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Abstract
When analysing complex structures with advanced damage or material models, it is important to use a robust solution method
in order to trace the full equilibrium path. In light of this, we propose a new path-following solver based on the integral of the
rate of dissipation in each material point, for solving problems exhibiting large energy dissipating mechanisms. The method
is a generalisation and unification of previously proposed dissipation based path-following solvers, and makes it possible to
describe a wider range of dissipation mechanisms, such as large strain plasticity. Furthermore, the proposed method makes
it possible to, in a straightforward way, combine the effects from multiple dissipation mechanisms in a simulation. The
capabilities of the solver are demonstrated on four numerical examples, from which it can be concluded that the proposed
method is both versatile and robust, and can be used in different research domains within computational structural mechanics
and material science.

Keywords Arc-length control · Path-following technique · Solution control · Dissipation

1 Introduction

When analysing the failure behaviour of complex structures
ormechanical systemsbymeansof thefinite elementmethod,
it is important to use robust numerical solution methods that
are able to obtain the information that is of interest. In many
instances, the dynamical effects from the failure is impor-
tant to consider, making transient solvers the best choice for
following the post-critical response.

However, the use of transient solvers is not always straight-
forward. Due to the discretisation of the domain, spurious
high frequency vibrations may be picked up, cf. e.g. [1]. In
such cases, the structural and material response must be fil-
tered to yield interpretable results.What is evenmore serious
is that such unphysical vibrations may influence the overall
solution to such a degree that erroneous results are obtained.
Furthermore, in explicit transient solvers, small elements
limit the stable time step, which requires the use of (selective)
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mass-scaling to overcome long simulation times1. Implicit
transient solvers, on the other hand, may encounter conver-
gence issues near sudden force drops. Although a reduction
of the time step often leads to improved convergence due to
the increased effect of the mass matrix, such small time steps
lead to long simulation times.

As a result, quasi-static simulation techniques are often
favourable in instances where the failure event is slow
and gradual (e.g. ductile failure) or the inertia and high-
frequency oscillations are of secondary importance. In addi-
tion, whereas a quasi-static solver can be used to analyse the
overall stability of a mechanical system, this is also not true
for transient solvers for which potential structural instabili-
ties are missed as the solution passes dynamically to another
stable branch [2]. Quasi-static simulations will reveal these
unstable points.

Conventional quasi-static solution procedures, where the
applied external loads or prescribed displacements are con-
trolled incrementally, includes their own sets of issues. For
example, if the problem in question experience snap-back

1 Theoretically, such mass-scaling should only be used if it does not
affect the behaviour in focus. This, however, may leave the engineer
or scientist to choose between running the analysis with exaggerated
inertia effects, or not running the simulation at all (since the simulation
times required with non-influential mass-scaling often are infeasible).
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or snap-through behaviour, caused e.g. by unstable crack
growth and/or buckling, they will fail to converge. In such
cases, important information regarding limit points, equilib-
rium paths, damage tolerance, or other mechanical responses
may be lost. An alternative quasi-static solution scheme that
has been shown to provide robustness in cases of material or
structural instability, are so-called path-following methods,
where the solution is parametrisedwith a path-following con-
straint.

The most prominent group of path-following methods
within the field of computational mechanics, are the arc-
length methods. Some of the pioneering works on these
methods date back to 1970s by Wempner [3] and Riks [4].
Further improvements have been suggested by Ramm [5]
and Crisfield [6] (for an extended historical review of the
methods, the reader is referred to Geers [7]). The core idea
in these arc-length methods is that the equilibrium path is
parametrised with an additional constraint equation, which
is expressed in terms of the norm of the incremental vector
of displacement degrees of freedom. Such arc-length solvers
have proven to be effective in solving problems with geomet-
ric non-linearities, such as buckling.

However, the classical arc-length methods encounter dif-
ficulties in problems where large local material instabilities
are present, such as rapid crack growth or localised plastic
deformation [8]. These difficulties can be explained by the
observation that only a few degrees of freedom in the model
may be controlling the physical instability, resulting in that a
global norm fails to accurately accommodate for this locality.
As a remedy, so-called local arc-length methods have been
investigated, where only a subset of degrees of freedom near
the material instability are included in the constraint equa-
tion, see e.g. [8] or [9] for application to strain-softening
behaviour.

A drawback of these local arc-length methods is that
the location of the failure process zone must be known in
advance. This in turn has resulted in the investigation of
algorithms for monitoring of internal variables in order to
smartly select controlling degrees of freedom in the vicin-
ity of the instability, see e.g Alfano et al. for cohesive zones
[10], or Geers [7] or Pohl et al. [11] for work on the sub-plane
method. To our knowledge there exists no general selection
scheme that can accommodate all types of damage mecha-
nisms, and selection algorithms have only been developed
for some specific applications.

An alternative approach for tracing the equilibrium path in
problemswithmaterial instabilities was suggested byGutiér-
rez [12]. He derived a path-following constraint equation
based on the energy release rate in geometrically linear solids
with continuumdamage,whichwas expressed solely in terms

of the global displacements and force vectors. Such a dis-
sipation based constraint leads to the advantage that no a
priori information about the location of material instabil-
ities is required. Furthermore, the energy release rate also
fulfils the requirements needed for the path-following con-
straint; it is monotonically increasing and it is a function of
the unknown degrees of freedom of the system.

