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GEORGIA TsALOLI

Department of Computer Science & Engineering

Chalmers University of Technology

Abstract

Smart devices such as smartphones, wearables, and smart appliances collect
significant amounts of data and transmit them over the network forming the Internet
of Things (IoT). Many applications in our daily lives (e.g., health, smart grid, traffic
monitoring) involve 10T devices that often have low computational capabilities.
Subsequently, powerful cloud servers are employed to process the data collected from
these devices. Nevertheless, security and privacy concerns arise in cloud-assisted
computing settings.

Collected data can be sensitive, and it is essential to protect their confidentiality.
Additionally, outsourcing computations to untrusted cloud servers creates the need to
ensure that servers perform the computations as requested and that any misbehavior
can be detected, safeguarding security. Cryptographic primitives and protocols are
the foundation to design secure and privacy-preserving solutions that address these
challenges. This thesis focuses on providing privacy and security guarantees when
outsourcing heavy computations on sensitive data to untrusted cloud servers. More
concretely, this work:

(a)  provides solutions for outsourcing the secure computation of the sum and
the product functions in the multi-server, multi-client setting, protecting the
sensitive data of the data owners, even against potentially untrusted cloud
servers;

(b)  provides integrity guarantees for the proposed protocols, by enabling anyone
to verify the correctness of the computed function values. More precisely, the
employed servers or the clients (depending on the proposed solution) provide
specific values which are the proofs that the computed results are correct;

(c)  designs decentralized settings, where multiple cloud servers are employed to
perform the requested computations as opposed to relying on a single server
that might fail or lose connection;

(d)  suggests ways to protect individual privacy and provide integrity. More pre-
cisely, we propose a verifiable differentially private solution that provides
verifiability and avoids any leakage of information regardless of the participa-
tion of some individual’s sensitive data in the computation or not.

Keywords: secret sharing, cloud computing, differential privacy, privacy-preservation,
verifiability, secure aggregation, privacy, decentralization
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Introduction

Our societies communicate, share experiences and feelings, and exchange infor-
mation every day. Smart electronic devices are used immensely in our digital lives
and are utilized to control, schedule, or automate functions and generally enhance
users’ way of life. These devices have a network connection and can aggregate users’
data. Cellphones, smartwatches, sensors, and smart TVs hold user information, store
and process data that are transmitted to other smart devices or the "cloud". In this
paradigm, there exist several security and privacy challenges, such as how to handle
these data in a privacy-preserving way, and also whether to trust the "cloud" to treat
data as expected. Data are uploaded to the "cloud" because these smart devices with
increased connectivity, namely IoT devices, often have a very low computational
power. Therefore, they require more powerful entities such as cloud servers to handle
and process their data.

For example, many applications such as smart metering, environmental moni-
toring, or computing statistics involve heavy computations that utilize data coming
from IoT devices/users. Considering the smart metering instance, sensors installed in
several households can collect the electricity consumption of a given area, upload the
measured data to the "cloud" and request computations to be made. Cloud servers are
expected to perform the analysis and provide back their computed results depending
on what is requested.

However, handling data in the context of IoT-based applications involves several
risks. Specifically, data can often contain sensitive information (e.g., health infor-
mation, biometric data, individual routines, etc.) that need to remain secret and,
therefore, the processing of those data must satisfy some confidentiality require-
ments. In the smart metering example, electricity sensors’ measurements can reveal
when people are home, which devices they are using, and when. Similarly, in other
applications data leakages can reveal the identity of a person or enable third parties
to impersonate someone.

Moreover, [oT devices, due to their low computational capabilities, assign heavy
computations that they cannot perform on the device itself to external well-equipped
cloud servers. Thus, another important concern is that outsourcing computations
to the "cloud', i.e., powerful computers hosted over a network (Internet), can be
problematic. These cloud servers are unknown and possibly untrusted, which leads
to security risks such as whether the cloud servers should see the data in the clear
and also, whether the computation that they are expected to perform is properly



executed. In other words, untrusted servers might reveal the private data of individ-
uals or intervene and make modifications to the computed results according to their
preferences.

