
Development and analysis of the two-regime transient tyre model for
combined slip

Downloaded from: https://research.chalmers.se, 2024-03-13 07:24 UTC

Citation for the original published paper (version of record):
Romano, L., Bruzelius, F., Hjort, M. et al (2023). Development and analysis of the two-regime
transient tyre model for combined slip. Vehicle System Dynamics, 61(4): 1028-1062.
http://dx.doi.org/10.1080/00423114.2022.2057335

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nvsd20

Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/nvsd20

Development and analysis of the two-regime
transient tyre model for combined slip

Luigi Romano, Fredrik Bruzelius, Mattias Hjort & Bengt Jacobson

To cite this article: Luigi Romano, Fredrik Bruzelius, Mattias Hjort & Bengt Jacobson (2023)
Development and analysis of the two-regime transient tyre model for combined slip, Vehicle
System Dynamics, 61:4, 1028-1062, DOI: 10.1080/00423114.2022.2057335

To link to this article:  https://doi.org/10.1080/00423114.2022.2057335

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 04 Apr 2022.

Submit your article to this journal 

Article views: 1583

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=nvsd20
https://www.tandfonline.com/loi/nvsd20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00423114.2022.2057335
https://doi.org/10.1080/00423114.2022.2057335
https://www.tandfonline.com/action/authorSubmission?journalCode=nvsd20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=nvsd20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00423114.2022.2057335
https://www.tandfonline.com/doi/mlt/10.1080/00423114.2022.2057335
http://crossmark.crossref.org/dialog/?doi=10.1080/00423114.2022.2057335&domain=pdf&date_stamp=2022-04-04
http://crossmark.crossref.org/dialog/?doi=10.1080/00423114.2022.2057335&domain=pdf&date_stamp=2022-04-04
https://www.tandfonline.com/doi/citedby/10.1080/00423114.2022.2057335#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00423114.2022.2057335#tabModule


VEHICLE SYSTEM DYNAMICS
2023, VOL. 61, NO. 4, 1028–1062
https://doi.org/10.1080/00423114.2022.2057335

Development and analysis of the two-regime transient tyre
model for combined slip

Luigi Romano a, Fredrik Bruzeliusa,b, Mattias Hjortb and Bengt Jacobson a

aDepartment of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden;
bDriver and Vehicle, VTI Swedish National Road and Transport Research Institute, Gothenburg, Sweden

ABSTRACT
This paper refines the two-regime transient theory developed by
Romano et al. [Romano L, Bruzelius F, Jacobson B. Unsteady-state
brush theory. Vehicle Syst Dyn. 2020;59:11–29. DOI: 10.1080/004231
14.2020.1774625.] to include the effect of combined slip. A nonlinear
system is derived that describes the non-steady generation of tyre
forces and considers the coupling between the longitudinal and lat-
eral characteristics. The proposed formulation accounts for both the
carcass and the bristle dynamics, and represents a generalisation of
the single contact point models. A formal analysis is conducted to
investigate the effect of the tyre carcass anisotropy on the properties
of the system. It is concluded that a fundamental role is played by
the ratio between the longitudinal and lateral relaxation lengths. In
particular, it is demonstrated that themaximum slip that guarantees
(partial) adhesion conditions does not coincide with the station-
ary value and decreases considerably for highly anisotropic tyres.
The dissipative nature of the model is also analysed using elemen-
tary tools borrowed from the classic theory for nonlinear systems.
A comparison is performed against the single contact point mod-
els, showing a good agreement especially towards the full-nonlinear
one. Furthermore, compared to the single contact point models, the
two-regime appears to be able to better replicate the exact dynamics
of the tyre forces predicted by the complete brush theory. Finally, the
transient model is partially validated against experimental results.
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1. Introduction

Transient tyre behaviour is a crucial aspect in vehicle dynamics, especially in conjunction
with severe brakingmanoeuvres [1]. ABS functions require, indeed, detailed knowledge of
tyre states to be effective. Another important aspect to be considered relates to friction esti-
mation, forwhich several algorithms have been developed. Thesemay, however,mispredict
the available friction coefficient if transient phenomena are not accounted for properly in
the generation of tyre forces and moments.

The transient dynamics of pneumatic and non-pneumatic tyres [2] is a rather complex
phenomenon, which involves several interlinked aspects connected to both the viscoelastic
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properties of the rubber compound and the non-stationary flow of new material that con-
tinuously enters and relinquishes the contact patch [3,4]. An accurate, physicallymotivated
description capable of capturing the salient features of the tyre dynamics often appears to
be prohibitive, because of the overwhelming number of parameters that must be taken into
account.

In particular, two antipodal approaches may be identified when dealing with transient
tyre modelling. The first one consists of a systematic, microscopic analysis of the shear
forces developed at the tyre-road interface. Available models explore the phenomenon at
a microscopic level and share a great similarity with the ones also used in the context of
railway dynamics studies. An example is the classic brush theory [5–9], where the defor-
mation of the tyre tread is modelled by using separate bristles, which alternatively stick
to the ground or are in relative motion. The complexity of these formulations – based on
the classic theory for partial differential equations – make them unsuitable for simulation
purposes and the design of control algorithms.

Different approximatedmodels striving for simplicity have been thus proposed in the lit-
erature and aremainly based on the observation that, under certain circumstances, the tyre
transient behaviour may be well approximated by those of string or spring-like elements.

The infancy of these models probably dates back to the first studies pioneered by
Schlippe [10] and Segel [11], who employed the so-called stretched-string tyre model to
investigate the non-steady-state response of the tyre to a lateral input [12–19]. Being
grounded on a few physical assumptions and relatively easy to interpret, this approach has
gained vital importance over the years and is still one of the most effective when it comes
to typical situations where the slip parameters are relatively small and the assumption
of vanishing sliding holds. Pacejka [20] perfected the analysis by introducing additional
bristle elements to extend the stretched-string model towards applications in which the
friction limit is exceeded over a finite portion of the contact patch. Typically, enhanced
formulations of this time are much more sophisticated and somehow annoying to deal
with analytically [21]. However, they led to fundamental results that represent the concep-
tual basis for simplified models, like the single contact point ones [22–24]. In this category
also fall some variations that are grounded directly on the simpler brush theory [1,25–29].
In any case, these models are all based on the assumption that the tyre dynamics may be
described by a first-order dynamic model, whose main parameter is the so-called relax-
ation length, that is the distance that the tyre needs to travel to develop the 63% of the
steady-state forces. In this approach, the transient properties of the tyre force generation
are then justified by the presence of an additional deformable element, the tyre carcass,
which is held accountable for the whole nonstationary process. In this way, the dual nature
of the tyre is mimicked by a series system which behaves as a spring at low rolling speed
and as a damper at high speeds. This pragmatic approach leads to a very straightforward
model, which generally shows a good agreement with experimental evidence and may be
combined with complex analytical expressions for the tyre forces [30]. This legitimates the
ubiquitous presence of the single point contact models when it comes to vehicle dynam-
ics simulations. Other formulations, which are based on a similar principle, but introduce
higher-order dynamics, are also available in the literature [31,32].

The LuGre friction model [33] has also been proved to be able to replicate the transient
behaviour of tyres with high accuracy. The LuGre formulation, in its distributed form, clas-
sifies as an enhanced version of the classic brush theory, and accounts for more complex
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phenomena, such as the Stribeck effect. Starting from the distributed form, some authors
have derived approximated models, based on ordinary differential equations (ODEs), to
describe the nonstationary generation of tyre forces [34–42]. This formulation is easier to
implement in conventional simulation environments, and is more adequate when it comes
to controlling purposes.

Recently, an alternative approach has been proposed byRomano et al. [5] and formalised
in the so-called two-regime theory. Accordingly, a dynamicmodel is derived as a functional
interpolation between two sets of equations that describe the approximated relationships
between the generalised forces and the slip variables at low and high rolling speeds, respec-
tively. The two-regime models consider the transient phenomena connected to the bristle
and the tyre carcass dynamics, and represent a generalisation of the single contact point
model. However, a major drawback relates to the intrinsic difficulties connected to this
approach, which requires inverting the force-slip mappings. This may be often possible
only locally, and therefore pose stringent limitations on the general validity of the method.
In Romano et al. [5], the derivation of the two-regime tyre models was hence restricted to
the case of pure lateral (or longitudinal) slip. In this paper, the authors extend the original
formulation to account for the effect of combined translational slips.

The paper is structured as follows: Section 2 recapitulates the salient properties of the
brush models and gives a brief overview of the single contact point models. In Section 3,
a refined version of the two-regime theory is presented and the notions of sliding and
slip functions are introduced. The nonlinear model for combined slip is then derived in
Section 4. The system is analysed with respect to input-to-state stability and the dissipa-
tivity. A comparison against the single contact point models is performed in Section 5,
showing a good match between the two formulations (Section 5.1). Validation towards
experimental results is then carried out in Section 5.2 considering a series of longitudinal
manoeuvres. Finally, the main conclusions of the paper are summarised in Section 6.