The proposed dissipation-based path-following constraint
was later extended by Verhoosel et al. [13], who derived
equivalent path-following constraint for two additional types
of problems, (i) a geometrically linear model with plasticity
and (ii) a geometrically non-linear model with damage. As
opposed to Gutiérrez, these constraints were not expressed
only in terms of the global state and force vector, but included
additional terms with new global vector quantities (that were
assembled similarly to the internal force vector). The two
new constraints were shown to robustly solve problems with
significant material instabilities. A drawback of this method
is that each type of problem has to be treated as a special case.
Thereby, a general approach which accommodates different
dissipating mechanisms can not be formulated in a unified
way.

In the current contribution, we reformulate and generalise
the dissipation based path-following equation proposed in
[12,13], by determining the dissipation at material point level
instead of being calculated with global quantities. Specifi-
cally, the dissipation is calculated in each continuum and/or
interface quadrature point and then integrated numerically
over the entire domain. This integral formulation has the
benefit of unifying the path-following constraint for all types
of dissipative mechanisms, which means that no adjustment
of the solver is needed to accommodate a specific problem.
Furthermore, there are also instances where it is difficult
or impossible to formulate the dissipation constraint equa-
tion using global quantities, thereby making the computation
of the dissipation on material point level the only feasible
option.

The remainder of this paper is organised as follows. In
the next section we present the general theory for solvers
with path-following constraints, followed by details about
the proposed approach. In Sect. 3 we show four numerical
examples, where the proposed method is demonstrated and
evaluated against alternative solutions methods. The numer-
ical examples include (i) buckling driven damage, (ii) phase
field damagemodelling, (iii)multiple and unstable delamina-
tiongrowth in a laminatedfibre-reinforced composite and (iv)
plasticity with large deformation kinematics coupled with
material interface (cohesive) failure. In Sect. 4 we summarise
the paperwith and present themain conclusions togetherwith
perspectives on future implication and future work.
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2 A path-following constraint based on
dissipation inmaterial points

In this section we first summarise the theory related to path-
following solvers, and review some common path-following
constraints found in the literature.Next,wedescribe the novel
path-following constraint introduced in the work, and outline
the corresponding solution procedure.

2.1 Preliminaries of path-following solvers

Consider the weak form of the governing equations for a
body in quasi-static equilibrium (body forces ignored), see
Fig. 1:

∫
�

S : E(δu) d� =
∫

�t

t̄ · δu d� on �

P · n = t̄ on �t

u = ū on �u

(1)

where � is the reference configuration of the body, S is the
Second Piola–Kirchhoff stress, P is the first Piola–Kirchhoff
stress, E(δu) is the (virtual) Green–Lagrange strain. Fur-
thermore, ū are prescribed displacements on �u , and t̄ is
the prescribed traction on the boundary �t with outward
normal n.

In a finite element setting, the displacement field u(X)

and the virtual displacements δu(X) can be interpolated by:

u(X) =
Ndof∑
I=1

N I (X)aI , δu(X) =
Ndof∑
I=1

N I (X)δaI , (2)

where N I (X) are vector-valued shape functions,� → R
dim ,

aI are displacement degrees of freedom, and Ndof is the num-
ber of degrees of freedom in the model. Substituting these
relations into the Eq. (1) and using that δaI is arbitrary, we
obtain:

Ω

Γu

Γt

t̄

ū
Γ

n

X2

X3

X1

Fig. 1 A body � subjected to external loads t̄ and prescribed displace-
ments ū

∫
�

S : ∂E
∂aI

d� =
∫

�t

N I · t̄ d�. (3)

The left and right-hand side of Eq. (3) represent the ele-
ments of the internal force vector, f int(a), and the external
force vector, f ext, respectively, which can be expressed as
the following residual r:

r(a) = f int(a) − f ext = 0, (4)

where a is the vector of the unknown degrees of freedom aI .
Equation (4) is typically solved in either a displacement or
force controlled setting together with Newton iterations. In a
force controlled setting, the external force vector is typically
expressed as f ext = λ f̂ + f̄ , where λ is a load parame-
ter, and f̂ is a unit direction vector, and f̄ is a force vector
independent of λ.

If the solution of the problem in question involves either
snap-back or snap-through behaviour, the displacement or
force controlled solution approach will encounter conver-
gence issues, and the full equilibrium path can not be traced.
The reason behind this is explained and illustrated for a sys-
tem with a single degree of freedom in Fig. 2. A possible
way of tracing the entire equilibrium path is to make use
of path-following methods, where the load parameter λ is
reinterpreted as an independent unknown load variable. This
leads to the new residual equation:

r(a, λ) = f int(a) − (λ f̂ + f̄ ) = 0, (5)

Since the system of equations now has an additional
unknown variable (i.e λ), it needs to be complemented with
an additional equation, typically called the path-following
constraint,

ϕ(a, λ) = 0. (6)

Note that ϕ(a, λ) can, in its most general form, be a func-
tion of both a and λ. Combining the path-following equation
in Eq. (6) with the residual in Eq. (5), the new system of
equations takes the form:

[
r(a, λ)

ϕ(a, λ)

]
=

[
0
0

]
. (7)

The augmented systemofEq. (7) can be linearised and solved
using a standard predictor-corrector scheme with Newton
iterations. The solution at iteration k+1 is therefore obtained
as

[k+1�a
k+1�λ

]
=

[k�a
k�λ

]
+

[
K − f̂
hT w

]−1 [−k r
−kϕ

]
, (8)

where �a is the incremental update of the degrees of free-
dom between two load steps, and K is the standard tangent
stiffness matrix, which is defined as:
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u1 u2 u3