Furthermore, since often the aggregation in IoT-based applications involves
data coming from a population of clients, it is realistic to consider multiple clients
involved in the cloud computing setting. In the literature, there is a lot of work
on the problem of outsourcing computations. There exist scenarios considering
a single client outsourcing the computation to a single server [BFR13a, CKV10,
FGP14,GGP10,PMT17,PRV12,TC14]. Then, some works address the setting with
multiple clients [FMNP16,GKL ™ 15], whereas considering multiple servers for a single
client has also been considered [ACG™ 14, WYGT 17]. However, besides servers being
potentially untrusted and behaving maliciously, assigning the computations to a
single server can cause single points of failure. Recently, we experienced that even
huge companies like Facebook and its subsidiaries can, despite rarely, suddenly go
offline for hours [Dou21, Ric21, Ale21]. Therefore, employing multiple servers is
realistic, and often a necessity; in this context, the setting with multiple clients and
multiple servers has received limited attention.

Hence, in this work, the following entities are considered: (i) Clients: multiple
clients which own sensitive data and do not interact with each other. They want
to outsource the computation of a function over their joint inputs to the "cloud”;
(ii) Cloud: External cloud servers with high computational power that perform
calculations on the aggregated data to compute the requested functions (e.g., statistical
results); (iii) Receiver(s): The results of the computations are provided to one or more
receivers which may be the clients or other entities (e.g., an electricity company, a
doctor, or a researcher). The considered setting is depicted in Figure L.1.

Returned Function

-
| Result —
Receiver(s) E - E

O

S ST

&5 " Client3ﬂ -

Client 1 Client 2

Client n

Figure 1.1: Cloud servers collect data from multiple clients to calculate the
requested function and return the results to the receiver(s).



The synopsis of the challenges that we encounter in the cloud computing paradigm,
is as follows: (i) Security: cloud servers might be malicious and wish to modify the
calculations and return wrong results. Furthermore, a single server might be un-
der attack or out of service, causing single points of failure; (ii) Privacy: clients
hold sensitive data that need to be protected, and moreover, even the actual com-
puted result often needs to remain private; (iii) Limited resources: the aggregation
is performed over large amounts of data that cannot be stored or processed on the
resource-constraint devices and are then outsourced to cloud servers. Since servers
might show malicious behavior, we need to provide guarantees about the correctness
of the results, while not requiring more resources than the computation itself.

Thesis Scope The goals of this thesis are four-fold:

1. To design solutions for outsourcing computations to the cloud which safe-
guard that sensitive data, often coming from resource-constrained devices,
remain secret. In other words, to enable the processing of the users’ data !
without compromising their privacy.

2. To construct mechanisms that ensure the integrity of the computed results,
i.e., provide security guarantees that the computed results have not been
modified and correspond to the correct expected outputs.

3. To create decentralized® systems for cloud computations, allowing secure
aggregation of users’ data, while not relying on a single server. The aim is
to assign the computation into multiple servers, thus, being able to overcome
either a single server’s failure or a set of one or more servers being untrusted.

4.  To avoid any leakage of information about individuals in case auxiliary
information can be combined with sensitive data.

Outline. This thesis is organized into two parts. The first part is the thesis
overview. It consists of a high-level introduction, a background chapter that contains
definitions and descriptions of concepts related to this thesis, a chapter introducing
the thesis’s objectives, and a chapter with a summary of the thesis’s results and
contributions. The second part is a collection of five papers (Chapters A-E) on
secure and private cloud-assisted computing. In Chapters A and C, we explore the
multi-client, multi-server scenario and provide constructions for securely computing
the sum and the product of multiple secret inputs in the presence of potentially
malicious cloud servers; providing also integrity guarantees for the computed output.
In Chapter B, we examine the combination of differential privacy and verifiable
computation in the context of outsourcing computations on sensitive datasets. Finally,
in Chapters D and E, we design secure privacy-preserving aggregation protocols
with direct application in the machine learning setting.

IThroughout the thesis the words “user” and “client” are used interchangeably.
2Throughout the thesis the words “decentralized” and “distributed" are used interchangeably.






Background

In this section, we present some introductory material related to the content of
this thesis. We get more familiar to concepts such as secret sharing and homomorphic
secret sharing, verifiable computation, and differential privacy.

