1 [k 2 2 L 2
o, ::Z/O E(sw)ds and |cp|® = |6 H|M(<ﬂi)| '
i=1
we have

Y |? = ﬁl,L + ﬁz,L +§3,L + legl?,
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where
ﬁu(&) = —/ / £((sq —Sz)w)l_[gal(exp(s1 (”)t X)) p;(exp(s,wi)t; x;) ds; ds,, (6.5)
i=1
Ry, (x) =0, / é(sw)Hgol(eXp(sw(‘))t X)ds)l_[p,(q)l (6.6)
=1
Ry (%) := Ry (x). (6.7)

We denote by R, ;, R, ;, and Ry ; the restrictions of ﬁLL, ﬁZ,L' and ﬁle respectively to
the diagonal in XP. Then

[y = Ry +Ry;+ Ry + legl?,

and

(P = wBP YD) < 111 + 1To] + T3], (6.8)
where

Je = v(Ryp) — u®P[Ry;), fork=1,2,3.
We further note that |J,| = |J3]. The following lemma, whose proof is postponed until

Section 7, provides estimates on the J;'s.

Lemma 6.1. For every L > 0 such that Ljw®| > 1,

(@) |1Jy| < MyBE 4 PLIwD[)?PPacdoDy (8, ..., 1) [Th, sd+do (@)%
(@) |Jy| = 3| < BY@IwD)PPADy 2y, ..., ty) [T5; Sale)?

In particular, since By, Mg, L|lw¥| > 1, we conclude from this lemma and (6.8)
that

v(YL1?) = u®P (9P| < Byp@lw P N2PPadoD, (2, ..., t,) [ | Sara, (0% (6.9)
i=1

where B , 1= (MdBd+d )P + 2BE.

6.2.2 Upper bound on u®P (| |2)1/2

We write the function v/; as

~ 1 rL
Y (x) = Z/ E(sw)ys(x) ds,
0
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with

14 p
vs@ = [ [ eitexpswt;.x) — [ | nioyp.

i=1 i=1

Let us set p; 1= ¢; — (). Then we can write

p -
s => v,

j=1
where
) Jj-1 p
7@ = ([Trtn)piexpewtxp( ] eiexpsw®t.xp).
i=1 i=j+1
Hence,

HEP (G2 = Z » / / £((s, — spwn® (9 yP) ds, ds,.

Since the measure u is G-invariant, we have ,u(,oj) =0, so that forj < k,

(P (Hlu(wl)lz)u(p])u(% ( H 1)) 1@y 0 expis; w™) - oy 0 exp(s,w®)
i=1 i=j+1

d D — R
X ( H /L(¢i o eXp(Slw(i)) - ¢; 0 exp(szw(i)))) —0.
i=k+1

Also,
wE (DD =(H|u(<pl)|) (0 0 exp(s;w?) - p; 0 exp(s,w))

< (T o1 expis,w®) - ;o expls,w®)).
i=j+1

Therefore, we deduce that

18P (|, %) < < L2/ / %) ds, ds,

1 (L L .
5Z(L—2 /0 /0 [0ty 0 xp(5, = spw) - 7| dsydsy) [l

j=1 i
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By arguing verbatim as in the proof of Lemma 4.3, we see that

1 L L o - —
L—2/0 /O |iu(p; 0 exp((s) — sp)w?) - p))| ds, ds, < 14C(LIwP ) S, (92, (6.10)

forallj=1,...,p, provided that L|jw®| > 1.

Let us now assume that L|w®|| > 1. By (4.18), we then also have L|w"| > 1 for
allj=1,...,p, and thus we can use the bound (6.10) for every j. We conclude, once again
using (4.18), that

wEP (Y |?) < 14p C(LIwP|l)~ HSd (9p)?. (6.11)

6.2.3 Combining the two bounds

—~

Our goal is to bound |I, | from above, uniformly over § € E. Recall from (6.3) and (6.4)
that

1/2

el = (vyel® = 1P AT 2 + 1P AT D Y2) 4] -

By (S1), we have |Allo, < [Tj—p+1 Sa, ()
We recall that we have proved in (6.9) that

-~ 2pb,
w(YL?) = n®P (9 ?)| < By (LIlw P )P4 Dy (@, ) [ [ Sava, (007
i=1

provided that L|w| > 1, and in (6.11) we have proved that
u®P (1Y ? < 14p C(LIw®P )~ Hst«oL) ,
provided that L|w'P| > 1. Hence,

1 2 b 2
el < (BYE@Iw®N* 49Dy 11, .. 8)12 + (14p0) 2 (LI w® )~ )Hsdmo(w»
i=1

b 2
< pl((de”Wﬂ)”)r @rdo Dy oty . )2+ V(LW P ) )Hsd%(wl
i=1
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where
P1 :=+/14C and Pd = (MdBé+do + 2B3)1/2bd+d0.
This completes the proof of Proposition 4.4(II).

