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Abstract
Internal combustion engines (ICE) are frequently debated due to their environmental
consequences. Although the switch to electromobility is currently happening for light
and medium-duty vessels, the transition for ships and heavy-duty trucks is more complex.
The primary problem in the shift is the incapability of matching the range of ICE.
Maintaining the ICE for large vessels is inevitable, requiring intensive research to improve
the combustion engine technology to reduce their impact on the environment.

Operating engines in nonstandard conditions, such as low-temperature ranges or utilizing
partially premixed mixtures, reduces emissions such as NOx or soot. Simulating these
scenarios requires special modeling techniques that can advance finite rate chemistry
and simulate mixed combustion modes. The Linear Eddy Model (LEM) is a potential
candidate to simulate these methods. LEM is a regime and mode-independent mixing
model initially developed for nonreactive flows [1] and later extended to include reactive
flows [2]. LEM advances finite rate chemistry, solves turbulence on a one-dimensional line,
and advances molecular diffusion and heat convection. It offers the possibility of capturing
the turbulence-chemistry interaction directly, which is essential for predicting pollutants
formation. In this thesis, the coupling of LEM to a CFD code that simulates the spray
chamber geometry is referred to as the Representative Interactive LEM (RILEM). RILEM
describes the combustion chamber key parameters and interacts with the CFD in real-time
as a combustion model to update its chemical state. RILEM shares similarities with the
Representative Interactive Flamelet model (RIF) [3]. RIF is essentially the coupling of a
CFD domain to laminar flamelets embedded in a turbulent flow; the coupling is based on
the scalar dissipation rate χ for non-premixed [4], and on combustion progress variable c
or level set approach for premixed cases [5]. RILEM features distinct differences compared
to RIF, mainly the possibility of simulating partially premixed combustion modes and the
ability to represent combustion on a physical one-dimensional line. A previous version
of RILEM was implemented where the CFD and LEM were coupled based on a volume
constraint. The volume-coupled RILEM was successfully validated against experiments
[6]. A recent version of RILEM using pressure coupling is the objective of the presented
thesis. It has been tested using a stand-alone code operating with driving parameters
extracted from a reactive case [7]. The fundamental advantage of a pressure-coupled
RILEM is the intrinsic inclusion of latent heat of evaporation effects and wall heat losses
in the pressure trace communicated from the CFD. These effects need separate modeling
on the LEM side in the case of volume coupling.

The recently developed RILEM utilizes a spherical formulation of the LEM that allows
the line to maintain the characteristic length and the volume effects constant between
the CFD and the LEM. An additional model was developed in this project’s scope titled
multiple Representative Interactive Linear Eddy Model (mRILEMs). mRILEMs advance
multiple LEM lines in parallel, where different turbulent statistics are enforced in each
line to illustrate the stochastic behavior of the eddies. Both RILEM and mRILEMs utilize
scalars conditioned on mixture fraction Z and combustion progress variable space c to
update the CFD chemical state. The local temperatures on the CFD are iterated by



utilizing the species mass fractions and the solution of the energy equation in its total
enthalpy form.

RILEM and mRILEMs were tested on a single cylinder case of a heavy-duty truck
engine. The pressure trace was compared against the experimental data and reached a
reasonable agreement. The two models allowed the quantification of intermediate species
such as CO and OH. RILEM provided accurate results by manipulating the probability
density functions of the turbulent scalars combined with different initialization techniques,
where utilizing mRILEMs ensured that the LEM side exclusively controls the combustion
process.