λ1

λ2

Displacement

Force

(a) Displacement controlled

u1 u2 u3

λ1

λ2

Displacement

Force

(b) Force controlled

Fig. 2 Illustration of the possible complications when either displace-
ments controlled or (force controlled) solution scheme is used. a A
displacement controlled solution scheme is not able to trace the equi-

librium path (dashed part) after the force drop (snap-back). b A force
controlled solution scheme is only able to trace that path up until the
load peak (snap-through)

K = ∂ f int

∂a
, (9)

and h (herein called the dissipation gradient) and w are
defined as

h = ∂ϕ

∂a
, w = ∂ϕ

∂λ
. (10)

If one wants to use a displacement controlled solution
procedure, the above equations need tobe reformulated. First,
the displacements are expressed as a combination of free and
prescribed displacements [14]:

a = Ta f + λâ + a p, (11)

where â is a unit direction vector (length Ndof with Na

prescribed degrees of freedom), a p accounts for bound-
ary conditions independent of the load variable λ (length
Ndof with Np degrees of freedom with Dirichlet condi-
tions) and a f contains all free degrees of freedoms (length
N f = Ndof − Na − Np). The matrix T is a constraint matrix
of size Ndof×N f , defining dependence between the free and
constrained degrees of freedom.With the absence of external
forces, the residual in Eq. (5) can be reformulated in terms
of the as:

r(a) = T T f int (a) = 0. (12)

Combining and linearising the path-following constraint
ϕ(a, λ) and Eq. (12), the linearised system of equations
becomes:

[k+1�a f
k+1�λ

]
=

[k�a f
k�λ

]
+

[
T T KT T T K â
hT T hT â + w

]−1 [−k r
−kϕ

]
,

(13)

In the next section we will describe the path-following
constraint proposed herein.

2.2 A path-following constraint based on the rate of
dissipation inmaterial points

Inspired by the integral formulation of the energy release
rate constraint proposed in Verhoosel et al. [13], and later
also seen in May et al. [15], we propose an alternative for
how the dissipation can be used to control the solution. More
specifically, the (specific) rate of dissipation, Ḋ (J/s/m3), is
computed directly in each material point, and integrated over
the domain:

G =
∫

�

Ḋ d�, (14)

where G is the total dissipation rate (J/s), and � is the same
domain as in the weak form in Eq. (1). In general, Ḋ will
be dependent on the same quantities used to determine the
stress-strain response. As such, Ḋ is most easily evaluated
in the material routine directly. Furthermore, expressions
for Ḋ will be different for each dissipative mechanisms
and material models, but are often readily available if a
thermo-dynamically consistent framework has been used. In
scenarios where this is not the case, it is likely possible to
derive an approximate measure for the rate of dissipation.
Explicit expressions for Ḋ are given for some common mod-
els in Sect. 3.

By time-discretising Eq. (14) (in this work we have used a
backward Euler scheme), the path-following constraint equa-
tion ϕ(a) takes the form:

ϕ(a) =
∫

�

�D d� − �τ = 0, (15)
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where�D is the incremental energy dissipation between two
load steps, and�τ is a parameter constraining the amount of
dissipation in the load step. In addition, the path-following
method also require the constraint derivatives h, and w.
Returning to the introductory example in Eq. (1), the dis-
sipation gradient, h, is obtained via the chain rule:

hI = ∂ϕ

∂aI
=

∫
�

∂�D

∂E
: ∂E

∂aI
d�, (16)

where hI are the entries of h, and where ∂E/∂aI was intro-
duced in Eq. (3). As noted earlier, �D is evaluated using the
same quantities as the stress-strain response, so ∂�D/∂E is
most easily computed in the material routine as well. Finally,
with the definition of ϕ(a) in Eq. (15),wwill always be equal
to zero as ϕ(a) is always independent of λ.

There are multiple advantages of using the (volume inte-
grated) material point dissipation measure introduced in
Eq. (15). Firstly, Eq. (15) is a unification of the multiple
dissipation constraints previously proposed in the literature
by Gutiérrez [12] and Verhoosel et al. [13]. Therein, the pro-
posed constraint equations were derived as special cases of
different dissipation mechanisms. Thus, with the proposed
approach it is no longer necessary to adjust the solver to spe-
cific types of problems, since the complexity of describing the
dissipation mechanism has been moved to the material point.
This fact is also beneficial for implementation in FE-codes,
since the same procedure is used for all possible dissipative
mechanisms.

A second advantage of the proposed generalised dissi-
pation measure is that it enables the inclusion of damage
mechanisms for which it is impossible (or at least very dif-
ficult) to derive a global dissipation expression. One such
example is the case of geometrically non-linear deforma-
tions with plasticity, where it is not possible to express the
elastic energy rate for the solid in terms of global vectors (a
step which is crucial in the methods proposed by Gutiérrez
[12] and Verhoosel et al. [13]). On the other hand, dissipa-
tion measures in the material point is readily available for
many large-strain materials, and will be further discussed in
Sect. 3.4.

A third advantage is that the proposed formulation also
provides a straightforward approach to combinemultiple dis-
sipation mechanisms. This is automatically achieved in the
solver, by simply adding the dissipation measures from the
different damage mechanisms (exemplified in Sect. 3.4).