2. Theory of transient generation of tyre forces

The brush theory represents themathematical foundation for both the single contact point
models and the LuGre-based ones. Therefore, this section introduces the governing par-
tial differential equations (PDEs) of the brush models to the extent that is necessary to
understand the paper. A more comprehensive discussion may be found, for example, in
[1,6,7,20].

The rolling contact between the tyre and the road takes place inside a small area, called
contact patch, and denoted here with P . In the brush theory, it is assumed that P is a
compact, convex subset of R

2, in which the governing PDEs of the model are prescribed.
When the camber angle and the turning spin are sufficiently small [6–8], these may be
formulated as follows:

vs(x, t) = −Vr(t)
[
σ (t)+ Aϕ(t)x

]+ δ̇t(t)+ ∂ut(x, t)
∂t

− Vr(t)
∂ut(x, t)
∂x

,

(x, t) ∈ P × R>0. (1)

In Equation (1), vs(x, t) = [ vsx(x,t) vsy(x,t) ]T is the micro-sliding velocity, that is the relative
velocity between each point of the contact patch and the road, ut(x, t) = [ ux(x,t) uy(x,t) ]T is
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the planar displacement of the bristle inside the contact patch P , δt(t) = [ δx(t) δy(t) ]T is
the deformation of the tyre carcass (modelled as a linear spring), Vr(t) is the rolling speed,
σ (t) = [ σx(t) σy(t) ]T is the slip vector and Aϕ(t) is the spin tensor, defined as [7]

Aϕ(t) =
[

0 −ϕ(t)
ϕ(t) 0

]
, (2)

where ϕ(t) is the spin variable.
The above PDEs come equipped with a boundary (BC) and initial condition (IC):

BC : ut(x, t) = 0, (x, t) ∈ L × R>0, (3)

IC : ut(x, 0) = ut0(x), x ∈ P . (4)

where L is the leading edge and collects the point of the boundary ∂P of the contact
patch where the bristles enter P .

Equation (1) is valid until the tangential shear stress qt(x, t) = Ktut(x, t) acting at the
coordinate x is smaller or equal than the corresponding friction limit μqz(x, t), where μ
is the friction coefficient and qz(x, t) the vertical pressure acting inside the contact patch.
The operator Kt ∈ R

2×2 is a positive definite matrix, usually assumed to be diagonal. As
soon as the friction limit is exceeded, indeed, the displacement of the bristle becomes

ut(x, t) = −K−1
t μqz(x, t)

vs(x, t)
vs(x, t)

⇐⇒ vs(x, t) �= 0, (5)

with vs(x, t) �
∥∥vs(x, t)∥∥2.

Owing to the complexity of the problem, a general solution to Equations (1) and (5)
in transient conditions is often prohibitive, and might only be attempted numerically. In
steady state, when the partial derivative ∂ut(x, t)/∂t vanishes or may be neglected, Equa-
tions (1) and (5) provide a set of relationships between the tangential forces and moment
acting in the contact patch and the slip and spin variables in the form

Ft(σ ,ϕ) =
∫∫

P
qt(x; σ ,ϕ) dx, (6a)

Mz(σ ,ϕ) =
∫∫

P
(x + δx)qy

(
x; σ ,ϕ

)− (y + δy)qx
(
x; σ ,ϕ

)
dx. (6b)

In the single contact point models, the steady-state relationships according to Equa-
tions (6a) resulting from the integration over P play the role of a static nonlinearity that
is used to model the tyre forces and moment when subjected to a transient slip.

2.1. The single contact pointmodels

This approach was developed by Higuchi in his excellent dissertation [22] and the subse-
quent paper [23], and derives directly from the more sophisticated stretched-string and
bare-string models, as discussed before. At the time, the effort was towards simplified
models characterised by a low computational burden to be employed in vehicle dynam-
ics simulations. The mathematical treatment of the single contact point models presented
in this paper mainly refers to the books by Pacejka [8] and Guiggiani [1].
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The overall idea behind the single contact point models is to replace the translational
slip variable σ with the transient slip vector

σ ′(t) � σ (t)− δ̇t(t)
Vr(t)

, (7)

to account for the additional term due to the carcass deflection. A relationship between the
latter and the planar forces is also postulated in the form

Ft(t) = C′δt(t), (8)

where the carcass stiffness matrix C′ is given by

C′ =
[
C′
xx C′

xy
C′
yx C′

yy

]
. (9)

The transient slip vector is then used in place of the conventional one in the steady-state
expressions for the tangential forces obtained integrating over P as in Equation (6a),
i.e. Ft = Ft(σ ′,ϕ). Differentiating the planar force vector with respect to the time and
combining Equation (7) with (8) yields

Ḟt
(
σ ′(t),ϕ(t)

) = ∇σ ′Ft
(
σ ′,ϕ

)T
σ̇ ′(t)+ ∂Ft

(
σ ′,ϕ

)
∂ϕ

ϕ̇(t) = Vr(t)C′ (σ (t)− σ ′(t)
)
.

(10)
Further simplifications allow to define the concept of the so-called relaxation lengths. In
general, the quantities relating to ϕ are almost irrelevant for the transient generation of tyre
forces and may hence be disregarded [1]. Premultiplying by S′ = C′−1 gives

S′C̃σ

(
σ ′(t),ϕ(t)

)
σ̇ ′(t) = Vr(t)

(
σ (t)− σ ′(t)

)
, (11)

where the matrix of the generalised tyre stiffnesses is defined as

C̃σ

(
σ ′,ϕ

)
� ∇σ ′Ft

(
σ ′,ϕ

)T . (12)

The above equation (11) may be recast more conveniently as

�̃σ

(
σ ′(t),ϕ(t)

)
σ̇ ′(t)+ Vr(t)σ ′(t) = Vr(t)σ (t), (13)

where the matrix �̃σ (σ
′,ϕ) of the generalised relaxation lengths is defined as

�̃σ

(
σ ′,ϕ

)
� S′C̃σ

(
σ ′,ϕ

) =
[
λ̃xσx

(
σ ′,ϕ

)
λ̃xσy

(
σ ′,ϕ

)
λ̃yσx

(
σ ′,ϕ

)
λ̃yσy

(
σ ′,ϕ

)
]
. (14)

The transient slip calculated by means of Equation (13) is used as input to a steady-state
model for the tyre forces. This variant of the single contact point model is referred to as
full-nonlinear, since thematrix �̃σ (σ

′,ϕ) is itself a function of σ ′. In practical applications,
the matrix of the generalised stiffnesses is approximated with the conventional one Cσ =
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C̃σ (0, 0), and hence the matrix �̃σ becomes constant, that is �̃σ (σ
′,ϕ) ≡ �σ , with �σ

reading

�σ = S′Cσ =
[
λxσx λxσy
λyσx λyσy

]
=
[
S′
xxCxσx + S′

xyCyσx S′
xxCxσy + S′

xyCyσy
S′
yxCxσx + S′

yyCyσx S′
yxCxσy + S′

yyCyσy

]
. (15)

Thismodel variation is often referred to as semi-nonlinear single contact point. Additionally,
if the stiffness matrix of the tyre carcass is diagonal, that is

C′ =
[
C′
x 0
0 C′

y

]
, (16)

the matrix�σ further reduces to

�σ =
[
λxσx λxσy
λyσx λyσy

]
=

⎡
⎢⎢⎢⎣
Cxσx
C′
x

Cxσy

C′
x

Cyσx
C′
y

Cyσy

C′
y

⎤
⎥⎥⎥⎦ . (17)

Up to this point, it should be acknowledged that the single contact point models well
approximate the real dynamics of a tyre in transient slip conditions. However, from a pure
conceptual viewpoint, this approach is wrong. Indeed, the transient of the bristles is always
neglected in this case, despite being an essential part of the transient process of forces
and moments generation. Furthermore, the single point contact models do not explain
the empirical and theoretical presence of transient phenomena in e.g. railway applications,
where the wheel may be approximated as a rigid body to some extent.

It is quite simple, in fact, to show that disregarding the transient connected to the deflec-
tion of the bristles automatically implies steady-state conditions for the tangential forces
exerted at the tyre-road interface. Indeed, under reasonable assumptions, the time deriva-
tives of the planar force vector Ft(t) and the self-aligning momentMz(t) in Equations (6a)
read, respectively:

Ḟt(t) =
∫∫

P

∂qt(x, t)
∂t

dx, (18a)

Ṁz(t) =
∫∫

P
x
∂qy(x, t)
∂t

− y
∂qx(x, t)
∂t

dx. (18b)

Clearly, since Ft(t) = C′δt(t), from Equation (18a), it is immediate to infer that

δ̇t(t) = S′Ḟt(t) = 0, (19)

and therefore also Ṁz(t) = 0. The above results demonstrate the fundamental role played
by the transient deflection of the bristle in the nonsteady-state generation of tyre forces. It
seems thus reasonable to account for this effect even when approaching a simplifiedmodel
to describe nonstationary processes related to tyre dynamics. The spontaneous question
is how to derive a consistent set of equations to model the phenomenon properly. The
solution proposed by the authors is presented in the next Section 3 and represents a further
generalisation of that already sketched in Romano et al. [5].
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3. Refined two-regime theory

The main scope of this paper consists of the derivation and the analysis of the two-regime
model for the case of combined translational slips. The investigation is conducted from
the perspective of nonlinear systems. To this end, the general idea behind the theory intro-
duced by Romano et al. [5] is succinctly recapitulated. In this paper, however, an alternative
and more comprehensive approach to derive the governing equations of the two-regime
model is proposed.

