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Abstract

Quantum computing offers new heuristics for combinatorial problems. With
small- and intermediate-scale quantum devices becoming available, it is possi-
ble to implement and test these heuristics on small-size problems. A candidate
for such combinatorial problems is the heterogeneous vehicle routing problem
(HVRP): the problem of finding the optimal set of routes, given a heterogeneous
fleet of vehicles with varying loading capacities, to deliver goods to a given set
of customers. This licentiate thesis is an extended introduction to the accom-
panying paper, which consists of a study of a new formulation of the HVRP
applicable to both quantum annealers and programmable noisy intermediate-
scale quantum (NISQ) devices.
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Â, B̂ Two non-commuting operators

|+⟩ Equal superposition state

|0⟩ Computational zero state, analogous to classical zero bit

|1⟩ Computational one state, analogous to classical one bit

τ Time segment defined as T/p

H̃ Hadamard gate

p Integer value defining the number of parameterized layers in the
quantum approximate optimization algorithm

r Some positive integer

U(β) Operator applying the mixing Hamiltonian

U(β,γ) Unitary transformation of variational quantum circuit

U(γ) Operator applying the cost Hamiltonian

U(T ) Time evolution operator

Symbols defined in Chapter 4

E Set of edges

G = (N , E) A fully connected graph

N Set of nodes or vertices

N0 Set of customers to visit

V Set of vehicle types

cvij Cost of traveling on edge (i, j) with the vehicle of type v

fvij The amount of goods leaving node i to go to node j using truck
of type v

mv Number of available vehicles of type v

N0 Number of customers to visit

Qv Vehicle capacity for vehicle type v

qi Positive customer demand

tv Fixed vehicle cost

V Number of trucks

v Vehicle of type v





Chapter 1

Introduction

The theory of quantum computing emerged in the eighties when physicists be-
gan to discuss paradigms of computation that integrated quantum mechanics.
Since Benioff [1] and Deutsch [2] published their pioneering work on the subject
of quantum Turing machines and universal quantum computation, the field has
also developed to encompass the theoretical application of simulation of quan-
tum systems [3–8]. Along the way, other algorithms were discovered, including
a quantum algorithm provided by Peter Shor [9] for finding prime factors of
composite integers in 1994. Arguably it is what set the quantum computing rev-
olution in motion. Shor’s algorithm rendered most classical cryptographic pro-
tocols insecure, where once they were widely believed to be unbreakable [10, 11].
Quantum algorithms and heuristics [12–14] have since developed into a sophis-
ticated subfield of quantum computing, with applications including machine
learning [15–21], simulation of quantum systems [22–24], natural language pro-
cessing [25–28], cryptography [9], and search and optimization [29–32], where
particularly optimization problems are common in industry.

Large-scale optimization problems underlie many critical issues in industry,
so the automotive industry is not exempt from the challenge. The optimiza-
tion problems range from logistics to resource allocation and planning [33–35].
Finding solutions to these optimization problems is driven by powerful classical
algorithms [36–39]. With the advent of quantum computing, we need to assess
if a quantum computer can improve the current state of the art or help classical
heuristics find better solutions. In this thesis, we pursue the path of solving
optimization problems with the help of hybrid quantum-classical algorithms. In
particular, we focus on logistics problems.

In the following part of the introduction, we motivate why the pursuit of
quantum computing is essential. In this context, we introduce the notion of
noisy intermediate-scale quantum (NISQ) devices. Then, we present the adia-
batic quantum optimization algorithm and continue with a more general class
of quantum algorithms known as variational quantum algorithms (VQAs).



2 Introduction

1.1 Why quantum computing matters

Several problems are considered to be classically hard and “quantumly” easy.
Consider the example involving a large number, such as 184,568,767. This large
number might prompt the question: is this number prime — is it divisible
only by one and itself? Computer scientists can answer this with fast classical
algorithms [40], for which the computational resources scale polynomially with
the size of the problem. Our number, 184,568,767, is not a prime number. So
we might ask: What are its prime factors? But no such fast algorithm can be
applied here unless we use a quantum computer.

We can look for more such problems. Simulating a many-particle quantum
system would be a natural place to start for physicists. The difficulty of these
systems lies within the simulation of many highly entangled particles since they
cannot be separated as individual particles but must be considered as a whole.
Considering the problem of simulating many-particle quantum systems, Pines
and Laughlin pointed out, ”we can write down the equations precisely — they
are the equations that describe how atomic nuclei and electrons interact elec-
tromagnetically. But we can’t solve those equations.” [41] Laughlin dramatized
how pointless the task was: ”No computer existing, or that will ever exist, can
break this barrier” of solving the equations describing many entangled parti-
cles [41].

However, Richard Feynman had proposed a groundbreaking idea years be-
fore Laughlin and Pines had written these words: using computers to simulate
quantum systems [3]. In Feynman’s words: “Nature isn’t classical dammit, and
if you want to make a simulation of Nature, you better make it quantum mechan-
ical, and by golly, it’s a wonderful problem because it doesn’t look so easy.” [42]
Feynman’s vision was to use a quantum computer to solve the quantum physics
problems that scientists could not solve with digital computers. While Laughlin
and Pines knew Feynman had made this proposal years ago, they dismissed his
idea as impractical. Feynman’s proposal was made some 40 years ago; today,
we are just beginning to reach the stage where quantum computers can address
challenging quantum problems in valuable ways.

There are good reasons suggesting that quantum computers will surpass clas-
sical computers for some tasks. First, some problems are thought to be hard
for classical computers, but quantum algorithms have been discovered to solve
them efficiently. Shor’s algorithm is the best-known example. It efficiently solves
the problem of finding the prime factors of a large composite integer. Despite
decades of trying, no efficient classical factoring algorithm has been discovered.
However, that does not prove that there exist no efficient algorithms, and finding
one would be exciting. Scientists have provided evidence that quantum states
easily prepared with a quantum computer can be classically hard to generate
based on complexity theory. By sampling from a quantum device in such a
state, we are sampling from a correlated probability distribution that cannot be
sampled efficiently by classical methods [43–46]. Furthermore, we cannot effi-
ciently simulate a quantum computer using a digital computer, which is perhaps



1.2 Adiabatic quantum optimization 3

the strongest argument for why quantum computing is powerful. Scientists have
striven to find better ways to simulate quantum systems using digital computers
for decades, but to no avail [47].

1.1.1 Noisy intermediate-scale quantum devices (NISQ)

Even with fault-tolerant quantum computers still in the distant future, quan-
tum technology is entering a new era. To describe this new era, Preskill [47]
coined the term noisy intermediate-scale quantum (NISQ). In this context,
intermediate-scale refers to the size of quantum computers with 50 to a few
hundred qubits. “Noisy” implies that we cannot protect the system against
losses and errors, which will lead to severe limitations in near-term quantum
devices.

Nevertheless, a quantum device with 50 controllable qubits is a significant
milestone because that is likely beyond what can be simulated by brute force
using the most powerful existing digital supercomputers. A breakthrough ex-
perimental realization [46] has demonstrated the first evidence that quantum
computing can outperform classical computation.

These NISQ devices give physicists new tools to explore the physics of many
entangled particles, and there might even be commercial applications [6, 48–52].
Therefore, the ongoing development of such devices [45, 46, 53, 54] provides
an opportunity to test algorithms on small problem instances, leading to new
solutions to many different problems ranging from optimization and chemistry
to Hamiltonian simulation.

1.2 Adiabatic quantum optimization

Adiabatic quantum optimization (AQO) was among the first algorithms pro-
posed for quantum computing [55] and is shown to be universal for time, T → ∞,
and equivalent to digital quantum computing [56].

Suppose we have two non-commuting Hamiltonians: HC , whose ground state
encodes the solution to a problem of interest, and H0, whose ground state is
easy to prepare. Further, let us prepare the quantum system in the ground state
of H0 and adiabatically change the Hamiltonian for a time T according to

H(t) =

(
1− t

T

)
H0 +

t

T
HC . (1.1)

Then if we choose T large enough, the quantum system will remain in the ground
state for all times, by the adiabatic theorem of quantum mechanics [57]. There
is a fundamental limitation to this class of algorithms, giving rise to whether
they would run faster than classical algorithms. The limitation is that one finds
typically, for a problem size N ,

T = O
[
exp

(
αNβ

)]
, (1.2)
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for the system to remain in the ground state. This exponential scaling in the
worst case indicates that it is unlikely that intractable problems can be solved
in polynomial time by AQO. Nevertheless, the coefficients α, β may be smaller
than for known classical algorithms, so there is still a possibility that AQO may
be more efficient than classical algorithms on some classes of problems.

1.3 Quantum algorithms

Several fault-tolerant quantum algorithms have been demonstrated to outper-
form the best current classical algorithms in the past few decades [9, 58]. Still, it
is currently unknown whether NISQ devices can provide such an advantage [30]
for some real-world problems.

As discussed in Section 1.1.1, current devices are limited in size and prone to
noise. We, therefore, focus on algorithms that are supposed to be noise-resilient
and can be employed on NISQ devices and exclude algorithms that require fault-
tolerant quantum computers. The class of algorithms tailored for NISQ devices
is called variational quantum algorithms (VQAs).

1.3.1 Variational quantum algorithms

Variational quantum algorithms (VQAs) are a class of hybrid quantum-
classical algorithms that have emerged to run on the current generation of
NISQ devices [12, 47, 59]. Many experimental proposals for NISQ devices
involve training a closed-loop optimization between a quantum device and
a classical computer. Such hybrid quantum-classical algorithms are popu-
lar for chemistry [51, 60, 61], optimization [23, 29–32], and machine learn-
ing [15, 18, 19, 21, 62] applications. The first step is to define a cost (or loss)
function C, which encodes the solution to the problem. Next, one proposes an
Ansatz, i.e., a quantum operation depending on a set of continuous or discrete
parameters θ that can be optimized. This Ansatz is then optimized in a hybrid
quantum-classical loop (see Fig. 1.1) to solve the optimization task,

θ∗ = argmin
θ

C(θ) . (1.3)

Further, this class of algorithms takes advantage of the toolbox of classical opti-
mization since they run only the parametrized quantum circuit on the quantum
computer and outsource the parameter optimization to the classical optimizer.
Some VQAs have the advantage of keeping the quantum circuit depth shallow
and thus working well with the imposed limitations by NISQ devices in contrast
to quantum algorithms developed for the fault-tolerant era.

There are several shortcomings known to this class of quantum algorithms,
including challenges in trainability and accuracy. A pressing challenge is the
efficient optimization of variational parameters used in the quantum circuit.
Researchers have shown that this optimization problem belongs to the com-
plexity class NP-hard [63]. Nevertheless, we shall not be discouraged by this
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Quantum
circuit

Optimizer

C(θ)

θ

Figure 1.1: A schematic description of the VQA. The goal is to minimize the
energy/cost C(θ) of the variational quantum circuit by adapting the variational
parameters θ.

result since neural networks (NNs) faced the same challenge before the discovery
of back-propagation[64] and the availability of potent hardware.

The trainability of VQAs has been rigorously studied, and researchers have
chosen, due to its simplicity and hardware efficiency, random circuits as initial
guesses for exploring the space of quantum states. It has been shown that a
large family of random quantum circuits do not serve as a good ansatz for VQAs,
because they have gradients that vanish almost everywhere and therefore making
this choice unsuitable for hybrid quantum-classical algorithms run on more than
a few qubits. This phenomenon is also known as barren plateaus [59, 65–68].

The subset of VQAs working with combinatorial problems is called the quan-
tum approximate optimization algorithm (QAOA). Here, the classical optimiza-
tion problem is encoded in the ground state of a system of interacting spins.

1.4 Thesis outline

This thesis introduces the appended paper, where we develop a mapping for the
heterogeneous vehicle routing problem (HVRP) to an Ising Hamiltonian and
numerically simulate the QAOA for this combinatorial optimization problem.

The thesis is organized as follows. In Chapter 2, we introduce the Ising
model and discuss that the task of finding its ground state energy is a member
of the complexity class NP-hard. Further, we give explicit mappings from clas-
sical combinatorial optimization problems to an Ising model. Next, Chapter 3
is dedicated to the hybrid quantum-classical algorithm QAOA. We discuss its
connection to the Ising model and briefly describe its relevant components. Fi-
nally, in Chapter 4, we introduce the heterogeneous vehicle routing problem
(HVRP) and develop the mapping to the corresponding Ising model to combine
this problem with the QAOA. We give an overview of the appended paper in
Chapter 5 and conclude in Chapter 6 by summarizing our work and looking to
the future.





Chapter 2

The Ising model

To address a combinatorial optimization problem with a quantum algorithm,
we must capture a specific problem that we seek to solve in an understandable
way for the quantum device. This may be accomplished by expressing the
optimization problem in terms of quantum variables.