Keywords: Representative interactive linear eddy model, multiple LEM lines, pressure
coupling, turbulent chemistry interaction, pollutants formation.
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1 Introduction
1.1 Background

The internal combustion engine faces complex challenges due to the increased production
and sales of electric drivetrains in automotive vehicles. Although light and medium-duty
vehicles are going through a fast electrification process, the transition for airplanes, ships,
and heavy-duty trucks is more challenging. Operating light- and medium-duty automobiles
with electricity generated from sustainable resources contributes to transportation’s zero-
emissions objective. However, driving extended distances with heavy-duty vehicles or ships
transporting a significant amount of merchandise requires enormous battery capacities.
However, electricity production is not always realized with sustainable resources; in the
case of electricity shortage, producers often pivot to less sustainable techniques such
as coal combustion. This solution leads to emitting more significant quantities of CO2
rather than using the internal combustion engine efficiently. Consequently, research in
optimizing the emissions of internal combustion engines is continuously evolving. It
suggests using diverse techniques, such as renewable fuels, and operating the engine under
different configurations and combustion modes. Research on internal combustion engines
is accomplished using experimental hardware or numerical models. Emissions from ICE
depend heavily on the combustion quality, which is determined by the mixing process
taking place in the combustion chamber. This mixing can happen either in a large-scale
motion, namely the swirl or tumble motions, or by the small eddies that originate from
the injection process. It is safe to say that the turbulence level in the combustion chamber
is an essential parameter for the engine’s performance.

Turbulent combustion modeling is a complex field of research; this complexity is due
to the interaction of multiple physical disciplines such as turbulence, chemistry, and
thermodynamics. Combustion can exist in various forms in an internal combustion engine:
it can be non-premixed, premixed, or partially premixed in different turbulent regimes.
Turbulent combustion modeling requires advancing convection, diffusion, and chemistry,
all happening under different time scales; for non-premixed combustion, the slowest time
scale is diffusion, which is also the controlling time scale. Chemistry, however, has a
more minor time step making it substantially faster than diffusion. Specific models,
such as Bray–Moss–Libby Model for non-premixed cases and the Equilibrium Model for
premixed ones, are based on the assumption of infinitely fast chemistry. The chemical
time scales, however, have significant differences. This premise results in assuming that
the heat generation and NOx formation occur simultaneously, which is not necessarily the
case. Furthermore, this hypothesis can also neglect non-equilibrium effects such as flame
extinction and lift-off, which are essential to capture in turbulent combustion modeling.
It is, therefore, crucial to utilize models capable of advancing finite rate chemistry to
investigate such phenomena.

Combustion models such as the Representative Interactive Flamelet (RIF) model are
extensively used in industrial and academic studies. RIF simulates finite rate combustion
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in a parametric way; non-premixed flames are modeled using the concept of mixture
fraction and scalar dissipation rate [3, 4, 8–10]. On the other hand, premixed combustion
is simulated using either the combustion progress variable or the mean turbulent flame
front, also known as the G equation [5, 11]. This separation in the techniques utilized in
simulating the two modes makes it challenging for RIF to simulate mixed modes combustion
scenarios. Additionally, the representation of turbulence via the scalar dissipation rate
deprives RIF of directly capturing turbulence chemistry interaction (TCI) effects. The
transported PDF (TPDF) is a combustion model that advances a transport equation
of the probability density function (PDF) [12, 13]. Its formulation makes it suitable to
simulate both premixed, non-premixed modes and partially-premixed combustion with
advancing finite rate chemistry. These features make it an appealing model to simulate
non-standard combustion scenarios in low-temperature environments. It is, however,
limited by its need for an additional mixing model. The effects of the TCI in the TPDF
model, such as extinction and re-ignition, directly depend on the level of mixing that the
additional mixing model presents. The Well Stirred Reactor (WSR) is another combustion
model utilized for both premixed and non-premixed modes. WSR assumes that each
CFD cell is a thermally insulated volume with a nearly uniform distribution of the scalars
because of the intense turbulence mixing. The controlling time scale in WSR is the
chemical process since the mixing is assumed to be infinitely fast. Although implementing
the WSR is relatively simple, it has shown encouraging results compared with other
combustion models [14, 15] and experiments in [16]. However, this agreement is reached
by tuning the parameters of the WSR. In addition, WSR lacks appropriate sensitivity to
turbulence chemistry interaction due to its infinitely fast mixing time scales assumption.

