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Abstract

Background: The statistics on global road safety show a great demand for
reducing the fatalities caused by pedestrian-vehicle collisions. By utilizing
artificial intelligence such as deep learning, human drivers can be supported by
better driver assistance systems, and thereby the fatalities caused by human
errors can be reduced. Therefore, accurately predicting pedestrian behavior is
crucial for drivers and automated vehicles to better understand pedestrians in
complex scenarios to avoid pedestrian-vehicle collisions.
Objectives: This thesis aims to use deep learning to predict pedestrian be-
havior in urban traffic more accurately. The research goals are: 1) reviewing,
categorizing, and analyzing existing research to identify research gaps in pedes-
trian behavior prediction, 2) developing a model that can more accurately
predict pedestrian trajectories in urban traffic by using deep learning to model
social interactions, and 3) considering pedestrian-vehicle interactions using
deep learning methods when predicting pedestrian trajectories.
Methods: In Paper A, the methodology to find and collect existing papers
is based on direct search and snowballing. The IEEE Xplore digital library
and Google Scholar is used for direct search. Paper B and C have considered
social interactions and pedestrian-vehicle interactions using deep learning
methods when predicting pedestrian trajectories. A real-world, large-scale open
dataset released by Waymo is used for training and evaluation. The average
displacement error (ADE) and final displacement error (FDE) are used to
quantitatively evaluate the prediction accuracy.
Results: Paper A has reviewed 92 papers, 50 from direct searching and 42
from snowballing, and analyzed the models that considered different factors
influencing the pedestrian behavior. The advantages and drawbacks of using
different prediction methods have been outlined. Research gaps and possible
research directions have been pointed out. In Paper B, while the performance on
ADE and FDE has been slightly improved by 1.50% and 1.82% compared to the
state-of-the-art model, the inference speed has been significantly improved by 4.7
times faster on total inference speed and 54.8 times faster on data pre-processing
speed. In Paper C, our proposed pedestrian-vehicle interaction extractor is
applied to both sequential and non-sequential models. For sequential models,
our model improved the ADE and FDE by 7.46% and 5.24% compared to the
state-of-the-art models, and for non-sequential models, our model improved
the ADE and FDE by 2.10% and 1.27%.
Conclusions: Paper A has shown that including more influencing factors in
trajectory prediction has the potential to improve accuracy. Paper B and C
have shown that including social interactions and pedestrian-vehicle interactions
can improve the accuracy of pedestrian trajectory prediction. By reducing
the predicting error and reducing the inference time, our research findings
contribute to making approaches for the perception in automated vehicles and
driver assistant systems safer than the current state-of-the-art.

Keywords
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Chapter 1

Introduction

1.1 Background

1.1.1 The Evolution of Road Safety over the Years

According to the global status report on road safety by World Health Organi-
zation (WHO) in 2018 [1], fatalities of road traffic crashes have increased to
1.35 million annually, which is unacceptably high. Besides, road traffic injuries
are the main cause of death for the young aged between 5 and 29 years [1].
As shown in Figure 1.1, although the fatality rate per 100,000 population has
declined slightly from 18.8 to 18.2 from the year 2000 to 2016, the absolute
death number has increased from 1.15 million to 1.35 million.

Figure 1.1: Number and rate of road traffic death per 100,000 population:
2000–2016 (cf. WHO’s report 2018 [1]).

From 2000 to 2016, the number of motor vehicles has rapidly increased
from 0.85 billion to 2.1 billion, which means we need to put more effort into
reducing death rates to compensate for the proliferation of motor vehicles.

These numbers suggest that we need to put more effort to reduce the road
traffic death number as proposed in the sustainable development goals (SDG)
target 3.6 in the 2030 agenda for sustainable development [2]. Therefore, there
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2 CHAPTER 1. INTRODUCTION

is an increasing need for safer vehicles to prevent hazardous situations and
reduce fatalities.

Rumar [3] has stated that human errors are one of the main factors in most
road accidents. As human error is a major source for road accidents being the
top risk factor according to WHO [1], reducing the role human drivers take on
public roads for operating vehicles is potentially addressing this risk by turning
to vehicular automation.

Vehicular automation is using technologies to assist vehicle operation and
make the vehicle intelligent. By involving artificial intelligence (AI), dynamic
control, and other technologies, we can develop automated driving (AD) system
and advanced driver assistant system (ADAS). An AD system is a system that
is capable of sensing the car’s driving environment and moving safely with
little or no human input by incorporating automatics. Another type of using
automated vehicle features to aid driving is ADAS, where such features are,
for instance, used to assist drivers in driving and parking.

While it is still debated whether automated vehicles can provide a safer
road [4], we can get us prepared for the more densely populated road in the
future by developing the AD system and ADAS technologies.

1.1.2 Pedestrian Safety in Different Regions

The WHO’s report in 2018 [1] shows that every year over 310,000 pedestrians
lose their lives because of road crashes. This number has increased by 13.6%
from 273,000 in 2010 [5], and constitutes 23% of all road deaths globally.

In Europe, the number is even higher, that 27% of all road deaths are
pedestrians as shown in Figure 1.2. In International Transport Forum’s (ITF’s)
report [6] on urban road safety, it is shown that although the death rate of
road crashes has been reducing since 2010, the reductions for pedestrians were
slower.

In the WHO’s report on pedestrian safety [7], it is shown that pedestrian
fatalities constitute a larger proportion of all road traffic deaths in low-income
countries (LIC) with 36% compared with high-income countries (HIC) with
18% in 2010, as shown in Table 1.1.

World
Car

occupants
Motorized

2-3 wheelers
Cyclists Pedestrians Other

LIC 31 15 6 36 12
MIC 27 25 4 22 22
HIC 56 16 5 18 5
All 31 23 5 22 19

Table 1.1: Road user fatalities as a proportion (%) of global road traffic
deaths, 2010. The gross income per capita in 2010 used to categorize countries
into: LIC (low-income countries) = US $1005 or less; MIC (middle-income
countries) = US $1006 to 12,275; and HIC (high-income countries) = US
$12,276 or more (cf. WHO’s report on pedestrian safety [7]).
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Figure 1.2: Distribution of deaths by road user type by WHO Region (cf. WHO’s report [1]).
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Sweden has a world-leading performance in road safety with 2.8 death per
100,000 inhabitants, and the rate is constantly decreasing [1]. Between 2006
to 2019, the absolute road traffic fatalities has decreased from 445 to 221 [8],
and the absolute non-fatal road traffic injuries reduced from 26,636 to 17,719,
as shown in Figure 1.3. However, the number of injuries is still high. The
injuries caused by pedestrian-vehicle collisions have psychological, health, and
economic costs to both individuals and society [7]. The traffic crashes in Sweden
have caused significant costs to society at approximately 13.4 billion EUR,
constituting 2.6% of national GDP in 2017 [8], as shown in Table 1.2. This
number involves all road users, including pedestrians. In Sweden, pedestrians
constitute 12% of all road traffic deaths, which is a large part that we need to
consider.
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Figure 1.3: Trends in road fatalities and injuries in Sweden, 2006-2019.

Costs (EUR)
Fatalities 1.32 billion

Other reported injuries 12.07 billion
Total (as % of GDP) 13.39 billion (2.6%)

Table 1.2: Costs of road crashes in Sweden, 2017 (cf. ITF’s report [8]).

According to Peden et al. (cf. [9]), pedestrian-vehicle collisions are pre-
dictable and preventable. Therefore, the number of fatal and non-fatal injuries
could be reduced if pedestrian-vehicle collisions could be better predicted to
provide a chance for prevention. As reported by WHO [1], vehicles can be
designed and built to better protect pedestrians.

Improving the pedestrian trajectory and intention prediction may have
the potential to equip safer vehicles to protect the pedestrians. A precise
and robust prediction of pedestrian behavior can reduce the misunderstanding
of a pedestrian’s intention and provide more reaction time to a pedestrian’s
unexpected movement and thereby preventing hazardous situations.

The information on pedestrian behavior can be used for the AD systems
and ADAS to make better and safer decisions. For example, the prediction of
pedestrian behavior can provide complementary information to the driver and
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reduce the risk for pedestrian-vehicle collision during night-time travel, which
is one of the key risk factors for pedestrians [7].

However, the prediction of pedestrian behavior is very challenging. The
agility of pedestrians shows hardly predictable moving patterns [10], as pedes-
trians can change their speed and direction abruptly [11]. Furthermore, com-
plicated factors such as the destination, age, and gender of a pedestrian [12]
influence pedestrian behavior. In addition to the agility, pedestrians also tend
to interact with other pedestrians [13] and vehicles [14–16] all the time, which
makes it harder to precisely predict their behaviors.

It is crucial to study and predict pedestrian behavior to help prevent
pedestrian-vehicle collisions on the road. Recently, the need for driving safety
and automated driving has stimulated an increasing number of research studies
on pedestrian behavior prediction in both industry and academia as presented
in Chapter ??.