II.1 Secret Sharing Schemes

Consider a large company that wants to securely store the “master" password
of their vault on the cloud. Firstly, cloud providers might be untrusted. A way to
protect against potentially untrusted cloud servers could be to encrypt the pass-
word [CLW 116, WCH'15]; however, this works only partially. More precisely,
keeping multiple copies (for improving reliability) or only a single one for maximiz-
ing confidentiality when using encryption, cannot deal with problems such as data
loss in a single server or availability failure. Secret sharing allows data holders to
keep their information private and store them securely.

Likewise, personal information such as sensor data, passwords, biometric data,
or other sensitive data can be protected using secret sharing schemes [Beill,BC94].
Shamir [Sha79] and Blakley [BLA79] designed the first secret sharing schemes, based
on polynomial interpolation and hyperplanes intersection, respectively. Secret shar-
ing is a cryptographic technique that enables data owners to securely distribute pieces
of their personal information among a distributed group or network, safeguarding
their private data. Consider a data owner that holds a secret input x and m parties
that comprise a network. Using a secret sharing scheme, a dealer (data owner or
client) splits the secret x into m fragments, i.e., m values x1, .. ., x,,. More precisely,
the goal is to satisfy the following properties [BR07, CK93]:

1. any set of more than ¢ fragments are enough to reconstruct the secret input x;

2. it is impossible to know the secret z, if knowing any ¢ or fewer fragments
x;, 1 € [m].

Such a scheme is called (t, m) threshold secret sharing scheme and is illustrated
in Figure IL1.

Homomorphic Secret Sharing. Homomorphic secret sharing (HSS) is the se-
cret sharing analogue of homomorphic encryption [BCG™17,BGI* 18]. Homomorphic
secret sharing refers to one or multiple secret inputs that are split and distributed



Secret Secret
input x input
€r — Reconstruct — ¢

. with more
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fragments

Figure I1.1: A data owner breaks her secret x into pieces, namely x1, 2, x3, using a
threshold secret sharing scheme (SSS). If more than ¢ pieces are known,
the secret is reconstructed. Here ¢ = 2.

N

into multiple servers. Each server performs local evaluations/computations on the
received shares of the data (i.e., pieces of the data), and generates an output share
(i.e., output value). Applying a decoding algorithm on the output shares provided
by the servers, an HSS scheme results in an evaluation of a selected function f on
the secret inputs. More concretely, given shares (i.e., pieces) of an input x that are
created with a (threshold) secret sharing algorithm (SSS), i.e., Share, an evaluation
algorithm Eval, and a decoder algorithm Dec, an HSS scheme is a 3-tuple of the
probabilistic polynomial-time (PPT) algorithms (Share, Eval, Dec) which are defined
as follows [BGI*18]:

1. Share(1*;i;z): given a security parameter 1, the index i of the data owner,
and the corresponding secret input z, this algorithm outputs m shares of the
secret input, namely 1, ..., x,.

2. Eval(f; 4, {ﬂfé}ie[n}): given a function f, the index j of the server, and a list of
shares :z:; of the secret input 2, this algorithm outputs a value y;.

3.  Dec(yi,...,ym): given the outputs of the evaluation algorithm, the decoder
algorithm outputs f(z).

The algorithms (Share, Eval, Dec) should satisfy the following correctness and
security requirements:

e Correctness: For any n secret inputs x!,..., 2", the homomorphic secret



sharing (HSS) scheme should satisfy the following correctness requirement:

Vie[n] (¢f,...,2},) < Share(1*;4;27),
Pr| Vje [m} Yj EV&'(f;j, {xé‘}ié[n]) : =1
Dec(y17 cee 7y'rn) = f(J?l, s ’xn)

e Security: Let T C [m] be the set of the corrupted servers with |T'| < m.
Consider the following semantic security challenge experiment:

1. The adversary A gives (i,7,2') < A(1*) to the challenger where i € [n],
x # 2’ and |z] = |2/|.

2. The challenger picks a bit b € {0, 1} uniformly at random and computes
z,ifb=0

F1, ... &m) < Share(1*. 4, & whereiz{ L.
(@1, &) (1%, ) 7', otherwise

3. The adversary outputs a guess b’ <~ A((Z;)|s,e7), given the shares from
the corrupted servers T'.

Let Adv(1*, A, T) := Pr[b = b'] — 1/2 be the advantage of A in guessing b
in the above experiment, where the probability is taken over the randomness
of the challenger and of A. The scheme (Share, Eval, Dec) is t-secure if for
all T C {s1,...,8m} with |T| < t, and all PPT adversaries A, it holds that
Adv(1*, A, T) < () for some negligible ().