This chapter explores how a combinatorial optimization problem can be
framed as a cost Hamiltonian in the Ising form. First, we describe the Ising
model and how it was initially proposed to model magnetism. Further, we
explain that the decision version of the Ising model belongs to the complexity
class NP-complete and therefore is closely connected to all other NP-complete
problems. We conclude this chapter by providing explicit mappings for the
Knapsack problem and traveling salesperson problem (TSP) to an Ising model.
These NP-complete problems are the key ingredients needed for the HVRP.

2.1 A model to describe magnetism

Models are of fundamental importance in several scientific contexts and help
us understand the world around us. They have described numerous phenom-
ena, including the inflation of the universe, general circulation models of global
climate, the double-helix model of DNA, evolutionary models in biology, agent-
based models in social science, and equilibrium models of markets. Models of
nature that can encompass a wide range of completely different systems are the
most fruitful—understanding how these models work leads to understanding all
the physical systems the model can represent.

One of the most extensively used models in physics is the Ising model. It
was initially proposed in the mid-1920s by Ernst Ising and Wilhelm Lenz to
explain the inner workings of magnetic materials. The idea is to model a mag-
netic material as a collection of atoms. Each of these atoms has a spin, either
aligning or anti-aligning with an applied magnetic field. Moreover, all of the
spins interact with one another [69, 70]. Let si ∈ {−1,+1} serve as the spin of



8 The Ising model

the ith atom. The energy of a collection of spins s is

E(s) =
∑

i,j′

Ji,jsisj +
∑

i

hisi ≡ ⟨s,Js⟩+ ⟨h, s⟩ , (2.1)

where hi is the strength of the applied field at atom i and Ji,j acts as an inter-
action strength between spins i and j. At low temperatures, where the system
is strongly biased towards low-energy states, a positive Ji,j favors anti-aligned
neighbouring spins (sisj = −1). If Ji,j is negative the opposite occurs: si and
sj tend to align (sisj = 1). The simple model Ising devised provides excel-
lent experimental agreement with the properties of many magnetic materials,
although he was unaware of it at the time [71].

Ising’s model eventually proved suitable for modeling a wide range of differ-
ent physical systems. This framework can describe any system made of a set
of independent elements that interact with each other pairwise. In our work,
we are using a generalized type of Ising model, which is not on a lattice and
where interactions may be long-ranged and irregular. Over 12,000 papers have
been published using the Ising model since 1969, describing systems in fields
ranging from artificial intelligence [72, 73], zoology [74] to quantum comput-
ing [29–32, 71, 75].

2.2 The Ising model and NP-hardness

Now that we have introduced the Ising model we can ask if finding a config-
uration with a particular energy is “easy” or “hard”. We know that not all
computational problems are equal. Some problems are so “easy” or simple
that even large instances can be solved efficiently (solutions can be obtained in
polynomial time). Several problems may not scale well with problem size and
become intractable as they become more complex. There is essentially no hope
of solving them exactly. Computer scientists have formalized this insight and
have divided problems into different complexity classes.

We consider two kinds of problems: decision problems having a yes or no an-
swer and optimization problems that aim to minimize a cost or energy measure.
When given a candidate’s solution to a decision problem, its correctness can be
easily verified. We can easily verify which solution is correct for these problems
once we have a candidate solution. This class of problems, where given a “yes”
answer (candidate solution), there is a short proof that establishes the answer
is correct, are called non-deterministic polynomial (NP) [71].

In 1971, Stephen Cook [76] and Leonid Levin [77] independently showed
that there is a class of NP problems having a unifying feature. If we can solve
any problem in this class, we can solve all problems in NP with only polyno-
mial overhead. This subclass of NP problems is called NP-complete. In 1971,
Stephen Cook identified the boolean satisfiability (SAT) problem as the first NP-
complete problem [76]. The goal of this problem is to determine whether the
variables of a given Boolean formula can be consistently replaced with TRUE or
FALSE in such a way that the formula always evaluates to TRUE. Since Cook
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and Levin’s influential work, many other problems have been shown to be NP-
complete. In 1982, Francisco Baharona showed that finding the global ground
state of the Ising spin glass model is NP-hard [78]. NP-hard problems are at
least as hard as any problem in NP. The decision version of the Ising model is
NP-complete. The author did so by constructing Ising equivalents of the logical
operators ¬ (not), ∧ (and), and ∨ (or) of SAT. This serves as a reduction and
thus establishes the fact that the Ising model is a member of the complexity
class NP-complete.

2.3 Ising model for some NP-complete problems

We have just discussed that the computational complexity of the decision prob-
lem formulated as an Ising model is NP-complete. Therefore, there exists a
polynomial-time mapping to any other NP-complete problem. We will now
explain the mapping to some NP-complete problems that will be useful for
mapping the HVRP.

2.3.1 Knapsack problem

The knapsack problem can be found in many different areas of optimization,
ranging from logistics to finance [50, 79]. The knapsack problem with integer
weights is the following. We have a set of N objects, labeled by i, with the
weight of each object given by wi and its value by ci. The knapsack has limited
capacity, corresponding to the maximum total weight ofW . The binary decision
variable xi ∈ {0, 1} denotes whether an item is contained (1) in the knapsack
or not (0). The total weight of the knapsack is

W =

N∑

i=1

wixi (2.2)

with a total value of

C =

N∑

i=1

cixi . (2.3)

The NP-hard [57, 80] knapsack problem is to maximize C while satisfying the
inequality constraint W ≤W .

We can write an Ising formulation of the knapsack problem as follows. Let
zn for 1 ≤ n ≤ W be a binary variable which is (1) if the final weight of the
knapsack is n and (0) otherwise [57]. The Hamiltonian whose energy we seek
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to minimize is then

H = HA +HB , (2.4)

HA = A

(
1−

W∑

n=1

zn

)2

+A

(
W∑

n=1

nzn −
N∑

i=1

wixi

)2

, (2.5)

HB = −B
N∑

i=1

cixi . (2.6)

To make sure that the hard constraint is not violated, we require 0 <
max(|HB |) < A.

Reducing the number of auxiliary qubits

It is possible to reduce the number of variables required for the auxiliary variable
zn. We want to encode a variable which can take the values from 0 to W . Let
M ≡ ⌊log2W ⌋. We then require M + 1 binary variables instead of W binary
variables:

W∑

n=1

nzn →
M−1∑

n=0

2nzn +
(
W + 1− 2M

)
zM . (2.7)

Note that ifW ̸= 2M+1−1, degeneracies are possible [57]. Within this “log” for-
mulation, several of the auxiliary variables can be 1, so the first part of Eq. (2.5)
should not be included as this constraint enforces a one-hot encoding (exactly
one element of the bitstring is one, and the rest are zero) of the bitstrings. The
decision variable zn switches from a one-hot encoding to a binary representation
by using the log trick.

2.3.2 Traveling salesperson problem

The travelling salesperson problem (TSP) asks to find the shortest path between
a series of cities. It consists of a graph G = (V,E) with nodes representing
cities and edges denoting routes between them. Edges are assigned a weight
Wij , which refers to the distance between two cities. The objective is to find
the Hamiltonian cycle such that the sum of the weights of all edges in the cycle
is minimized [57]. The Ising formulation for the TSP is given in Ref. [57] with
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the Hamiltonian H encoding the total cost:

H = HA +HB , (2.8)

HA = A

N∑

i=1

(
1−

N∑

α=1

yiα

)2

+A

N∑

α=1

(
1−

N∑

i=1

yiα

)2

(2.9)

+A
∑

(i,j)/∈E

N∑

α=1

yiαyjα+1 , (2.10)

HB = B
∑

(i,j)∈E

Wij

N∑

α=1

yiαyjα+1 , (2.11)

(2.12)

whereN = |V | is the number of nodes, A and B are positive constants, satisfying
0 < max(|HB |) < A, and W encodes the distances between the nodes. The
index i represents the nodes and α the order in a prospective cycle. The binary
variables yiα can be referred to as “routing variables” indicating in which order
of the cycle node i is visited. There are N2 variables, with yi,N+1 ≡ yi,1 for all
i, such that the route ends where it starts.

To use the Ising model in the context of quantum computing, we need to
understand how hybrid classical-quantum algorithms for optimization problems
work. We will discuss this in the next chapter.





Chapter 3

Quantum approximate
optimization algorithm

This chapter is dedicated to the quantum approximate optimization algorithm
(QAOA) [81]. We have discussed in Section 1.3.1 that this class of algorithms
is especially well suited for the NISQ era, and thus a rigorous investigation is
needed to assess their future impact.

We start by showing the similarities between two optimization algorithms,
namely adiabatic quantum optimization (AQO), which we introduced as one
of the first proposals for quantum computing in Section 1.2, and the QAOA,
a promising candidate to achieve a quantum advantage. Further, we give an
in-depth description of the algorithm and examine the interplay between a clas-
sical computer and a quantum device. Moreover, we discuss several different
classical optimization algorithms. Finally, we end this chapter by extending the
QAOA to the quantum alternating operator ansatz (QAOA), broadening the
range of possible mixers and initial states used for the hybrid quantum-classical
algorithm.

3.1 Relation to quantum adiabatic optimization

The AQO algorithm, first proposed by Farhi et al. [82], is the inspiration for the
QAOA. To understand why, let us recap the primary idea underlying AQO. The
AQO is based on the adiabatic theorem [83] and uses the adiabatic evolution
to transition from the lowest energy eigenstate of an easy-to-prepare starting
Hamiltonian H0 to the lowest energy state of a cost Hamiltonian HC . Two non-
commuting Hamiltonians are required. This is because the adiabatic theorem
holds only if there is always a gap between the eigenstates of the two Hamil-
tonians. If the Hamiltonians commute, they have the same set of eigenstates.
Thus, [H0, H1] ̸= 0 is a necessary condition for keeping the gap open. We refer
to Section 1.2 for more details. Note that the cost Hamiltonian is classical and
thus diagonal. The Hamiltonian is written as a sum of two non-commuting



14 Quantum approximate optimization algorithm

Hamiltonians,

H(t) =

(
1− t

T

)
H0 +

t

T
HC , (3.1)

The exact time evolution of the Hamiltonian is governed by Eq. (3.2). Further,
we recognize that approximating the time evolution in Eq. (3.3) is the simplest
way to simulate the ground state of the Hamiltonian [22],

U(T ) ≡ T exp

[
−i

∫ T

0

H(t)dt

]
, (3.2)

U(T ) ≈
p∏

k=1

exp[−iH(kτ)τ ] , (3.3)

where U(T ) is the evolution operator form 0 to T , T is the time-ordering oper-
ator, and p is a large integer such that τ = T/p is a small time segment.

Further, for two non-commuting operators Â and B̂ and sufficiently small δ,
the Trotter-Suzuki formula implies that [4]

eδ(Â+B̂) ≈ eδÂeδB̂ +O
(
δ2
)
. (3.4)

Applying Eq. (3.4) to the discretized time evolution operator Eq. (3.3) produces

U(T ) ≈
p∏

k=1

exp

[
−i(1− t

T
kτ)H0τ

]
exp

[
−i

t

T
kτHCτ

]
. (3.5)

As a result, by applying H0 and HC in an alternating sequence, we can ap-
proximate the time evolution of Eq. (3.3). Farhi, Goldstone, and Gutman [81]
came up with the insight of truncating this product to an arbitrary positive
integer and redefining the time dependency in each exponent with variational
parameters, β ≡ (1− t

T )τ and γ ≡ t
T τ ,

U(β,γ) =

p∏

k=1

e−iβkH0e−iγkHC , p ∈ N+ . (3.6)

Further, we define H0 to be

H0 =
∑

i

σx
i , (3.7)

where σx
i is the Pauli-X matrix of the ith qubit [84]. Let the operator U(β,γ)

act on the superposition state |+⟩ of all possible states, and we arrived at
the QAOA proposed in [81]. We see that QAOA is the trotterized version of
AQO [85].
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Figure 3.1: A schematic illustration of the QAOA, visualizing the interplay be-
tween the quantum device and the classical computer. The quantum computer
implements a variational state formed by applying p parameterized layers of
operations. Each layer has operations involving the cost Hamiltonian HC and
a mixing Hamiltonian HM , weighted by the angles γ and β, respectively. Mea-
surements of the variational state and calculations of its resulting energy are
used to guide the classical optimizer, which minimizes the energy in a closed-
loop optimization.

3.2 The interplay between a classical computer
and a quantum device

We just saw how to transition from the adiabatic time evolution of two non-
commuting Hamiltonians in Eq. (3.1) to an approximated expansion based on
the sequential application of two Hamiltonians. We now explain how we can use
this evolution operator to optimize an arbitrary optimization problem described
as an Ising model that we have introduced in Section 2.