3 Numerical examples

In this section we will demonstrate the capabilities of the
proposed path-following solver in four numerical examples.
The numerical examples include (i) non-linear delamina-

tion buckling (with dissapative interfaces) (ii) phase field
damage (iii) multiple and unstable delamination growth in a
laminated fibre-reinforced composite and (iv) plasticity with
large deformation kinematics coupledwithmaterial interface
(cohesive) failure.

Before examining the numerical examples, a few clarifi-
cations regarding the simulations are made.

Initiation of simulations

The simulations are in all four numerical examples initiated
with the Riks arc-length method [4]. This is to accommodate
for the fact that no dissipation exists at the beginning of each
simulations, whereby the dissipation based path-following
solver will not work. Note that the choice of initiating the
simulation with a Riks method, as opposed to for exam-
ple a standard force/displacement controlled increments, is
made in order to traverse potential geometrical non-linearites
occurring before dissipation has developed in the structure.
An automatic switch to the dissipation based path-following
solver is performed when the total dissipation rate in the sim-
ulation exceeds a user-defined limit, �τswitch. 2

Automatic adjustment of1�

In order to avoid too large or too small load steps, the path
parameter,�τ , is automatically adjusted after each load step.
To do so, the value of�τ is adjusted according to the number
of Newton iterations, I , required to fulfil the convergence
criteria in the previous load step:

�τ(n) = �τ(n−1) (α)z , z = β(I(n−1) − Iopt ) (17)

where (n − 1) and (n) refers to the previous and next load
step, respectively, Iopt denotes the desired number of New-
ton iterations per load step, and α and β are user-defined
parameters. In this work, α has been set to 1/2 and β to 1/4
(following the works of [13]).

In addition, if the path parameter has been increased to a
large value at the vicinity of a sharp or sudden force drop,
the Newton corrector iterations will likely fail to converge.
We accommodate for this by halving �τ until convergence
within the load step is achieved,

�τ(n) = �τ(n−1)

(
1

2

)IF
(18)

where IF is the number of failed (i.e. non-converged) attempts
at a load step.

2 In all numerical examples, the value for �τswitch has been chosen
such that the solver switches to dissipation based mode well before the
first load peak is reached.
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In “Appendix B”, an algorithm outlining the implementa-
tion of the solver is presented.

3.1 Delamination buckling of a double cantilever
beam

In this first numerical examplewewill compare the perfor-
mance between the arc-length solver proposed by Crisfield
[6] (Crisfield), the solver proposed byVerhoosel et al. in Sec-
tion 2.1.3 in [13] (Verhoosel), and the generalised dissipation
solver proposed in this paper (Current). The problem to be
analysed is replicated from [13], and consists of a double
cantilever beam subjected to a compression force, see Fig. 3.
This load case includes two non-linear failure mechanisms;
one mechanism comes from the buckling behaviour, and the
other from the progressive delamination of the interface.

The cantilever beam is L = 20 mm long and h = 0.4
mm thick, and has an initial crack length of a0 = 10 mm.
Furthermore, two axial compression forces are applied to the
lower and upper half of the beam, together with two small
vertical perturbation forces (10−5 N) to trigger the buckling
mode. The beam is discretised with quadratic quadrilateral
elements (plane strain assumed), with 400 elements along
the beam, and 4 elements through the thickness.

In Sect. 2, the path-following constraint was introduced in
the context of large strain continuum. In this numerical exam-
ple, the dissipation will be calculated in the cohesive zone
elements,whereby the path-following constraintϕ [Eq. (15)],
and its gradient h [Eq. (16)], are instead calculated on the
cohesive domain �cz :

ϕ =
∫

�cz

�D d� − �τ = 0, hI =
∫

�cz

∂�D

∂ J
· ∂ J
δaI

d�,

(19)

where, J is the displacement jump vector along the cohesive
interface.

The interface between the upper and lower part of the
beam is modelled using a standard bi-linear cohesive zone
law [16]. The constitutive law relates the interface cohesive
traction, t , to the displacement jump between the bottom and
top surface, J , via:

L

a0

λf̂

λf̂

h

Fig. 3 Double cantilever beam with an initial delamination loaded in
compression

Table 1 Total number of load steps taken to complete the simulation
for the double cantilever beam loadcase

Current Verhoosel Crisfield

σult = 45 MPa 65 steps 63 steps 45 steps

σult = 75 MPa 66 steps 66 steps –

t = (1 − d)D · J, (20)

where D defines the initial stiffness of the interface. Further-
more, d is the damage variable that depends on the ultimate
traction and fracture toughness of the interface (see Turon
et al. [16] for more details). The expression for the Ḋ along
the cohesive interface is well-defined3 (and derived in detail
in “Appendix A”):

Ḋ = 1

2
ḋ J · D · J, (21)

For this example, the fracture toughness in both normal
and transverse direction is set to GI = GI I = 0.2 N/mm.
Two values for the ultimate traction in the normal direction,
σult, and tangential direction, τult, will be used to assess the
robustness of the solvers; σult = τult = 40 MPa and 75 MPa.
Finally, the bulk material of the beam is modelled using a St.
Venant elasticmaterial (to accommodate large displacements
and rotations), with a Young’s modulus E =135 GPa, and
Poisson ratio ν = 0.18.

The resulting relation between the applied external tip
force and the resulting horizontal tip displacement is shown
in Fig. 4, where the marks on each equilibrium curve repre-
sents a converged solution step. In practice, the curves from
the three solvers fall on top of each other making it impossi-
ble to distinguish any significant differences. Therefore, the
solution from the Verhoosel solver has been excluded since
it performs very similar to the generalised dissipation solver.
Furthermore, the total number of load steps from each solver
is presented in Table 1.