Depending on the operation performed by the decoding algorithm, we can
have an additive HSS scheme (i.e., a summation of the values is performed), a
multiplicative HSS [TLM18] (i.e., a product of the values is computed) or other types
of HSS. Naturally, one may consider a multiple input variant of HSS where the
evaluation algorithm maps the j-th shares of all the inputs to an output share y;
and the decoder algorithm outputs the f evaluated on the multiple secret inputs
instead of a single input. An homomorphic secret sharing scheme (HSS) for two
secret inputs ! and 22 is depicted in Figure I1.2.

I1.2 Verifiable Computation

Cloud servers are employed to perform computations on shared data but, unfor-
tunately, they can instead make modifications before providing their results, output
incorrect values, and therefore, break the security of our systems. We need to ensure
the integrity of the output coming from the cloud servers, protecting the security of
the assigned computations.

Verifiable computation (VC) is a mechanism that can be utilized for this purpose.
More precisely, verifiable computation is comprised of techniques that allow the
aforementioned resource-constrained loT devices to securely outsource heavy com-
putations to the servers, by guaranteeing that the returned results are correct. The
verification can be accomplished either privately or publicly [AWH™ 18]. In general,
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Figure 11.2: Homomorphic Secret Sharing Scheme (HSS) for secret inputs z* and x2.

verifiable computation is used to provide a way to verify the work of the untrusted
"cloud".

Below, we describe the requirements that a verifiable computation mechanism
must fulfill [YYV17,DD17]. The requirements are the following:

Requirements for Verifiable Computation (VC).

«  Verification Correctness: This is the main requirement for VC. Verification
correctness means that, given a verifiable computation scheme, it is impossible
for an incorrect result to pass the verification check. In other words, an honest
verifier will approve the result only if it is indeed correct.

«  Verification Privacy: A verifiable computation solution must satisfy some pri-
vacy requirements. In detail, depending on the application scenario, verification
confidentiality can be related either to the servers or the verifiers. Either the
case, privacy is important for the input, the computed result, or even both of
them.

«  High Verification Efficiency: A verifiable computation scheme must require
less time than the actual computation. Simply stated, a VC scheme must be
practical to be useful.

Verifiable computation enhances the security of several schemes. For example,
cloud storage service is a popular cloud service in which different security concerns
may arise. Firstly, data confidentiality is safeguarded either with encryption or secret
sharing. Luckily secret sharing can also protect against service availability failure (in
case of a single server), data loss, or corruption. However, there exist more security

10



risks in this context. Precisely, there might be cheaters that wish to maliciously
modify information or create collisions. VC schemes can provide solutions to this by
detecting this behavior or even identifying who the cheaters are. Similarly, we can
consider other applications such as electronic voting systems where the votes pass
through the whole e-voting system and are expected to provide a correct election
result without being jeopardized by political interests. An abstract illustration of a
VC scheme for such a scenario is found in Figure I1.3.

Computation
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Figure 11.3: Voters give their input/vote and everyone/verifier gets a proof that the
announced voting result is correct.
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I1.3 Differential Privacy

More and more data from clients are outsourced for computations in order to
acquire useful statistics such as which products people like, which devices they
prefer to use and so on. However, this information must not reveal the sensitive data
of the people that were part of the computation. In particular, in some cases, the
resulted values of the computation itself can compromise the privacy of individuals.

For instance, Narayan et al. [NS08] showed that they could perform a linkage
attack and reveal real identities of people by using a large, seemingly anonymized,
dataset from Netflix and data from the Internet movie Database (IMDb). Further-
more, Sweeney [Lat15] identified the governor of Massachusetts by combining public
health records with voter registration records. In such contexts, differential privacy
is useful and counteracts these types of attacks.