To start, the existence of two implicit representations is assumed of the form:

ϒ̌
(
Vrσ ,Vrϕ, Ḟt , Ṁz

)
= 0, (20a)

ϒ̂(σ ,ϕ, Ft ,Mz) = 0. (20b)

The above equations (20) postulate certain relationships between the slip variables and
tyre characteristics acting at the tyre contact patch. Ideally, they should approximate the
tyre dynamics at low and high values of the rolling speed.

From Equations (20), it is possible to locally express the variables (σ ,ϕ) invoking the
Implicit Function Theorem. In particular, Equation (20a) gives

σ = 1
Vr

σ̌
(
Ḟt , Ṁz

)
, (21a)

ϕ = 1
Vr
ϕ̌
(
Ḟt , Ṁz

)
, (21b)

where the functions σ̌ (·, ·) = [ σ̌x(·,·) σ̌y(·,·) ]T and ϕ̌(·, ·) are called sliding functions. On the
other hand, Equation (20b) yields

σ = σ̂ (Ft ,Mz), (22a)

ϕ = ϕ̂(Ft ,Mz), (22b)

in which σ̂ (·, ·) = [ σ̂x(·,·) σ̂y(·,·) ]T and ϕ̂(·, ·) are referred to as slip functions. It is worth
pointing out that Equations (21) and (22) are valid in turn for low and high values of Vr.

Interpolating between Equations (21) and (22) yields the two-regime tyre models:

σ = 1
Vr

σ̌
(
Ḟt , Ṁz

)
+ σ̂ (Ft ,Mz), (23a)

ϕ = 1
Vr
ϕ̌
(
Ḟt , Ṁz

)
+ ϕ̂(Ft ,Mz), (23b)

Equations (23) allow to express the slips (σ ,ϕ) as a weighted combination of two differ-
ent vector-valued functions: the first captures the tyre behaviour at low rolling speed, the
second one, instead, gives an approximation at high rolling speeds. They also provide a set
of ODEs for the tyre characteristics. If the sliding functions have an isolated equilibrium
at the origin, it is clear that the equilibria of the ODEs (23) coincide with the steady-state
relationships for the tyre forces and moment.

The main limitation of this approach consists in the fact an explicit representation of
ϒ̌(·, ·, ·, ·) and ϒ̂(·, ·, ·, ·)might often be obtained only locally.

In the subsequent subsections 3.1 and 3.2, respectively, the sliding and slip functions
will be derived.
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3.1. The sliding functions

At low, speed, the sliding functions may be sought as follows:⎡
⎢⎣σ̌
(
Ḟt , Ṁz

)
ϕ̌
(
Ḟt , Ṁz

)
⎤
⎥⎦ =

[
S′
F S′

M
S′
ϕF S′

ϕM

][
Ḟt
Ṁz

]
, (24)

where the matrix on the right-hand side is nonsingular, and S′
F , S

′
M , S′

ϕF and S
′
ϕM represent

generalised compliances. The derivation of Equation (24) is detailed in Appendix 1. The
system described by Equation (24) is linear, and, as already anticipated, obviously admits
a unique equilibrium in the origin.

Furthermore, when the spin slip ϕ and the self-aligning moment Mz are neglected,
Equation (24) reduces to a relationship between the translational sliding functions and
the tangential forces in the form

σ̌
(
Ḟt
)

= S′
FḞt =

(
1

AP
K−1
t + S′

)
Ḟt , (25)

where AP is the area of the contact patch P .

Example 3.1: For an tyre with isotropic tread, rectangular contact patch and diagonal
stiffness matrix for the tyre carcass C′, the matrix S′

F reads specifically

S′
F =

⎡
⎢⎢⎢⎣
aC′

x + Cσ
C′
xCσ

0

0
aC′

y + Cσ
C′
yCσ

⎤
⎥⎥⎥⎦ , (26)

where Cσ = 4a2bk, a and b are the contact patch semilength and semiwidth, respectively,
and k is the bristle stiffness.

For convenience, the followingAssumption 3.1 is retained in the remaining of the paper.

Assumption 3.1: The matrices Kt ∈ R
2×2 and C′ ∈ R

2×2 are symmetric and positive
definite.

From Equation (25), it may be inferred that the above Assumption 3.1 ensures that S′
F

is also positive definite.

3.2. The slip functions

In steady-state conditions, the explicit relationships between the tangential forces and the
self-aligning moment and the slip variables are often known in the form

Ft = F̂t(σ ,ϕ), (27a)

Mz = M̂z(σ ,ϕ), (27b)
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where F̂t(σ ,ϕ), M̂z(σ ,ϕ) are obtained by integration over P as in Equation (6) or
using empirical formulae1. Inverting Equations (27) yields a local representation of the
translational slip σ and spin ϕ in the form of slip functions (σ̂ , ϕ̂).

This paper restricts to the case of pure translational slip, that is disregards the (usually
small) contribution due to spin. Furthermore, it considers steady-state relationships as in
Assumption 3.2.

Assumption 3.2: In steady-state conditions, the tyre forces may be described by a rela-
tionship of the type

Ft = F̂t(σ ) = F̂t(σ )
σ

σ
, (28)

where F̂t(σ ) �
∥∥∥F̂t(σ )∥∥∥

2
and σ � ‖σ‖2. Furthermore, it is assumed that F̂t ∈ K when σ

is restricted to the interval [0, σ peak), for some value σ peak > 0.

Tyre functions of the same type as in Equation (28) usually describe the forces when
the tread is assumed to be isotropic. According to Assumption 3.2, Equation (28) is also
invertible in the range σ ∈ [0, σ peak), where σ peak corresponds to the value for which Ft �
‖vt‖2 attains its maximum value, that is F̂t(σ peak) = Fmax

t � μpeakFz. The values σ peak is
generally smaller than the critical slip value σ cr that causes total sliding inside the contact
patch, as shown in Figure 1.

Figure 1. A qualitative example of steady-statemodels for the tangential tyre forces satisfying Assump-
tion 3.2. Figure 1(a) illustrates a tyre surface Ft = F̂t(σ ) according to Equation (28), with its components
projected in longitudinal and lateral directions. Figure 1(b) exemplifies two different tyre models: a sim-
plified version of Pacejka’sMagic Formula (blue line) and a brushmodelwith different static anddynamic
friction coefficients (red line). The models share the same peak value μpeakFz for σ = σ peak; however,
whilst the brush models predict total sliding in the contact patch for σ > σ cr, Pacejka’s Magic Formula
does not. (a) Tyre force surface Ft = F̂t(σ ) according to Equation (28) with projections Fx and Fy for
σx = σy . (b) Two steady-state tyre models satisfying Assumption 3.2.
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The inverse relationship of Equation (28) may be found as

σ = σ̂ (Ft) = σ̂ (Ft)
Ft
Ft
, Ft ∈ [0,μpeakFz

)
, (29)

being σ̂ (·) � F̂−1
t (·) also a K-class function. Often, the expression for the function σ̂ (·)

cannot be derived in closed-form.Analytical approximationsmay be, however, constructed
using fixed-point theorems [43]. There are, of course, exceptional cases in which σ̂ (·)may
be easily determined.

Example 3.2: According to the brush models, for an isotropic tyre with a rectangu-
lar contact patch and unique friction coefficient, the tangential forces depend upon the
translational slip as follows:

Ft = F̂t(σ ) = F̂t(σ )
σ

σ
= Cσσ

[
1 − σ

σ cr + 1
3

(
σ

σ cr

)2
]
, σ ∈ [0, σ cr), (30)

where σ cr � 3μFz/Cσ . It should be noticed that, for the model in Equation (30), σ peak ≡
σ cr. Accordingly for larger values of the slip, i.e. σ ≥ σ cr, the tangential force equals the
peak value μpeakFz ≡ μFz, and is oriented as the slip vector, that is Ft = μFzσ/σ . The
inverse relationship of Equation (30) reads [44]

σ = σ̂ (Ft) = σ̂ (Ft)
Ft
Ft

= σ cr

⎛
⎝1 − 3

√
1 − Ft

μFz

⎞
⎠ Ft

Ft
, Ft ∈ [0,μFz), (31)

whereμpeak ≡ μ (the peak friction coefficient equals the actual one). Clearly, the function
σ̂ (·) in the above equation (31) is of the type of that in Equation (29).

Figure 2 illustrates the sigma functions σ̂ (·) and the function σ̂ (·) in Example 3.2 for
the case of pure translational slip.