6.3 Upper bound on I3 ¢

Let us first consider & = 1. It follows immediately from the definition of
Dgr_p(tpirs---, 1) in (4.3) and (S1) that

3l < (fp[nqoinoo)\v( I 0rot;) - [T e
i=1

i:p-l—l i:p+1

r
S Dd'r_p(tp+1l sy tr) HSd((pl)
i=1

when d > d,. Similarly, if £ # 1, by the definition of Dd,r—p(tpﬂf ..., t;€)in (4.4) and
(S]-)I

p r r
el = ([T heillo) |2 ( TT ¢i0%)| = Darppirr-- 2 [T Sato)
i=1

i=p+1 i=1

when d > d,. Therefore, from (4.5) we conclude that

r
en i=1

which verifies Proposition 4.4(III).

7 Proof of Lemma 6.1

Proof of Lemma 6.1(i). Given s = (s,S,) € R? and x € X, we define

;(s, %) = g;(exp(s,w))x)p;(exp(s,w)x), fori=1,...,p.

Then

_ 1 (L (L p
Ripw =33 [ [ e —spw [[aits tix dsyas,
i=1
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238 M. Bjorklund and A. Gorodnik
and

_ 1 L /L p p

il = V@R, ) — u®P R, ;)| < L—2/0 /0 o(TT o0 8) ~ [T nleits, )| dsyds,. 7.0

i=1 1

=

Since A is a G-invariant *x-algebra and ¢; € A, we note that ¢;(s,-) € A. Hence, by the
definition of Dd'p(tl, - tp) in (4.3),

p p P
p([Teis 90 t) = [T, )| = Daptr, . ) [T Sa(#6. ),
i=1 i=1 i=1
for every s € R2. By (S4),
Sa(bi(s.) < My Sy a,(p; 0 exp(s;w™)) Sy 4, (¢; o exp(s,w™)),
and by (S3),
Satd, (@i 0 eXP(SW(i))) <B4, 4, max (1, sllw(i)ll)b‘”d" Sas+a, (@), foralls=>0.
Let us now assume that L|w| > 1. Then, by (4.18),
max(L, s|w®|) <L|jwV|, foralli=1,...,pands € [0,Ll.
Therefore, we conclude that for all s € [0, L]?,
p p - p
([T 0 t) ~ [T r(@i6s. )| = M4B3, o, P EIw V1) PP Dy oty ) [ | Stia, @)%
i=1 1

i= i=1

and it now follows from (7.1) that

p
2pb
1| < MgBE, 3 )P (LIw D )P4 Dy oty 1) [ ] Sara, (00

i=1

provided that L|w™®| > 1. [ |

Proof of Lemma 6.1(ii). We recall that

_ _ 1 [ p . p
Ry0 =0, (3 /0 s(sw) [ T eitexpsw®)t;xy) ds) [T ulep.
i=1

i=1
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Since |0;| < 1 and the measure u is T-invariant, we have

ol < [v@By ) — w®P Ry )|

L p . P ‘ p
< (%/o ‘v( ;o exp(sw) o ti) —[Tr(eio exp(sw(l)))‘ ds) [Tleill-
1 i=1 i=1

i=

By the definition of Dd,p(tl, el tp) in (4.3), we see that

p p p
‘V(H‘/’i o exp(sw?) o ti) - H,u(goi o exp(sw(l)))‘ < Dgp(ty,... ty) Hsd(‘Pi o exp(sw(’))),
i=1 i=1

i=1

for all s € R. By (S2),
Sa(p; o exp(sw®)) < Bymax (1, s|lw®])*? S4(¢;), foralls> 0.
Let us now assume that L|w| > 1. Then, by (4.18),
max(1,s|w?|) <Ljw®|, foralli=1,...,pands€[0,L].