1.1.3 Locations of Pedestrian-Vehicle Collisions

When we consider the locations where pedestrian-vehicle collisions occur, the
results vary in different countries and regions. As stated by Do et. al [17], most
pedestrian-vehicle collisions are likely to occur when pedestrians are crossing
the road. According to WHO’s report on pedestrian safety [7], in high-income
countries, pedestrian-vehicle collisions occur more in urban areas than rural
areas, while in some low- and middle-income countries the opposite is true. In
the European Union, about 70% of pedestrian fatalities occur in urban areas [7].
The situation is similar in the United States, where 76% of total pedestrian
deaths are in urban areas [7].

Research by Värnild et al. [18] in Sweden between 2003 to 2014 showed
that the distribution of road user types who were seriously injured in road
accidents varied between rural and urban areas. In rural areas, the pedestrians
constituted 6.5%, while in urban areas, the pedestrians constituted 39.6%,
which accounted for a large proportion of all serious injuries, as shown in
Figure 1.4.

Figure 1.4: Serious injuries in Sweden (Region Västmanland) in rural and
urban areas 2003-2014, N=633, with 262 in rural areas and 371 in urban areas
(data from Värnild et al.’s report [18]).

In urban scenarios, the ITF collected traffic safety data in 48 cities from
different continents to monitor the progress in urban road safety. In their
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report [6], the distribution of road user types that were fatally injured varied
in different densities of the city. As shown in Figure 1.5, in a more densely
populated city, the proportion of pedestrians in road fatalities was higher. In
high-density cities where there are more than 10,000 inhabitants per square
kilometer, there are 51% of pedestrians were fatally injured in all types of
road users. It was shown that the more densely a city is populated, the more
dangerous it is for pedestrians.

Figure 1.5: Distributions of road fatalities of road user types in different
densities of the city, using the average values of figures available between 2014
and 2018. The low population density is less than 5,000 inhabitants per square
kilometer. The medium density is less than 10,000, and the high density is
10,000 and above (cf. ITF’s report [6]).

1.2 Motivation and Problem Domain

As highlighted in Section 1.1.3, pedestrians are more vulnerable compared to
other road users. The pedestrian fatalities proportion in low-income countries
is especially high, with 36% out of all fatalities compared to 18% in high-
income countries. The statistics on global road safety show a great demand for
reducing the death rate of road traffic crashes, which reveals the significance of
developing safer vehicles to prevent crashes.

The demands for substantial reductions in the number of fatal and serious
injuries for road traffic require us to develop AD technologies to ensure driving
safety. The prediction of pedestrian behavior is essential for AD systems. By
involving AI technologies, the human driver’s operational load is reduced, and
thereby the fatalities caused by human errors can be reduced. Accurately
predicting pedestrian behavior can help automated vehicles better understand
the pedestrians when interacting with vehicles in complex scenarios and to
make safer decisions.

As outlined in Section 1.1.2, in Sweden and the European Union countries,
serious injuries caused by pedestrian-vehicle collisions are more likely to happen
in urban areas, and the proportion of road fatalities for pedestrians is higher
in more densely populated cities. Therefore, in our research, we mainly focus
on the data in urban scenarios to prevent hazardous situations.

The behavior of a pedestrian is influenced by the interactions with the
other road users as outlined in Section 1.1.2. In this thesis, social interactions
and pedestrian-vehicle interactions are considered and studied while predicting
pedestrian behavior. The social interaction is the process of reciprocal influence
of two or more individuals who modify their actions and reactions during
social encounters [19]. In the context of pedestrian behavior prediction, social
interaction can be interpreted as the influence on pedestrian behavior when
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they interact with other pedestrians. The pedestrian-vehicle interaction refers
to the impact of the interactions between pedestrians and vehicles on pedestrian
behavior.

Due to the complexity and intricacy of pedestrian behavior, knowledge-based
methods such as the rule-based models and statistics-based models can hardly
predict pedestrian behavior precisely and reliably [20]. The non-linear behavior
arising from interactions of the pedestrians are hard for the rule-based models
to learn. Deep learning methods are strong tools that can handle complex
scenarios. The non-linear activation functions of the deep learning network can
learn the non-linearity of the model. The large number of learned parameters
of the network can avoid data saturation, and benefit from large-scale datasets.
Therefore, we explore deep learning methods to learn the patterns of pedestrian
behavior in a data-driven manner.

We focus on pedestrian trajectory prediction specifically for urban scenarios
because these areas are the ones where pedestrians are mostly affected by traffic
accidents as shown in Section 1.1.3.

1.3 Research Goal and Questions

The overall goal of this PhD project is to use AI to better understand and
predict how pedestrians behave when interacting with vehicles and automated
vehicles in urban traffic. To contribute to this research goal, we need to develop
deep learning methods for predicting the behaviors of pedestrians in interactions
with other road users. AI tools, especially deep learning methods are applied to
the large-scale real-world datasets in our research. The developed deep learning
models are used in complex interactions and are compared with results from
literature and other models.

In this licentiate thesis, we focus on predicting pedestrian trajectories. To
achieve this goal, the following sub-goals are addressed:

G1: Reviewing, categorizing, analyzing, and discussing currently existing
research to point out research gaps for the problem area of pedestrian
behavior prediction.

G2: Developing the approach that can better predict pedestrian trajecto-
ries in urban traffic scenarios, and using deep learning to model social
interactions between pedestrians.

G3: Considering pedestrian-vehicle interactions, and using deep learning to
model the interactions between pedestrians and vehicles when predicting
pedestrian trajectories.

We derive the following research questions from the corresponding goals,
expressed as follows:

G1: Literature review on pedestrian behavior prediction:

RQ1-1: What are the state-of-the-art deep learning algorithms for predicting
pedestrian behavior and how they performed in urban scenarios?

RQ1-2: What are the challenges and research gaps of existing works to
improve the prediction performance?
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G2: Pedestrian trajectory prediction considering social interactions using deep
learning methods:

RQ2-1: How to use deep learning methods to model social interactions when
predicting pedestrian trajectories in urban traffic scenarios?

RQ2-2: What are the improvements of using deep learning methods com-
pared to existing methods?

G3: Pedestrian trajectory prediction considering pedestrian-vehicle interac-
tions using deep learning methods:

RQ3-1: How to use deep learning methods to model pedestrian-vehicle
interactions when predicting pedestrian trajectories in urban traffic
scenarios?

RQ3-2: What are the improvements of considering pedestrian-vehicle inter-
actions compared to existing methods?

1.4 Methodology

The methodology section is organized as: firstly going through the overall
research philosophy and explaining how the appended papers are related,
and then introducing the definition of the problem and how the methods are
evaluated. After that, the methods that are used in this thesis are presented,
including the deep learning methods for prediction, and the interactions of
pedestrians. Finally, the dataset and data pre-processing method used in this
thesis are introduced.

1.4.1 Research Methodology

1.4.1.1 Research Types

The corresponding research goals, research questions, and research types used
in this study are highlighted in Figure 1.6. The appended Paper A is a
literature review paper, in which we answered research questions RQ1-1 and
RQ1-2. Paper B and C are approaches for pedestrian trajectory prediction, that
answered research questions RQ2-1, RQ2-2, and RQ3-1, RQ3-2, respectively.

Kothari [21] described basic types of research as follows:

• Descriptive vs. Analytical. The purpose of descriptive research is to
describe the existing state of affairs. For example, surveys are descriptive
studies. Analytical research, in contrast, is used to analyze existing
information to make a critical evaluation of the material. The appended
Paper A (cf. Chapter ??) is a review paper, which is a descriptive study,
while Paper B (cf. Chapter ??) and Paper C (cf. Chapter ??) are
analytical studies with analysis and evaluation.

• Applied vs. Fundamental. The purpose of applied research is to find a
solution for an industrial or business problem, while fundamental research
mainly deals with the formulation of a theory. All three appended
papers are focusing on applying deep learning methods to the pedestrian
prediction task, so they are applied studies.
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Paper A Paper B Paper C

Survey Approaches

G1

RQ2-1, RQ2-2 RQ3-1, RQ3-2

Research Goals

Research Questions

Research Types

Descriptive Analytical

Applied Research

Quantitative and Qualitative

Conceptual and Empirical

G2 G3

RQ1-1, RQ1-2

Figure 1.6: Research goals, research questions, and research types [21] of the
appended papers in this thesis.

• Quantitative vs. Qualitative. Quantitative research is based on quantity
measurement, while qualitative research is concerned with qualitative
phenomena. In all three appended papers, we compare existing works
(Paper A) or evaluate and analyze our proposed methods (Paper B and
C) both quantitatively and qualitatively.

• Conceptual vs. Empirical. Conceptual research is related to abstract
theory and ideas, while empirical research primarily relies on experience
or observation. Our work is based on deep learning theory, which has a
conceptual background. When it comes to data-driven methods, many
hyper-parameters for network training are set empirically and the model
is learned from data, so our work is also empiric. Therefore, all three
appended papers are both conceptual and empirical studies.