4. Two-regime tyre model for combined slip

Taking advantage of the theoretical framework developed in Section 3, this paper now
moves to derive and analyse the nonlinear system describing the transient tyre dynamics
at combined slip. Plugging Equations (26) and (31) into (23a) yields the two-regime tyre
model for combined slip:

Ḟt(t) = Vr(t)C′
σ

[
σ (t)− σ̂

(
Ft(t)

)]
, (32)

where the matrix C′
σ is defined as

C′
σ =

[
C′
xσx C′

xσy
C′
yσx C′

yσy

]
=
[
C′
σx 0
0 C′

σy

]
� S′−1

F . (33)

The above equation may be reinterpreted in terms of enhanced relaxation lengths premul-
tiplying both sides by�′

σ � CσS′
F . This yields

�′
σ Ḟt(t) = Vr(t)Cσ

[
σ (t)− σ̂

(
Ft(t)

)]
, (34)
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Figure 2. Slip variables expressed as sigma functions σx = σ̂x(Ft), σy = σ̂y(Ft) and σ = σ̂ (Ft) (Fig-
ures 2(a,b) and (c), respectively) as functions of the longitudinal and lateral tyre force given as in
Equations (31). Tyre parameters: Cσ = 30, 000 N,μ = 1, σ cr = 0.3, Fz = 3000 N.

where the matrix

�′
σ =

[
λ′
xσx λ′

xσy
λ′
yσx λ′

yσy

]
(35)

collects the enhanced relaxation terms. These relaxation lengths are referred to as enhanced
because they also account for the transient of the bristles in the contact patch [5]. A fun-
damental role in the transient generation of the tyre forces is played by the relaxation ratio
χλ, defined as

χλ = λmin
(
C′

σ

)
λmax

(
C′

σ

) , (36)

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a matrix,
respectively. ByAssumptionC′

σ is symmetric and positive definite, and therefore λmax(C′
σ )

and λmin(C′
σ ) in Equation (36) are always positive real.

Example 4.1: Combining the results from Examples 3.1 and 3.2, thematricesC′
σ becomes

C′
σ =

[
C′
σx 0
0 C′

σy

]
=

⎡
⎢⎢⎢⎣

C′
xCσ

aC′
x + Cσ

0

0
C′
yCσ

aC′
y + Cσ

⎤
⎥⎥⎥⎦ , (37)

where it has been renamed C′
σx � C′

xσx and C′
σy � C′

yσy without ambiguity. Accordingly,
the matrix of enhanced relaxation lengths reads

�′
σ =

[
λ′
σx 0
0 λ′

σy

]
=

⎡
⎢⎢⎢⎣
Cσ
C′
σx

0

0
Cσ
C′
σy

⎤
⎥⎥⎥⎦ , (38)
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where again it has been renamed λ′
σx � λ′

xσx and λ
′
σy � λ′

yσy , and the slip function σ̂ (·)
reading as in Equation (31). In this case, the relaxation ratio may also be interpreted as

χλ ≡ C′
min

C′
max

≡ λ′
min
λ′
max

, (39)

where C′
max � max{C′

σx ,C
′
σy} and C′

min � min{C′
σx ,C

′
σy}. Similarly, λ′

max � max{λ′
σx , λ

′
σy}

and λ′
min � min{λ′

σx , λ
′
σy}. Therefore, the relaxation ratio χλ condenses the two different

relaxation behaviours of the tyre in longitudinal and lateral direction. Usually, C′
x > C′

y,
which also implies λσy > λσx .

4.1. Model analysis

Now the authors proceed to the formal analysis of the two-regime model. There are two
aspects to investigate. The first one relates to the trajectories of the system described by
Equation (32) in presence of finite slip, which will be treated as a given input. Ideally,
the model should be able to replicate the transient behaviour of the tyre during nomi-
nal operational conditions. For the steady-state model, this translates into the requirement
Ft < μpeakFz, which is equivalent to σ < σ peak. In transient conditions, it is not obvi-
ous that the fulfillment of sups σ(s) < σ peak also implies Ft(s) < μpeakFz. Therefore, an
equivalent transient critical value for the slip should be estimated.

The second aspect concerns the dissipative nature of the model. Finite slip causes losses
at the tyre contact patch, known as slip losses. Intuitively, the power generated by the slip
should not be expected to be entirely converted into useful tangential forces.

Amajor issuewith the systemdescribed byEquation (32), however, connects to the pres-
ence of the term Ft appearing in the denominator. This is responsible for some difficulties
encountered in simulation, since the situation Ft = 0 is not handled properly. To overcome
this issue, the original sigma functions σ̂ (·) in Equation (32) may be conveniently replaced
with

σ̂ ε(Ft ; ε) � σ̂ (Ft)
Ft

Ft + ε
, (40)

where ε ∈ R>0 is an arbitrary small constant. In the above equation (40), the constant ε
in σ̂ ε(·; ε) should be regarded as a parameter. Owing to Equation (40), a modified model
may be considered as

Ḟt(t) = Vr(t)C′
σ

[
σ (t)− σ̂ ε

(
Ft(t); ε

)]
. (41)

For what follows, it may also be useful to introduce the function σ̂ε(·; ε) defined as

σ̂ε(Ft ; ε) � σ̂ (Ft)
Ft

Ft + ε
. (42)

It should be observed that Assumption 3.2 implies that σ̂ε(·; ε) in Equation (42) is also
a K-class function. The subsequent analysis will be therefore conducted concerning the
modified model described by Equation (41) rather than the original one. The latter
represents a particular case of the former for ε → 0+.
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4.1.1. Friction limit
In analogy to the steady-state model, an upper bound for the slip input that guarantees that
the total tangential force never reaches the friction limit, that is Ft < μpeakFz, should be
estimated. To proceed, the notion of friction circle is formalised as the set

Cμ �
{
Ft ∈ R

2
∣∣∣ Ft ≤ μpeakFz

}
, (43)

whose interior is denoted by
◦
C μ. The idea is now to understand when

◦
C μ is an invariant

set for Ft(t), that is which pairs of initial conditions Ft0 = Ft(t0) ∈ ◦
C μ and inputs σ (t)

ensure Ft(t) to stay indefinitely in
◦
C μ for all t ≥ t0. Sufficient conditions are stated in the

following Theorem 4.1.

Theorem 4.1: Assume that σ(t) satisfies

sup
t≥t0

σ(t) < σχ � ψχλσ
cr 1
1 + ε/

(
μpeakFz

) , (44)

whereψ ∈ (0, 1) is arbitrary small. If Ft0 ∈ ◦
C μ, then Ft(t) ∈ ◦

C μ for all t ≥ t0. Furthermore,
the system described by Equation (41) is input-to-state stable2 with γ : [0, σχ)× R>0 �→
[0,μpeakFz) given by

γ (σ ; ε) �

⎧⎪⎨
⎪⎩
0, σ = 0,

σ−1
ε

(
σ

ψχλ
; ε
)
, σ ∈ (0, σχ ) , (45)

and satisfying

lim
ε→0+

γ (σ ; ε) = F̂t
(
σ

ψχλ

)
. (46)

Proof: The proof is given in Appendix 2. �

The above Theorem 4.1 provides an upper bound σχ on the slip input. As it may be
observed from Equation (44), σχ depends on three parameters: ψ , ε and χλ. The first two
do not deserve particular attention, since they may be chosen arbitrarily. On the other
hand, the relaxation ratio χλ is a structural parameter and accounts for the anisotropy of
the tyre carcass. Specifically, according to Equation (44), lower values of χλ correspond to
smaller admissible inputs σχ , above which full sliding may occur inside the contact patch.

Figure 3 provides a graphical interpretation of this result for different relaxation ratios
χλ for a tyre with isotropic tread and rectangular patch (model of Example 4.1, with
μpeak ≡ μ and σ̂ (·) replaced by σ̂ ε(·; ε)) with critical slip σ peak ≡ σ cr = 0.3. In the left-
hand side plots, the circles depicted in red represent the friction circle Cμ, whilst the
green area the sets of attainable steady-state forces for σ < σχ , that is Ft(t) ∈ ◦

C χ , with
Cχ � {Ft ∈ R

2 | Ft ≤ σ−1
ε (σχ ; ε)}. The set Cχ is defined here as the relaxation circle. On

the right-hand side of Figure 3, the corresponding maximum values Ft(σχ ) are shown,
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which amount to the 70.4, 92.1 and 98.44% of the peak force. It is worth noticing that,
for a tyre with isotropic carcass, in general σχ ≡ σ peak when ε = 0 and ψ → 1. The same
condition holds for the one-dimensional models already presented in [5], for which the
parameter ε is not needed.

When the slip input exceeds σχ , it is not obvious that Ft(t) < μpeakFz. Again for the
isotropic model in Example 4.1 withμpeak ≡ μ, this is illustrated in Figure 4 for a constant
value of the total slip σ = σ cr, with σx = σy > 0, together with the plot of velocity field of
Equation (41). The red circles represent the friction circle Cμ, whilst the dashed boundary
is the locus of points for which the derivative of the Lyapunov functionV(Ft(t)) � 1

2F
2
t (t)

vanishes. Basically, the inner regions enclosed by the dashed curves are invariant sets for
Ft(t), and, therefore, every circle that contains these regions is also an invariant set. It may
be clearly noticed that, for very small values of the relaxation ratio (χλ = 0.125), the dashed

curve lies partially outside
◦
C μ, and therefore the trajectories starting in

◦
C μ may happen

to leave
◦
C μ, implying Ft(t) ≥ μFz for some finite time t.