Dwork et al. [DMNS06] presented the first differential privacy definition, a mathe-
matical definition of privacy. Differential privacy makes it possible to generate useful
results about a population of people without revealing sensitive information about
a single entity. More precisely, the outcome of a computation remains the same
regardless of whether an individual participates in the computation or not [DR14].
A formal definition for differential privacy is presented below:

Definition (e-Differential Privacy [DMNS06]). A randomized mechanism M : D —
‘R with domain D and range R satisfies e-differential privacy if for any two adjacent
inputs d, d’ € D and for any subset of outputs S C R it holds that:

PriM(d) € S] < e PriM(d') € S],
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where € denotes the privacy parameter which is defined in positive real numbers. A
privacy promise can be considered strong when its ¢ is close to zero.

Consider a deterministic real-valued function f : D — R. A method commonly
applied to approximate the function f with a differentially private mechanism is by
applying additive noise incorporated in f’s sensitivity Sy. Function f’s sensitivity,
ie, Sy, is defined as the maximum possible distance between the replies to queries
(i.e, |f(d) — f(d")]) addressed to any of the two neighboring databases (d and
d'). Intuitively, larger sensitivity demands a stronger countermeasure. The Laplace
noise mechanism is a differentially private mechanism often employed to achieve
differential privacy, and is defined as follows: M(d) £ f(d) + Laplace()\).

Differential privacy becomes feasible with two ways: (i) applying noise to each
of the dataset records or (ii) applying noise to the computed result to distort it. The
main concern though, is the trade-off between data utility and individual privacy. We
use an e parameter when referring to differential privacy (i.e., e-differential privacy).
The size of this value, which denotes the privacy loss, varies depending on the use
cases and determines the relation between privacy-preservation and accuracy/utility.

Consider, for example, a query on how many people have a specific disease,
namely disease X. Differential privacy ensures that having two neighboring datasets
(i.e., they only differ on a single entry) does not affect the query result too much to
compromise privacy. This way, individuals are protected from any "harm" that they
could maybe face due to their data being included in a specific dataset. See Figure
11.4 for an illustration of this paradigm.

How many people have disease X7

Differentially Private Algorithm

ﬁ Query
Result

A~ The results are
M\Y roughly the same

Differentially Private Algorithm

uer
+ Georgia’s ﬁ gesu:;

health information

Figure I11.4: Georgia’s health information is protected thanks to the randomized
mechanisms of differential privacy.
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One way to verify that a response to a given query is indeed an e-DP computation,
is using the VFuzz language. VFuzz or Verifiable Fuzz is a modified version of the
Fuzz language. It can statistically certify queries as differential private, without
looking at the data, and, moreover, it can be translated safely to circuits, without
causing any data leakage (in contrast to Fuzz) [NFPH15].
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Thesis Objectives

This thesis explores the problem of secure and private cloud-assisted computing.
In particular, this thesis investigates how to design secure systems that outsource
computations to the cloud, preserving the privacy of the data owners and providing
integrity guarantees for their outcomes. In detail, this thesis focuses on the following
research questions:

RQ1.  Data privacy and decentralization. How can we outsource joint compu-
tations on sensitive data coming from multiple clients to multiple untrusted
servers without revealing confidential data, while also avoiding single points
of failure?

RQ2.  Public verifiability. How can we securely provide public verifiability
(i.e., confirmation of the integrity of the computed results), while keeping
sensitive data private?

RQ3. Individual privacy. How can we design a protocol that does not leak any
information about the participation of an individual in a specific dataset?

RQ4. Data aggregation with user dropouts. How can we design secure and
privacy-preserving protocols for sensitive data aggregation that can handle
users’ dropouts and do not require any communication among users?

RQ1. Collecting data from resource-constrained devices creates the need for
outsourcing heavy computations to the powerful cloud, and also for protecting the
privacy of the used data. In this scenario, assigning the computations to a single
cloud server can be risky, e.g., there might be that the server fails (i.e., single point of
failure) leading to data loss or the server might try to compromise the privacy of
the data and infer sensitive information about the clients (devices). Therefore, it is
important to meet these challenges and provide solutions addressing them.