The research methodology is a way to systematically solve a research
problem [21]. Taking the licentiate thesis as a whole, the research process is as
follows, and corresponding appended papers can be summarized as shown in
Figure 1.7.

1. Problem 
Definition

2. Literature 
Review 3. Hypothesis 4. Research 

Design

5. Data 
Collection 6. Experiments 7. Results and 

Analysis

8. Discussions

Feedback

Feedback

Paper A Paper B and C

Figure 1.7: Research process [21] used in this thesis.
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1. Define the research problem.

2. Review the literature, including the concepts and theories, and previous
research findings.

3. Formulate hypotheses. After reviewing the literature, the hypotheses are
developed.

4. Design the research. This thesis is based on experimentation, therefore the
research design needs to be carefully prepared.

5. Collect data. There are many existing publicly available datasets for tra-
jectory prediction. The dataset used for training and evaluation plays an
important role because this thesis uses deep learning methods that learn the
pattern from large amounts of data. Therefore, finding appropriate datasets
that contain large-scale real-world urban scenes is essential for facilitating
intelligent vehicles and automated driving in urban traffic scenarios.

6. Conduct experiments.

7. Analyze the result. This thesis includes both quantitative and qualitative
analysis. This is used as feedback to modify the design of the research in
step 4.

8. Interpret and discuss the results. The findings are used as feedback to
address the research problem in greater depth in subsequent studies in
step 1.

In Paper A, we define the problem and review existing works. Besides, we
explore the properties of existing datasets and select appropriate datasets for
training and testing. In Paper B and C, we go through from step 3 to step 8.

1.4.1.2 Research Methodology for Machine Learning

When it comes to the field of machine learning, research methods can sig-
nificantly influence the accuracy and reliability of the results. Kamiri and
Mariga [22] analyzed 100 papers published since 2019 in IEEE journals in
machine learning and revealed that quantitative research approaches with ex-
perimental research design are mostly used. They stated that the research on
machine learning is mainly quantitative because it requires the modeling of
data that should make sense of the data. To understand the motivation of
pedestrian behavior, this thesis also includes qualitative analysis by analyzing
the moving pattern in different scenarios.

Quantitative research approaches rely on mathematical, numerical analysis,
or other computational techniques applied to collected data [23]. In Paper B
and C, we apply deep learning methods based on computational functions on
publicly available data and quantitatively evaluate the results.

The general experimental research design for machine learning and deep
learning is summarized by Kamiri and Mariga [22] and Sarker [24] and shown
in Figure 1.8, and Paper B and C follow this design process:

• Data collection,
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• Data understanding and pre-processing,

• Model building and training,

• Model testing and validation,

• Model evaluation and interpretation.

Data
Collection

Data Pre-
processing

Model Building
and Training

Model
Validation

Model
Evaluation and
Interpretation

Figure 1.8: The general experimental research design process used in this thesis.

1.4.2 Problem Definition and Evaluation Metrics

1.4.2.1 Problem Definition

The prediction of pedestrian behavior includes the trajectory prediction and the
intention prediction. This thesis mainly focuses on the low-level information,
i.e., the trajectory prediction.

As shown in Figure 1.9, the trajectory of a pedestrian or a vehicle is defined
as a sequence of x-y coordinate positions including their temporal order. The
positions of pedestrians and vehicles in each frame are first pre-processed to x
and y coordinates on a 2D map representation in bird’s-eye-view. In a frame
at time-step t with the number of pedestrians np and the number of vehicles
nv, the ith person at time-step t is represented by x-y-coordinate Xi

t = (xi
t, y

i
t),

where i ∈ {1, . . . , np}. The jth vehicle at time-step t is represented by x-y-

coordinate V j
t = (xj

t , y
j
t ), where j ∈ {1, . . . , nv}. The observed pedestrians and

vehicles can be denoted as Xt = [X1
t , X

2
t , . . . , X

np

t ], Vt = [V 1
t , V

2
t , . . . , V

nv
t ],

with all observed time-steps 1 ≤ t ≤ Tobs.
Given the observed pedestrians and vehicles, we aim to predict the most

likely trajectories of pedestrians Ŷt = [Ŷ 1
t , Ŷ

2
t , . . . , Ŷ

np

t ] in the future time-steps
Tobs + 1 ≤ t ≤ Tpred. The ground truth of the future trajectories is denoted as
Yt = [Y 1

t , Y
2
t , . . . , Y

np

t ], where Tobs + 1 ≤ t ≤ Tpred.

Figure 1.9: A birds-eye-view perspective illustration of pedestrian trajectory
prediction. The solid lines are observed trajectories, and the dotted lines are
predicted trajectories.
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The predicted positions of pedestrians Ŷ i
t = (x̂i

t, ŷ
i
t) are treated as random

variables, where i ∈ {1, ..., np}, Tobs + 1 ≤ t ≤ Tpred, by assuming that the ith

pedestrian’s position at time t follows bi-variate Gaussian distribution Ŷ i
t ∼

N (µi
t, σ

i
t, ρ

i
t). At time-step t, the mean value of the position is µi

t = (µx, µy)it.
The standard deviation is σi

t = (σx, σy)it, and the correlation coefficient is ρit.
Our network predicts the Gaussian distribution parameters (µx, µy, σx, σy, ρ)it,
and samples from the distribution to get predicted trajectories.

1.4.2.2 Evaluation Metrics

The following two metrics are commonly used by researchers to report the
prediction error and to evaluate the performance of the algorithms:

• The Average Displacement Error (ADE): the average distance between
ground truth and prediction trajectories over all predicted time-steps, as
defined in Eq. 1.1:

ADE =

∑
i∈np

∑Tpred

t=Tobs+1 ∥Y i
t − Ŷ i

t ∥2
np × (Tpred − Tobs)

(1.1)

• The Final Displacement Error (FDE): the average distance between
ground truth and prediction trajectories for the final predicted time-step,
as defined in Eq. 1.2:

FDE =

∑
i∈np

∥Y i
t − Ŷ i

t ∥2
np

, t = Tpred (1.2)

In Paper A (cf. Chapter ??), existing algorithms are reviewed and compared,
and the state-of-the-art algorithms are listed. In Paper B (cf. Chapter ??) and
Paper C (cf. Chapter ??), we use the aforementioned two evaluation metrics
and compare our proposed models with the state-of-the-art algorithms. In
addition to ADE and FDE that evaluate the accuracy, the inference speed of
different models is evaluated to compare the computational performance.

1.4.3 Deep Learning Methods for Prediction

Deep learning methods are powerful tools that enable a system to behave
intelligently and are sometimes interchangeably used with machine learning,
and AI. As illustrated by Sarker [24], deep learning is a branch of machine
learning and AI, as shown in Figure 1.10.

Compared with other machine learning methods, deep learning models can
benefit more from large-scale datasets, as shown in Figure 1.11 proposed by
Sarker [24].

Much work has focused on leveraging deep learning and neural networks
for behavior prediction in recent years. Many behavior prediction models use
sequential methods such as the recurrent neural networks (RNNs), including
their variant long short-term memory (LSTM) networks and gate recurrent units
(GRUs), and LSTM-based generative adversarial networks (GANs). Recently,
transformer (TF) networks have been used for pedestrian trajectory prediction.
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Artificial
Intelligence

(AI)

Machine
Learning
(ML)

Deep
Learning
(DL)

To compute through multi-layer
neural networks and
processing

To learn from data or
experience, which build
analytical model automatically

To incorporate human behavior
and intelligence to machines or
systems

Figure 1.10: The relationship of deep learning, machine learning, and artificial
intelligence (cf. Sarker [24]).
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Amount of data
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Most learning
algorithms

Figure 1.11: The comparison between deep learning and other machine learning
algorithms. The performance of the deep learning model can increase with a
larger amount of data (cf. Sarker [24]).

In addition to sequential methods, non-sequential methods such as convolutional
neural networks (CNNs) are also employed to extract spatial and behavioral
features. In the following, the most commonly used methods are described.

LSTM-based methods LSTM networks are the improved version of RNNs.
LSTMs have both feedforward and feedback connections to capture long and
short-term information, and are especially suitable for predictions based on
sequential data. LSTM networks have been successfully used for sequential
prediction tasks such as handwriting recognition [25] and speech recognition [26].
Due to the ability of LSTMs on sequential prediction tasks, they have been
adopted by researchers to predict pedestrian trajectories (e.g., [27–30]). Alahi
et al. [27] proposed Social-LSTM, which assumed the trajectories of pedestrians
follow the bi-variate Gaussian distribution, and many researchers followed this
uni-modal assumption. The drawback of the LSTM-based methods is that they
cannot be parallized because the prediction on each time-step is dependent on
the prediction of preceding time-steps.
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GAN-based methods GANs are proposed by Goodfellow et al. [31], that
use two neural networks called generator and discriminator to contest with each
other. The generative network generates multiple possible candidates, and the
discriminative network evaluates them. For predicting pedestrian trajectories,
Gupta et al. [32] stated that by using the uni-modal distribution assumption,
the researchers may learn the “average” trajectories instead of multiple “good
behaviors”. They assumed that the trajectories of pedestrians follow multi-
modal distribution, and used GANs to predict the trajectories. Although GANs
can predict multiple plausible results, they have a non-neglectable disadvantage:
as the GANs need to train two deep networks in one structure, they are hard
to train and require techniques for convergence.