1.2 CFD and LEM

The linear eddy model (LEM) by Kerstein [1] is a one-dimensional scalar mixing model
for reactive flows. LEM directly advances turbulent advection using stochastic triplet
maps allowing the eddies to interact directly with the flame structures. LEM advances
molecular and heat diffusion by solving the reacting 1-D zero Mach number equations
and advancing chemistry in each cell.
LEM was used as a stand-alone combustion model and then coupled to an LES simulation,
titled LES-LEM [17–19]. In LES-LEM, LEM lines are implemented independently in each
computational cell where turbulence, chemistry, and diffusion effects are solved for all
temporal and physical scales. Although LES-LEM is a promising technique, the simulation
cost is substantially high, making it an unrealistic approach for industrial investigations.
The LES-LEM model has recently been modified to hold an LEM line in each cluster
of neighboring LES cells instead of individual computation cells. This adjustment was
shown to significantly reduce the simulation time without compromising the quality of
the results. A more extreme version of this adjustment is the Representative Interactive
Linear Eddy Model (RILEM)[20, 21]. RILEM is an attempt to reduce the simulation
cost of LES-LEM by running a RANS simulation instead of an LES and utilizing a
single LEM line to represent the statistical state of the CFD domain. RILEM shares
many features with the Representative Interactive Flamelet (RIF) model, such as the
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conditioning of the reactive scalars on mixture fraction and combustion progress variable
spaces, the utilization of the presumed PDF for mixture fraction, and the real-time
interaction between the CFD and the subgrid model. However, the two models have
distinct differences, mainly in turbulence representation. RIF describes turbulence using
the scalar dissipation rate, where turbulence in RILEM is represented directly, making it
a suitable model for capturing turbulence chemistry effects that are essential for pollutant
formation.

Coupling the LEM with a CFD domain in a represent way can be reached in two
strategies. A previous version of RILEM was conceived for ICE simulations based on a
volume coupling. The varying volume of the combustion chamber was enforced on the
LEM line, which improved the representative aspect of the LEM to the CFD. Utilizing a
volume constraint for the coupling process neglected the heat effects on the CFD side,
such as the latent heat of evaporation and the wall heat losses; these effects were addressed
by an additional enthalpy defect on the LEM side. The volume coupled RILEM utilized
the spherical formulation of the LEM to reinforce a constant pressure on the line and was
successfully validated against experiments for a heavy-duty compression ignition engine
in [6, 16]. A recently developed RILEM version that uses a pressure coupling is presented
in this thesis. The new coupling approach is motivated by the intrinsic inclusion of the
latent heat of evaporation and wall heat loss effects in the pressure trace. The spherical
geometry of the LEM was essential for the pressure-coupled RILEM to maintain the
characteristic length and volume of the LEM constant between the two sides.

1.3 Objectives
The first objective was to create a stand-alone pressure coupled spherical LEM to run

initial parameter investigations. The second goal was to assemble a pressure-coupled
version of RILEM and compare it with experimental data. The thesis is organized in
five chapters, starting with an introduction, presenting the rationale for utilizing LEM
as a combustion model. The second chapter will present the mathematical models used
to build the spherical stand-alone LEM and RILEM. In the third, the RILEM and
mRILEM combustion closures will be described. The collected results will be presented
and discussed in the fifth chapter. The thesis is finalized with a conclusion and a future
work chapter.
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2 Mathematical models
The work described in this thesis was performed using the open-source Computational

Fluid Dynamics solver OpenFOAM v2.2.3. The following chapter will describe the
governing equations used to characterize the fluid motion, the turbulence model utilized,
and finally, a detailed description of the employed combustion model.