Other qualitative considerations may be drawn by looking at Figure 5, where the invari-
ant sets are plotted for a tyre with relaxation ratio χλ = 0.125 (λ′

σy > λ′
σx) for different

directions θ of the critical slip value (σx = σ cr cos θ ,σy = σ cr sin θ). In particular, itmay be
deduced that, when the slip is oriented in the same direction forwhich the relaxation length

is larger, the invariant set becomes smaller and the risk of leaving
◦
C μ decreases. More

specifically, Figure 5(d) is particularly interesting, since it shows that, when the slip has
only lateral component, that is σy = σ cr, the invariant set is completely contained within
Cμ. Again, this is a consequence of the anisotropic nature of the tyre carcass.

In reality, the requirement on supt≥t0 σ(t) imposed by Theorem 4.1 is quite stringent
and might be relaxed if different maximum values are allowed depending on the slip
direction. In fact, defining the Lyapunov function V(Ft(t)) � 1

2F
2
t (t) as in Appendix 2,

and assuming C′
σx > C′

σy (λ′
σy > λ′

σx) as in common practice, it is possible to deduce
immediately that any value of σ(t) such that

σ(t) < σ ∗
χ

(
θ(t)

)
� σχ

1√(
cos θ(t)

)2 + (χλ sin θ(t))2 (47)

ensures that V̇(Ft(t)) is negative definite at time t. From Equation (47), it may be inferred
that, when σx = σ cos θ(t) = 0, the maximum slip in lateral direction coincides with the
critical one (for ε → 0+). Vice versa, when σ (t) has no lateral component, the maximum
slip is again given by Equation (44) in Theorem 4.1. The fundamental conclusion is that,
in transient conditions, the anisotropy of the tyre carcass maps the friction circle Cμ into a
relaxation ellipse Eχ = {Ft ∈ R

2 | Ft ≤ σ−1
ε (σ ∗

χ (θ); ε)}. The relaxation set Cχ may be then
defined as the largest circle completely enclosed in Eχ , and σχ ≡ supθ σ

∗
χ (θ), as illustrated

graphically in Figure 6.

4.1.2. Dissipativity
Since the model is dynamic, there may be different phases in which energy is stored
and released, alternatively. It may be proved that the map X : Vrσ �→ Ft is dissipative
for the model, and even more specifically passive .3 This statement may be reformulated
mathematically in the following Property 4.1.
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Figure 3. Friction circle and maximum attainable steady-state tangential force for a tyre with isotropic
tread and anisotropic carcass with different relaxation ratios χλ: (a) χλ = 0.33; (b) χλ = 0.57; (c)
χλ = 0.75.
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Figure 4. Velocity field and invariant sets for a tyre with isotropic tread and anisotropic carcass with
different relaxation ratios χλ. σ = σ peak ≡ σ cr, σx = σy > 0: (a) χλ = 0.125, (b) χλ = 0.25, (c) χλ =
0.33, (d) χλ = 0.57.

Property 4.1 (Passivity): The map X : Vrσ �→ Ft is dissipative (passive) with respect to
the storage function V(Ft(t)) � 1

2S
′
FFt(t) · Ft(t).

Proof: Recalling that C′
σ � S′−1

F , it follows directly from Equation (41) that

Vr(t)σ (t) · Ft(t) = S′
FḞt(t) · Ft(t)+ Vr(t)σ̂ ε

(
Ft(t)

) · Ft(t)
≥ S′

FḞt(t) · Ft(t) = V̇
(
Ft(t)

)
. (48)

�
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Figure 5. Velocity field and invariant sets for a tyre with low relaxation ratio χλ = 0.125 for different
values of the critical slip direction: (a) θ = 0◦, (b) θ = π

6 , (c) θ = π
3 , (d) θ = π

2 .

Since the storage functionV(Ft(t)) defined in Property 4.1 represents the elastic energy
stored in the tyre carcass, the result above has a clear physical meaning: the power dis-
sipated at the tyre contact patch is always greater than the variation in elastic energy
accumulated in the tyre carcass. In particular, Equation (48) holds with strict inequality for
any Ft(t) �= 0. From these considerations, it may be deduced that, in transient conditions,
a finite slip input is not converted completely, and instantaneously, into tangential force,
as it happens in the steady-state case. Therefore, the difference between Vr(t)σ (t) · Ft(t)
and V̇(Ft(t)) may equivalently be interpreted as a power dissipation taking place inside
the carcass. This might appear counter-intuitive at first instance, since the tyre carcass is
modelled as an elastic element, and is due to the fact that, in transient conditions, the tyre
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Figure 6. Friction circle Cμ together with the relaxation ellipse Eχ and the relaxation circle Cχ for a tyre
with isotropic tread and anisotropic carcass (χλ = 0.33). The tyre carcass is stiffer in the longitudinal
direction, that is C′

x > C′
y and hence also C

′
σx
> C′

σy
, λ′
σy
> λ′

σx
.

exhibits an intermediate behaviour between a linear spring and a damper. In this context,
it is also worth remarking that, according to the global equilibrium approach, the quantity
Vr(t)σ (t) · Ft(t) also represents the total slip losses taking place inside the contact patch,
at least in steady-state conditions.

5. Model comparison and validation

The present section addresses the validation of the two-regime tyre model.

5.1. Comparisonwith single contact point tyremodels

The two-regime model developed in Section 4 is first compared versus the single con-
tact points. The following investigation is conducted by only considering translational slips
lower thanσχ . The steady-state relationship for the tyre forces is chosen as in Equation (30).
According to Assumption 3.1, the carcass stiffness matrixC′ is assumed to be diagonal, but
with different values for C′

x and C′
y. Finally, the travelled distance s defined in Section 4 is

used as independent variable in place of the time t. By doing so, the problem under consid-
eration becomes independent of the rolling speed. Owing to these premises, the following
set of equations for the semi-nonlinear single point contact model may be introduced:

�σ
dσ ′(s)
ds

+ σ ′(s) = σ (s), (49a)
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Ft(s) = Cσσ ′(s)

⎡
⎣1 − σ ′(s)

σ cr + 1
3

(
σ ′(s)
σ cr

)2
⎤
⎦ , (49b)

where σ ′(s) = ∥∥v′(s)
∥∥
2 and the matrix�σ reads specifically

�σ =
[
λσx 0
0 λσy

]
=

⎡
⎢⎢⎢⎣
Cσ
C′
x

0

0
Cσ
C′
y

⎤
⎥⎥⎥⎦ , (50)

since Cxσy = Cyσx = 0. In Equation (50), it has been renamed C′
x � C′

xx, C′
y � C′

yy and
λσx � λxσx , λσy � λyσy without ambiguity. The above system given by Equation (49a)
combines a linear ODE (49a) for the transient slip σ ′(s) and an algebraic Equation (49b)
(although nonlinear) in σ ′(s) for the planar force vector Ft(s). The second model is the
full-nonlinear single contact point. The equations are as follows:

�̃σ

(
σ ′(s)

) dσ ′(s)
ds

+ σ ′(s) = σ (s), (51a)

�̃σ

(
σ ′(s)

) =

⎡
⎢⎢⎢⎢⎣
C̃xσx

(
σ ′(s)

)
C′
x

C̃xσy
(
σ ′(s)

)
C′
x

C̃yσx
(
σ ′(s)

)
C′
y

C̃yσy
(
σ ′(s)

)
C′
y

⎤
⎥⎥⎥⎥⎦ , (51b)

with

C̃xσx
(
σ ′(s)

) = ∂Fx
(
σ ′(s)

)
∂σ ′

x
= Cσ

⎡
⎣1 − 2σ ′

x(s)+ σ ′
y(s)

σ crσ ′(s)
+
(
σ ′
x(s)
σ cr

)2

+ 1
3

(
σ ′
y(s)
σ cr

)2
⎤
⎦ ,

(52a)

C̃yσy
(
σ ′(s)

) = ∂Fy
(
σ ′(s)

)
∂σ ′

y
= Cσ

⎡
⎣1 − 2σ ′

y(s)+ σ ′
x(s)

σ crσ ′(s)
+
(
σ ′
y(s)
σ cr

)2

+ 1
3

(
σ ′
x(s)
σ cr

)2
⎤
⎦ ,

(52b)

C̃xσy
(
σ ′(s)

) ≡ C̃yσx
(
σ ′(s)

) = ∂Fx
(
σ ′(s)

)
∂σ ′

y
= ∂Fy

(
σ ′(s)

)
∂σ ′

x

= −Cσ
σ ′
x(s)σ ′

y(s)
σ cr

[
1

σ ′(s)
− 2

3σ cr

]
. (52c)

Equation (51a) together with Equations (51b) and (52a) are again used as input to
Equation (49b). In this case, however, the ODE (51a) is highly nonlinear.
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Figure 7. Comparison between the two-regime tyre model (solid line), the semi-nonlinear (dashed
line), the full-nonlinear single point contact model (dash-dotted line) and Guiggiani’s nonlinear full
contact patch (thick line). Generally speaking, a better agreement between the two-regime model and
the nonlinear full contact patch may be observed. (a) Simulation results for the two-regime tyre model
(solid line), the semi-nonlinear (dashed line), the full-nonlinear single point contact model (dash-dotted
line) and Guiggiani’s nonlinear full contact patch (thick line) for different value of the longitudinal slip
input σx = 0.07 and σx = 0.21. (b) Simulation results for the two-regime tyre model (solid line), the
semi-nonlinear (dashed line), the full-nonlinear single point contact model (dash-dotted line) and Guig-
giani’s nonlinear full contact patch (thick line) for different value of the lateral slip input σy = 0.07 and
σy = 0.21.