RQ2. Employing multiple servers can overcome single points of failure; however,
servers can also try to adjust the computed results according to their interests. This
means that, when outsourcing computations, we cannot rely solely on the given
results. It is essential to make sure that the given outcome is useful and can be
utilized as expected. Huge companies and organizations might earn or lose money
from statistics and similar computations; thus, they need to be sure that they indeed
receive what they requested. Addressing RQ2, aims to provide integrity guarantees
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to anyone that wishes to get the computed results. In other words, anyone can
confirm that the computed values received by the servers correspond to the correct
result of their assigned computation.

RQ3. Although privacy-preserving mechanisms have been applied to protect
private data, research has shown that combining auxiliary information together
with a given dataset can reveal someone’s identity or sensitive information about
them [Sta10, BJ12]. Thus, it is vital to enable individuals to keep their private
information secret while participating in some computations. We pose this research
question to explore how to achieve this.

RQ4. In machine learning applications, sums of local updated parameters from
users’ devices are computed to train learning models. Private data are kept in
mobile devices which can drop at any time. In this context, the problem of secure
data aggregation while guaranteeing privacy-preservation of the users’ inputs is
interesting. This is because it allows, for example, different organizations (e.g.,
hospitals) to collaboratively train such learning models, tolerating users’ dropouts
and preserving the privacy of their data.

We address these research questions in the remaining chapters of this thesis. The
mapping of the research questions to the respective chapters is shown in Table II.1.

Table I11.1: Research questions addressed in each chapter.

Chapter A Chapter B Chapter C  Chapter D Chapter E

ROI e O e @ e
RQ2 e @ e @ o
RO3 O @ O O O
RO4 O O O ©) O

16



Thesis Contributions

This thesis tackles the research questions raised in Section 1ll for providing
privacy and security in cloud-assisted computing. Below, we describe how each
chapter contributes to one or more of the listed research questions.

Chapter A: Verifiable Homomorphic Secret Sharing [TLM18]

In this paper, we consider multiple clients and multiple servers involved in the
problem of outsourcing computations (i.e., sum or product). Primarily, we introduce
a general definition for what we call verifiable homomoprhic secret sharing (VHSS). A
VHSS scheme enables n clients, which do not interact with each other, to assign their
joint computations to m servers. Additionally, a VHSS scheme achieves verifiability,
i.e., confirmation/proof that the final computed value is correct.

Next, we propose a detailed solution on computing the sum of n clients’ secret
inputs. A set of m servers receive shares of each of the secret inputs, denoted by x;,
and perform local computations (without communicating). The combination of their
computed partial results provides the desired final value that corresponds to the
sum of the n secret values. This construction contributes to the RQ7 by protecting
sensitive clients’ data (i.e., giving shares of them instead of the actual values) as well
as avoiding single points of failure by employing multiple servers.

Furthermore, we propose an instantiation of the multiplicative VHSS scheme.
More precisely, we address the problem of outsourcing the product of n secret inputs
(belonging to n clients) to m untrusted servers such that: (i) the product is computed
without the servers having access to the private data but rather to shares of them,
and (ii) anyone is able to verify that the resulted outcome (product) is correct by
getting a proof that the final output is correct (public verifiability). This contributes
to both RQ17and RQ2.

Statement of Personal Contributions. | am the main author of the paper. | was
responsible for defining the general definitions for homomorphic secret sharing
(HSS) and VHSS, designing the additive HSS and the VHSS schemes. | formulated
the correctness, security and verifiability requirements, the corresponding theorems
and the proofs of the two proposed instantiations.

Appeared in: 12-th International Conference on Provable Security (ProvSec), 2018.
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Chapter B: Differential Privacy meets Verifiable Computation:
Achieving Strong Privacy and Integrity Guarantees [TM19]

Large companies are often interested in statistical results over a population
of people. Unfortunately, the data necessary to perform these computations are
often sensitive data. This implies that there is a need to provide guarantees to the
companies (or service providers) that the computation results are correct but also
guaranteeing that no leakage of information about individuals exists.

This work, tackles this problem by firstly providing a formal definition of publicly
verifiable differentially private computation (VDPCp,p). Next, we suggest a detailed
protocol that consists of the following entities: (i) a curator which collects sensitive
data (e.g., health related information), (ii) an analyst which is expected to perform the
computations, and finally, (iii) a reader, which submits a query and wishes to get the
response together with a proof of correctness. Our proposed solution is partitioned
into two stages. The first stage comprises of the steps where the reader and the
curator agree on the noise that needs to be added to have a differentially private value.
In the second stage, we present the employment of a publicly verifiable differentially
private computation scheme in our system. Achieving public verifiability contributes
to the RQ2, whereas proposing a protocol to compute a differentially private function
value ensures that there is no leakage of information regarding the participation of
any individual (contributing to RQ3).