CNN-based methods CNNs are widely and successfully used in image
processing tasks such as image classification, image segmentation, because
their capability of extracting spatial features. Many researchers utilized CNNs
on pedestrian intention prediction, to extract the appearance and behavioral
features implicitly.

In addition to the spatial feature, the convolutional networks on temporal
space, also known as temporal convolutional networks (TCNs), can also be used
for extracting the temporal feature and predicting trajectories. Bai et al. [33]
claimed that the inefficient parameters used in RNNs can make the training
expensive. Besides, the predictions for later time-steps depend on the predic-
tions from preceding time-steps in LSTMs can cause the error accumulation in
the prediction. Nikhil and Morris [34] utilized CNNs for predicting trajecto-
ries, that reached competitive results with a faster inference speed. Mohamed
et al. [35] proposed the Social-STGCNN method that combined spatial and
temporal (ST) features using TCNs and CNNs with graph structures, which
is able to reach 20% improvement on FDE and is 48 times faster compared
to sequential models. The appended Paper B (cf. Chapter ??) proposed the
“Social-IWSTCNN” model as one core contribution of this thesis, followed this
trend of using spatio-temporal (ST) features and applying CNNs to predict
the future sequences, and improved the accuracy and inference speed by 4.7
times by learning the social interaction weights (IW) with a learning-based
sub-network. The CNN-based methods allow parallel computation and avoid
accumulate errors, but as they predict the future trajectories using a fixed time
horizon, they are not as flexible as LSTMs.

1.4.4 Interactions between Pedestrians and Other Road
Users

Pedestrians in urban traffic always interact with others, including other pedestri-
ans and vehicles. To study research questions RQ2-1, RQ2-2, RQ3-1 and RQ3-2,
we use deep learning networks to learn the interaction between pedestrians and
other road users, and study how the interaction influences the prediction, and
what features can be used as inputs for extracting the interaction. In appended
Paper B (cf. Chapter ??), we learn social interactions with other pedestrians.
In appended Paper C, (cf. Chapter ??) we learn vehicle-pedestrian interactions.
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Social interactions with other pedestrians Moussaid et al. [13] stated
that pedestrian behavior is not only determined by themselves, but also influ-
enced by social interactions with other pedestrians nearby. The modeling of the
social interaction is one of the most concerning topics for pedestrian trajectory
prediction lately. Alahi et al. [27] firstly introduced deep learning networks
into trajectory prediction, that used LSTMs for prediction. They proposed the
social pooling layer over the hidden states of each pedestrian to represent the
social interaction instead of using hand-crafted knowledge-based function as
in Social Force model [36]. Pooling layers are usually used in CNNs, that can
combine small clusters and reduce dimensions of data. Pooling layers usually
calculate the average or maximum within the pooling operation area. “Social”
pooling [27] used the pooling operation to allow sharing of information with
neighbors. Many researchers followed the trend of using pooling layers and
improved the social pooling module with more complicated structures [32,37].

Some other researchers proposed that social interactions are not symmetric
as in pooling methods, therefore, they learn social interactions with graph-
based networks [35, 38]. Graph neural networks (GNNs) construct a graph
< V,E > that uses vertices to represent the states of each road user, and
use the edges to represent the interaction relationship between road users.
STGAT [39] and Social-BiGAT [38] used the graph attention networks (GAT)
proposed by Veličković et al. [40]. Mohamed et al. [35] used graph convolutional
networks (GCN) [41] that implicitly assign the interaction weights of the target
pedestrians’ surrounding neighbors to model social interactions.

However, the construct of GNNs and the non-linear edge value computation
are time consuming [42]. Multi-layer perceptrons (MLPs) have the capability
to learn the interaction relationship with linear computation and activation
function with a faster speed. In appended Paper B, we use MLPs to learn the
interaction weights, and use weighted sum as aggregation function to calculate
the influence of neighbouring pedestrians to avoid graph convolutional operation
to accelerate the computing. In this way, we reduce the prediction error by
1.8% and speed up the inference by 4.7 times.

Interactions between pedestrians and vehicles In addition to the social
interaction within crowds, another important factor that influences pedestrian
behavior is the interaction between pedestrians and vehicles. Researchers tried
to include the vehicle information while predicting pedestrian behavior. Many
researchers used explicitly hand-crafted features such as speed, orientation, and
distance to the pedestrians or time to collision (TTC) as input to feed into
the networks to learn their influence on the pedestrians [12,43–47]. However,
the pedestrian-vehicle interaction can be complicated when there are more
than one pedestrian and one vehicle, and the designed features are hard to be
generalized to new scenarios. Recently there is an increasing number of works
that use deep learning sub-networks to learn the interactions.

As pedestrians and vehicles usually have different motion patterns, the
interactions between pedestrians and vehicles are asymmetric. Therefore,
GNNs are used for learning the asymmetric interaction relationships between
pedestrians and vehicles or other road users, as used by Ma et al. [48], Liu et
al. [49], Eiffert et al. [50], Hu et al. [51], and Carrasco et al. [52]. The models
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proposed by Chandra et al. [53–55] simultaneously predicted different types of
road users, but they focused mainly on vehicles rather than pedestrians.

Considering the drawbacks of GNNs as mentioned previously, the MLPs
can be used to learn the pedestrian-vehicle interaction relationship. The
inputs of this sub-network can be the relative positions and relative velocities
between pedestrians and vehicles. In the appended Paper C, we use a seperate
MLP network to learn the pedestrian-vehicle interaction in addition to social
interaction, and investigate which input performs better for learning, and how
the pedestrian-vehicle interaction influences the accuracy.

1.4.5 Dataset and Data Pre-processing

Most existing research on pedestrian trajectory prediction used ETH [56] and
UCY [57] datasets for training and evaluation. These two datasets contain five
scenes collected in crowded urban scenarios from bird’s-eye-view. There are
two scenes in the ETH dataset with 750 unique pedestrians annotated, and
three scenes in the UCY dataset with 786 unique pedestrians annotated. A
snapshot of a scenario in ETH dataset is shown as in Figure 1.12.

Figure 1.12: A snapshot of the hotel scenario in ETH [56] dataset.

However, these two datasets are not collected for traffic scenarios, and
do not include the interaction with other road users such as vehicles. As we
mentioned in Section 1.1, there are more serious injuries caused by pedestrian-
vehicle collisions in urban areas than in rural areas in European countries and
in the US. To study research questions RQ2-1 and RQ3-1 that particularly
highlighted the prediction of pedestrian trajectories in urban traffic scenarios,
we use the Waymo Open Dataset [58] that includes pedestrians and other road
users collected in real traffic in appended Paper B and C. The Waymo Open
Dataset is collected in urban traffic scenarios in the US from the vehicle’s view,
including 374 records used as training scenarios and 76 records used as test and
evaluation scenarios. A snapshot of the urban traffic scenario in the Waymo
Open Dataset is shown as in Figure 1.13.

The frequency of the record sequences in Waymo Open Dataset [58] is
10 Hz. To compare our algorithm with existing state-of-the-art models that
are evaluated on ETH and UCY datasets sampled at 2.5 Hz, we keep the same
settings and downsample the Waymo Open Dataset to 2.5 Hz. We use the
pedestrians and vehicles labeled on LiDAR data with their real-world center
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Figure 1.13: A snapshot of an urban traffic scenario in Waymo Open
Dataset [58].

position (x, y, z), and we pre-process it into 2D position (x, y) sequences from
a bird’s-eye-view. We use all labeled pedestrians and vehicles in the LiDAR
scan range which is 75 m. Each sequence of objects has its unique track id.
The pedestrians and vehicles are taken as points without size information in
this thesis.

The coordinates The previously commonly used datasets ETH [56] and
UCY [57] are recorded from the bird’s-eye-view, and use the global coordinate
system. The Waymo Open Dataset [58] is recorded from the vehicle’s view, and
uses the local coordinate system with the ego-vehicle center as the origin in
each frame. However, using the local coordinates will introduce the movement
of ego-vehicle into the pedestrians’ movement, which will affect the accuracy of
prediction. To avoid the influence of the ego-vehicle, we have pre-processed the
coordinates and transform them to global coordinates with the ego-vehicle’s
position of the first time-step of in the recording as the origin.

The sequences During training, validation, and evaluation, the sequences
have been cut into pieces with a fixed sequence length, which equals to the sum
of the observation length and prediction length. To aggregate the data amount,
there are overlaps between each sequence piece, and the skip length is set to
one time-step. Figure 1.14 shows how the training and evaluation sequences
are cut.