The two-regime model is instead formulated directly in state–space form. With the
travelled distance as independent variable, the system in Equation (41) becomes

dFt(s)
ds

= C′
σ

[
σ (s)− σ̂ ε

(
Ft(s); ε

)]
, (53)
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Table 1. Tyre parameters.

Parameter Description Unit Value

Cσ Slip stiffness N 3 · 104
C′
x Longitudinal stiffness of the carcass Nm−1 6 · 105
C′
y Lateral stiffness of the carcass Nm−1 2.4 · 105
Fz Vertical force N 3000
a Contact patch semilength m 0.075
μ Friction coefficient – 1

where the matrix C′
σ is defined as in Equation (37) and the slip function σ̂ (·) in

Equation (31) is replaced more conveniently by σ̂ ε(·; ε).
A first set of simulations is aimed at comparing the three approximated models given

by Equations (49), (53) and (51) with the exact solution to Equation (1) starting from an
initial undeformed configuration and subjected to the constraint imposed by Equation (5)
(Guiggiani’s nonlinear full contact patchmodel [1]). The equations for the completemodel
are derived in Guiggiani’s book [1] and are not reported here for brevity. Furthermore, for
the sake of simplicity, the longitudinal and lateral problems are analysed in isolation in
Figure 7. Indeed, even in the case of pure longitudinal or lateral interactions, Equation (1)
does not admit a closed-form solution and need to be solved numerically4. Generally, it
may be observed that the two-regime model succeeds better in replicating the exact trend,
whereas the single contact point models exhibit larger discrepancies especially at higher
values of the slip inputs. The parameters for the simulation are listed in Table 1.

A second comparison between the three approximated models is shown for differ-
ent combinations of constant slip inputs σx and σy in Figure 8. The slip value is set to
σ = 0.17 < σχ . It may be noticed that the agreement between the two-regime tyre model
and the semi-nonlinear single contact point is particularly good in the beginning, when
the forces are in the linear region of the diagram Ft − σ and the assumption of constant
relaxation length holds fairly. As the travelled distance increases and the tyre characteristics
develop fully, the two-regime transient model exhibits a faster convergence to the steady-
state solution, and tends to the full-nonlinear one. Clearly, all the models converge in any
case to the same asymptotic value.

Finally, a third set of simulation, whose results are shown in Figure 9, is carried out to
illustrate the models behaviour when the tyres are subjected to a sinusoidal forcing term
modelled as σ (s) = σ̄ [0.9 + 0.1 sin(ωs)]. For both excitation frequencies, ω = 10π and
50π , the slip amplitudes are limited to σ̄x = σ̄y = 0.12. Generally speaking, there is again
a very encouraging match between the two-regime tyre transient and the full-nonlinear
one, whilst the discrepancy with the semi-nonlinear single contact point is due to the
approximation of constant relaxation length.

5.2. Comparisonwith experimental data

In this paper, the transient response of the tyre predicted using the two-regime model was
partially validated against a series of consecutive decelerationmanoeuvres. To the purpose
of experimental validation, two different braking tests were considered in turn: Test 1 was
characterised by a sequence of relatively small, continuously time-varying slips inputs (up
to |σx| = 0.3), whilst Test 2 was aimed at stressing the tyre up to the saturated region of
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Figure 8. Comparison between the two-regime tyremodel (solid line), the semi-nonlinear (dashed line)
and the full-nonlinear single point contactmodel (dash-dotted line) for different longitudinal and lateral
slip inputs σx and σy , respectively. It may be noticed a better agreement between the first two models
for low values of the slip force, where the approximation of constant relaxation length holds for both
formulations. Conversely, as the value of the force increases, the two-regime tyremodel exhibits a similar
behaviour to the full-nonlinear single contact point one. The black dashed line represent the steady-
state values for the longitudinal and tangential forces. (a) Slip inputs: σx = σy = 0.12. (b) Slip inputs:
σx = 0.085, σy = 0.14. (c) Slip inputs: σx = 0.14, σy = 0.085.
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Figure 9. Comparison between the two-regime tyremodel (solid line), the semi-nonlinear (dashed line)
and the full-nonlinear single point contact model (dash-dotted line) for different excitation frequencies
ω. Itmaybenoticed thatboth the two-regimeand the full-nonlinear single contactpointmodels succeed
in following the oscillatory trend of the input, whilst the lateral tyre characteristic predicted by the semi-
nonlinear model seem to be almost unaffected by the harmonic component of the forcing term. (a) Slip
amplitude: σ̄x = σ̄y = 0.12; excitation frequency ω = 10π m−1. (b) Slip amplitude: σ̄x = σ̄y = 0.12;
excitation frequency ω = 50π m−1.

the slip curve. Both tests involved the VTI friction test vehicle BV12 shown in Figure 10: a
specially equipped truck with a test wheel suspension for passenger car wheels (in the fol-
lowing example, the wheel mounted a 4 D1 Continental/Ice Contact 2 tyre, with a nominal
radius of 0.36m).
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Figure 10. The VTI friction test vehicle BV12.

Some peculiar features of the BV12 are as follows. The test wheel can be forced to rotate
at the constant slip that produces maximum braking performance by means of a cardan
shaft connected to a gearbox with continuously variable slip. The wheel can also be locked
by means of a disk brake after being decoupled from the gearbox. The braking force is
calculated fromwheel torque, which is measured by a transducer on the cardan shaft to the
wheel. The wheel load is obtained by means of dead weights acting on a spring/damper.
Furthermore, wheel rotational velocity and travelled distance are measured. From these
values, the longitudinal slip σx and rolling radius can be easily calculated.

Data collected during Test 1 were specifically employed to parametrise the transient
longitudinal model according to the two-regime formulation of Equation (41) (again with
σ̂ (·) in Equation (31) modified as σ̂ ε(·; ε)), whilst Test 2 was mainly used for valida-
tion. In this regard, it is worth emphasising that, due to the intrinsic nature of the tests
considered in the paper, only the pure longitudinal transient behaviour of the tyre could
be validated. Moreover, since the longitudinal dynamics was considered in isolation and
the influence of the lateral slip was systematically disregarded, the transient critical slip
σχ was fairly assumed to be coincident with the corresponding steady-state value, i.e.
σχ ≡ σ cr.

For both tests, large variation in the normal force acting on the tyre could also be
observed during the braking phases. To cope with this aspect, the explicit dependence
upon the vertical load acting on the tyre was also taken into account in the parametri-
sation and validation processes. In particular, a simple linear model for the slip stiffness
Cσ as a function of Fz was assumed in this paper of the type Cσ = C̄σFz. Starting from
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the relationship Cσ = 4a2bk, the contact patch semilength was derived to be dependent
upon Fz as a = ā

√
C̄σFz, with ā = 1/

√
4bk. For the sake of simplicity, the semiwidth

b was instead assumed to be constant over time. According to the brush theory, the
critical slip value was also modelled explicitly as a function of the friction coefficient
μ as σ cr = 3μFz/Cσ ≡ 3μ/C̄σ . Therefore, defining the longitudinal friction as μx �
Fx/Fz and μ̂x(·) � F̂x(·)/Fz, it was possible to restate the longitudinal component of
Equation (30) as

μx = μ̂x(σx) = C̄σ σx

[
1 − C̄σ

|σx|
3μ

+ 1
3

(
C̄σ

σx

3μ

)2
]
, σx ∈ (−3μ/C̄σ , 3μ/C̄σ ). (54)

Owing to these premises, the tyre model was parameterised in a two-step process:
first, initial values for the structural parameter C̄σ and the friction coefficient μ in
Equation (54) were estimated employing an iterative procedure based on the least-square

Table 2. Tyre parameters optimised from experimental data.