The QAOA belongs to the class of hybrid quantum-classical algorithms, com-
bining quantum and classical processing. We illustrate the different components
of the QAOA and show the building blocks that realize the quantum circuit.
The closed-loop optimization of the classical and quantum devices is visualized
in Fig. 3.1. It fills out the details to go from a schematic VQA introduced in
Fig. 1.1 to the QAOA, a subset of VQAs able to solve combinatorial optimiza-
tion problems. The quantum subroutine, operating on n qubits, consists of a
consecutive application of two non-commuting operators defined as

U(γ) ≡ e−iγHC γ ∈ [0, 2π] , (3.8)

U(β) ≡ e−iβHM =

n∏

j=1

e−iβσx
j β ∈ [0, π] . (3.9)

The σx
j operation is analogous to the classical NOT gate. It changes the |0⟩
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state to the |1⟩ state, and vice versa. The operator U(γ) gives a phase rotation
to each bitstring depending on the cost of the string, while the mixing term
U(β) scrambles the bitstrings. We call U(γ) the phase separation operator with
HC the cost Hamiltonian and U(β) the mixing operator with HM the mixing
Hamiltonian. The bounds for γ and β are valid ifHC has integer eigenvalues [81].

The initial state for the algorithm is a superposition of all possible compu-
tational basis states. This superposition can be obtained by first preparing the
system in the initial state |0⟩⊗n

= |00 . . . 0⟩ for all qubits and then applying the
Hadamard gate on each qubit:

(
H̃ |0⟩

)⊗n

=

( |0⟩+ |1⟩√
2

)⊗n

≡ |+⟩⊗n
, (3.10)

where ⊗ denotes the tensor product and H̃ the Hadamard gate.
For any integer p ≥ 1 and 2p angles γ1 . . . γp ≡ γ and β1 . . . βp ≡ β, we

define the angle-dependent quantum state

|γ, β⟩ = U(βp)U(γp) . . . U(β1)U(γ1) |+⟩⊗n
. (3.11)

The quantum circuit parameterized by γ and β is then optimized in a closed
loop using a classical optimizer. The objective is to minimize the expectation
value of the cost Hamiltonian HC [81], i.e.,

(γ∗, β∗) = argmin
γ,β

E(γ, β) , (3.12)

E(γ, β) = ⟨γ, β|HC |γ, β⟩ . (3.13)

The problem of calculating the energy of 2#q (#q denotes the number of qubits)
possible bitstrings (solutions) is thus reduced to a variational optimization over
2p parameters. For a detailed description, see the algorithm 1.

Algorithm 1 Quantum approximate optimization algorithm

1: Input cost Hamiltonian, HC , mixer Hamiltonian, HM and layers, p.
2: Construct the circuits U(γ) = e−iγHC and U(β) = e−iβHM .
3: Build the circuit

U(γ,β) = U(βp)U(γp) . . . U(β1)U(γ1) |+⟩⊗n
.

4: while Optimization (e.g. Nelder-Mead) of ⟨γ, β|HC |γ, β⟩ do
5: for number of shots do
6: Sample variational quantum state, |γ,β⟩
7: Record measurement outcome
8: end for
9: Calculate E(γ, β)

10: Use optimization routine to propose new γ,β with information E(γ, β)
11: end while
12: return the final parameters γ, β and energy of the cost function E(γ, β)
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3.3 Optimizing the variational parameters

The classical optimization method is a vital component in all hybrid quantum-
classical algorithms (see Section 3.2). Moreover, the limits of the NISQ hard-
ware place even greater dependence on robust and reliable classical optimization
routines. These procedures must identify solutions in the presence of noise and
scale favorably with the number of variational parameters, i.e., the running
time must not increase exponentially as the number of parameters increases.
In addition, the classical optimizer should be able to locate good parameter
settings while limiting the number of queries it sends to the QPU. It is not sur-
prising that classical optimizers have attracted much interest with all of these
requirements. Researchers have proposed several novel optimization algorithms
ranging from classical noise-resilient algorithms to machine-learning approaches.
We review some of the notable developments and some general trends observed
while analyzing the optimization landscape of QAOA.

A number of studies observed and examined parameter concentration, an
effect in which the optimal parameters for a fixed-depth ansatz circuit continue
to be optimal regardless of the problem size [55, 85–89]. Works based on machine
learning (ML) detect a similar behavior showing that it is possible to extrapolate
the parameters from small to large problem instances [90, 91].

Gradient-free methods: Gradient-free methods are exceptionally well
suited for VQAs on NISQ devices. In Ref. [92], a set of gradient-free classical
optimizers were introduced since estimating gradients from a noisy estimator is
difficult. It is possible to extend the optimization problem to include optimiza-
tion of the variational parameters of the quantum circuit and optimizing the
prefactors of the Ising Hamiltonian [93]. For example, consider the Ising Hamil-
tonian of the TSP in Eq. (2.8). Here the prefactors A and B can be chosen
freely as long as they satisfy the constraint 0 < max(|HB |) < A. Researchers
also tested well-established gradient-free optimizers, such as Nelder-Mead, Bas-
inhopping, Cobyla, or Differential evolution [94–97]. These optimizers differ in
many regards; some use global search mechanisms, e.g., Basinhopping and Dif-
ferential evolution, consisting of multiple random initial guesses, while others
use only a single random initial guess as a starting point for the optimization
e.g., Nelder-Mead and Powell. Further, differential evolution belongs to the class
of biologically inspired stochastic optimization algorithms [98]. Researchers also
envision more ML-based approaches to optimize VQAs.

These ML methods are increasingly being applied to several domains, from
computer games [99, 100], computer vision [101–103], and natural language pro-
cessing [104, 105] to optimizing variational quantum circuits [75, 90, 91, 106–
110]. As part of [90], the authors use a supervised-learning approach and propose
to use a recurrent neural network to select the parameters for the optimization.
An advantage of this approach is that a network can be trained on smaller, clas-
sically simulatable instances to suggest parameters for intractable cases. More-
over, several numerical studies focused on reinforcement learning (RL) methods
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for estimating variational parameters [91, 106–110]. Interestingly, some methods
can cope with the noise constraints imposed by the hardware [62]. Gradient-
free methods can be used for optimizing variational circuits to meet the noise
constraints of the NISQ hardware.

Gradient-based methods: There have been proposals to apply gradient-
based optimization protocols to variational quantum circuits. Optimizing an
objective function via its gradient, i.e., the change of the function with respect
to a shift of its P parameters θ = (θ1, . . . , θP ) is common practice. The gradient
represents the direction in which the objective function shows the most signif-
icant change. This local optimization strategy starts from a given parameter
value θ(0) and iteratively updates θ(t) it over several discrete steps. A common
update rule for θ(0) is

θ(t+1) = θ(t) − η∇f(θ) . (3.14)

where η is the learning rate and

∂i ≡
∂

∂θi
, ∇ = (∂1, . . . , ∂P ) , (3.15)

is the partial derivative with respect to the parameter θi and the gradient vector,
respectively [12].

There are various ways of estimating the gradient on a quantum com-
puter [12, 111]. One proposal is the parameter-shift rule that has been in-
troduced by [112] and extended by [113]. McArdle [61] proposed a variational
imaginary time-evolution method [110, 114–116] instead of standard gradient
descent for determining the evolution of parameters. They consider a param-
eterized quantum circuit encoding the state |ψ(τ)⟩ as a parameterized trial
state |ψ(θ(τ ))⟩. In this way, a differential equation can be solved to ob-
tain the evolution with respect to all the parameters. According to Stokes
et al. [117], this method is analogous to gradient descent via the quantum nat-
ural gradient when minimal step size is considered. Note that the noise of the
NISQ devices negatively impacts the performance of these optimization tech-
niques [12, 111, 118, 119]. If the gradient can be estimated accurately, VQAs
can benefit from gradient-based methods.

3.4 Quantum alternating operator ansatz

In Section 3.2, we introduced the QAOA, a heuristic quantum algorithm which
alternates between applying two distinct unitary operators, a cost function
unitary U(γ) = e−iγHC and a mixing unitary U(β) = e−iβσx

j . An extension
to these unitary matrices was introduced in [30] to include different mixers
and initial states. This framework is called the quantum alternating opera-
tor ansatz (QAOA). This extension is especially interesting for optimization
problems where only a small subspace of the Hilbert space contains physical
solutions. We will review some of the notable extensions of QAOA and lay out
properties required for the initial states and mixing Hamiltonians.
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First, it is best to implement the initial state trivially. As an example, the
initial state of all possible bitstrings (|+⟩) can be generated in O(1) steps by
applying on each qubit a Hadamard gate. We can relax this constraint and
require a circuit of constant depth [O(n)] to prepare the initial quantum state.
Many optimization problems have specific properties, such as constant Hamming
weight, i.e., the number of symbols different from the zero-symbol. Consider the
example of the TSP, introduced in Section 2.3.2, where physical solutions visit
each city exactly once. Thus, we must have for N cities exactly N non-zero
binary variables yiα. This defines the Hamming weight as equal to the number
of cities and renders much of the Hilbert space irrelevant. Using this property,
we can construct an initial state consisting of a superposition of states with
equal Hamming weights. It has been suggested that these states (Dicke states)
can be efficiently generated using a programmable quantum computer [120].

The phase separation (see Section 3.2) unitary is left unchanged. The algo-
rithm requires this unitary to be diagonal in the computational basis.

The mixing Hamiltonian offers many opportunities to extend beyond the x-
mixer suggested in [81]. Ideally, a mixer satisfies specific properties to function
best in the context of VQAs. Primarily, preserving the subspace of feasible
solutions. In Section 2.3.2, we introduce a TSP example. Finding the shortest
route between cities requires the bitstring solution to have a Hamming weight
of N , where N is the number of cities. Therefore, it is sufficient for the mixer to
only transition between states with the same Hamming distance, N . Second, the
mixer provides transitions between all pairs of states corresponding to feasible
points. For any pair of feasible computational-basis states |a⟩ , |b⟩ there is some
parameter value β and some positive integer r such that the corresponding mixer
connects those two states: |⟨a |U (β)

r|b⟩| > 0.
A mixer satisfying all these properties has been introduced in [29]. The

authors propose an XY-mixer that restricts the space that the algorithm can act
in. In a subsequent study, the authors analyze the probability of staying in such
symmetry-preserved subspace under noise, providing an exact formula for local
depolarizing noise [87]. The numerical results indicate that the algorithms fail to
stay in the allowed subspace with noise. Further, most advanced mixers are more
complex to implement [29, 30, 121] and require more gates than the x-mixer
initially introduced in [81]. In conclusion, neither QAOA [81] nor the specialized
XY-mixer are robust to noise for some challenging optimization problems [120].

In this chapter, we have introduced the QAOA and discussed many of its
components and the connection to AQO. The next chapter presents a combi-
natorial optimization problem known as the HVRP. We show how to derive its
Ising form that we can then use in the framework of hybrid quantum-classical
algorithms.





Chapter 4

The heterogeneous vehicle
routing problem and its
formulation for quantum
computing

As one of the most studied combinatorial optimization problems, the vehicle
routing problem (VRP) deals with finding the optimal route design for a fleet of
vehicles serving several customers. Since Dantzig and Ramser first formalized
this problem in 1959 [122], hundreds of papers have been written discussing its
many variants’ exact and approximate solutions. One variant is the HVRP,
in which a fleet of vehicles characterized by different capacities and costs is
available for distribution activities. The HVRP was first addressed by Golden
et al. [123].

This chapter is organized as follows and introduces the main contributions of
the appended paper. First, we present the notation used throughout the chapter
and describe the mathematical formulation of the HVRP. Then, we derive an
Ising model representing the HVRP and discuss the resources required to execute
problem instances on an actual programmable quantum device.

4.1 The mathematical formulation of the het-
erogeneous vehicle routing problem

The HVRP can be formulated as follows [124]. A fleet of vehicles is available
at a depot, which becomes node 0 of a complete graph G = (N , E) (we do not
consider multiple depots). Here, N = {0, . . . , n} is the set of nodes or vertices,
such that the n customers that the fleet of vehicles should deliver goods to
constitute the customer set N0 = N \ {0}, and E = {(i, j) : 0 ≤ i, j ≤ n, i ̸= j}
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is the set of edges or arcs. Each customer i has a positive demand qi. The set
of available vehicle types is V = {1, ..., k}, with mv vehicles of type v ∈ V .

When using these vehicles to deliver goods to meet customer demands, sev-
eral costs and constraints need to be taken into account. First, there is the fixed
vehicle cost tv, i.e., the cost independent of the distance traveled by the vehicle
of type v. This cost depends on the powertrain, trailer, engine type, and other
criteria. Further, there is the vehicle capacity Qv. Note that different vehicle
types can have the same capacities, but differ in, e.g., the type of powertrain
used [39]. Finally, there is the distance-dependent cost cvij of traveling on edge
(i, j) with the vehicle of type v, composed of the fuel cost and powertrain. The
binary variables xvij are equal to 1 if and only if a vehicle of type v travels on
edge (i, j). Furthermore, we denote by fvij the amount of goods that are leaving
node i to go to node j using truck of type v, while the amount of goods entering
the node is denoted fvji.