From the results, it can be seen that in the case when
σult = τult = 40 MPa (Fig. 4a), the Crisfield solver performs
well, showing the ability to take large steps throughout the
simulation. The two dissipation based solvers also trace the
full path, but require more steps in order to complete the sim-
ulation, due to buckling being the dominating failure mode.

In the case when σult = τult = 75 MPa (Fig. 4b), the
energy dissipation from the interface is to a larger extent
controlling the deformation. This results in that the Crisfield

3 As reported in Turon et al. [17], the bi-linear cohesive zone law used
herein does not always result in a positive energy dissipation rate (i.e
healing of the fracture zone can occur), which can cause issues for the
solver. However, this issue is not existent in the current numerical exam-
ple, which promotes puremode I delamination and therefore guarantees
a strictly non-negative dissipation rate.
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Fig. 4 Resulting
force-displacement curve for
different values of ultimate
traction in the double cantilever
beam example. The markers
indicate a converged load step.
The zoom in (a) illustrates that
the arc-length solver is able to
take larger step when buckling is
the dominating mode of failure,
but also that the same solver
experience difficulties when the
dissipative interface failure is
controlling the deformation
(zoom in (b))

Generalised Crisfield
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(b) tult = 75MPa

solver encounters difficulties when the interface damage
starts to propagate, and eventually leads to that the simulation
terminates prematurely. On the other hand, both dissipation
based solvers are able to robustly trace the full equilibrium
path. It can also be noted that the dissipation based solvers
take very similar amount of steps in the simulations.

The results confirm that the arc-length solver is favourable
in problems involving geometric non-linearities, also that it
has a problem to converge in problems involving material
instabilities. On the contrary, both the dissipation solver pro-
posed by Verhoosel et al. and the generalised dissipation
solver are able to trace the path for both cases of σult/τult,
thereby showing their robustness and ability to solve prob-
lems for a range of material parameters.

3.2 Phase field damage for brittle fracture

Path-following techniques specifically aimed for phase field
damage formulations were first introduced by Singh et al.
[14]. It was also later shown to perform well by May et al.
[15]. We will here demonstrate that our proposed solution
framework works well for simulation of phase field damage
modelling.

As a preliminary, a brief overview of the phase-field for-
mulation used is given here, including the definition of the
energy dissipation needed for the path-following constraint.
The governing equations related to phase field modelling can
be stated as:

∇ · σ = 0 in �

Gc
lc

(
d − l2c∇d

)
− 2(1 − d)H = 0 in �

σ · n = t̄ on �t

u = ū on �u

∇d · n = 0 on �

(22)

where d and u are the unknown (scalar) damage phase field
and (vector) displacement field, respectively,Gc is the critical

energy release rate, and lc is a length scale parameter for reg-
ularising the solution. Furthermore, t̄ is an applied traction
force on the boundary �t whilst ū are prescribed displace-
ments on �u (�t

⋃
�u = �). The (Cauchy) stress field, σ ,

and strain field, ε, are defined in this case as

σ (ε, d) = (1 − d)2σ 0,

σ 0 = ∂�0

∂ε
, ε = 1

2

(
(∇u)T + ∇u

)
, (23)

where �0 is the energy density for the undamaged solid.
Furthermore, H is a history field for enforcing damage irre-
versibility.H can be defined in several ways, but in this work
we follow [14] and use:

H(t) = max
t

�0(t). (24)

The specific dissipation rate, Ḋ, is computed as:

Ḋ = Gc
lc

(
dḋ + l2c∇d · ∇ḋ

)
, (25)

which emanates from the concept of fracture surface area,
used in phase field damage modelling [14].

The loadcase considered is depicted in Fig. 5, where the
geometry is inspired from [18] (however we use modified
boundary conditions). The geometry consists of a rectangular
plate with width W = 65 mm, height H = 120 mm, and
thickness t = 1 mm, which has a circular cutout with radius
20 mm near the centre of the plate (x = 36.5 mm, y =
51 mm), and two smaller cutouts with radii 5 mm located
near the top and bottom (x = 20 mm, y = 20 mm) and
(x = 20 mm, y = 100 mm), respectively. Furthermore, the
plate has an initial notch with length a0 = 10 mm on its
left side at y = 65 mm (modelled as a small separation in
mesh). The inner boundary of the top cutout is controlled by
a prescribed displacement in the vertical direction, whilst the
inner boundary on the bottom cutout is kept fixed.

The bulk material has a Young’s modulus of E = 6 GPa
and a Poisson’s ratio of ν = 0.22. Furthermore, the energy
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Fig. 5 Geometry to be analysed for the phase field damage problem

release rate is Gc = 2.280 N/mm and the length scale is set
to lc = 0.5 mm. The plate is discretised with approximately
8, 500 quadrilateral elements, with an element size of 0.25
mm concentrated along the line of the expected crack path.

The resulting force displacement response is shown in
Fig. 6. The structure behaves linearly up until the first force
drop at around 8 kN, after which a sharp snap-back behaviour
can be identified when the damage field starts to form. This
process is repeated when a new damage field is initiated on

the right side of the hole. Note that due to the very brittle
fracture process, small incremental load steps are required
in order to trace the full path. However, the size of the load
steps are automatically found by the method described in
the beginning of this section. Also note that instabilities in
the equilibrium curve can be identified when the crack prop-
agates into the hole. The instability is likely caused by a
lowering of the dissipation rate and the use of an unstructured
mesh closer to the rim of the hole. However, it can be seen
that the solver manages to trace this part as well. Finally, the
results from this example confirms that the solver can han-
dle very brittle fractures events with significant snap-back
behaviour (Fig. 7).