2.1 Flow simulation

2.1.1 Governing equations of fluid dynamics
Turbulent advection, molecular diffusion, and chemical reactions govern the development

of the fuel and oxidizer inside the combustion chamber. Simulating reacting flows requires
advancing the following equations, also known as the governing equations:

∂ρ

∂t
+ ∇ · [ρu] = ρ̇s, (2.1)

∂ρu
∂t

+ ∇ · [ρuu] = −∇p+ ∇ · τ + F + ρg + ρṠ, (2.2)

∂ρYs

∂t
+ ∇ · [ρusYs] = ∇ · [ρDs∇Ys] + ẇs. (2.3)

where ρ denotes density, u the velocity, ρ̇s the source term due to evaporation. In addition,
p symbolizes the pressure, τ the stress tensor, F all the forces that can be applied
externally on the fluid, g the vector of gravitational acceleration, Ṡ the liquid phase
source term. Ys characterizes the species mass fractions, us the velocity, Ds the diffusion
coefficient, and ẇs the mass source term due to chemical reactions of each species s in
the mixture.

An additional equation that accounts for the system’s energy balance must be solved.
The energy equation can exist in different formats: Internal energy, enthalpy, or tempera-
ture. Here, the energy equation in the total enthalpy form h is utilized:

∂ρh

∂t
+ ∇ · [ρuh] = dp

dt
− ∇j + q̇ev, (2.4)

where j represents the heat flux vector, q̇ev the total enthalpy source term due to droplet
evaporation provided by the spray model, viscous heating was neglected because of the
low-Mach number assumption.

Solving a transport equation (2.3) for each species in the mixture with corresponding
source terms is computationally expensive, especially for large chemical mechanisms with
hundreds of species. Instead of advancing a transport equation for each species of the
chemical mechanism, an alternative method, inspired from flamelet non-premixed reactive
flow modeling [8] has been adopted. It solves a transport equation for mixture fraction
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Z (2.5) to represent the amount of fuel in each CFD cell. The mixture fraction Z is a
conserved scalar that does change solely due to diffusion and convection but not chemical
reactions.

∂ρZ

∂t
+ ∇ · [ρuZ] = ∇ · [ρD∇Z] + ρ̇s, (2.5)

The evolution of the fuel state from the unburnt to the burnt state is key in turbulent
combustion modeling. For that, an additional generalized "time" coordinate in the form
of a combustion progress variable c is introduced. Different definitions of the combustion
progress variable exist in literature [22]. The definition based on oxygen mass fraction
has been chosen for this thesis. The temperature definition was avoided because of its
sensitivity to both chemistry and the compression of the combustion chamber. It is
preferable to choose a quantity that is sensitive uniquely to the chemical advancement to
capture the progress of the fuel.

∂ρc

∂t
+ ∇ · [ρuc] = ∇ · [ρD∇c] + ρċ, (2.6)

where c denotes the combustion progress variable that takes the value of 0 for the unburnt
state and 1 for the completely burnt state as defined in [22]. c is defined based on the
following formula:

c = YO2 − YO2,u

YO2,b − Y O2,u
, (2.7)

where YO2 denotes the oxygen mass fraction, YO2,u
and YO2,b

are the unburnt and the
burnt oxygen mass fractions, respectively. In addition, ċ in equation (2.6) represents the
source term of the combustion progress variable c, which will be discussed later in the
thesis.

2.2 Turbulence modeling
The size of the turbulent eddies exists in a spectrum defined by two limits: The integral
length scale, which is characterized by the geometry, which describes the large turbulent
eddies, and the Kolmogorov scale that represents the smallest turbulent eddies that
are determined by the fluid viscosity and the dissipation rate. Solving the governing
equations requires a fine computational grid combined with small time steps to capture
structures down to the Kolmogorov length and time scales. It is realized using direct
numerical simulations (DNS) for simple geometries with moderate Reynolds numbers.
However, for combustion chamber simulations, which imply complex moving geometries
with significantly high Reynolds number flows, a substantial range of scales of eddies with
different length and times scales exist between the integral and the Kolmogorov scales.
A DNS solution for a combustion chamber simulation is unrealistic with the current
computational hardware.