Scequence record, 20 seconds

…

Sequence length,
20 time-steps,
8 seconds

Skip length
1 time-step
0.4 second

Observation 
length,
8 time-steps,
3.2 seconds

Prediction length,
12 time-steps,
4.8 seconds

Figure 1.14: How the training and evaluation sequences are cut.



18 CHAPTER 1. INTRODUCTION

In Paper B and C, the sequence length is set to 20 time-steps with 8
observation time-steps which correspond to 3.2 seconds, and 12 prediction
time-steps which correspond to 4.8 seconds. The total number of pedestrian
sequences in the Waymo Open Dataset after pre-processing is 284,622, which
is larger and more sufficient for training and evaluating compared to the ETH
and UCY datasets with 1536 pedestrian sequences. The number of sequences
used for training, validation and evaluation is shown as in Table 1.3.

Training Validation Evaluation Total
Number of scenarios 337 37 76 450

Number of pedestrians 7337 991 1978 10,306
Number of sequences

(after cutting)
195,192 36,946 52,484 284,622

Table 1.3: The number of scenarios and sequences of the Waymo Open Dataset
used for training, validation and evaluation.

1.5 Summaries of Studies

In this section, we summarize all the included studies, as shown in Figure 1.15.
We briefly describe the research goal, scope, methodology, key results, and
main contributions of each paper.

Paper A Paper B Paper C

Survey Approaches
G1

Trajectory Prediction

Research Goals

Research Scopes

Methodology
Direct Search 

and
Snowballing

Quantitative and Qualitative
CNNs

Social Interaction

G2 G3

Behavior 
Prediction

CNNs, LSTMs

Pedestrian-Vehicle 
Interaction

Urban Scenarios Urban Traffic Scenarios

Contributions

• Reviewed,
categorized and
analyzed existing
work;
• Pointed out
research gaps.

• Social Interaction
Extractor;
• Using real-world
urban traffic data

• Pedestrian-
Vehicle
Interaction
Extractor
• Implemented and
analyzed on both
LSTM- and CNN-
based models

Figure 1.15: The summary of the appended papers.



1.5. SUMMARIES OF STUDIES 19

1.5.1 Paper A: Pedestrian Behavior Prediction Using
Deep Learning Methods for Urban Scenarios: A
Review

Research Goal The goals of this research are to address the progress and
development of the state-of-the-art algorithms on pedestrian behavior predic-
tion, and to identify the research gaps of existing works that we should focus
on in future work.

Research Scope In this paper, we have reviewed the papers on behavior
prediction including both trajectory and intention prediction. We have focused
on the works using deep learning methods. We have also included datasets
and benchmarks that are used in pedestrian behavior prediction. We have
focused on urban scenarios, because the pedestrians are more vulnerable and
need protection in urban areas as highlighted in Section 1.1.3.

Methodology This paper is a literature review paper. Our methodology to
find and collect existing papers was based on direct search and snowballing (as
proposed in [59]). We used IEEE Xplore digital library and Google Scholar
for direct search to include both scientific databases and open access pre-
prints. We have collected 50 papers from direct searching and 42 papers from
snowballing. We did not set the time range explicitly, but after searching,
the results originated mainly from 2016 to 2021. After paper collection, we
have analyzed the existing works qualitatively and compared the methods
quantitatively.

Results and Contributions In this paper, we have presented a thorough
review of pedestrian behavior prediction models that used deep learning meth-
ods extracted from 92 papers. We have extended the taxonomy proposed by
Hirakawa et al. [60] and Rudenko et al. [61], and have categorized existing
studies by the following three criteria:

• Output types: The output types of the models include a) the trajectory
prediction that provides the low-level information, b) the intention predic-
tion that provides the high-level information, and c) the joint prediction
for both trajectory and intention.

• Influencing factors: The factors that influence pedestrian behavior include
a) target pedestrians whose behavior we aim to predict, b) other agents
that interact with target pedestrians, and c) the environment.

• Prediction methods: The prediction methods can be classified into a)
sequential methods, b) non-sequential methods, and c) the combination
of the two.

We have presented advantages and drawbacks of using different influencing
factors, and the properties of different prediction methods. The analysis of
existing methods shows that including more influencing factors in trajectory
prediction has the potential to improve accuracy, especially utilizing the features
of social interaction and pedestrian-vehicle interaction. Finally, we have outlined
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the research gaps and possible research directions for improving the performance
of prediction algorithms for urban scenarios.

The original contributions of our review paper are as follows:

• We have presented a detailed analysis of the existing literature on pedes-
trian behavior prediction. Both trajectory and intention predictions are
considered and analyzed, instead of only focusing on a single type of task.
We included the most recent papers from 2016 to 2021.

• We have categorized existing works by three different criteria to provide
a perspective from different dimensions, instead of reviewing the papers
from a single criterion.

• We have introduced widely used datasets containing urban scenarios and
commonly used evaluation metrics. We evaluated and compared previous
methods on such publicly available datasets.

• We have pointed out research gaps and outlined the potential directions
for future works.

1.5.2 Paper B: Social-IWSTCNN: A Social Interaction-
Weighted Spatio-Temporal Convolutional Neural
Network for Pedestrian Trajectory Prediction in
Urban Traffic Scenarios

Research Goal The goal of this research is to propose a deep learning
approach that can better understand the social interaction between pedestrians
and more accurately predict pedestrian trajectories in urban traffic scenarios.

Research Scope In this research, we have focused on pedestrian trajectory
prediction. The method is mainly developed for urban traffic scenarios. The
dataset we used for training and evaluation is based on the urban traffic
scenarios of the Waymo Open Dataset, which is collected in the US. We have
considered the social interaction between pedestrians in the prediction, and
used deep learning networks for modeling.

Methodology In order to reach our research goal, we have proposed the
Social Interaction-Weighted Spatio-Temporal Convolutional Neural Network
(Social-IWSTCNN) to predict pedestrian trajectories in urban traffic scenarios.
We have developed the Social Interaction Extractor architecture to learn
the interaction weights between pedestrians, and to improve the accuracy
with a faster inference speed in contrast to the state-of-the-art model Social-
STGCNN [35]. We use 3.2 s observation to predict 4.8 s trajectory in the
future.

The overall Social-IWSTCNN model mainly includes three parts:

• The Social Interaction Extractor, which is proposed to learn the interac-
tion weights and spatial features. Given observed frame sequences, we
use the positions in each frame as input to learn the social interaction
weights, and extract spatial and social interaction features using Social
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Interaction Extractor. In our model, we do not build a graph represen-
tation of pedestrian trajectories. Instead, we directly use the observed
locations relative to the last frame at each time-step as input for feature
capturing. The spatial features of pedestrian i at time-step t are captured
by embedding the input x-y-coordinate positions.

• The temporal convolutional networks (TCNs), which are used for temporal
feature extracting. We apply TCNs on extracted spatial and social
features to create spatio-temporal features for each pedestrian.

• The time-extrapolator convolutional networks, which are used for pre-
diction. We apply time-exgrapolator CNNs to predict future trajectory
distributions. Finally, we sample the learned Gaussian distributions to
get the predicted trajectories.

Results and Contributions We have compared our proposed Social-IWSTCNN
against the five baseline methods, including: linear regression (LR), Näıve
LSTM without the influence of other individuals, Social-LSTM [27], Social-
GAN [32], and Social-STGCNN [35].

The main contributions of this paper are as follows:

• We have proposed a novel structure, the Social Interaction Extractor, to
better and faster capture interactions between pedestrians. Instead of us-
ing fixed attention weights with time-consuming non-linear computations
as the state-of-the-art algorithm Social-STGCNN [35], our model learns
the interaction attention weights in a data-driven manner. Compared to
previous state-of-the-art model Social-STGCNN, the total inference speed
of our proposed network is 4.7 times faster, and the data pre-processing
speed is 54.8 times faster, while the prediction results are competitive,
that improved the ADE and FDE by 1.50% and 1.82%, respectively.

• As we aim to solve the real-world task of predicting the pedestrian
trajectories in urban traffic scenarios, the Waymo Open Dataset have
been used for training and evaluation because this dataset contains
more urban traffic scenarios and more sequences of pedestrians than
the previously commonly used ETH [56] and UCY [57] datasets. Three
state-of-the-art methods including Social-LSTM [27], Social-GAN [32],
and Social-STGCNN [35] have been compared with our algorithm.

Our proposed model performs better than the other methods with lower
error on both ADE and FDE on Waymo Open Dataset. Besides, compared
to the state-of-the-art method Social-STGCNN, we can reach faster inference
speed by removing the graph construction and avoiding non-liner interaction
weights computation.