3.3 Multiple delamination growth a in curved
composite beam

In the following example, we show how the generalised
dissipation solver can be applied to problems related to fail-
ure prediction and delamination in fibre reinforced polymer
composites. Fibre composites often possess brittle interfa-
cial material properties, potentially leading to large snap-
back behaviour in quasi-static simulations. The post-failure
behaviour in these types of structures is highly influenced by
the damage propagation, and for a good understanding of the
system the full equilibrium path should be traced. Further-
more, standard arc-length solvers are typically not applicable
to these types of problem due to local material instabilities
in the interfaces. Therefore, a path-following method based

(a) (b) (c)

Fig. 6 The resulting phase field damage, d, at three different moments of the simulation

123



Computational Mechanics

0 0.02 0.04 0.06 0.08 0.1

0

2,000

4,000

6,000

8,000

Instabilities when crack
propagates into hole

Crack starts to propagate

Prescribed Displacement [mm]

Fo
rc

e
[N

]

Fig. 7 The resulting equilibrium path for the phase field damage prob-
lem. Note the circular markers has been removed for the part of the
curve where the crack propagates into the hole, in order to highlight the
instability

λf̂

R

L
h

x

y

Fig. 8 Geometrical description of composite structure with 90 degree
bend

on the energy release rate is necessary for the analysis of
post-failure analysis in composite structures.

The composite structure to be analysed is a beam with
a 90◦ bend, shown in Fig. 8. This type of structure has
previously been tested experimentally in [19], and a sim-
ilar model setup is replicated here. The radius at the 90◦
bend is R = 6.65 mm, while the length of the arms of the
beam is L = 25.4 mm. The total thickness of the beam is
h = 3.31 mm, and the width is 20 mm. The left vertex (see
figure) of the beam is kept fixed, while the right vertex is
constrained in the y-direction, with an applied force in the
x-direction. Furthermore, the beam is modelled using 151
linear quadrilateral elements (plane strain) running along the
length of the beam, and with 2 elements per layer (total 8
through the thickness).

The fibre composite consists of four 0◦ layers (main fibre
direction running along the length of the beam). Each layer
is modelled as a transversely isotropic material with param-
eters E11 = 141 GPa, E22 = 11 GPa, G12 = 5.8 GPa,
G23 = 5.8 GPa, ν12 = 0.3, ν23 = 0.4. The ultimate traction
in shear and normal direction are set to τult = 24 MPa and
σult = 39 MPa, which are within the range of ultimate trac-

tion reported in [19]. Furthermore, the critical energy release
rate in mode I and mode II are set to GI = 0.0906 N/mm and
GI I = 0.943 N/mm.

The interfaces between the layers are modelled with an
exponential cohesive zone law proposed by Kolluri et al.
[20]. The interface traction in the normal, tn , and tangential,
tt , directions, are related to the the interface separations Jn
and Jt , via the following constitutive equations:

tn = GI

δ2n
(1 − dnH(Jn))(1 − dc,tH(Jn))Jn

tt = GI I

δ2t
(1 − dt )(1 − dc,n)Jt

(26)

where δn and δt are the critical separations in the nor-
mal and tangential directions, respectively, and H denotes
the Heaviside-function (that takes into account the non-
interpenetration condition). The cohesive material model
includes four damage variables; two variables describing the
damage progression in tension (dn) and shear (dt ), alongwith
two damage variables coupling the two modes (dcn and dct )
(for more detail these parameters, see [20]).

A measure for Ḋ for the exponential cohesive material
was derived in Auth et al. [21]:

Ḋ = 1

2

GI

δ2n
J 2n (1 − dct )ḋn + 1

2

GI

δ2n
J 2n (1 − dn)ḋct

+1

2

GI I

δ2t
J 2t (1 − dt )ḋcn

+1

2

GI I

δ2t
J 2t (1 − dcn)ḋt ≥ 0. (27)

The resulting interfacial damages are shown in Fig. 9, and
the equilibrium path obtained with the generalised dissipa-
tion solver is shown in Fig. 10. It can be seen that the structure
behaves elastically up till the first force drop at around 95 N,
where the first crack starts to initiate at the centre of the struc-
ture (between the second and third layer). After the unloading
and propagation of the first crack, a second delamination
starts to grow at the bottom layer. A similar process is fol-
lowed by a final crack forming at the top interface. It can
be concluded that the solver is able to robustly trace the pro-
gression of the propagation of all the three delaminations. On
the contrary, solutions with both the Crisfield and a Newton
solver failed to converge after the formation of the first crack.

3.4 Micro structure including two competing
damagemechanisms

In this example a simplified composite micro structure in
the form of a reduced fibre-matrix unit cell will be analysed,
see Fig. 11. The problem includes two dissipative mecha-
nisms; the debonding of the fibre-matrix interface, and the
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Fig. 9 Close up of the 90◦ bend, when the first (a), second (b) and third (c) interface delamination initiates

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

100

200

300

400
First crack

Second crack

Third crack

Displacement [mm]

Fo
rc

e
[N

]

Fig. 10 The resulting force-displacement curve for the composite prob-
lem
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Fig. 11 The loadcase and mesh for the fibre-matrix micro structure

elasto-plastic deformation of the matrix material. It will be
shown that both these mechanisms can be accounted for in
the solver framework presented herein.