The simulation of complex geometries with high turbulent flows is achieved by modeling
the small turbulent structures. This modeling is usually achieved by averaging the
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governing equations where each variable is decomposed into a mean ψ̄ and a fluctuating
ψ′ component:

ψ = ψ̄ + ψ′. (2.8)

The Reynolds Averaged Navier Stocks (RANS) turbulence model implies a time averaging
of the governing equations. For non-constant-density flows, a density-weighted averaging
is applied, known as Favre averaging:

ψ = ψ̃ + ψ′′. (2.9)

Applying time averaging on a quantity ρψ results to:

ρψ = ρψ + (ρψ)′, (2.10)

with
ψ̃ = ρψ

ρ̄
and ψ′′ = (ρψ)′

ρ̄
. (2.11)

The Favre averaging is applied for all quantities in the governing equations except for the
pressure, diffusive fluxes, and density. The averaging implies that only the integral time
and length scales will be solved, whereas the small scales need to be modeled even if the
computational grid size is smaller than the integral length scale. Resolving structures with
sizes between the integral and Kolmogorov scales is achieved using another turbulence
model called large-eddy simulations (LES), where the filter width is smaller than the
integral length scale; this approach, however, is more expensive than RANS. The work
described in this thesis was done using a RANS turbulence model [23], although it is
cheaper than LES, it lacks a great degree of detail because of the modeling of all the
structures below the integral scale. RANS’ low resolution was addressed with additional
modeling employing the linear eddy model (LEM). Applying Reynolds averaging on the
governing equation reduces the computational cost of the simulation but generates more
unknown terms that need to be closed, as shown in the following equations :

∂ρ̄

∂t
+ ∇ · [ρ̄ũ] = ˜̇ρs, (2.12)

∂ρ̄ũ
∂t

+ ∇ · [ρ̄ũũ] = −∇p̄− ∇ · [ρ̄ũ′′
i u

′′
j ] + ∇ · τ̄ + F̃ + ρ̄g + ρ̄˜̇S, (2.13)

∂ρ̄h̃

∂t
+ ∇ · [ρ̄ũh̃] = dp̄

dt
− ∇ · [ρ̄ũ′′

i h
′′] − ∇j̄ + ˜̇qs, (2.14)

∂ρ̄Z̃

∂t
+ ∇ · [ρ̄ũZ̃] = ∇ · [ µt

Sct
∇Z̃] + ˜̇ρs, (2.15)

∂ρ̄Z̃ ′′2

∂t
+ ∇ · [ρ̄ũZ̃ ′′2] = ∇ · [ µ

Sct
∇Z̃ ′′2] + 2µt

Sct
(∇Z̃)2 − ρ̄χ̃, (2.16)

∂ρ̄c̃

∂t
+ ∇ · [ρ̄ũc̃] = ∇ · [ρ̄D∇c̃] − ∇ · [ρ̄ũ′′

i c
′′] + ρ̄˜̇c, (2.17)
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where
χ̃ = Cχ

ϵ

k
Z̃ ′′2, (2.18)

and Cχ = 2.0. These equations will be advanced using OpenFOAM at each time step.
The solutions of equations (2.15), (2.16), (2.17) will be used in the mapping process of
LEM.

It can be noticed that the application of the Reynolds averaging lead to the appearance
of an unclosed term know as the Reynolds stress term in the moment equation :

τij = −ρ̄ũ′′
i u

′′
j . (2.19)

The Boussinesq assumption for turbulent eddy viscosity [24] is utilized to model the
Reynolds stress term by linking it to the mean velocity gradient in the flow using the
turbulent viscosity also knows as the eddy viscosity:

ρ̄ũ
′′
i u

′′
j = 2

3 ρ̄k̃ − µt[[(∇ũ) + (∇ũ))T − 2
3∇ũ]. (2.20)

The eddy viscosity is usually modeled as the following [25]:

µt = ρ̄Cµ
k̃2

ϵ̃
, Cµ = 0.09. (2.21)

The turbulent kinetic energy k and the turbulent dissipation rate ϵ are calculated using the
classical k − ϵ model by Launder and Spalding [26] that advances the transport equations
for these two terms in its compressible form.