Statement of Personal Contributions. | am the main author of the paper. | was
responsible for providing the definition of publicly verifiable differentially private
computation (VDPCpyp). | designed and formalized the proposed public VDPC
protocol.

Appeared in: 16-th International Conference on Security and Cryptography (SECRYPT),
20179.

Chapter C: Practical and Provably Secure Distributed Aggregation: Verifi-
able Additive Homomorphic Secret Sharing [TBM20]

This work addresses the problem of outsourcing the computation of the sum
function f = 21 +. ..+ x, to m servers. More precisely, considering n secret inputs
the goal is to assign multiple servers for computing the sum of the inputs satisfying
the following: (i) the secret inputs of the clients remain private, (ii) the servers have
access only to shares of the inputs (such that they cannot reconstruct the inputs
themselves), and (iii) the proposed scheme must provide the ability to anyone to
verify the correctness of the sum. We refer to this problem as verifiable additive
homomorphic secret sharing (VAHSS) and we propose three different solutions to it.

In detail, we combine an additive homomorphic secret sharing scheme with three
different verification approaches, aiming to capture different application scenarios.
Each method for achieving verifiability employs a different primitive, and involves
the generation of some partial proofs which are values that are used for satisfying
the verifiability property. These partial proofs are either computed by the servers or
by the clients (depending on the proposed construction).
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The first VAHSS construction is based on homomorphic collision-resistant hash
functions. In this solution, clients are only responsible for distributing shares of their
secret inputs to each of the servers. The servers take care of all the computations
related to the requested sum value, and additionally, use hash functions to generate
the proof of correctness. Next, we employ linear homomorphic signatures to achieve
verifiability in our second construction. In this case, the clients distribute shares as
previously, the servers similarly compute what is needed for getting the sum value;
however, the values needed for the verification are generated by the clients. Finally,
the third construction combines additive homomorphic secret sharing (for clients
to generate the shares of their input) with a threshold RSA signature scheme. This
solution requires a threshold t of servers to mutually construct the proof required
for verification using the threshold signature scheme. We provide experimental
evaluation for all proposed constructions.

This work contributes to RQ1 by safeguarding (i) the privacy of the clients’ secret
data, and (ii) outsourcing the sum computation to multiple servers. Achieving public
verifiability in all three proposed constructions contributes to RQ2.

Statement of Personal Contributions. | am the main author of the paper. | was
responsible for designing the three VAHSS proposed constructions. | formalized and
proved the security, verifiability and correctness requirements of all three proposed
constructions. | helped in the experimental evaluation, performed the theoretical
analysis and contributed in the protype analysis of all three constructions.

Appeared in: Cryptography Open Access Journal, 2020.

Chapter D: DEVA: Decentralized, Verifiable Secure Aggregation for Privacy-
Preserving Learning [TLB'21]

This paper focuses on the problem of secure data aggregation in the context
of machine learning applications. Data are located in mobile devices (users) with
low computation capacity, and need to be outsourced to the servers to train the
learning model. To do this, sums of local updated parameters are computed, while
any individual user’s update is not revealed in the clear.

In this work, we perform secure aggregation of the users’ secret data (parameters)
without requiring any communication among the users. We define and describe
the DECENTA problem and propose the protocol DEVA which is our proposed
DECENTA solution. More precisely, the DEVA protocol computes the sum of the
users’ input, while also providing verifiability of the computed result. In other
words, the outcome of the protocol is not only the computed sum value, but also
additional values that need to match with the final result to successfully pass
the verification check and confirm that the sum is correctly computed. The sum
value can be computed even if not all servers are present, i.e., only a threshold
amount of servers is required to compute the final value. Additionally, users can
drop at any time during the protocol execution, and our solution can handle users’
dropout successfully. Users never provide their data in the clear during the protocol,
protecting the confidentiality of the latter. We evaluate the performance of our
DEVA protocol and present our findings compared also with the prior work. We
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have provided a solution for outsourcing the sum computation to multiple untrusted
servers, protecting users’ sensitive data, providing public verifiability, and finally
handling users’ dropout. Therefore, we contribute to RQ7, RQ2, and RQ4.