Parameter Description Unit Value

C̄σ Normalised slip stiffness – 7.6
μ Friction coefficient – 0.48
C′
x Lateral stiffness of the carcass Nm−1 8.61 · 105
ā Contact patch parameter mN−1/2 0.0003

Figure 11. Tyre-slip curve fitted from experimental data. Parameter values: C̄σ = 7.6,μ = 0.48.
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fitting technique. Specifically, these quantities were optimised restricting the attention
to the nonlinear region of the tyre-slip curve in the range σx ∈ (−σ cr,−σ cr/3] =
(−3μ/C̄σ ,−μ/C̄σ ], where the transient dynamics of the tyre was expected to play aminor
role due to the fast excitation caused by large longitudinal slips (slip was defined with
negative sign for braking). Since C̄σ and μ were also unknown, the procedure was iter-
ated multiple times until convergence to ensure that only the desired points were included
when optimising both parameters. At each iteration, the previous estimate for σ cr was used
to select the appropriate samples. The normalised slip stiffness was constrained between
0 ≤ C̄σ ≤ 10, whilst lower and upper bounds for the friction coefficient were specified as
0 ≤ μ ≤ 0.6. The upper limit on μ was motivated by the fact that the maximum observed
ratio μx between the longitudinal tyre force and the normal load was around 0.62 (as
already pointed out, in the brushmodel the peak force equalsμFz, and therefore the maxi-
mum value forμx in Equation (30) isμpeak ≡ μ). For both quantities, the optimised values
are reported in Table 2, whereas a comparison between the measured data points and the
predicted steady-state behaviour of the tyre is shown graphically in Figure 11.

Figure 12. Transient longitudinal response of the tyre to a time-varying slip inputσx (red line) predicted
according to the two-regime model (blue line) and the steady-state Equation (54) (cyan line). The com-
parison is performed against themeasured tyre force (grey line). (a) Transient longitudinal tyre response
during Test 1. (b) Transient longitudinal tyre response during Test 2.
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In a second step, the optimal values for the tyre carcass stiffness C′
x and the quantity

ā were found by minimising the error between the transient simulation results and the
measured tyre data, using the travelled distance s as independent variable. In this process,
the dynamic model described by Equation (41) was implemented by saturating the output
Fx(s), which was always constrained below the friction limit μFz(s). The dynamical sys-
tem was then re-initialised to the measured longitudinal force every time that the latter fell
below the estimated peak force. Again, the values extracted from the optimisation routine
are listed in Table 2. A comparison between the transient behaviour predicted by the two-
regime model (blue line), the steady-state Equation (54) (cyan line) and the experimental
data (grey line) is shown in Figure 12 for both Test 1 and Test 2. Obviously, the match is far
from being perfect due to the simplistic nature of the brush model, but a good qualitative
agreement towards the measured tyre force may be observed overall, thus corroborating
the potential of the proposed formulation. It should be noticed that the steady-state model
for the longitudinal tyre force given by Equation (54) yields very similar results to the tran-
sient one, especially during severe braking phases, whereas larger discrepancies may be
observed for relatively low values of the slip (in magnitude), where the slower dynamics of
the two-regime formulation better matches the experimental results. The calculated root
mean square errors (RMS) for the steady-state and transientmodelswere 368.14 and 356.40
for Test 1 and 329.57 and 329.48 for Test 2, respectively.

6. Conclusion

In this paper, the two-regime theory recently introduced by Romano et al. [5] has been
refined. First, a complete set of relationships – renamed sliding functions – existing between
the slip variables and the tyre forces and moment at low rolling speeds has been derived.
The notion of slip functions has also been introduced to formalise mathematically the
corresponding steady-state relationships.

Second, a class of nonlinear dynamic models for combined translational slips has been
developed that allows to describe the transient generation of tyre forces in a relatively sim-
ple way. The model generalises further the one presented in [5] and allows to circumvent
the need to solve the complicated PDEs governing the tyre dynamics.

A formal analysis has been then conducted in Section 4 by resorting to the well-
established theory for nonlinear systems. The investigation has been restricted to the case
in which the steady-state tyre forces and the translational slips have the same direction.
In this context, an estimate σχ on the supremum of the transient slip that always ensures
partial adhesion in the contact patch has been provided. Indeed, any value σ < σχ implies
automatically that the tyre forces never exploit the maximum friction available. The tyre
carcass anisotropy plays a pivotal role in the determination of the parameter σχ through
the relaxation ratio χλ. This is defined mathematically as the ratio between the smallest
and largest eigenvalues of the enhanced stiffness matrix. For a tyre with a diagonal matrix
for the carcass stiffnesses, this also coincides with the ratio between the minimum and
maximum enhanced relaxation lengths. In transient conditions, low values of χλ corre-
spond to smaller admissible slip inputs σχ compared to the critical slip value σ cr that
guarantees adhesion in steady-state conditions. This result may be exploited for control
or optimisation purposes.

Then the focus has been shifted towards the physical properties of the new model. It
has been demonstrated that the dynamical system used to describe the transient forces
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dissipates power at the tyre–road interface. As a consequence, the frictional power gener-
ated due to finite slip is not stored completely in the elastic carcass.

Finally, in Section 5 the validation of the two-regimemodel introduced in this paper has
been addressed. Specifically, in Section 5.1, the complete two-regime model for combined
slip has been compared against the semi-nonlinear and the full-nonlinear single contact
point models, and partially against Guiggiani’s nonlinear full contact patch. The agree-
ment between the first two formulations is especially good at a low value of the slip inputs,
where the approximation of constant relaxation lengths holds fairly; as the slips increase,
the two-regime transient model matches the full-nonlinear one. On the other hand, it has
been also demonstrated that the two-regime model exhibits a better agreement to Guig-
giani’s completemodel compared to the single contact points. The two-regime tyremodels
and the single contact point represent an approximation of the pure brush and the brush-
stringmodels, respectively. In the former, the tyre carcass is modelled using a linear spring,
whilst the latter is based on a distributed description whose governing differential equa-
tions are the ones of a stretched string. Simulation results seem to suggest that the specific
constitutive relationship chosen to model the carcass extensibility does not play a funda-
mental role for accurate prediction of the transient generation of forces andmoment, since
the two models behave very similarly. Additionally, the transient longitudinal dynamics of
the tyre according to the two-regime formulation has been validated in isolation against
experimental data in Section 5.2. In spite of the simplistic nature of the brush models, the
behaviour predicted using the two-regime theory appears to agree qualitatively with the
measured quantities, confirming the potential of the approach outlined in the paper.

Compared to the single contact pointmodels, the two-regimemodel is simpler to imple-
ment and is more general from a theoretical viewpoint, since it considers the transient
due to the bristle deflection. However, a closed-form expression for the two-regime for-
mulation has only been possible to derive for the case of isotropic tread, whilst the single
contact point models can use the transient slip as input to any tyre equation. The possi-
bility of extending the two-regime theory to account for the tyre tread anisotropy must be
therefore explored in future studies.

Forces and moments Unit Description
Ft N Planar force vector
Ft0 N Initial conditions for the planar force vector
Fx, Fy N Longitudinal and lateral tyre forces
Fx0, Fy0 N Initial conditions for the longitudinal and lateral tyre

forces
Fz N Vertical force
Mz Nm Self-aligning moment
qt Nm−2 Tangential shear stress vector
qt Nm−2 Total tangential shear stress
qx, qy Nm−2 Longitudinal and lateral shear stress
qz Nm−2 Vertical pressure
Displacements Unit Description
ut m Displacement vector of the bristle
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ux, uy m Longitudinal and lateral displacement of the bristle
ut0 m Initial tangential displacement vector of the bristle

(IC)
ux0, uy0 m Initial longitudinal and lateral displacement (IC)
s m Travelled distance
x m Coordinate vector
x, y m Longitudinal and lateral coordinates
δt m Tyre carcass tangential displacement vector
δx, δy m Tyre carcass longitudinal and lateral displacements

Speeds Unit Description
Vr m s−1 Rolling speed
vt ms−1 Tangential velocity field
vx, vy ms−1 Longitudinal and lateral components of the velocity

field
vs m s−1 Micro-sliding velocity
vsx, vsy ms−1 Longitudinal and lateral micro-sliding speeds

Slip Unit Description
Parameters
σ – Translational slip vector
σ – Total translational slip
σx, σy – Longitudinal and lateral slip
σ cr – Global critical slip
σχ – Transient critical slip
σ ′ – Transient slip vector
σ ′ – Total transient slip
σ ′
x, σ ′

y – Transient longitudinal and lateral slip
ϕ m−1 Rotational slip or spin parameter
Rotation matrices Unit Description
and tensors
Aϕ m−1 Spin tensor

Geometric Unit Description
parameters
a, b m Contact patch semilength and semiwidth
ā mN−1/2 Contact patch parameter
Rr m Rolling radius
� m Matrix of relaxation lengths
�̃σ m Matrix of generalised relaxation lengths
�′

σ m Matrix of enhanced relaxation lengths
λxσx , λyσy m Longitudinal and lateral relaxation length
λxσy , λyσx m Cross relaxation lengths
λ̃xσx , λ̃yσy m Generalised longitudinal and lateral relaxation length
λ̃yσx , λ̃xσy m Generalised cross relaxation lengths
λ′
xσx , λ