∂(ρ̄k̃)
∂t

+ ∇ · [ρ̄ũk̃] = ∇ · [(µ+ µt

σk
)∇k̃] + Pk − ρ̄ϵ̃, (2.22)

∂(ρ̄ϵ̃)
∂t

+ ∇ · [ρ̄ũϵ̃] = ∇ · [(µ+ µt

σϵ
)∇ϵ̃] + Cϵ1

ϵ̃

k̃
Pk − Cϵ2ρ̄

ϵ̃2

k̃
, (2.23)

where the models constants are the following:

Cµ = 0.09; k = 1.0; σϵ = 1.3; Cϵ1 = 1.44; Cϵ2 = 1.92 (2.24)

and the source term Pk is provided as:

Pk = −ρ̄ũ′′
i u

′′
j

∂ũi

∂xj
(2.25)

The turbulent transport terms in the form of ρ̄ũ′′
i ϕ

′′ in the Reynolds averaged equations
can be approximated with the gradient flux assumption in equation (2.20) as the following:

ρ̄ũ′′
i ϕ

′′ = − µt

Sct
∇ϕ̃. (2.26)

Using this approximation in equations (2.13), (2.14), and (2.17), the system of Reynolds
averaged equations can be closed.
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2.2.1 Spray Modeling

A spray is characterized as a collection of liquid droplets in a gaseous phase. An
injection process generates the fuel spray from the injecting nozzle in the combustion
chamber. An injected spray can exist inside the combustion chamber for direct injection
(DI) or in the inlet port for PPCI engines. The high injection pressure of the fuel causes
the jet to break up; this process is known as the primary break-up, where different
regimes can be identified. The most pertinent regime for high-pressure injections is the
atomization regime that characterizes the interaction between the gas and the small
perturbations generated by the turbulent motion in the nozzle. Additionally, a secondary
process called the secondary break-up occurs due to the large drag forces generated from
the high velocities. This process continues to decompose the liquid particles into smaller
droplets. The direct injection for diesel engines occurs around the Top Dead Center
(TDC), where the ambient temperature is relatively high, which causes the evaporation
of the droplets generated by the secondary break-up. Spray simulation is critical for
turbulent combustion simulation since the atomization process prescribes the amount of
fuel evaporating to the gaseous phase in the secondary break-up. The contribution of the
gaseous phase of the fuel determines the combustion level in the chamber, which will raise
the temperature leading to evaporating more liquid fuel. Several models exist to simulate
spray development under different conditions. A Lagrangian model was utilized in this
study to characterize the spray in the diesel engine. The Huh Gosmann model [27] models
the atomization process in this study, where the secondary break-up was simulated using
Kelvin-Helmohlts model [28] where the KH instabilities are considered the leading cause
of spray break-up.

2.3 The Linear Eddy Model

The linear eddy model was introduced by Kerstein as a scalar mixing model for
nonreactive flows in [1, 29, 30], and was later extended to include reactive flows [2, 31–33].
Developing LEM aims to have a regime and mode-independent model that provides an
affordable full resolution of all spatial and temporal scales, including the minor scale
effects in combustion. Compared to standard modeling approaches, e.g., gradient diffusion
assumption, the LEM modeling is based on reducing the domain to one spatial dimension
while still resolving all scales in space and time as in a DNS. This dimensional reduction
requires a special approach to represent certain physical phenomena, particularly turbulent
eddies. The flow in LEM is advanced by solving reactive 1-D zero Mach number equations
on a one-dimensional line representing the simulated domain’s statistical state, which
substantially reduces the simulation cost. The advancement of LEM is composed of
diffusion of reactive scalars, chemical reactions, and turbulent advection. LEM is designed
based on the one-dimensional turbulence (ODT) C++ code of Lignell [34] in its spherical
format, which includes a mesh adaptor.
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2.3.1 Diffusion and Chemistry in LEM
LEM advances the 1-D zero Mach equations of species mass fractions Ys in (2.27) and

the specific enthalpy of the mixture h in (2.28)