1.5.3 Paper C: Learning the Pedestrian-Vehicle Interac-
tion for Pedestrian Trajectory Prediction

Research Goal The goal of this research is to propose a deep learning
approach that can better understand the interaction between pedestrians and
vehicles, and more accurately predict the trajectory of pedestrians in urban
traffic scenarios.
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Research Scope In this research, we have focused on pedestrian trajectory
prediction, especially for urban traffic scenarios. Here, we also used the Waymo
Open Dataset. In addition to the social interaction between pedestrians in
the prediction, we have considered the interaction between pedestrians and
vehicles, and used deep learning networks for modeling.

Methodology In this research, our network inputs include the trajectories of
both pedestrians and vehicles. Three kinds of features are aggregated together
and followed by the prediction backbones:

• The input spatial embedding features (eit).

• The social interaction (SI) features between pedestrians (sit).

• The pedestrian-vehicle interaction (PVI) features (vit), In addition to
the individual trajectory and social interactions between pedestrians, we
introduce pedestrian-vehicle interactions in this paper.

We have applied the proposed PVI extractor to two different prediction
backbones including an LSTM-based model as an example for sequential models,
and a convolutional-based (Conv-based) model as an example for non-sequential
models. We use 3.2 s observation to predict 4.8 s trajectory in the future.

Results and Contributions We have compared the performance of our
proposed models against the following baseline methods:

• Sequential models: LSTM, Social-LSTM [27], and Social-GAN [32] are
compared with our proposed SI-PVI-LSTM that considers both social
interaction (SI) and pedestrian-vehicle interaction (PVI) using the LSTM
algorithm.

• Non-sequential models: Linear Regression, Social-STGCNN [35], and
Social-IWSTCNN [42] are compared with our proposed SI-PVI-Conv that
considers both social interaction (SI) and pedestrian-vehicle interaction
(PVI) using the convolutional algorithms including CNNs and TCNs.

The main contributions of this paper are as follows:

• We have proposed the Pedestrian-Vehicle Interaction (PVI) extractor
to predict pedestrian trajectories. The features of interactions between
pedestrians and vehicles are encoded by the vehicle feature embedding
layers and pedestrian-vehicle interaction module.

• We have implemented, evaluated, and analyzed the proposed PVI extrac-
tor on both sequential (LSTM-based) and non-sequential (Conv-based)
models. The LSTM-based model using our proposed PVI extractor is com-
pared against Social-LSTM [27] and Social-GAN [32], and reduces ADE
and FDE by 7.46% and 5.24%, respectively, compared to Social-LSTM.
The Conv-based model using our proposed PVI extractor is compared
against Social-STGCNN [35] and Social-IWSTCNN [42], and outperforms
Social-STGCNN on ADE and FDE by 2.10% and 1.27%, respectively.
The results show the efficiency of the proposed PVI extractor.



1.6. DISCUSSIONS 23

• The proposed algorithms have been trained and validated on real-world
urban traffic data using the Waymo Open Dataset [58] as we aim to
solve the real-world task of forecasting the trajectories in an urban traffic
scenario.

The results have shown that the pedestrian-vehicle interaction influences
pedestrian behavior, and models using the proposed PVI extractor can capture
the interactions between pedestrians and vehicles. Therefore, our proposed
models outperform the compared methods that only consider inter-personal
interaction information.

1.6 Discussions

1.6.1 Existing Research on Pedestrian Behavior Predic-
tion

1.6.1.1 Prediction Methods for Trajectory Prediction

Paper A reviews and analyzes existing research on pedestrian behavior predic-
tion. It is shown that there are more papers on trajectory prediction (65.7%)
than other behavior prediction (intention 25.4%, and joint prediction 8.9%).
One possible reason could be that compared to the intention and joint pre-
diction, trajectory prediction is used for more scenarios and attracted more
researchers from different research fields. The trajectory prediction of pedestri-
ans can be used not only for the automated vehicles in urban scenarios, but
also for the development of social-aware robots in indoor scenarios. Another
reason could be that the commonly used datasets for trajectory prediction
appeared much earlier than the datasets for intention prediction. The most
commonly used datasets for trajectory prediction - The ETH [56] and UCY [57]
datasets were proposed in 2007 and 2009. The most commonly used datasets
for intention prediction the JAAD [62] and PIE [63] datasets, were proposed
much later, in 2017 and 2019, because the information of pedestrian intention
is more implicit compared to trajectories, and more difficult to label.

As there are more applications and more available datasets, we mainly
focus on trajectory prediction in Paper B and C. The deep learning methods
that are used for trajectory prediction include sequential methods and non-
sequential methods. For trajectory prediction, sequential methods including
LSTMs and GANs have been mainly used since 2016 because this task requires
time-series information. The LSTMs have advantages on long-term time series
prediction compared with non-learning-based traditional models. But as each
prediction time-step is dependent on preceding time-steps, LSTMs cannot be
parallelized [34], and may accumulate errors when predicting long sequences [35].
Another problem with using LSTMs is that the model may learn the “average”
of all possible trajectories instead of multiple feasible trajectories [32], as it is
based on uni-modal assumption. The GAN-based models that are based on
multi-modal assumptions can alleviate this problem and learn several feasible
solutions. However, the GAN-based models are difficult to train and may not
converge, because both the generator and discriminator in one framework need
to be trained, and vanishing gradients may happen if there is an imbalance
between the two deep networks [64].
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Since 2018, non-sequential methods such as convolutional networks have
been increasingly employed. Compared with LSTMs and other RNNs, the
Conv-based networks including CNNs and TCNs can easily be parallelized
to speed up the inference process [34], and can alleviate the problem of error
accumulating [35]. The drawback of the Conv-based methods is that they
predict the future trajectories in a fixed time horizon, and are less flexible than
LSTMs.

We have investigated which type of deep learning prediction methods
perform better in the pedestrian trajectory prediction task. In Paper B,
the Conv-based models (our proposed Social-IWSTCNN and the previous
state-of-the-art method Social-STGCNN) get more accurate results than the
LSTM-based methods (Social-LSTM and Social-GAN). This is because that
RNNs such as LSTMs and LSTM-based GANs accumulate the error, while the
Conv-based models do not have this drawback as we discussed previously.

Furthermore, there is also evidence that the Conv-based methods can
better represent the motion states embedding the features directly from spatial
and temporal information, compared with the LSTMs that use hidden states.
Moreover, we have noticed that for the Social-LSTM and Social-GAN methods,
ADE and FDE of the most crowded scenarios are worse than the results
of LSTMs. This can be interpreted as that the pooling structure on the
hidden states of LSTMs cannot extract the interaction feature properly in
dense urban traffic scenarios. Paper C has compared the results of applying
the Pedestrian-Vehicle Interaction extractor on sequential and non-sequential
methods, and the results provide further evidence that Conv-based models
outperform LSTM-based models on pedestrian trajectory prediction.

Since 2020, a breakthrough appeared for sequential methods. Transform-
ers [65] have been used for pedestrian trajectory prediction as in [66–68]. The
transformers can overcome the aforementioned drawbacks of RNNs. They allow
parallelization, and can avoid error accumulating. But similar to CNNs, they
are implemented in a fixed length and are less flexible compared with LSTMs.

1.6.1.2 Influencing Factors of Pedestrian Behavior

The factors that influence pedestrian behavior play important roles in pedes-
trian behavior prediction. Paper A shows that many researchers use multiple
influencing factors for prediction. We have summarized the influencing fac-
tors into three types, the information of target pedestrians, the influence of
other road agents, and the influence of the environment. Of all the papers
we reviewed, 20.9% used only one type of factor, the information of target
pedestrians, 47.8% used two types of factors, and the remaining 31.3% used
three types of factors. The performance of existing methods provides evidence
that with more information provided, the algorithm is more likely to accurately
approximate the future motion of pedestrians. Therefore, the current trend is
to use as many influencing factors as possible to include more information.

Paper A reveals that the existing algorithms tend to include more infor-
mation and use more complicated algorithms. For the target pedestrians, the
trajectories and motion states are used since 2016 as in Social-LSTM [27]. In
2017, the behavioral features are included as in Rasouli et al.’s work [62], and
in 2019, the individual information is added, as in [48,53,69]. For the influence
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of other agents, the researchers model the social interaction with social pooling
in 2016 [27], and then use more complicated algorithms such as the graph-based
model in 2018 [70], and added knowledge-based information into the model in
2019 [69]. However, the computational costs and inference time are increasing
accordingly. Therefore, we need to consider that while improving the model
accuracy.

In this thesis, we consider the interaction between pedestrians and other
road users. Paper A shows that many existing models considered the social
interaction as symmetric so they used the pooling method to model it. Several
asymmetric models that utilized graph-based algorithms to learn the influence
of interactions but they used hand-crafted non-linear functions to represent
the interaction relationship. Much work could be done to use deep learning
networks to improve the model on accuracy performance and inference speed,
as we have done in Paper B and C.

In Paper B and C, to improve the prediction accuracy, we have included
more information, social interactions and pedestrian-vehicle interactions. To
accelerate the prediction, we avoided graph constructing and non-linear calcu-
lation, thereby achieving a faster and more competitive inference speed. More
discussion is shown in Section 1.6.2 and Section 1.6.3.