′
yσy m Enhanced longitudinal and lateral relaxation length

λ′
max, λ′

min m Maximum and minimum enhanced relaxation length
χλ – Relaxation ratio
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Stiffnesses Unit Description
and compliances
Kt Nm−3 Matrix of the bristle tangential stiffnesses
kxx, kyy Nm−3 Longitudinal and lateral stiffness of the tread bristle
kxy, kyx Nm−3 Cross stiffnesses of the tread bristle
Cσ N Matrix of slip stiffnesses
C̃σ N Matrix of generalised slip stiffnesses
C′

σ Nm−1 Enhanced matrix of slip stiffnesses
Cxσx , Cyσy N Longitudinal and lateral slip stiffnesses
C̃xσx , C̃yσy N Generalised longitudinal and lateral slip stiffnesses
C′
xσx , C

′
yσy Nm−1 Enhanced longitudinal and lateral slip stiffnesses

Cxσy , Cyσx N Cross slip stiffnesses
C̃xσy , C̃yσx N Generalised cross slip stiffnesses
C′
xσy , C

′
yσx Nm−1 Enhanced longitudinal and lateral cross slip stiffnesses

Cσ N Slip stiffness
C̄σ – Normalised slip stiffness
C′
max = C′

min Nm−1 Maximum and minimum enhanced stiffness
C′ Nm−1 Matrix of tyre carcass stiffnesses
C′
xx, C′

yy Nm−1 Longitudinal and lateral stiffness of the tyre carcass
C′
xy, C′

yx Nm−1 Cross stiffnesses of the tyre carcass
S′ mN−1 Matrix of tyre carcass compliances
S′
xx, S′

yy mN−1 Longitudinal and lateral compliance of the tyre carcass
S′
xy, S′

yx mN−1 Cross compliances of the tyre carcass

Friction Unit Description
parameters
μ – Friction coefficient
μpeak – Peak friction coefficient
μx – Normalised longitudinal force
Functions Unit Description
and operators
∇t m−1 Tangential gradient
σ̌ (·, ·), ϕ̌(·, ·) -, m−1 Sliding functions
σ̂ (·, ·), ϕ̂(·, ·) -, m−1 Slip functions
σ̂ ε(·; ·) – Modified slip functions
Sets Unit Description
Cμ N2 Friction circle
◦
C μ N2 Interior of the friction circle
Cχ N2 Relaxation circle
◦
C χ N2 Interior of the relaxation circle
Eχ N2 Relaxation ellipse
Eχ N2 Interior of the relaxation ellipse
P m2 Contact patch
P m2 Interior of P
∂P m Boundary of P
L m Leading edge
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N m Neutral edge
T m Trailing edge
R≥0 – Set of positive real numbers (including 0)
R>0 – Set of strictly positive real numbers (excluding 0)

Notes

1. For example, Pacejka’s Magic Formula.
2. For a definition of input-to-state stability, the reader is referred to Khalil [45] (Chapter 4).
3. For a mathematical definition of passivity, the reader is again redirected to Khalil [45, Chapter

6].
4. For example, using Euler’s forward scheme.
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Appendices

Derivation of the sliding functions

The derivation of the sliding functions appearing in Equation (24) may be worked out similarly
as in Romano et al. [5]. Substituting Equation (1) into Equation (18a), assuming vanishing sliding
and disregarding the partial derivative with respect to the longitudinal coordinate yields, after some
manipulations, [

APKt Kt ĨSP

Iσ Iϕ

][
σ

ϕ

]
≈ 1

Vr

[
I + APKtS′ 0

IσS′ 1

] [
Ḟt
Ṁz

]
. (A1)

where

AP �
∫∫

P
dx, (A2a)

SP �
∫∫

P
x dx (A2b)

Iσ =
[
Iσx Iσy

]
�
[∫∫

P kyxx − kxxy dx
∫∫

P kyyx − kxyy dx
]
, (A2c)

Iϕ �
∫∫

P
kyyx2 − (kxy + kyx)xy + kxxy2 dx, (A2d)

and the matrix Ĩ reading

Ĩ �
[
0 −1
1 0

]
. (A3)

Solving Equation (A1) for the theoretical slip and spin variables yields

[
σ

ϕ

]
≈ 1

Vr

⎡
⎢⎣σ̌
(
Ḟt , Ṁz

)
ϕ̌
(
Ḟt , Ṁz

)
⎤
⎥⎦ � 1

Vr

[
S′
F S′

M
S′
ϕF S′

ϕM

][
Ḟt
Ṁz

]
, (A4)
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where the matrix of generalised compliances is defined as[
S′
F S′

M
S′
ϕF S′

ϕM

]
�
[
APKt Kt ĨSP

Iσ Iϕ

]−1 [
I + APKtS′ 0

IσS′ 1

]
. (A5)

Proof of Theorem 4.1

The proof of Theorem 4.1 is given here.

Proof: The result follows from an application of Theorem 4.19 ([45, Chapter 4]). For the problem
under consideration, the Lyapunov function may be defined asV(Ft(t)) � 1

2F
2
t (t). The above func-

tion satisfies the first assumption of Theorem 4.19 with α1(Ft) = α2(Ft) = V(Ft), which implies
ρ(·) ≡ γ (·). Taking the derivative yields

V̇
(
Ft(t)

) = −Vr(t)C′
σ σ̂ ε

(
Ft(t); ε

) · Ft(t)+ Vr(t)C′
σ σ (t) · Ft(t). (A6)

Since V(Ft(t)) is radially unbounded and V̇(Ft(t)) is negative definite for σ = 0, it may be eas-
ily concluded that the origin is asymptotically stable. Recalling that σ̂ ε(Ft ; ε) = σ̂ (Ft)Ft/(Ft + ε),
Equation (A6) yields

V̇
(
Ft(t)

) = −Vr(t)σ̂
(
Ft(t)

) C′
σFt(t) · Ft(t)
Ft(t)+ ε

+ Vr(t)C′
σ σ (t) · Ft(t)

≤ −Vr(t)σ̂
(
Ft(t)

) C′
σFt(t) · Ft(t)
Ft(t)+ ε

+ Vr(t)
∥∥v′

σ σ (t) · Ft(t)
∥∥
2

≤ −Vr(t)λmin
(
C′

σ

)
σ̂ε
(
Ft(t); ε

)
Ft(t)+ Vr(t)σ (t)

∥∥v′
σFt(t)

∥∥
2

≤ −Vr(t)λmin
(
C′

σ

)
σ̂ε
(
Ft(t); ε

)
Ft(t)+ Vr(t)λmax

(
C′

σ

)
σ(t)Ft(t)

= −W
(
Ft(t), t

)− Vr(t)ψλmin
(
C′

σ

)
σ̂ε
(
Ft(t); ε

)
Ft(t)+ Vr(t)λmax

(
C′

σ

)
σ(t)Ft(t),

(A7)

where W(Ft(t), t) � Vr(t)(1 − ψ)λmin(C′
σ )σ̂ε(Ft(t); ε)Ft(t) is positive definite for some positive

constant ψ ∈ (0, 1). Therefore, any value of Ft(t) such that

σ̂ε
(
Ft(t); ε

) ≥ σ(t)
ψχλ

(A8)

ensures that V̇(Ft(t)) is negative definite. Reversing the inequality, it may be deduced that if

sup
t≥t0

σ(t) < θχλσ̂ε
(
μpeakFz ; ε

) = ψχλσ
peak 1

1 + ε
(
μpeakFz

) � σχ , (A9)

then Ft(t) < μpeakFz for all t ≥ t0.
Furthermore, since σ̂ε : [0,μpeakFz) �→ [0, σχ/(ψχλ)) is a K-class function in (0,μpeakFz) by

Assumption 3.2, its inverse σ−1
ε (·; ε)may be computed in (0,μpeakFz). The function

γ (σ ; ε) �

⎧⎪⎨
⎪⎩
0, σ = 0,

σ−1
ε

(
σ

ψχλ
; ε
)
, σ ∈ (0, σχ ) , (A10)

is continuous in [0, σχ), since σ̂ε(0; ε) = 0 and limFt→μpeakFz σ̂ε(Ft ; ε) = σχ/(ψχλ). Additionally,
it is strictly increasing. Therefore, it may be concluded that γ ∈ K. Then, it may be observed that,
when σ = 0, Ft = 0 satisfies automatically the inequality, since it is σε(0; ε) = 0 ≡ γ (0; ε). On the
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other hand, for σ ∈ (0, σχ) it holds that

Ft = σ̂−1
ε ◦ σ̂ε(Ft ; ε) ≥ σ̂−1

ε

(
σ

ψχλ
; ε
)

� γ (σ ; ε). (A11)

Therefore, it may be inferred that the system (41) is input-to-state-stable with γ (·; ε) defined as in
Equation (A10). It remains to prove that γ (σ ; ε) → F−1

t (σ/(ψχλ)) as ε → 0+. The result for σ = 0
is trivial. In any other case:

lim
ε→0+

γ (σ ; ε) = lim
ε→0+

σ̂−1
ε

(
σ

θχλ
; ε
)

= σ̂−1
(
σ

ψχλ

)
= F̂t

(
σ

ψχλ

)
. (A12)

�
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