Using this notation, the HVRP is to minimize the cost

Ctot =
∑

v∈V

∑

j∈N0

tvxv0j +
∑

v∈V

∑

(i,j)∈E
cvijx

v
ij , (4.1)

subject to the constraints
∑

j∈N0

xv0j ≤ mv v ∈ V , (4.2)

∑

v∈V

∑

j∈N
xvij = 1 i ∈ N0 , (4.3)

∑

v∈V

∑

i∈N
xvij = 1 j ∈ N0 , (4.4)

∑

j∈N0

xvj0 =
∑

j∈N0

xv0j v ∈ V , (4.5)

∑

v∈V

∑

j∈N
fvji −

∑

v∈V

∑

j∈N
fvij = qi i ∈ N0 , (4.6)

qjx
v
ij ≤ fvij ≤ (Qv − qi)x

v
ij (i, j) ∈ E , v ∈ V , (4.7)

xvij ∈ {0, 1} (i, j) ∈ E , v ∈ V , (4.8)

fvij ≥ 0 (i, j) ∈ E , v ∈ V . (4.9)

The objective function in Eq. (4.1) is the sum of the fixed vehicle cost for the
vehicles used to deliver goods and the total (variable) travel cost for those
vehicles. The constraint in Eq. (4.2) ensures that the maximum number of
available vehicles for a specific vehicle type is not exceeded. The constraints
in Eqs. (4.3) and (4.4) make sure that each customer is visited exactly once,
and the constraint in Eq. (4.5) establishes that all vehicles leaving the depot
return to it after delivering their goods. The constraints in Eqs. (4.6) and (4.7)
ensure a correct commodity flow that meets all customer demands. Finally,
the constraints in Eqs. (4.8) and (4.9) enforce the variables’ binary form and
non-negativity restrictions.
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4.2 Ising formulation of the HVRP

We can combine the Ising models introduced in Section 2.3.1 and Section 2.3.2
with our mathematical description of the HVRP to generate the Ising model of
the HVRP. Formulations similar to this have been described in [125, 126]. We
first transform the TSP into the VRP then add a capacity constraint inspired
by the Knapsack Ising formulation.

In the original Ising formulation of the TSP, the binary variables yiα indicate
in which order of the cycle city i is visited. On the other hand, the decision
variable xij used for the mathematical formulation of the HVRP is equal to 1
if and only if a vehicle travels on edge ij. To combine this formulation with
the mathematical formulation of the HVRP given in Eqs. (4.1)–(4.9), we need
a map from the decision variable y to x. The map we use is

xvij =

N0−1∑

α=1

yviαy
v
jα+1 , (4.10)

xv0i = yvi1 +

N0∑

α=2


1−

N0∑

j=1
j ̸=i

yvjα−1


 yviα , (4.11)

xvi0 = yviN0
+

N0−1∑

α=1

yviα


1−

N0∑

j=1
j ̸=i

yvjα+1


 . (4.12)

The summation in Eq. (4.10) is not equal to 0 if and only if i and j are sub-
sequent stops on the same route. Equations (4.11) and (4.12) ensure that the
first and last stops are automatically connected to the depot (assuming a single
depot). Remember that index 0 denotes the depot, and index 1 is the first city
(node) in the list of cities (nodes).

We can now write the Ising formulation for the routing problem. Let V = |V|
be the number of trucks, where V now is the set of vehicles chosen for the
optimization (instead of the set of vehicle types, as in Section 4.1), and denote
by N0 = |N0| the number of customers to visit. The indices v now represent a
specific truck of a specific type (instead of just a specific type, as in Section 4.1).
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The Ising Hamiltonian we arrive at is then

H = HA +HB +HC +HD , (4.13)

HA = A

V∑

v=1

N0∑

i=1

N0∑

j=1

cvij

N0−1∑

α=1

yviαy
v
jα+1 (4.14)

+A

V∑

v=1

N0∑

i=1

cv0i


y

v
i1 +

N0∑

α=2


1−

N0∑

j=1
j ̸=i

yvjα−1


 yviα


 (4.15)

+A
V∑

v=1

N0∑

i=1

cvi0


y

v
iN0

+

N0−1∑

α=1

yviα


1−

N0∑

j=1
j ̸=i

yvjα+1





 , (4.16)

HB = B

N0∑

j=1

V∑

v=1

tv
N0∑

α=2

(
1−

N0∑

i=1

yviα−1

)
yvjα , (4.17)

HC = C

N0∑

i=1

(
1−

N0∑

α=1

V∑

v=1

yviα

)2

, (4.18)

HD = D

N0∑

α=1

(
1−

N0∑

i=1

V∑

v=1

yviα

)2

. (4.19)

The Hamiltonian H in Eq. (4.13) is composed of different parts. Here, HA in
Eq. (4.16) captures the first part of the original mathematical formulation, i.e.,
the minimization of the variable cost. The first term estimates the variable
cost for traveling between the different customers/cities, while the second and
third terms measure the cost of leaving and arriving at the depot. For this
particular mapping, it is necessary to define the set of vehicles used for the
optimization beforehand. Therefore, we can neglect the inequality constraint
defined in Eq. (4.2) from the original formulation, which ensures that the num-
ber of vehicles of a specific type does not exceed the number of available vehicles.
Similarly, HB in Eq. (4.17) estimates the fixed costs of each vehicle leaving the
depot [see Eq. (4.1)]. Note that the prefactors A and B must be equal in order
not to rescale the relative fixed versus variable costs. The constraint given by
HC in Eq. (4.18) ensures that each city is visited exactly once. Furthermore,
HD in Eq. (4.19) guarantees that each city has a unique position in the cycle
and that not more than one city can be traveled to at the same time. We require
0 < max(HA +HB) < C,D, to satisfy the constraints.

The decision variables yvij are positioned as shown in Fig. 4.1. It helps us
understand what the different constraints enforce. Consider Eq. (4.18) and
Eq. (4.19), summing over all indices v and i, ensuring that each column and
row contains a single non-zero element. This is important since a valid solution
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Figure 4.1: Visualization of the decision variables yvij in the Ising formulation
of the routing problem.

must visit each city exactly once. To clarify this even further, consider

y =





0 0 0
1 0 0
0 1 0


 ,



0 0 1
0 0 0
0 0 0




 , (4.20)

where we show a valid configuration of binary variables encoding a solution to
a simple example with two trucks over three cities. The first truck visits first
the second and then the third customer (v1 : c2 → c3), while the second truck
goes from the depot to the first customer and then back to the depot (v2 : c1).
Now summing over the index v results in a matrix of size (N0, N0), where each
column and row contains exactly a single non-zero entry, illustrating that this
solution serves each customer as requested.

Next, we focus on the capacity constraints described by the HVRP. The
capacity constraint is of a similar nature as the constraints for the knapsack
problem — both are described by an inequality constraint, which for the knap-
sack problem is not to add too many items to the knapsack and for the capacity
problem not to overload the vehicles. Therefore, we can use the formulation
given in Ref. [57] to model the inequality constraint introduced by the capaci-
ties.

We can make use of the inequality constraint given in the knapsack formula-
tion [see Eq. (2.5)] to encode the capacity constraints for the HVRP. Therefore,
we can neglect HB [see Eq. (2.6)] and only consider HA [see Eq. (2.5)]. Let Qv

be the maximum capacity of vehicle v. The Hamiltonian then becomes

HE = E
∑

v

(
1−

Qv∑

k=0

zvk

)2

+ E
∑

v




Qv∑

k=0

k · zvk −
∑

α,i

qiy
v
iα




2

, (4.21)
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or equivalently using the log formulation,

HE = E
∑

v




Mv−1∑

k=0

2kzvk + (Qv + 1− 2M
v

)zvMv −
∑

α,i

qiy
v
iα




2

. (4.22)

Note that the decision variable zvk switches from a one-hot encoding to a binary
representation by using the log trick.

We can now combine the Ising model for the routing and capacities into one
unifying Hamiltonian:

HC = HA +HB +HC +HD +HE . (4.23)

For the terms HA to HE , see Eqs. (4.16)–(4.19) and (4.22).

4.3 Resources

We consider three types of resources that are especially important for NISQ
devices: the number of qubits, the number of two-qubit interactions, and the
circuit depth.

Determining the number of qubits for solving the HVRP on a quantum
computer using QAOA can be separated into two parts. The first part is given
by N2

0 · V and encodes the connections between customers. Secondly, auxiliary
qubits are required for the constraining term HE . The total number of qubits,
#q, required is

#q = N2
0 · V +

V∑

v=1

⌊log2Qv⌋+ 1 . (4.24)

Further, we evaluate explicitly the resources required for three example instances
visualized in Fig. 4.2. We summarize the key parameters in Table 4.1 and
include the number of qubits, the number of two-qubit interactions as well as a
lower bound for the circuit depth.

As a comparison, we note that modern high-performance optimizers (classi-
cal computers) for the HVRP can solve problem instances with more than 1,000
customers [127, 128]. For a quantum computer to solve problem instances of
this size, it would need at least millions of controllable qubits with millions of
multi-qubit interactions.

The Ising formulation for the HVRP concludes our overview of the theoret-
ical methods and tools used in the appended paper. With the full theoretical
toolbox from Chapters 2-4 in hand, we are now ready to take a closer look at
the appended paper in the following chapter.
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Figure 4.2: A graphical representation of three problem instances. The optimal
solution is shown. Each truck carries a predefined amount of goods and brings
them to the respective customers. Each pallet indicates that one item has to
be moved to the customer. The crates show how many goods are carried by
each truck. A color-coding indicates the route assignment for problem instance
III. Arrows indicate the optimal order in which the customers are visited (the
reverse order is also optimal).

Table 4.1: Information about three different problem instances. We show the
values for three types of resources that are especially important for NISQ de-
vices. These resources are the number of qubits, the number of two-qubit inter-
actions and the circuit depth.

Problem instance I II III
# cities 3 4 3
# trucks 1 1 2
# qubits for routing 9 16 18
# qubits for capac-
ities

2 3 3

# qubits 11 19 21
# two-qubit inter. 126 288 252
Circuit depth
(lower bound)

22 29 22





Chapter 5

Paper overview

In this penultimate chapter, we overview the appended paper upon which the
thesis is based. The overview focuses on explaining the paper’s main ideas and
showing how the theoretical methods of the previous chapters are applied in
practice.

5.1 Paper A - Applying quantum approximate
optimization to the heterogeneous vehicle
routing problem

Classical heuristics dominate the field of optimization. Now, with the emergence
of quantum computing, it is imperative to investigate the impact quantum de-
vices may have on searching for heuristic solutions. This paper focuses on the
application of hybrid quantum-classical algorithms to optimization problems.
In Chapter 2 and Chapter 3, we introduced the Ising model and the QAOA,
respectively, the key components for our work. We focus on a specific logistics
problem known as the HVRP, introduced in Chapter 4.

We develop a mapping for the HVRP to an Ising model as shown in
Chapter 4, allowing us to apply the framework of hybrid quantum-classical
computation to find approximate solutions. Further, we simulate the QAOA
and determine its performance, i.e. its ability to find the global minimum of
the optimization problem. We investigate problem instances consisting of 11,
19, and 21 qubits and use well-established optimization techniques to optimize
the quantum circuit. We focus on the Nelder-Mead, basinhopping, differential
evolution, and Powell optimizers.

We analyze the optimization landscape for p = 1 and find distinct minima
for each problem instance. We also simulate the QAOA with higher p and see
that with increasing circuit depth, the performance increases. However, there
is a trade-off that with a growing number of variational parameters, the op-
timization of these variational parameters becomes increasingly difficult. This
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Figure 5.1: The probability distribution of the variational state |γ, β⟩ for the
19- (left), and 21-qubit (right) problem instances introduced in Fig. 4.2 as a
function of the circuit depth p for finding the best tour. The circuit depth
is set to p = 3. The probability of sampling the best bitstrings is marked
with red. The inset shows the probability for sampling any of the two best
bitstrings (dark red, leftmost bin) and the probabilities for sampling any of the
other feasible bitstrings (light red). The simulations were conducted with the
classical optimizer Basinhopping.

can even lead to a shallower circuit reaching a lower energy state than a highly
parameterized quantum circuit. We analyze the running time of the four con-
sidered optimizers and can observe an exponential scaling. This is in accordance
with [63] considering that the optimization of the energy landscape is NP-hard.
Both differential evolution and basinhopping give the best performance, i.e.,
they find the optimal solution with the highest probability.

We investigate whether the variational states generated via the hybrid
quantum-classical routine generate states with a high probability of sampling
the optimal bitstring. This is desired since we are looking for the best solution
to the problem. In Fig. 5.1, we see the probability distribution of an optimized
variational state |γ, β⟩ for a 19- and 21-qubit instance with p = 3. The prob-
ability of sampling the best bitstrings is marked with red. The inset shows
the probability for sampling any of the two best bitstrings (dark red, leftmost
bin) and the probabilities for sampling any of the other feasible bitstrings (light
red). Figure 5.1 shows that the optimization fails to distinguish between differ-
ent feasible solutions. All feasible bitstrings have a similar probability of being
sampled. Thus, the algorithm does not improve on sampling randomly a valid
solution. Further, the resources needed for the problem instances used in the
appended paper are summarized in Table 4.1. Considering the size of realistic
problem instances discussed in Section 4.3, we see that this goes beyond what
current NISQ devices can provide with 50 to 100 qubits.