The fibre-matrix volume (square) has a side length of L =
0.045 mm, with the radius of the strand being R f = 0.03
mm. Symmetry boundary conditions are used for the bottom
and left face, while a prescribed displacement is applied to
the right boundary. The top surface is assumed to be traction
free.

Large plastic strain is expected in the matrix, and it is
therefore modelled using a standard large strain plasticity
material model with isotropic hardening (see e.g. works by
Simo [22]). This material model assumes a multiplicative
split of the deformation gradient, F = FeF p, where Fe is
the elastic part of deformation gradient and F p is the plas-
tic part. The Second Piola–Kirchhoff stress, S, and the right
Cauchy-Green deformation tensor, C , are related via the fol-
lowing constitutive equation:

S = F−1
p S̃F−T

p . (28)

Here, S̃ is the Second Piola–Kirchhoff stress in an interme-
diate configuration, evaluated from an Neo-Hookian hyper
elastic law:

S̃ = 2
∂�NH(Ce)

∂Ce
(29)

where Ce = FT
e Fe is the elastic right Cauchy-Green defor-

mation tensor.
Since the material model is formulated in a thermo-

dynamically consistent framework, an expression for Ḋ is
readily available:

Ḋ =
(
Ce S̃

)
:
(
Ḟ pF−1

p

)
≥ 0 (30)

For the fibre material, only small deformations are
expected, whereby a simple (isotropic) elastic St Venant
model is used with the following material parameters:
Young’s modulus E = 10 GPa and Poisson’s ratio ν = 0.35.
For the matrix material, the following parameters are used;
Young’s modulus E = 1 GPa, Poisson’s ratio ν = 0.25,
yield stress σy = 65 MPa and hardening stress H = 20
MPa. Finally, the same exponential cohesive zone law as
presented in Sect. 3.3, is used for the fibre-matrix inter-
face. The critical energy release of the interface is set to
GI I = GI = 0.005 N/mm. Different values for the ulti-
mate traction, tult = (σult = τult), will be used to assess the
robustness of the solver (ultimate traction in shear and normal
directions is assumed to be equal in all cases).
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Figure 12 shows the load-displacement curve and
deformed mesh when tult = 70 MPa. For this case, the
interface is the limiting factor against failure, represented
by interface debonding between the matrix and fibre. It is
shown that the generalised dissipation solver is able to find
the solution for the complete propagation of the fibre-matrix
interface. Furthermore, since the dissipation from the inter-
face is dominating the solution, the Verhoosel dissipation
solver is equally applicable for these specific set of parame-
ters (even though it does not incorporate information about
the dissipation from the matrix material). Figure 12 shows
that the Verhoosel solver traces the same path as the gener-
alised solver in a similar fashion.

Next we investigate the behaviour of the micro structure
when the matrix material accounts for the majority of the
energy dissipation in the solution. We do this by increasing
the ultimate traction to tult = 95 MPa. Figure 13 shows the
load-displacement curve and deformed mesh. As before, the
material-point based dissipation solver is able to trace the
full path since it incorporates information from both dissipa-

tion mechanisms. However, the Verhoosel dissipation solver
cannot be used for this set of parameters, since no global
expression for the matrix dissipation can be obtained. Also
note that for this case the equilibrium path is relatively sim-
ple and does not show any snap-back behaviour, whereby a
standard Newton solver could also be used to trace the path
(not shown in the figure).

For the final investigation, we will analyse what happens
if simultaneous energy dissipation from both the fibre-matrix
interface and matrix plasticity is present (and competing) in
the solution. We do this by choosing the ultimate traction to
tult = 84 MPa. To provide a reference solution, an explicit
dynamic (quasi-static) solution has been performed for this
case. The densities of the fibre and matrix was assumed to be
2×10−3 g/mm3 and 1×10−3 g/mm3, respectively. However,
due to the small size of the micro-structure, these densities
cased very small time steps, whereby they were scaled by a
factor of 10. A quasi-static event was simulated by setting
the loading rate to 0.1 mm/ms.

Fig. 12 Results for the
fibre-matrix micro structure
with tult = 70 MPa
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Fig. 13 Results for the
fibre-matrix micro structure
with tult = 95 MPa
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Fig. 14 Results for the fibre-matrix micro structure with tult = 84 MPa

The resulting load-displacement curve is presented in
Fig. 14. It is shown that the generalised dissipation solver is
able to trace the full path in accordance with the explicit ref-
erence solution, while the Verhoosel dissipation solver enters
a different (incorrect) branch. This branch matches the solu-
tion from when tult = 95 (Fig. 13), which means that it
enters a branch where the interface remains intact. The rea-
son it enters the incorrect branch (in relation to the reference
solution), is due to it lacking information about the complete
dissipation state of the load step. Finally, it is also worth to
note that a standard Newton solver is also not able to trace
the correct path as it is not well-equipped to accommodate
for snap-back behaviour.

4 Concluding remarks

In this contribution, we have proposed a new path-following
solver for tracing the equilibrium path in quasi-static prob-
lems exhibiting energy dissipatingmechanisms and potential
snap-back or snap-through instabilities. The proposed con-
straint equation is based on the integrated rate of dissipation
in each material point, and allows to include both continuum
and interface dissipative mechanisms in a unified way.