1.6.2 Social Interaction in Trajectory Prediction

In Paper B, we have proposed the “Social Interaction-Weighted Spatio-Temporal
Convolutional Neural Network (Social-IWSTCNN)” model that learns the social
interaction between pedestrians using a deep learning sub-network. The sub-
network uses the velocity of pedestrians and the relative positions between
pedestrians as inputs to learn the interaction relationship weights.

Our proposed model has been compared with the state-of-the-art methods
Social-LSTM [27] and Social-GAN [32] that use a pooling module, and Social-
STGCNN [35] that uses hand-crafted interaction weights between pedestrians.
The quantitative evaluation results on ADE and FDE have shown that our
proposed model outperforms the others. This shows that compared to using
hand-crafted attention weights or pooling layers, using deep learning methods
to learn the interaction weights can improve the accuracy.

In Paper B, the algorithms have been compared in scenarios of different traf-
fic densities. We have divided the Waymo Open Dataset [58] into three groups
with different densities by the number of pedestrians. We have noticed that for
densely populated scenarios, the results of our model are only slightly better
than the compared Social-STGCNN, while for less crowded scenarios, ADE is
substantially improved by 17.3% and FDE is improved by 16.8%. A possible
reason is that the hand-crafted function used by the Social-STGCNN model is
designed for the ETH [56] and UCY [57] datasets, which are densely populated
crowds scenarios. So it can well represent the movement of pedestrians in
crowded scenarios and have competitive results with our model. While less
crowded scenarios also occur in real traffic, our algorithm that learns from the
data has a better performance. There is evidence that a model that performs
well on one scenario may not perform well on the other, and the datasets are
important for deep learning methods. This also shows that compared to the
manually designed function of interaction weights, the deep learning method
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has the potential to be used for scenarios of different traffic densities, both
crowded and empty scenarios.

As we have discussed in Section 1.6.1.2, when we include more information
and use more complicated algorithms for prediction to get more accurate
results, we also need to consider whether the inference speed becomes too
slow to use. In Paper B, we have compared the inference speed between the
two methods that get competitive accuracy: our model and Social-STGCNN.
Compared with the Social-STGCNN, our proposed model is 54.8 times faster
on pre-processing speed, and 4.7 times faster on the total inference speed.
Compared with Social-STGCNN, there are two changes: a) we have removed
the non-linear calculation for attention weights computing, and b) we have
avoided constructing the adjacent matrix of the graph as in Social-STGCNN.
To evaluate the influence of the two changes, we have tested the inference time
of the Social-IWSTCNN method with graph construction to see how much
our method can speed up by only removing the non-linear calculation. The
results show that both removing non-linear calculations and avoiding graph
constructing improve the inference speed. Our algorithm is computationally
more efficient and has a faster speed while reaching competitive results.

1.6.3 Pedestrian-vehicle Interaction in Trajectory Predic-
tion

1.6.3.1 Extracting Pedestrian-vehicle Interaction

In Paper C, we have proposed the pedestrian-vehicle interaction (PVI) extractor,
and applied it to both the sequential and the non-sequential models. Our
proposed models have used both social interaction (SI) and pedestrian-vehicle
interaction (PVI) features with separate sub-networks. For PVI features,
the sub-network uses the velocities of vehicles, and the relative positions
between pedestrians and vehicles as inputs to learn the pedestrian-vehicle
interaction relationship weights. The results demonstrate that using pedestrian-
vehicle interaction information improves the accuracy of pedestrian trajectory
prediction.

For the sequential models, we have used LSTMs as the prediction backbone,
so we refer to it as the SI-PVI-LSTM model. The proposed SI-PVI-LSTM model
outperforms LSTM, Social-LSTM [27], and Social-GAN [32] that have not
included the pedestrian-vehicle interaction feature while predicting. This shows
that the pedestrian-vehicle interaction plays an important role in influencing
pedestrian behavior. Compared with the Social-GAN, the SI-PVI-LSTM
gets better results without using the complicated and hard-to-train GAN
structure. This indicates that instead of improving the prediction backbone
with complicated methods, the influencing factors should also be considered,
as they may bring improvements at a small computational cost.

For the non-sequential models, our proposed model has used convolutional
networks including CNNs and TCNs as the backbone, so we refer to it as
the SI-PVI-Conv model. Compared with other non-sequential models includ-
ing LR, Social-STGCNN, and Social-IWSTCNN, the proposed SI-PVI-Conv
model achieves the best ADE result by using the pedestrian-vehicle interaction
information in addition. However, it has not improved the performance of
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FDE compared with Social-IWSTCNN. There are two possible reasons for this.
Firstly, the model only uses the vehicle information of the observation period,
so the information may be insufficient for a long-term prediction. As vehicles
move much faster than pedestrians, in 12 time-steps covering 4.8 s the vehicles
may travel a long distance (e.g., a vehicle with 30 km/h speed travels 40 m
within 4.8 s), so some other vehicles may approach pedestrians and influence
their behavior during predicting time horizon. Secondly, in SI-PVI-Conv, we
calculate the interaction with all vehicles within the sensor scan range and
do not consider the orientation or directions of pedestrians. However, the
vehicles behind the pedestrians may not influence pedestrians as much as the
other vehicles, so this may bring in extra noise. Therefore, the FDE result of
SI-PVI-Conv has not been improved but still is comparative with the other two
Conv-based models. Updating the vehicle information during the prediction
time horizon, or simultaneously predicting both pedestrians and vehicles may
alleviate the first problem. Adding the orientation and direction information
of pedestrians may alleviate the second problem and improve the performance.

1.6.3.2 Analysis on Influencing Factors of Pedestrian Trajectory

In Paper C, we have investigated the influence of the social interaction (SI),
the pedestrian-vehicle interaction (PVI), and different inputs including the
relative positions and the relative velocities.

Comparing the LSTM model that only uses individual past trajectory
information and the Social-LSTM that models the social interaction by pooling
over hidden states from LSTMs, we surprisingly find that the Social-LSTM [27]
reaches worse results than LSTM model on the Waymo Open Dataset [58].
This is consistent with the results on ETH [56] and UCY [57] datasets in Gupta
et al.’s work [32].

There are two possible reasons for this result: a) the social interaction
could not improve the accuracy, or b) the way the model extracts the social
interaction features is not suitable. To evaluate the influence of these two
components, we modify the way we extract the social interaction features.
The Social-LSTM used the hidden states of LSTMs to represent the moving
states of pedestrians, and applied pooling on the hidden states to learn the
interaction. In our experiments, instead of using the hidden states of LSTMs
to represent the moving states and calculate interactions on the hidden states,
we directly extract the spatial features from the pedestrian positions, and use
the spatial feature to calculate the interaction features of each frame. This is
followed by LSTMs to compute the hidden states of the interactions. By using
the improved social feature extractor, our social interaction model SI-LSTM
reduces the ADE and FDE significantly compared to the LSTM model, which
shows that social interaction can influence pedestrian behavior when it is well
represented and learned. This also provides evidence that the hidden states
cannot well represent the moving states and are not suitable for calculating
the social interaction.

Paper C shows that with only SI or only PVI information, the results do not
achieve the best accuracy. For both LSTM-based and Conv-based models, we
get the best performance by including both social interaction and pedestrian-
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vehicle information. This shows that both social interactions and pedestrian-
vehicle interactions contribute to the improvement of the performance.

To investigate the inputs of extracting the interaction features, in addition
to using the relative positions between objects as input, we compare the models
with and without relative velocities between pedestrians and the other objects.
The results are not improved by adding velocity information. This is because
pedestrians are very agile, and the velocities of pedestrians can change all the
time and may introduce noises into the network. Therefore, to improve the
performance and learn the interaction weights with deep learning networks,
the inputs of the networks should be carefully decided. More research could be
done in the future to study the appropriate inputs.

1.6.4 Contribution to the Vehicular Automation

Our research outcomes can contribute to automated vehicles (AVs), driving
safety, and driver assistant systems.

By reviewing existing works in Paper A, we have analyzed the strengths and
weaknesses of different deep learning methods and have pointed out appropriate
methods for various predicting tasks. We have proposed two novel approaches
that consider social interactions (in Paper B) and pedestrian-vehicle interactions
(in Paper C) in prediction, and have improved the prediction accuracy. By
using our algorithms, automated vehicles and driver assistant systems can
better avoid pedestrian-vehicle collisions. We have reached a faster inference
speed, which means our algorithms have the potential to be used on the vehicle
to get an earlier warning for the hazardous situation and leave more time for
reaction and control.

Besides, the human behavior prediction methods we proposed have the
potential to be transferred to other human-robot interaction scenarios and help
to build socially aware robots. The output of our research can also provide the
information for developing the human-AV and human-robot interfaces. For
instance, the predicted trajectories can be provided to AVs/robots and guide
AVs/robots to interact with humans accordingly.