We find that constrained optimization problems are particularly challenging
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for the QAOA since much work is spent on staying in the subspace of physi-
cally viable solutions. The quantum alternating operator ansatz suggests some
novel mixers and initial states, but as shown in [29, 31], also these methods are
sensitive to the inherent noise of NISQ devices.





Chapter 6

Conclusion

In this thesis, we study a hybrid quantum-classical algorithm, the QAOA, for
application to the HVRP. We discuss the working principles of the QAOA as well
as how an Ising model is used in the framework of hybrid quantum-classical algo-
rithms to solve many different combinatorial optimization problems. Chapter 2
introduces the Ising model and its connection to many NP-complete problems.
We review the different components of the QAOA and its relation to the AQO
algorithm in Chapter 3. As a candidate problem to test the QAOA, we choose
the HVRP. Based on its mathematical description, we construct the Ising model
of the HVRP in Chapter 4.

The focus of the appended paper is to introduce a novel Ising mapping for
the HVRP. Further, we simulate this mapping for toy instances and see that
obtaining the optimal solution with high probability is challenging. One problem
is that the energetics of the Hamiltonian is dominated by the constraints, which
makes the algorithm optimize primarily to satisfy these. Resolving the finer
energy scale corresponding to the actual cost thus becomes challenging. The
algorithm uses most of its computational capacity to stay in the subspace of
feasible solutions and thus fails to optimize for the actual problem, which is to
find approximate solutions in the subspace of physical solutions.

In the context of the TSP, the subspace of physical solutions entails all
the solutions that visit each city exactly once, and for the HVRP, all solutions
that satisfy the constraints of visiting each customer as well as not exceeding the
maximum allowed capacity of each truck. This opens up the question of whether
the expectation value or energy of the variational state is a good signal for the
classical optimizer to perform its work. This might be the case for unconstrained
problems, but, especially in the case of constrained optimization, the system’s
total energy can mislead the optimization to solely focus on eliminating high-
energy unphysical solutions without focusing on the actual optimization task at
hand [129, 130].

Looking to the future, It would be interesting to see if a transformation ex-
ists for constrained optimization problems where the constraints are encoded
directly into the Hamiltonian and not via a high energy penalty. Further, envi-
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sioning an utterly different encoding making use of existing symmetries of the
HVRP could enhance its performance. For example, if we consider again the
TSP problem introduced in Section 2.3.2 and focus on the form of a valid so-
lution shown in Eq. (4.20), we clearly see that for each block of N cities, we
have a single non-zero entry. Thus the parity of this block must be odd. Substi-
tuting yiα with yiαyi−1α in Eq. (2.8) transforms the Hamiltonian where every
Nth qubit will be constant when measured and can thus be removed from the
circuit. Therefore, we can reduce the number of qubits but with the drawback
of more complicated multi-qubit interactions. Possibly there are better ways of
representing the HVRP. Much exciting work aims to investigate and manipulate
the energy landscape of VQAs [5, 131, 132]. This simplifies the optimization
procedure and can significantly boost the algorithm’s performance.

We have used state-of-the-art hybrid quantum-classical algorithms to im-
prove approximations of classical optimization problems. Still, we are only
beginning to realize the potential of this research field.



Bibliography

[1] P. Benioff, “The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines”, Journal of Statistical Physics 22, 563–591 (1980).

[2] D. Deutsch, “Quantum theory, the Church–Turing principle and the uni-
versal quantum computer”, Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences 400, 97–117 (1985).

[3] R. P. Feynman, “Simulating physics with computers”, International Jour-
nal of Theoretical Physics 21, 467–488 (1982).

[4] S. Lloyd, “Universal Quantum Simulators”, Science 273, 1073–1078
(1996).

[5] R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla, Y. B. Kim, and
H. Yuen, “Exploring Entanglement and Optimization within the Hamil-
tonian Variational Ansatz”, PRX Quantum 1, 020319 (2020).

[6] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig,
I. Rungger, G. H. Booth, and J. Tennyson, “The Variational Quantum
Eigensolver: A review of methods and best practices”, arXiv:2111.05176
(2021).

[7] C. Cade, L. Mineh, A. Montanaro, and S. Stanisic, “Strategies for solving
the Fermi-Hubbard model on near-term quantum computers”, Physical
Review B 102, 235122 (2020).

[8] C.-Y. Park, “Efficient ground state preparation in variational quantum
eigensolver with symmetry breaking layers”, arXiv:2106.02509 (2021).

[9] P. Shor, in Proceedings 35th Annual Symposium on Foundations of Com-
puter Science (IEEE Comput. Soc. Press, 1994) pp. 124–134.

[10] V. Mavroeidis, K. Vishi, M. D. Zych, and A. Jøsang, “The Impact of
Quantum Computing on Present Cryptography”, International Journal of
Advanced Computer Science and Applications 9, 405–414 (2018).

https://doi.org/10.1007/BF01011339
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PRXQuantum.1.020319
https://arxiv.org/abs/2111.05176
https://doi.org/10.1103/PhysRevB.102.235122
https://doi.org/10.1103/PhysRevB.102.235122
https://arxiv.org/abs/2106.02509
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.14569/IJACSA.2018.090354
https://doi.org/10.14569/IJACSA.2018.090354


36 Bibliography

[11] M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia, in Ad-
vances in Cryptology – CRYPTO 2016, edited by M. Robshaw and J. Katz
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2016) pp. 207–237.

[12] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea,
A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K.
Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik, “Noisy intermediate-scale
quantum algorithms”, Reviews of Modern Physics 94, 015004 (2022).

[13] A. Montanaro, “Quantum algorithms: An overview”, npj Quantum Infor-
mation 2, 15023 (2016).

[14] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for Linear
Systems of Equations”, Physical Review Letters 103, 150502 (2009).

[15] M. Schuld and F. Petruccione, “Quantum ensembles of quantum classi-
fiers”, Scientific Reports 8, 2772 (2018).

[16] V. Saggio, B. Asenbeck, A. Hamann, T. Strömberg, P. Schiansky, V. Dun-
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Quantum computing offers new heuristics for combinatorial problems. With small- and
intermediate-scale quantum devices becoming available, it is possible to implement and test these
heuristics on small-size problems. A candidate for such combinatorial problems is the heterogeneous
vehicle routing problem (HVRP): the problem of finding the optimal set of routes, given a heteroge-
neous fleet of vehicles with varying loading capacities, to deliver goods to a given set of customers.
In this work, we investigate the potential use of a quantum computer to find approximate solutions
to the HVRP using the quantum approximate optimization algorithm (QAOA). For this purpose we
formulate a mapping of the HVRP to an Ising Hamiltonian and simulate the algorithm on problem
instances of up to 21 qubits. We find that the number of qubits needed for this mapping scales
quadratically with the number of customers. We compare the performance of different classical op-
timizers in the QAOA for varying problem size of the HVRP, finding a trade-off between optimizer
performance and runtime.

I. INTRODUCTION

Devices utilizing quantum-mechanical effects provide
a new computational paradigm that enables novel algo-
rithms and heuristics [1–5]. The ongoing development of
such devices [6–9] provides an opportunity to test these
algorithms on small problem instances, which could lead
to new solutions to hard optimization problems. In this
work, we show how a quantum approximate optimiza-
tion algorithm (QAOA) [10] can be employed to find ap-
proximate solutions for the heterogeneous vehicle routing
problem (HVRP) [11]. Our approach can be utilized on
both noisy intermediate-scale quantum (NISQ) [12] com-
puters and quantum annealers [13]. It also paves the way
for implementing challenging instances of the HVRP on
larger quantum computers in the future.

The HVRP belongs to the well known and extensively
studied class of optimization problems known as the ve-
hicle routing problem (VRP) [14] in the field of logistics.
The VRP captures the problem of finding the optimal set
of routes for a fleet of vehicles to travel in order to deliver
goods to a given set of customers. This problem is also
found in supply-chain management and scheduling [15].
Variants of the VRP include the capacitated vehicle rout-
ing problem (CVRP), in which the vehicles have a lim-
ited carrying capacity [14], and the HVRP studied here,
in which the fleet composition is unknown and capacity
constraints are given [11, 16]. All these VRPs are very
challenging since they belong to the complexity class NP-
hard [17].

∗ davidfi@chalmers.se
† mats.granath@physics.gu.se
‡ anton.frisk.kockum@chalmers.se

Due to its industrial relevance, there has been tremen-
dous effort devoted to finding good approximate solu-
tions to the VRP and its variants through various heuris-
tics [18, 19], e.g., construction heuristics [20], improve-
ment heuristics [21], and metaheuristic top-level strate-
gies [22]. In construction heuristics, e.g., the Clarke and
Wright saving algorithm [23], one starts from an empty
solution and iteratively extends it until a complete so-
lution is obtained. In improvement heuristics, one in-
stead starts from a complete solution (often generated
by a construction heuristic) and then try to improve fur-
ther through local moves. There are several software li-
braries and tools that implement ready-to-use solvers for
all these methods [24–26]. Moreover, exact methods for
solving the VRP and its variants have also been investi-
gated [27].

In this article, we instead investigate a heuristic
method for solving the HVRP on a quantum computer.
Such devices, including both programmable quantum
processors [4, 8, 28] and quantum annealers [13], are
gradually becoming available due to the recent advances
in controlling quantum systems. The current quantum
computers are known as NISQ devices [12], since they
are largely limited by their intermediate number (sev-
eral tens [6, 29–33]) of controllable qubits, limited con-
nectivity, imperfect qubit control, short coherence times,
and minimal error correction. Only a subset of known
quantum algorithms can run on these near-term de-
vices [5, 34]; other algorithms require more advanced
hardware.

The heuristic method we apply to the HVRP here is an
example of a variational quantum algorithm (VQA) [35],
which is a promising class of quantum algorithms that are
compatible with NISQ devices. These algorithms gener-
ally need access to a description of the problem, and also



2

possibly to a set of training data. With this in hand,
the first step is to define a cost (or loss) function C,
which encodes the solution to the problem. Next, one
proposes an ansatz, i.e., a quantum operation depending
on a set of continuous or discrete parameters θ that can
be optimized. This ansatz is then optimized in a hybrid
quantum-classical loop to solve the optimization task

θ∗ = argmin
θ

C(θ). (1)

Such algorithms have emerged as a leading contender
for obtaining quantum advantage [35] within the con-
straints of NISQ devices. By now, variational quantum
algorithms (VQAs) have been proposed for numerous ap-
plications that researchers have envisioned for quantum
computers, e.g., in chemistry, logistics, and finance [36–
40].

The type of VQA we employ here is the QAOA [10],
which is a heuristic that can approximate the solution to
many combinatorial problems, including VRPs. Current
research in this area ranges from applications on large-
scale VRP instances with a quantum annealer [41] to
more specific variants of the VRP, such as the CVRP [42]
or the multi-depot capacitated VRP [43]. These approxi-
mation algorithms have been tested on quantum anneal-
ers [42] and NISQ devices [44]. There have also been
several experimental realizations of the QAOA applied
to other optimization problems [45–49].

However, a problem description suited for the QAOA,
an Ising Hamiltonian [50–52] (describing the energy of
interacting two-level systems), seems to be lacking for
the case of the HVRP. In this work, we provide such a
mapping for the HVRP, which can be utilized on both
NISQ computers and quantum annealers. We show that,
in this formulation, the number of qubits scales quadrat-
ically with the number of customers. To explore the per-
formance of the QAOA applied to the HVRP, we simulate
problem instances with up to 21 qubits. We check how
this performance depends both on the choice of classi-
cal optimizer and on the depth of the quantum circuit.
This work lays the foundation for finding approximate
solutions to large problem instances of the HVRP when
sufficiently advanced quantum-computing hardware be-
comes available.

The paper is organized as follows. In Sec. II, we intro-
duce the HVRP and its mathematical formulation. Then,
in Sec. III, we develop the Ising formulation of the HVRP.
In Sec. IV, we review the QAOA and describe how it can
be used to find approximate solutions to the HVRP. In
Sec. V, we present numerical results from applying the
QAOA to a few HVRPs of different sizes. Finally, we
conclude the paper and give an outlook for future work
in Sec. VI.

II. THE HETEROGENEOUS VEHICLE
ROUTING PROBLEM

The HVRP can be formulated as follows [11]. A fleet
of vehicles is available at a depot, which becomes node
0 of a complete graph G = (N , E) (we do not consider
multiple depots). Here, N = {0, ..., n} is the set of nodes
or vertices, such that the n customers that the fleet of
vehicles should deliver goods to constitute the customer
set N0 = N \ {0}, and E = {(i, j) : 0 ≤ i, j ≤ n, i 6= j}
denotes the set of edges or arcs. Each customer i has a
positive demand qi.