Therefore,

p p p
.. .. b
’v(pri o exp(sw®) o ti) —H/L((pi o exp(sw(l)))‘ < BZ(LIlW(l) ||)p d Dyp(ty, ..., tp)H Sy(e)),
i=1 i=1

i=1

for all s € [0, L]. Now it readily follows that
P
b
Wyl < BY(LIw D) Dy (8, . 1) [ [ Salen?,

i=1

provided that L|w™| > 1. [ ]

8 Explicit Version of the Main Theorem

Let us now present a version of Theorem 2.1 with explicit parameters. Here we
additionally assume that the estimates (S3) and (S4) hold for

By=L%and by = ¢d withL;,£>1 and M, =L$ withL, > 1

respectively. Such bounds can be verified for the Sobolev norms (see Section 3.2,

examples (i)-(iii)). Then we prove the following:

Theorem 8.1. There exist H;,H, > 0 and A > 1 such that for all r > 1, ¢, € W(v),

¢1,...,9, € Aand t € T’ satisfying A,(t) > Hg*l)m(rﬂ)w

’

r r B 1 r
‘v(“’o [Teio ti) — (@) [ [ ulep)| < rHy A, @) @705 TS 4104, @0,
i=1

i=1 i=1
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240 M. Bjorklund and A. Gorodnik

Proof. We recall from the proof of Theorem 8.1 that the parameters §,, D,, and §,. are

determined by the following relations:

d,=d, ,+d, withd, =2d,,

r—1+do

b
D, =2PP," 1/2

D, +rQ, whereP;:= (MdB§+do + zBé)l/Zbd+dO,
C18r_1
7‘(2% +2rbg_ 1q,)

r=

It is clear from the recursive formulas that
d,=(r+1)d,
and

C18,_4 1
>
r(2 4 20r(r+1)) ~ PO+ D"

r=

for an explicit A > 1, which depends only on a, b, ¢, and £. However, with this choice,
D, grows super-exponentially fast in r. We modify the proof of Theorem 2.1 choosing 6
differently to get rid of the P;Iii” -factor. This will then imply that the constant grows
linearly. Unfortunately, this type of argument only applies to those ¢t € T7, such that
A, (?) is sufficiently large depending on r.

We assume that the inductive assumption (4.31) holds and choose
0:=Py A,
where ¢, is given by (4.32), and P;_ | is defined in Proposition 4.4. We note that
Py = (MrdoB(2r+1)do + 2Biia)l/(z(wrl)alg) _ (LgdoL%(r-i-l)do + 2L§rdo)1/(2(r+1)d0> <Ly(Ly +2).
Since Py =1, we have Mr(g)_1 < 6, and we note that 6 < 1 provided that
A > Py (8.1)

Hence, if t satisfies (8.1), then, just as in the previous proof, it follows from (4.27)
combined with (4.31) that

Ed+do,r(D = DrAr(Disr'

where

D, :=2P,D,”} +rQ, withQ,:=ap}", (8.2)
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and §, as above. Then

2c
=L 4 2rb 2c
1/e, = L ; droatdo (71 + 20r(r + 1)) (r=DD?rA <y @r=DIrtr+ 1!,
r—1
where y = w By induction on r, one can also show that there exists H; > 1

such that D, < H,r for all r. Therefore, we conclude that

1

E.(t) < TH, A (t) TZrDir

for all t € T satisfying

A D) > Hér—l)lr!(r-&-l)!)f, where H, :=L! (L, + 2)" .

This finishes the proof. n

In the case of the examples (i)-(ii) of the norms introduced in Section 3.2, the
above estimates can be simplified. Let us now additionally assume that X = G/I", where
G is connected semisimple Lie group without compact factors and I' an irreducible
lattice in G, and A = C + C*(X).

Corollary 8.2. Let S,; denote the norms defined in either (i) or (ii) in Section 3.2. Then

there exist H;,H, > 0 and A > 1 such that forallr > 1, ¢, € W), ¢;,...,9, € A and

o —1)IrAT
t e T" satisfying A,(¢) > Hy "

’

v(e0 [Toi o) — e [Tt < 7 Hy A0y @57 T[S, 00p.

i=1 i=1 i=1

Proof. We note that in this case, properties (S3)-(S4) hold with fixed constants
independent of d. Using this we obtain that

18,1 - 1
r(2 4 2rb) — (r1)2A7

r =

and

2cy
£ 4 2rb
1/8r =I < y(r— DIrt A",

r—1

This implies the estimate. n
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