ρ
DYs

Dt
= −djs

dx
+Msẇs, (2.27)

ρ
Dh

Dt
= −dp

dt
− dq

dx
−

∑
s

js
dhs

dx
−

∑
s

hsMsẇ, (2.28)

where ρ denotes density, js the species diffusive flux, Ms the species molar mass, ẇs the
chemical source term for the species s. Additionally, p indicates the pressure, q the heat
flux, and hs the total enthalpy of species s. The equation of state of the mixture of ideal
gases is expressed as the following in LEM:

p = ρT
∑

s

RsYs, (2.29)

where Rs conveys the individual gas constant of species s. The equations (2.27) and
(2.28) are solved using a second-order accurate scheme using a central discretization of
the diffusion terms. The temperature in the LEM cells is calculated using the calorific
equation of state (3.20). The transport and thermodynamic parameters and the chemistry
source chemistry are assessed using the CANTERA package [35], where the stiff chemical
source term is integrated using SUNDIALS’ implicit BDF method. [36]

2.3.2 Turbulent Advection in LEM
Turbulence is simulated on the LEM by executing independent eddy events. The

simulation of the turbulent vortices on the line is performed by the triplet mapping
process, which models the impact of the turbulent 3D vortices on the scalar profiles
implemented on the one-dimensional line as described in figure 2.1. It is a technique that
ensures continuity and conservation of mass. The triplet mapping process compresses
the interval where the eddy has landed and creates three identical copies with inverting
the middle one. It is a process that requires adaptation depending on the LEM chosen
shape. In this case, the spherical shape of the LEM has been chosen; this choice will be
explained in chapter 3.

A high pressurized fuel is injected into the combustion chamber or the inlet port in
an ICE. This process creates a considerable number of eddies with a size distribution
between the integral and the Kolmogorov length scales. These eddies are referred to as
small eddies. The CFD provides the turbulence parameters k̃ and ϵ̃ that determines the
LEM parameters, namely, the turbulence diffusivity Dt, the integral length scale lt, the
Kolmogorov length scale η and the average time between the eddies. Initially, solely the
small eddies were simulated on the LEM. However, the circumstances are different in a
combustion chamber due to the large-scale motions such as tumble or swirl. These large
movements significantly enhance the mixture in a real engine; ignoring them in a LEM
simulation will lead to notable discrepancies between the LEM and CFD.
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Figure 2.1: Representation of a triplet map in a planar LEM

Small eddies

The distribution defined in equation (2.30) and described in length in [1], determines
the size distribution of eddies that exist between the integral and the Kolmogorov length
scale.

f(l) = 5
3

l−8/3

η−5/3 − l
−5/3
t

, (2.30)

where l indicates the size of the eddies, lt is the integral length scale and η is the
Kolmogorov length scale. The integral length scale lt is defined as:

lt = Dt

u′ , (2.31)

with Dt denotes the turbulent diffusivity:

Dt = Cµ

Sct

k̃2

ϵ̃
, (2.32)

and u′ is the velocity fluctuations defined as:

u′ =

√
2k̃
3 . (2.33)

η is calculated based on the inertial scaling law described in [1] with

η = NηltRe
−3/4
t , (2.34)
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where Ret is the turbulent Reynolds number:

Ret = u′lt
ν
. (2.35)

The values assigned to the model constants Cλ = 15, Cµ = 0.09 and Nη = 10.76 are based
on literature values [37]

The eddy event frequency per unit length is determined using the above defined
quantities, and is described as the following:

λ = 54
5
νRet

Cλl3t

(lt/η)5/3 − 1
1 − (η/lt)4/3 . (2.36)

The eddy event time on the LEM domain is determined based on a sampling under a
Poisson process assumption with mean eddy occurrence time:

∆τeddy = (λL)−1, (2.37)

where L characterizes the length of the LEM domain. Finally, the eddy location is
specified based on the left edge of the eddy, and it is sampled uniformly on the LEM
domain.