The set of available vehicle types is V = {1, ..., k}, with
mv vehicles of type v ∈ V. When using these vehicles to
deliver goods to meet the customer demand, there are
several costs and constraints that need to be taken into
account. First, there is the fixed vehicle cost tv, i.e., the
cost that is independent of the distance travelled by the
vehicle of type v. Then, there is the vehicle capacity Qv.
Note that different vehicle types can have the same capac-
ities, but differ in, e.g., the type of powertrain used [16].
Finally, there is the cost cvij of travelling on edge (i, j)
with the vehicle of type v. To describe all constraints, it
is also useful to introduce the binary variables xvij , which
are equal to 1 if and only if a vehicle of type v travels on
edge (i, j). Furthermore, we denote by fvij the amount
of goods that are leaving node i to go to node j using
truck v, while the amount of goods entering the node is
denoted fvji.

Using this notation, the HVRP is to minimize the cost

Ctot =
∑

v∈V

∑

j∈N0

tvxv0j +
∑

v∈V

∑

(i,j)∈E
cvijx

v
ij , (2)

subject to the constraints

∑

j∈N0

xv0j ≤ mv v ∈ V , (3)

∑

v∈V

∑

j∈N
xvij = 1 i ∈ N0 , (4)

∑

v∈V

∑

i∈N
xvij = 1 j ∈ N0 , (5)

∑

j∈N0

xvj0 =
∑

j∈N0

xv0j v ∈ V , (6)

∑

v∈V

∑

j∈N
fvji −

∑

v∈V

∑

j∈N
fvij = qi i ∈ N0 , (7)

qjx
v
ij ≤ fvij ≤ (Qv − qi)xvij (i, j) ∈ E , v ∈ V , (8)

xvij ∈ {0, 1} (i, j) ∈ E , v ∈ V , (9)

fvij ≥ 0 (i, j) ∈ E , v ∈ V . (10)

The objective function in Eq. (2) is the sum of the fixed
vehicle cost for the vehicles used to deliver goods and
the total (variable) travel cost for those vehicles. The
constraint in Eq. (3) ensures that the maximum number
of available vehicles for a specific vehicle type is not ex-
ceeded. The constraints in Eqs. (4) and (5) make sure
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that each customer is visited exactly once, and the con-
straint in Eq. (6) sees to that all vehicles leaving the de-
pot return to it after delivering their goods. The con-
straints in Eqs. (7) and (8) ensure a correct commodity
flow that meets all customer demands. Finally, the con-
straints in Eqs. (9) and (10) enforce the binary form and
non-negativity restrictions on the variables.

III. ISING FORMULATION FOR THE HVRP

All optimization problems in the complexity class NP
can be reformulated as the problem of finding the ground
state (lowest-energy configuration) of a quantum Hamil-
tonian [52]. This is also the method we use for the HVRP
in this work. Since the HVRP combines two distinct
problems, a routing problem and a capacity problem, we
have to derive an Ising Hamiltonian that captures both
these problems simultaneously.

A. Routing problem

For the routing problem, we start from the travelling
salesperson problem (TSP) formulation given in Ref. [52]
with the Hamiltonian H encoding the total cost:

H = HA +HB , (11)

HA = A
N∑

i=1

(
1−

N∑

α=1

yiα

)2

+A
N∑

α=1

(
1−

N∑

i=1

yiα

)2

+A
∑

(i,j)/∈E

N∑

α=1

yiαyjα+1 , (12)

HB = B
∑

(i,j)∈E
Wij

N∑

α=1

yiαyjα+1 , (13)

where N = |N | is the number of nodes including the de-
pot, A and B are positive constants, and W encodes the
distances between the nodes. The index i represents the
nodes and α the order in a prospective cycle. The binary
variables yiα can be referred to as ’routing variables’ indi-
cating in which order of the cycle node i is visited. There
are N2 variables, with yi,N+1 ≡ yi,1 for all i, such that
the route ends where it starts. The last term in Eq. (12),
which ensures that non-existent edges are not used, can
be neglected for the problem we investigate because we
assume a fully connected graph.

To combine this formulation with the mathematical
formulation of the HVRP given in Eqs. (2)–(10), we need
a map from the decision variable y to x. The map we use

is

xvij =

N0−1∑

α=1

yviαy
v
jα+1 , (14)

xv0i = yvi1 +

N0∑

α=2


1−

N0∑

j=1
j 6=i

yvjα−1


y

v
iα , (15)

xvi0 = yviN0
+

N0−1∑

α=1

yviα


1−

N0∑

j=1
j 6=i

yvjα+1


 . (16)

The summation in Eq. (14) is not equal 0 if and only if
i and j are subsequent stops on the same route. Equa-
tions (15) and (16) ensure that the first and last stops are
automatically connected to the depot (assuming a single
depot). Remember that the index 0 denotes the depot
and the index 1 the first city (node) in the list of cities
(nodes).

We can now write the Ising formulation for the rout-
ing problem. Here we extend the formulation compared
to previous works to capture different types of trucks,
not just multiple trucks of the same type (having the
same capacity) [52, 53]. Let V = |V| be the number
of trucks, where V now is the set of vehicles chosen for
the optimization (instead of the set of vehicle types, as
in Section II), and denote by N0 = |N0| the number of
customers to visit. The indices v now represent a specific
truck of a specific type (instead of just a specific type, as
in Section II). The Ising Hamiltonian we derive is then

H = HA +HB +HC +HD , (17)

HA = A

V∑

v=1

N0∑

i=1

N0∑

j=1

cvij

N0−1∑

α=1

yviαy
v
jα+1

+A

V∑

v=1

N0∑

i=1

cv0i


y

v
i1 +

N0∑

α=2


1−

N0∑

j=1
j 6=i

yvjα−1


y

v
iα




+A
V∑

v=1

N0∑

i=1

cvi0


y

v
iN0

+

N0−1∑

α=1

yviα


1−

N0∑

j=1
j 6=i

yvjα+1





 ,

(18)

HB = B

N0∑

j=1

V∑

v=1

tv
N0∑

α=2

(
1−

N0∑

i=1

yviα−1

)
yvjα , (19)

HC = C

N0∑

i=1

(
1−

N0∑

α=1

V∑

v=1

yviα

)2

, (20)

HD = D

N0∑

α=1

(
1−

N0∑

i=1

V∑

v=1

yviα

)2

. (21)

The Hamiltonian H in Eq. (17) is composed of differ-
ent parts. Here, HA in Eq. (18) captures the first part
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y31,1 y31,2 y31,3 · · · y31,N0

y32,1 y32,2 y32,3 y32,N0

y33,1 y33,2 y33,3 y33,N0

...
. . .

y3N0,1
y3N0,2

y3N0,3
y3N0,N0

y21,1 y21,2 y21,3 · · · y21,N0

y22,1 y22,2 y22,3 y22,N0

y23,1 y23,2 y23,3 y23,N0

...
. . .

y2N0,1
y2N0,2

y2N0,3
y2N0,N0

y11,1 y11,2 y11,3 · · · y11,N0

y12,1 y12,2 y12,3 y12,N0

y13,1 y13,2 y13,3 y13,N0

...
. . .

y1N0,1
y1N0,2

y1N0,3
y1N0,N0 V

α

i

1

FIG. 1. Visualization of the decision variables yvij in the Ising
formulation of the routing problem.

of the original mathematical formulation, i.e., the min-
imization of the variable cost. The first term estimates
the variable cost for traveling between the different cus-
tomers/cities, while the second and third terms measure
the cost of leaving and arriving at the depot. For this
particular mapping it is necessary to define the set of
vehicles that are used for the optimization beforehand.
Therefore, we can neglect the inequality constraint de-
fined in Eq. (3) from the original formulation, which en-
sures that the number of vehicles of a specific type does
not exceed the number of available vehicles. Similarly,
HB in Eq. (19) estimates the fixed costs of each vehicle
leaving the depot [see Eq. (2)]. Note that the prefactors
A and B must be equal, in order not to rescale the rel-
ative fixed versus variable costs. The constraint given
by HC in Eq. (20) ensures that each city is visited ex-
actly once. Furthermore, HD in Eq. (21) ensures that
each city has a unique position in the cycle and that not
more than one city can be travelled to at the same time.
To make sure that the constraints are not violated, we
require 0 < max(HA +HB) < C,D.

The decision variables yvij are positioned as shown in
Fig. 1. This picture allows us to see the operations that
are taking place when summing over specific indices. As
an example, consider Eq. (20). First summing over the
indices v and α corresponds to a summation over these
two axes. After the summation it is easy to see that if
the goal is to visit each customer/city once, then each
element of the length N0 array must be one.

One notable technicality about the formulation is that
certain solutions that may be considered valid are ex-
cluded by the constraint in Eq. (21). However, the ex-
cluded solutions are physically equivalent to some allowed
solution, as illustrated by the following simple example

Depot

c1

c2

c3
v1

v2

FIG. 2. Visualization of a problem instance with a suggested
solution. The first truck v1 visits city c2 and the city c3 before
returning to the depot. The second truck v2 only visits city
c1.

(see Fig. 2) with two trucks over three cities

y =






0 0 0
1 0 0
0 1 0


 ,




0 0 1
0 0 0
0 0 0




 , (22)

and

y =






0 0 0
1 0 0
0 1 0


 ,




0 1 0
0 0 0
0 0 0




 . (23)

In both cases, the two different matrices describe the
routes of the two different vehicles and the order in which
they visit the different customers ci. They both represent
a physically valid solution where the first truck visits first
the second and then the third customer (v1 : c2 → c3),
while the second truck goes from the depot to the first
customer and then back to the depot (v2 : c1). The con-
straint in Eq. (21), however, rules out the latter represen-
tation as it has two non-zero entries for α = 2. If we want
to allow this larger set of viable representations, physi-
cally equivalent to solutions already allowed by Eq. (21),
we can replace that constraint by a reformulated one,

H ′D = D
V∑

v=1

N0∑

α=1

(
uvα −

N0∑

i=1

yviα

)2

, (24)

where we have introduced N2
0 additional auxiliary qubits

uvα. Especially in the NISQ era, where quantum resources
are scarce, it is important to encode the problem with as
few qubits as possible. Thus we do not consider Eq. (24)
a viable route for implementations, but use Eq. (21) for
the simulations in Section V.

B. Capacity problem

The capacity constraint is of a similar nature as the
constraints for the knapsack problem — both are de-
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scribed by an inequality constraint, which for the knap-
sack problem is to not add too many items to the knap-
sack and for the trucks to not overload the vehicles.
Therefore, we can use the formulation given in Ref. [52]
to model the inequality constraint introduced by the ca-
pacities.

The knapsack problem with integer weights is the fol-
lowing. We have a list of N objects, labeled by i, with
the weight of each object given by wi and its value by ci.
The knapsack has a limited capacity of W . The binary
decision variable xi denotes whether an item is contained
(1) in the knapsack or not (0). The total weight of the
knapsack is

W =
N∑

i=1

wixi (25)

with a total value of

C =

N∑

i=1

cixi . (26)

The NP-hard knapsack problem is to maximize C while
satisfying the inequality constraint W ≤W .

We can write an Ising formulation of the knapsack
problem as follows. Let zn for 1 ≤ n ≤ W be a binary
variable which is 1 if the final weight of the knapsack is
n and 0 otherwise [52]. The Hamiltonian whose energy
we seek to minimize is then

H = HA +HB , (27)

HA = A

(
1−

W∑

n=1

zn

)2

+A

(
W∑

n=1

nzn −
N∑

i=1

wixi

)2

,

(28)

HB = −B
N∑

i=1

cixi . (29)

To make sure that the hard constraint is not violated, we
require 0 < max(|HB |) < A.

1. Reducing the number of auxiliary qubits

It is possible to reduce the number of variables re-
quired for the auxiliary variable zn. We want to encode
a variable which can take the values from 0 to W . Let
M ≡ blog2(N)c. We then require M + 1 binary variables
instead of N binary variables:

N∑

n=1

nzn →
M−1∑

n=0

2nzn +
(
N + 1− 2M

)
zM . (30)

Note that if N 6= 2M+1−1, degeneracies are possible [52].
Within this log formulation, several of the auxiliary vari-
ables can be 1, so the first part of Eq. (28) should not be

included as this constraint enforces a one-hot encoding
(exactly one element of the bitstring is one and the rest
are zero) of the bitstrings.

We can make use of the inequality constraint given
in the knapsack formulation [see Eq. (28)] to encode the
capacity constraints for the HVRP. Therefore, we can
neglect HB [see Eq. (29)] and only consider HA [see
Eq. (28)]. Let Qv be the maximum capacity of vehicle v.
The Hamiltonian then becomes

HA = A
∑

v

(
1−

Qv∑

k=0

zvk

)2

+A
∑

v




Qv∑

k=0

k · zvk −
∑

α,i

qiy
v
iα




2

,

(31)

or equivalently using the log formulation,

HA = A
∑

v



Mv−1∑

k=0

2kzvk + (Qv + 1− 2M
v

)zvMv −
∑

α,i

qiy
v
iα




2

.

(32)

Note that by using the log trick, the decision variable zvk
switches from a one-hot encoding to a binary representa-
tion.