Statement of Personal Contributions. | am the main author of the paper. | was
responsible for defining the general framework of a DECENTA problem. Bei and |
together designed and formalized the proposed DEVA protocol. | was responsible
for defining and proving the verifiability and correctness properties of DEVA. | got
the experimental results and provided the corresponding implementation analysis
as well as illustrated the evaluation findings for the different parameters considered.

Appeared in: 24-th Information Security Conference (ISC), 2021.

Chapter E: Non-Interactive, Secure Verifiable Aggregation for Decentral-
ized, Privacy-Preserving Learning [BTL"21]

In machine learning applications, e.g., in federated learning, users (devices)
collaboratively train their models under the arrangements of a central server. Next,
that server updates accordingly the global training model given the parameters from
several devices. However, as we have discussed in this thesis, this might cause single
points of failure. Additionally, there might exist different organizations with similar
objectives that want to train their models collaboratively.

This work proposes a non-interactive protocol, namely NIVA, which enables
multiple servers to aggregate the secret inputs coming from several users and perform
the required computation (sum) to update the learning model. The data of the users
remain private, and the users only provide their inputs (not in the clear) and are not
required to participate in any other stage. Servers can be untrusted and, therefore,
are also requested to provide integrity guarantees, i.e., NIVA allows anyone to verify
the correctness of the computed result. This way any malicious server that would
try to bias the model updates cannot succeed. This solution aims to provide a
decentralized approach by employing multiple servers, protect sensitive data, and
provide security guarantees against any malicious behaving server. We provide an
evaluation of NIVA with respect to the current state of the art. This paper contributes
to RQ71 and RQ2.

Statement of Personal Contributions. This paper resulted from joint discussions
and ideas among the authors, whereas Carlo came up with the idea of the NIVA
protocol. This paper was initially united with the paper in Chapter D. | helped in
constructing the verifiability proof of NIVA, while also helping with providing the
state of the art for this work.

Appeared in: 26-th Australasian Conference on Information Security and Privacy
(ACISP), 2021.
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Conclusion

This thesis consists of five chapters which address the problem of security and
privacy in cloud-assisted settings in different ways. The summary of the findings in
each chapter are depicted in Figure V.1.

Thesis Summary 1

Chapter C

Chapter A Chapter B

Computing the product
of n secret inputs in the
multi-server
setting, keeping data
private and providing
verifiability

Computing the sum of n
secret inputs in the multi-
server setting, keeping data
private and providing
verifiability

Designing a publicly
verifiable differentially
private computation
scheme, protecting
individuals' privacy

Chapter D Chapter E

Non-interactive, verifiable
data aggregation from

Verifiable data aggregation
from multiple users, in the

multi-server setting, for
updating machine learning
models, with user dropouts

multiple users, in the multi-
server setting, for updating
machine learning models

Figure V.1: Summary of results in each thesis chapter.

Throughput this work, several challenges were encountered, including (i) poten-
tially malicious servers that want to modify the computed function results according
to their wishes, (ii) the possibility that a single server might fail or lose connection,
(iii) the need to outsource the assigned computations due to the limited resources
of the devices that collect the sensitive data, while also keeping data private, (iv)
and, finally, the necessity to provide integrity guarantees for the calculated values
to counteract the existence of malicious servers in our settings.

To extend and improve our findings, one may consider the following future
directions:
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Chapter A and C propose solutions for computing the product and the sum,
respectively, of n secret inputs when considering multiple clients. A future
direction for both chapters can be considered to address a scenario where one
or more clients are untrusted, and therefore, design a solution that handles all
involved parties being potentially malicious.

Chapter B provides a publicly verifiable differentially private computation
scheme. In this work, one may implement such a scheme to explore how
different parameters provide different levels of privacy and utility trade-offs.

Chapter D and E focus on secure data aggregation in a decentralized setting,
providing verifiability against potentially malicious servers. An improvement of
these works would be to extend the solutions to work more efficiently when
considering vectors as secret inputs.
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