An important aspect of path-following solvers based on
the total dissipation rate (or energy release rate), is that they
are only applicable if the structure being analysed exhibit
some energy dissipation.However, this is not always the case,
for example at the start of a simulation. In this work, this was
resolved by initiating the simulations with a standard arc-
length solver, and then switch to the dissipation based solver
when the dissipation exceeded a pre-defined limit. However,
for more complicated structures/problems with alternating
elastic and dissipating parts of the equilibrium path, a more
general switching algorithm could prove to bemore efficient.

In such cases, hybrid methods of dissipation and geometrical
path-following constraints can be considered, see e.g Bellora
et al. [23].

A consequence of the generalised formulation of the path-
following constraint is that the gradient hI in Eq. (16) needs
to be updated and assembled each Newton iteration. This is
commonly not required in other path-following constraints,
where hI only needs to be assembled once every load step.
As such, the proposed method requires more computational
operations than other dissipation based constraints, which
will slightly increase the computational cost compared to
other solvers.

Furthermore, the proposedmethod requires that an expres-
sion for Ḋ of the material is available. This requirement does
not exist for the path-following constraints derived in Ver-
hoosel et al, where only the material tangent is required to
approximate the dissipation. Since the material tangent is
always available in a finite element setting, their method is
able to simulate materials where an expression for the Ḋ is
missing.

While the solver presented herein has been shown to be
robust, it may still fail to converge at specific load stepswhere
the equilibrium state is difficult to trace (such as sudden force
drops). As a remedy, we introduced a scaling (halving) of the
path-following parameter (Eq. (18)) which appears to be an
effective method to handle such events. Furthermore, it was
also found that the solver was sensitive to the parameters α,
β (Eq. (17)) and �τswitch, which affect the solver’s ability
obtain convergence. A trial and error approach for choosing
these parameters is therefore sometimes needed in order to
find the full equilibrium path.

The capabilities of the proposed dissipation based path-
following solver is tested in four numerical examples, where
it is demonstrated that our novel formulation enables robust
solution of a wide range of problems. The result from the
numerical examples are summarised below.

The first example involves a double cantilever beam
exhibiting both material and geometrical instabilities (inter-
face failure and buckling), where it is demonstrated that a
dissipation based path-following solver outperforms tradi-
tional arc-length solvers when the material instabilities (in
this case interface crack growth) are dominating the prob-
lem.

The second example shows that the proposed solver can be
directly used for solving phase field damage problems with
a monolithic solver scheme. It is further demonstrated that
the solver is stable enough to follow the entire load history
even with severe snap-back instabilities.

The third example demonstrates that the method can be
used to simulate multiple and unstable crack growth in lay-
ered fibre reinforced structures. These types of structures
often possess brittle interface properties which can lead
to local and global snap-back behaviour. There is thus an
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obvious need for robust solvers to analyse these types of
structures, such as the dissipation based path following solver
proposed herein.

The last example involves a simplified micro-structure of
a fibre-matrix interface where dissipative mechanisms from
both the fibre-matrix interface and the matrix plasticity is
included. It is demonstrated that our solver can incorpo-
rate the the total dissipation rate from both the interface and
matrix plasticity, which is required for solving the full param-
eter space.

As an outlook, we believe that the numerical results in
this paper indicate that the path-following method presented
herein could be beneficial also when analysing other types
of problems where dissipation is present e.g. problems with
rate dependent materials or gradient damage models. Thus,
further investigation in these areas would be interesting to
see in the future.
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A Dissipationmeasure for bi-linear cohesive
zone law

The second law of thermodynamics for a cohesive zone
describing interface failure can be expressed as:

Ḋ = t · J̇ − �̇ ≥ 0, (31)

where t is the traction vector at the interface, J̇ is the
time derivative of the interface separation, and � is the
Helmholtz’s free energy associated with the interface defor-
mation and failure. For a standard bi-linear cohesive zone
material, � can be expressed as [16]:

� = 1

2
(1 − d)J · D · J, (32)

where d is a damage variable that can vary between 0 and 1,
and D is a diagonal tensor representing the stiffness of the
interface. Inserting Eq. (32) into Eq. (31) we obtain:

Ḋ = (t − (1 − d)D · J) J̇ + 1

2
ḋ J · D · J ≥ 0. (33)

By definition, t = (1− d)D · J , whereby leading to that the
reduced dissipation inequality becomes:

Ḋ = 1

2
ḋ J · D · J ≥ 0. (34)

An evolution law for d is presented in Turon [16].

B Proposed algorithm for solver

Algorithm 1 presents a possible algorithmic scheme for how
the solver presented herein can be implemented in a finite
element code.

Algorithm 1 Proposed algorithm for the implementation of
the solver presented herein.
G ← 0.0
mode ← RIKS
k ← Iopt
�τ ← �τ0
n ← 0
while n < MAX_STEPS do

n ← n + 1

if G > �τswitch then
mode ← DISSIPATION

end if

// Adjust �τ according to Equation (17)

�τ ← �τ
( 1
2

)0.25(k−Iopt )

error ← 1
k ← 0
while error > TOL do

k ← k+1

// Calculate K , r , G
if mode == RIKS then

// Update k�a and k�λ according to Riks method [4]
else if mode == DISSIPATION then

// Update k�a and k�λ using Equation (8)
end if
error = error(r , k�a, k�λ)

if k > MAX_ITR then
// Reset step and adjust �τ according to Equation (18)

end if
end while

end while
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