C. The full Ising Hamiltonian for the HVRP

We are now ready to write down the full Hamiltonian
for the HVRP. The full Ising Hamiltonian HC contains
five terms, where the first term HA captures the actual
optimization problem and the other terms are penalty
terms to ensure that invalid configurations are penalized
with a high energy:

HC = HA +HB +HC +HD +HE , (33)

HE = E

V∑

v=1

(
Mv−1∑

k=0

2kzvk + (Qv + 1− 2M
v

)zvMv

−
N0∑

α=1

N0∑

i=1

qiy
v
iα

)2

(34)

For the terms HA to HD, see Eqs. (18)–(21).
The formulation presented in this paper combines the

capacity problem and the routing problem in one Ising
Hamiltonian. Similarly, a unified approach is also at-
tempted in Ref. [42] with the difference that the authors
add a constraint for clustering the customers as well.
Here, by using the decision variables yviα that indicate
the position in a prospective cycle instead of xv that is
1 if and only if a vehicle traverses from customer i to j,
we circumvent the subtour-elimination constraint. This
constraint needs to loop through all possible subtours as
it is presented in Ref. [43]. Moreover, a solution obtained
with our mapping does not necessarily use all the vehi-
cles that are available. It can find the most cost efficient
subset of vehicles needed to solve the task.
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D. Resources

The required resources (qubits) for solving the HVRP
with our approach can be separated into three parts. The
first part comes from encoding the connections between
the customers and scales with N2

0 ·V . Additionally, aux-
iliary qubits are required for the constraining term HE .
The overall number of qubits, #q, required are

#q = N2
0 · V +

V∑

v=1

blog2Q
vc+ 1

︸ ︷︷ ︸
HE

. (35)

Using the alternative formulation for HD [see Eq. (24)]
adds more auxiliary qubits (N0 · V ), yielding

#q = (N0 + 1)N0V +
V∑

v=1

blog2Q
vc+ 1 . (36)

As a comparison, we note that modern high-
performance optimizers (classical computers) for the
HVRP can solve problem instances with more than 1,000
customers [54, 55]. For a quantum computer to solve
problem instances of this size, it would need at least mil-
lions of controllable qubits. Systems of this size are likely
still several years away from being realized.

IV. THE QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

The QAOA belongs to the class of hybrid quantum-
classical algorithms, which combine quantum and classi-
cal processing. The closed-loop optimization of the clas-
sical and quantum devices is visualized in Fig. 3. The
quantum subroutine, operating on n qubits, consists of a
consecutive application of two non-commuting operators
defined as [10]

U(γ) ≡ e−iγHC γ ∈ [0, 2π] , (37)

U(β) ≡ e−iβHM =

n∏

j=1

e−iβσ
x
j β ∈ [0, π] , (38)

where σx denotes the PauliX matrix [56]. This operation
is analogous to the classical NOT gate. It changes the |0〉
state to the |1〉 state, and vice versa. The operator U(γ)
gives a phase rotation to each bit string depending on the
cost of the string, while the mixing term U(β) scrambles
the bit strings. We call HC the cost Hamiltonian and HM

the mixing Hamiltonian. The bounds for γ and β are
valid if HC has integer eigenvalues [10]. The formulation
of HC for the HVRP is given by Eq. (33).

The initial state for the algorithm is a superposition
of all possible computational basis states. This superpo-
sition can be obtained by first preparing the system in

TABLE I. Information about the three different problem in-
stances used in simulations.

Problem instance I II III

Number of cities 3 4 3

Number of trucks 1 1 2

Number of qubits for routing 9 16 18

Number of qubits for capacities 2 3 3

Total number of qubits 11 19 21

the initial state |0〉⊗n = |00 . . . 0〉 for all qubits and then
applying the Hadamard gate on each qubit:

(
H̃ |0〉

)⊗n
=

( |0〉+ |1〉√
2

)⊗n
≡ |+〉⊗n , (39)

where ⊗ denotes the tensor product and H̃ the
Hadamard gate.

For any integer p ≥ 1 and 2p angles γ1 . . . γp ≡ γ and
β1 . . . βp ≡ β, we define the angle-dependent quantum
state

|γ, β〉 = U(βp)U(γp) . . . U(β1)U(γ1) |+〉⊗n . (40)

The quantum circuit parametrized by γ and β is then
optimized in a closed loop using a classical optimizer.
The objective is to minimize the expectation value of the
cost Hamiltonian HC [10], i.e.,

(γ∗, β∗) = argmin
γ,β

E(γ, β) , (41)

E(γ, β) = 〈γ, β|HC |γ, β〉 . (42)

The problem of calculating the energy of 2#q possible
bit strings (solutions) is thus reduced to a variational
optimization over 2p parameters.

V. BENCHMARKING QUANTUM
APPROXIMATE OPTIMIZATION FOR THE
HETEROGENEOUS VEHICLE ROUTING

PROBLEM

In this section, we show numerical results from noise-
free simulations of the QAOA applied to the HVRP. We
examine three different problem instances, labelled I, II,
and III, which use 11, 19, and 21 qubits, respectively.
Table I contains information about the number of cities,
available trucks, and the overall number of qubits needed
to encode these problem instances in an Ising Hamilto-
nian using the scheme we have described in Section III.
For the simulations, we consider realistic fuel consump-
tion, gas prices, and fixed costs for each truck type, as
detailed in Appendix A. A graphical representation of
the problem instances is shown in Fig. 4.

For the simulations we consider two different ap-
proaches. One is to only solve for satisfying the con-
straints. The other is to solve the full problem, opti-
mizing not only for feasible solutions, but for the best
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QuantumComputer
level 1 level p

Classical Computer

. . .

. . .
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Objective

Update variational parameter
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0

FIG. 3. A schematic description of the QAOA, visualizing the interplay between the quantum device and the classical computer.
The quantum computer implements a variational state formed by applying p parameterized layers of operations. Each layer
has operations involving the cost Hamiltonian HC and a mixing Hamiltonian HM , weighted by the angles γ and β, respectively.
Measurements of the variational state and calculations of its resulting energy are used to guide the classical optimizer, which
minimizes the energy in a closed-loop optimization.
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FIG. 4. The three problem instances and some solutions for them obtained with low-depth QAOA. A visual representation,
with correct scaling, of the three problem instances that are considered for the simulations. The optimal solution is shown.
Each truck carries a predefined amount of goods and brings it to the respective customers. The pallets indicate that one item
has to be carried to the customer. The crates show how much goods is carried by each truck. A color coding indicates the
route assignment for problem instance III. The optimal order in which the customers are visited is indicated by arrows (the
reverse order is also optimal).

solution. This stepwise approach, starting with the con-
straints [Eqs. (20), (21), and (34)] and then including the
optimization part [(Eqs. (18)–(19)], helps us understand
whether some parts of the full problem contribute more
to its difficulty than others.

For the first approach, finding satisfying solutions, we
neglect the actual optimization part of the problem, i.e.,
minimizing the cost of the routing for the solution. We
set the prefactors of the different parts of the Hamilto-
nian [Eqs. (20), (21), and (34)] to 1. The eigenvalues of
the Hamiltonian are integers. This allows us to restrict

the search space for β and γ in Eqs. (37)–(38) to [0, π]
and [0, 2π], respectively. For the full problem, we cannot
make use of this simplification.

The second approach is to solve the full problem with
the optimization included [Eqs. (18)–(21) and Eq. (34)].
Additionally, we rescale the cost function of the opti-
mization [Eqs. (18)–(19)] such that it only takes values
between 0 and 1. Note that for rescaling the cost, we
have to evaluate the cost for each possible solution, which
makes it necessary to brute-force the problem. This is
only feasible for small problem instances. In a real-world
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application, this rescaling procedure cannot be applied
and therefore it might be necessary to optimize over the
penalty weights as well [53, 57]. The eigenvalues are not
integer values anymore and therefore the entire search
space for the variational parameters must be explored.

A. Energy landscape

To illustrate the difficulty of finding good variational
parameters for the QAOA, we show in Fig. 5 the energy
landscape for p = 1 for each problem instance consid-
ering the full problem [Fig. 5(a)] and the capacity con-
straint in isolation [Fig. 5(b)]. We evaluate the expec-
tation value E(γ, β) of the cost Hamiltonian on a grid
{γ, β} ∈ [0, 2π] × [0, π]. Note that for the full problem,
the entire space of variational parameters must be con-
sidered, but for this visualization we constrain it to the
range mentioned.

The states with the lowest energy are marked with dark
blue in Fig. 5. Each surface plot shows four distinct op-
tima. Moreover, the variational parameters are concen-
trated in the same region for all three problem instances,
both for the full problem and for only the capacity con-
straint. The range for optimal parameters narrows with
increasing problem size. Similar behaviour has been ob-
served in Ref. [58]. The overall shape of the energy land-
scape does not change significantly with varying problem
size, but the overall expectation value increases. This is
not surprising, since with increasing problem size there
are many more constraints to satisfy, goods to deliver,
and trucks to choose from.

As discussed in Section III, the HVRP consists of two
problems, a routing problem and a capacity problem.
The capacity problem is analogous to the constraints of
the knapsack problem [52]. To better understand the en-
ergy landscapes for the capacity part of the three problem
instances shown in Fig. 5(b), we now take a closer look
at the landscape of a particular knapsack problem. The
problem is: given a knapsack with a maximum capacity
of 5, choose from the list of items [4, 3, 2, 1] the ones that
satisfy the capacity constraint. Seven qubits are needed
to encode the problem, making use of the log trick intro-
duced in Section III B 1.

Figure 6 shows the energy landscape for this knapsack
problem. The plot shows a rapidly oscillating energy
landscape. It is clear that many optimizers will struggle
to find the global optimum in this landscape. We argue
that with increasing complexity of the problem instances
for the HVRP, maneuvering the landscape of the capacity
constraint becomes a difficult problem. In Fig. 5(b) we
do not observe this behaviour yet, but this is simply due
to the fact that the problem instances we consider are
small (see Table I). To obtain a landscape that is easier to
handle for the classical optimizer, it might be necessary
to relax the knapsack constraint or to find a different
formulation to encode the capacity constraint [59].

B. Increasing the circuit depth

It has been shown that for a circuit depth of p = 1,
the QAOA cannot outperform classical optimization al-
gorithms [10, 60]. For actual applications of the QAOA,
it is therefore necessary to go to a circuit depth beyond
p = 1.

Before we investigate p > 1, we start with the lowest
possible circuit depth of p = 1. In Fig. 7(a) and Fig. 7(b),
we show a histogram of the probability distribution cre-
ated by the variational circuit for finding solutions satis-
fying all constraints, in the cases where the cost function
encodes only the constraints and the full problem, respec-
tively. We show the probability of sampling bitstrings
with a specific cost. Note that there can be several bit-
strings leading to a particular cost. The probability of
sampling any of the feasible bitstrings is shown in red
and the rest of the optimized distribution is depicted in
blue. As a comparison, we show the probability distri-
bution for a variational state in the |+〉 state, meaning
all bitstrings are sampled with uniform probability (or-
ange). The difference between these two distributions is
marginal. Thus, adding the cost terms [Eqs. (18)–(19)] to
the optimization problem does not alter the overall per-
formance of the algorithm when it comes to satisfying
the constraints. This is perhaps not so surprising when
considering that due to the rescaling of the cost Hamil-
tonian, the costs not associated with constraints impact
the overall shape of the energy landscape less.

The optimized probability distribution is shifted to the
left compared to the random distribution. Thus, sam-
pling from the optimized variational state gives solutions
with overall lower energy compared to random sampling
of bitstrings. Moreover, for the small problem instance
with 11 qubits, it is possible to sample valid bitstrings
with a probability of approximately 3 %. For the 19- and
21-qubit problem instances, the probability of sampling a
valid bitstring is about an order of magnitude less. This
is not surprising since we are limiting the algorithm to a
shallow circuit depth.

Next, we go to a circuit depth above 1. Here we con-
sider in Fig. 8 and Fig. 9 finding feasible solutions and
the best solutions, respectively. We shows how the vari-
ational state changes with increasing circuit depth from
p = 1 to p = 5 for the three problem instances [see Fig. 4].
Additionally, we show for Fig. 8 an inset focusing on the
low-energy part of the distribution of the variational state
and for Fig. 9 an inset focusing on all feasible bitstrings.
Again, the bitstrings we are aiming to sample are marked
in red and the rest of the optimized distribution is de-
picted in blue.

For the 11-qubit instance, the probability of sampling
a valid bitstring reaches values up to 18 % for p = 5.
For the slightly larger instances (19 and 21 qubits), the
probability of sampling a valid bitstring does not exceed
5 % (see Fig. 8). For the more difficult problem of actu-
ally finding the optimal tour (not just a feasible tour),
the probability drops to 9 % for the 11-qubit instance,
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FIG. 5. Energy landscapes for the three problem instances with circuit depth p = 1. (a) The energy landscape for the full
HVRP [Eqs. (18)–(21) and Eq. (34)]. The expectation value E(γ, β) for the total cost depends on the classically optimized
angles γ and β. The periodicity is broken due to the non-integer eigenvalues for the cost Hamiltonian. (b) The energy landscape
for the capacity constraint only [Eq. (34)]. Here, the expectation value E(γ, β) describes the energy penalty for breaking the
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FIG. 6. The energy landscape for the knapsack problem [see
Eq. (28)] discussed in the main text with a circuit depth of
p = 1. The energy landscape is highly non-convex and finding
the global optimum is difficult for a classical optimizer.

while for the 19- and 21-qubit instances the probability
of sampling the ideal bitstring is below 1 % (see Fig. 9).