1.6.5 Limitations

Paper A has summarized the places where the data was captured. As we
mentioned in Section 1.1, the proportion of pedestrian fatalities in low-income
countries is 36%, which is twice as in high-income countries. However, most
of the existing datasets are captured in the high-income and middle-income
countries, and there are few datasets that covered the low-income countries.
There is a limitation that most of the existing research is not focusing on those
low-income countries that especially need the concern. Future research could
focus on developing more datasets and studies for these places.

Besides, as our methods are data-driven, the quality of data collection and
annotation is important. Low-resolution images make it hard to learn useful
features [43]. Without properly labeled data we cannot train our algorithms.
However, high-quality data collection and annotation are costly, and existing
datasets may not perfectly fit our needs. There is a limitation in the dataset
we can use because of the requirement on quality.
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To best simulate the real traffic, we use real-world datasets for training
and evaluation. In Paper B and C, our algorithms are based on the real-world
urban traffic scenarios of the Waymo Open Dataset which is collected in the
US. There are limitations of using this dataset. For instance, the geographic
features of the roads in the US can be different from other places such as
in European countries. The crowd densities of the traffic vary in different
regions. Culture and legal factors can also influence the behavior pattern of
the pedestrians on the road. More research needs to be done to investigate the
transferability and scalability of our models.

1.7 Conclusions and Future work

1.7.1 Conclusions

This thesis contributes to making AVs and ADAS safer by predicting the
behavior of pedestrians and preventing pedestrian-vehicle collisions. Specifically,
this thesis has advanced the prediction of pedestrian trajectories in urban traffic
scenarios using deep learning methods. The goal of this thesis is to develop
deep learning methods to predict the behavior of pedestrians in interactions
with other road users. We have realized this goal by covering the following
sub-goals. The novel and original contributions of each paper are highlighted
below.

G1: Reviewing, categorizing, analyzing, and discussing currently existing
research to point out research gaps for the problem area of pedestrian
behavior prediction.

Paper A has reviewed the existing research on pedestrian behavior prediction
that uses deep learning methods. Compared with existing literature review
papers, our paper classifies existing studies by three criteria and provides
a perspective from multiple dimensions. By including both trajectory and
intention prediction instead of a single task, we are inspired to take the
advantage of prediction methods on both tasks in future work. The most recent
research studies over the past five years have been included. We have addressed
the progress and development of state-of-the-art algorithms on pedestrian
behavior prediction, and introduced commonly used datasets and evaluation
metrics, and then compared existing methods. The advantages and drawbacks
of different methods have been presented and discussed. In this research, we
have established the overall framework of the pedestrian behavior prediction,
and addressed the challenges and the research gaps of existing works that we
should focus on in future work.

G2: Developing the approach that can better predict pedestrian trajecto-
ries in urban traffic scenarios, and using deep learning to model social
interactions between pedestrians.

Paper B has proposed a deep learning method namely the Social-IWSTCNN
model for pedestrian trajectory prediction. Compared with previous state-
of-the-art algorithms, our proposed model uses a deep learning sub-network,
namely the Social Interaction Extractor to learn the social interaction weights



30 CHAPTER 1. INTRODUCTION

between pedestrians. We use the velocities of pedestrians and the relative
positions between pedestrians as inputs for learning the interaction relationship,
and get more accurate prediction results with a faster inference speed. Besides,
our model uses a large-scale real-world dataset, the Waymo Open Dataset in
urban traffic scenarios for training and evaluation. Results in Paper B show
that the social interaction information contributes to more accurate prediction,
and using interaction attention weights learned from deep learning networks
can improve performance and reduce inference time. This indicates that our
proposed social interaction extractor can well learn the interaction feature.

G3: Considering pedestrian-vehicle interactions, and using deep learning to
model the interactions between pedestrians and vehicles when predicting
pedestrian trajectories.

Paper C has proposed a deep learning method that includes the pedestrian-
vehicle interaction features when predicting the pedestrian trajectories in urban
traffic scenarios. Compared with previous state-of-the-art algorithms, our
proposed model learns the pedestrian-vehicle interaction features with a deep
learning sub-network, namely the Pedestrian-Vehicle Interaction Extractor. By
including both social interaction and pedestrian-vehicle interaction features,
the model has achieved the best performance and outperforms previous state-
of-the-art algorithms. Results in Paper C show that the Conv-based models
get less prediction error than LSTM-based models. On both Conv- and LSTM-
based methods, using our proposed pedestrian-vehicle interaction extractor can
improve the prediction results, which indicates that our proposed extractor
can well represent the interaction between pedestrians and vehicles.

1.7.2 Future Work

The findings in Paper A show that most existing trajectory predictions relied
on trajectory information but did not leverage the appearance and skeleton
behavioral features like in intention predictions. Future works can focus on
joint predictions to predict trajectories and intentions simultaneously. The two
prediction branches can share the extracted features and predicted results to
compensate and improve each other. The appearance and skeleton behavioral
cue that is typically used in intention prediction, and the predicted intention
could be included to improve trajectory prediction. However, as we previously
discussed, the computational costs could be high if we include the visual and
skeleton feature of pedestrians. More work needs to be done to investigate
how much improvement could be brought here if we include the intention
information and appearance and skeleton behavioral features.

Paper C shows that the inputs for learning the interaction weights influence
the prediction results. It is important to investigate and find the most suitable
inputs and factors that influence the interaction. As mentioned in Paper A, the
interactions can either be learned implicitly by deep learning models that can
include as much information as possible without requiring expert knowledge
and which are as a consequence hard to explain, or be represented by using
knowledge-based hand-crafted features that are explainable but that require
prior knowledge instead. In future works, we can develop hybrid models to
take advantage of both approaches.
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Therefore, based on the research gaps, the continued work in this PhD
project can further investigate how:

G4: To improve the behavior prediction. We predict the crossing intention
simultaneously in addition to the trajectory prediction, while considering
the pedestrian-vehicle interaction.

G5: To make the prediction model more explainable and easier to be general-
ized to other scenarios. We develop hybrid methods by combining the
knowledge-based methods with deep learning methods.

The continued future work will try to answer the following research ques-
tions:

RQ4: What improvements to trajectory prediction can we get from adding the
intention information? How to accurately predict the crossing intention
of pedestrians in urban traffic scenarios using deep learning models?

RQ5: How to combine the knowledge-based methods with deep learning meth-
ods? How to interpret the influence of the pedestrian-vehicle interaction
on pedestrian behavior?
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distributions of pedestrian trajectories with gans,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2019.

[65] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[66] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph
transformer networks for pedestrian trajectory prediction,” in European
Conference on Computer Vision. Springer, 2020, Conference Proceedings,
pp. 507–523.

[67] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer networks
for trajectory forecasting,” in 2020 25th International Conference on
Pattern Recognition (ICPR). IEEE, 2021, pp. 10 335–10 342.

[68] Y. Yuan, X. Weng, Y. Ou, and K. Kitani, “Agentformer: Agent-aware
transformers for socio-temporal multi-agent forecasting,” arXiv preprint
arXiv:2103.14023, 2021.

[69] Y. Ma, E. W. Lee, Z. Hu, M. Shi, and R. K. Yuen, “An intelligence-
based approach for prediction of microscopic pedestrian walking behavior,”
IEEE transactions on intelligent transportation systems, vol. 20, no. 10,
pp. 3964–3980, 2019.

[70] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention
in human crowds,” in 2018 IEEE international Conference on Robotics and
Automation (ICRA). IEEE, 2018, Conference Proceedings, pp. 4601–4607.


	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Background
	The Evolution of Road Safety over the Years
	Pedestrian Safety in Different Regions
	Locations of Pedestrian-Vehicle Collisions

	Motivation and Problem Domain
	Research Goal and Questions
	Methodology
	Research Methodology
	Research Types
	Research Methodology for Machine Learning

	Problem Definition and Evaluation Metrics
	Problem Definition
	Evaluation Metrics

	Deep Learning Methods for Prediction
	Interactions between Pedestrians and Other Road Users
	Dataset and Data Pre-processing

	Summaries of Studies
	Paper A: Pedestrian Behavior Prediction Using Deep Learning Methods for Urban Scenarios: A Review
	Paper B: Social-IWSTCNN: A Social Interaction-Weighted Spatio-Temporal Convolutional Neural Network for Pedestrian Trajectory Prediction in Urban Traffic Scenarios
	Paper C: Learning the Pedestrian-Vehicle Interaction for Pedestrian Trajectory Prediction

	Discussions
	Existing Research on Pedestrian Behavior Prediction
	Prediction Methods for Trajectory Prediction
	Influencing Factors of Pedestrian Behavior

	Social Interaction in Trajectory Prediction
	Pedestrian-vehicle Interaction in Trajectory Prediction
	Extracting Pedestrian-vehicle Interaction
	Analysis on Influencing Factors of Pedestrian Trajectory

	Contribution to the Vehicular Automation
	Limitations

	Conclusions and Future work
	Conclusions
	Future Work


	Bibliography