The inset in Fig. 9 shows that the algorithm cannot

distinguish between the different feasible solutions and
thus fails to optimize for the best solution. This might be
due to the very small energy gap between the lowest and
next lowest energy eigenstate, which is an artifact of the
rescaling of the cost we introduced earlier. The point of
this rescaling is to ensure that all feasible solutions have
lower energy than any solution violating any constraint.
Rigorous hyperparameter optimization might be neces-
sary to weight the cost and the constraints to circumvent
the problems introduced by the chosen rescaling [53].

The probability of sampling bitstrings with low cost
increases with increasing circuit depth, meaning that
the probability distribution shifts to lower-energy eigen-
states. This trend is visible in Fig. 8 and Fig. 9 as the
probability distribution shifts increasingly to the left with
increasing depth. It might be possible with increasing
circuit depth to obtain higher probabilities of sampling
optimal solutions at the expense of optimizing more vari-
ational parameters. This is in accordance with the theory
of adiabatic quantum optimization (AQO) — the perfor-
mance of the algorithm becomes better with more vari-
ational parameters. The drawback is that the optimiza-
tion problem becomes increasingly difficult and time-
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FIG. 7. (a) The probability distribution of the optimized variational state (red, blue) for p = 1. The color red shows the
probability for finding a valid solution to the routing problem, i.e., a solution satisfying all constraints. The blue color indicates
the overall outline of the optimized probability distribution. As a comparison, we show the probability distribution for a
variational state in the |+〉⊗n state, meaning all bitstrings are sampled with uniform probability (orange). (b) The probability
distribution of the optimized variational state considering the full problem (red, blue) for p = 1. The probability distribution
is binned such that i is the largest possible integer where i ≤ x holds, also denoted as bxc. That results in all feasible solutions
being binned to zero and all the others being binned to integers indicating the number of constraint violations.

consuming. It is therefore important to select a good
optimization method.

C. Performance comparison of classical optimizers

Optimizers for finding the variational parameters play
an important role in the context of VQAs. Much of the
current research aims to find optimizers that perform
well on these quantum circuits [61–64]. There is a rich
literature on optimizers for variational circuits propos-
ing different optimizers for different problems [35, 65].In
the following, we analyze the performance of simula-
tions using four different well-known optimizers: Nelder-
Mead [66], Powell [67], differential evolution [68], and
basinhopping [69]. The selected optimizers work differ-
ently: some use global search mechanisms consisting of
multiple random initial guesses while others use only a
single random initial guess as a starting point for the opti-
mization. These characteristics are crucial to understand
why the performance of the optimizer varies.

The Nelder-Mead method uses a geometrical shape
called a simplex to search the function space. With each
step of the optimization, the simplex shifts, ideally, to-
wards the region with a minimum. The Nelder-Mead
algorithm belongs to the class of gradient-free optimiz-
ers. The Powell optimzer works for non-differentiable
functions; no derivatives are needed for the optimization.
The method minimises the function by a bi-directional
search along each search vector. The initial search vec-
tors are typically the normals aligned to each axis. The
differential evolution algorithm is stochastic in nature
and does not rely on derivatives to find the minimum.
This algorithm often requires larger numbers of function
evaluations than conventional gradient-based techniques.
The basinhopping optimization algorithm is a two-phase
method, which couples a global search algorithm with a
local minimization at each step. For the simulations here
(including in the preceding sections), we used the BFGS
algorithm [70] as a local optimizer. This framework has
been proven useful for hard nonlinear optimization prob-
lems with multiple variables [71].
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FIG. 8. The probability distribution of the variational state |γ, β〉 for the 11- (left), 19- (middle) and 21-qubit (right) problem
instances as a function of the circuit depth p for obtaining feasible tours. The circuit depth increases from top p = 1 to bottom
p = 5 and shifts to lower-energy eigenstates with increasing circuit depth. The probability of sampling bitstrings that encode
the optimal solution is marked with red. The simulations were conducted with the classical optimizer basinhopping with the
local optimizer BFGS (see Section V C).
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FIG. 9. The probability distribution of the variational state |γ, β〉 for the 11- (left), 19- (middle), and 21-qubit (right) problem
instances as a function of the circuit depth p for finding the best tour. The circuit depth increases from top p = 1 to bottom
p = 5 and shifts to lower-energy eigenstates with increasing circuit depth. The probability of sampling the best bitstrings is
marked with red. The binning is done in the same way as in Fig. 7(b). The inset shows the probability for sampling any of the
two best bitstrings (dark red, leftmost bin) and the probabilities for sampling any of the other feasible bitstrings (light red).
The simulations were conducted with the classical optimizer basinhopping with the local optimizer BFGS (see Section V C).
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To speed up the optimization routines, we use the
optimized parameters from p − 1 as an intial guess for
the optimization of the variational circuits for p > 1,
as well as the optimized parameters from the 11-qubit
problem instance as an initial guess for the 19- and 21-
qubit instances. The concentration of variational pa-
rameters for the QAOA has been observed by many re-
searchers [58, 72]. It has been shown for a circuit depth
of p = 1, 2 that the variational parameters for small prob-
lem instances can be used to infer parameters for larger
problem instances [72]. This can significantly speed up
the optimization of the QAOA.

In Fig. 10(a), we show the success probability of finding
a viable bitstring as a function of the circuit depth p for
the 11-qubit problem instance. Similarly, we show the
success probability of sampling one of the two optimal
tours as a function of the circuit depth p in Fig. 10(b).
One of the optimal tours is shown in Fig. 4. The other
optimal solution is following the same path in reverse
order.

The results show in Fig. 10 clearly favours the opti-
mizers basinhopping and differential evolution. They
perform significantly better than the Nelder-Mead and
Powell optimization algorithms. This difference in per-
formance might be due to the global optimization routine
that these latter two algorithms use to find the optima.
The performance of the Nelder-Mead algorithm strongly
depends on the initial simplex and the simplex is usually
randomly generated. Depending on the starting point,
the performance can vary, but it usually cannot com-
pete with the solution quality of the basinhopping or
differential-evolution algorithms.

D. Runtime comparison of the classical optimizers

For applications it is also important to understand the
scaling of the runtime of the optimization routine with
increasing circuit depth. Here we benchmark the clas-
sical optimizers from the preceding subsection on this
measure. The result is shown in Fig. 11.

We see that the optimizers basinhopping and differ-
ential evolution need roughly one order of magnitude
more time for the optimization than the Nelder-Mead and
Powell algorithms. This is due to the many circuit queries
the former optimizers have to perform. The tradeoff be-
tween the runtime of the algorithm and its performance
becomes evident, as the slowest optimizers in terms of
runtime performed best in terms of success probability
(see Fig. 10). Moreover, the linear increase for all op-
timizers on the semi-log scale in Fig. 11 indicates that
the amount of time needed for the optimzation scales
exponentially with p. However, further investigation is
needed to confirm this statement. It might become a
difficult problem to tackle when a circuit depth beyond
p = 20 is considered.

As mentioned earlier, researchers are already investi-
gating how the optimization could be simplified or cir-

cumvented completely [58, 72]. The results here further
underlines the importance of such research.

VI. CONCLUSION

We have derived an Ising formulation for the heteroge-
neous vehicle routing problem (HVRP) under considera-
tion of all relevant constraints, enabling this problem to
be solved on a quantum computer. In our formulation,
the number of qubits needed to encode a problem in-
stance scales quadratically with the number of customers.
Therefore, quantum computers will need to have at least
millions of qubits to use our suggested encoding scheme
to solve problem instances that are at the limit of what
today’s classical high-performance optimizers can solve.
A quantum advantage could still be had with fewer qubits
for smaller problems if they could be solved faster on
a quantum computer than on a classical one, but the
present work did not give indications of such speed-ups
for small problems.

We simulated solving small instances of the HVRP and
with the quantum approximate optimization algorithm
(QAOA). We considered three distinct problems, requir-
ing 11, 19, and 21 qubits, respectively. We investigated
the performance of the algorithm with respect to two de-
sign choices: the classical optimizer and the depth p of
the quantum circuit.

For the choice of optimizer, we found that the basin-
hopping and differential-evolution algorithms seem well
suited to optimize the variational parameters of the quan-
tum circuit. However, this performance came at the
expense of comparably long optimization times. Fur-
thermore, our data indicates that the optimization time
needed to find suitable angles for the variational quan-
tum circuit increases exponentially with p, but further
investigation is needed to verify this scaling.

We have seen that routing with additional capacity
constraints is a difficult problem for the hybrid quantum-
classical approach to handle. The problem becomes more
evident when isolating the inequality constraint. Then
we can see that the energy landscape has multiple scat-
tered local minima. In future work, one might want
to consider a different formulation for the capacity con-
straint [59].

Moreover, Fig. 9 shows that the QAOA fails to dis-
tinguish solutions that satisfy all constraints but differ
in cost. This failure may be due to the small energy
gap between the different feasible solutions and could be
circumvented by restating the problem such that feasible
solutions are separated by larger energy gaps. One way of
achieving this goal is to conduct a rigorous hyperparam-
eter optimization to weight the cost and the constraints
accordingly. Similar ideas were explored for the knapsack
problem in Ref. [53].
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FIG. 10. Comparing different optimizers for the HVRP on the 11-qubit problem instance shown in Fig. 4. A probability of 1
means that a feasible bitstring is always sampled. (a) Success probability for finding a valid solution with increasing circuit
depth p. (b) Success probability for finding the best solution with increasing circuit depth p.
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FIG. 11. Runtime comparison for the four classical optimizers
tested in this work. The plot shows the runtime as a function
of circuit depth p.

VII. OUTLOOK

The classical optimization procedure is a central com-
ponent in all variational algorithms and key to their suc-
cess. Therefore, finding new optimizers is one interest-
ing area of research. Several works have investigated
machine-learning-based optimizers [64, 73, 74]. A study
of such optimizers for the HVRP could boost the perfor-
mance of the algorithm.

Even though we assumed a noise-free system, the
performance is not competitive with modern high-
performance heuristics [26, 54] which can solve instances
with more than 1,000 customers. Such optimizers are not
limited in the number of decision variables, but rather
by the running time for the optimization. However, the

problems we considered are too small for a meaningful
comparison. Furthermore, the assumption of a noise-free
system does not hold for NISQ computers and a decrease
in performance can be expected if the algorithm is exe-
cuted on such a device [12, 75]. An interesting topic for
future work would be to investigate the HVRP in com-
bination with QAOA under the assumption of a noisy
system. Moreover, running small problems on an actual
quantum computer could give a better view on the ap-
plicability of the QAOA to the HVRP and its competi-
tiveness with classical heuristics.

In Fig. 6, we could see that the knapsack constraint
creates an energy landscape with rapidly oscillating local
minima. This makes it difficult for many optimizers to
find a good approximate solution. It would be interesting
to investigate why this particular problem is difficult and
if it is possible to relax the knapsack constraint or refor-
mulate it such that the optimization landscape becomes
easier to maneuver.

Furthermore, the QAOA can be expanded to the quan-
tum alternating operator ansatz [76]. Investigating dif-
ferent mixer Hamiltonians for the HVRP could lead to a
better overall performance. Ideally, the mixer Hamilto-
nian would provide a framework that keeps the algorithm
in the subspace of allowed solutions [77]. Currently, the
standard mixer Hamiltonian used in this work makes the
algorithms explore every possible bitstring.

Finally, we note that for real-world applications it
might be necessary to consider multiple depots. There-
fore, another avenue to explore are more Ising formula-
tions that allow for solving different variations of VRPs.
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TABLE II. Fuel consumption f and corresponding cost croad
per 100km, the price cchass of the chassis as well as the loading
capacity [78] for each of the two different truck types consid-
ered in the simulations of this paper. Note that the loading
capacity does not take into account the size or weight of items
that can be carried by the truck. The information in this ta-
ble is used to determine the variable and fixed costs in Eqs. 18
and 19.

rt ts

f [l/100 km] 28.6 [79] 34.5 [80]

croad [e/100 km]a 34.32 41.4

cchass[e] 75,000 150,000

mmax [items] 3 4

a The price per liter is taken to be 1.2e [81].
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Appendix A: Additional information for the
simulation of the QAOA

The information used to determine the fixed and vari-
able cost for the QAOA simulations in this work is shown
in Table II. The table shows the fuel consumption and
cost per 100 km, the price of the chassis, and loading ca-
pacity [78] for the two truck types we consider in Fig. 4:
a rigid truck (rt) and a tractor–semitrailer (ts).
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