Large scale mixing

Large-scale 3D motion such as tumble and swirl needs dedicated modeling on a one-
dimensional domain. Not considering the large-scale motions, small eddies, and diffusion
effects alone will have difficulty creating sufficient stochiometric regions for ignition,
especially if the fuel is continuously injected, leading to a continuous increase of the
mixture fraction solely in one region of the chamber, which can hinder the ignition of the
fuel. Taking the large-scale motions into consideration contributes to creating several
pockets with lower mixture fraction values. The distribution of the fuel regions increases
the effect of the small eddies and diffusion to create ignitable regions. It is then essential
to include the large-scale motions in the LEM simulation. The large-scale motions are
described by the three introduced quantities (eddy size, length, and occurrence time)
similar to the small eddies. The modeling of these three quantities is, however, different
for the large-scale motions since they are generated by different physics, essentially the
movement of the piston and the incoming flow from the inlet port. The length of the large-
scale motions has been chosen to be equal to half of the combustion chamber’s bore; this
length ensures the fuel distribution to different parts of the chamber, which corresponds
to the two sides of the LEM line. The time scale of these motions is determined based on
the following scaling:

τbigeddy = θ
vN

lc
, (2.38)

where θ refers to a mixing time constant that describes the effects of the combustion
chamber geometry on the large-motion events times, which was fixed to unity in this
study. vN refers to the spray’s velocity that influences the large-scale motion, and lc is
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the engine cylinder length scale. The number of large-scale motions occurring on one
engine cycle is fixed at the start of the simulation by:

Nbigeddy = τengineCycle

τbigeddy
, (2.39)

where τengineCycle characterises the time required for one engine cycle. The occurrence
times are independently sampled based on a uniform distribution of occurrence time
during one engine cycle. Finally, the position of the large eddies is sampled uniformly
across the LEM line.

2.3.3 LEM time advancement
The LEM framework incorporates three concurrent processes; Turbulent advection,

molecular diffusion, and chemistry resolution. Diffusion and chemistry are implemented
using a Strang operator splitting as presented in figure 2.2.

Figure 2.2: Representation of the diffusion-chemistry process in LEM

The time step ∆t is defined as the duration between two consecutive eddy events in the
original ODT code. The Strang Split Operator divides ∆t into two halves δt on which
the diffusion is advanced implicitly. The stiff chemical source term is integrated over the
entire ∆t time step in between the diffusion steps. Eddies events on the other hand are
implemented instantaneously.

In the original ODT code used here, the LEM process is implemented in a way that
the LEM time step ∆tLEM is decomposed into several ∆t based on the sampled eddy
occurrence times, which is decided based on the number of eddy events sampled in the
corresponding time-step, this process is described in figure 2.3. Although this approach
is considered the most consistent for turbulent chemistry interactions, the successive
interruption and re-start of the CVODE chemistry solver substantially slows down the
simulation. A substantial reduction of the overall simulation time was developed by
employing two different strategies. The initial approach was to decompose the LEM line
into several parts where chemistry is solved in parallel. This method utilizes OpenMP
multithreading, where several chemistry solvers are initialized simultaneously, and each
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Figure 2.3: Traditional LEM advancement framework

solver integrates the chemical source terms for a dedicated section of the line. The second
strategy was to cluster the eddies intended to be sampled on the corresponding LEM time
step and implement them by sampling order at the start of the time step, as depicted
in figure 2.4. The Strang Operator Strategy is correspondingly applied in this approach
with δt = ∆tLEM

2 , where the diffusion is advanced on δt and chemistry is integrated over
∆tLEM . The eddy clustering approach was created for a specific strategy where multiple
LEMs were utilized. Advancing multiple LEMs in parallel using multi-threading to reduce

Figure 2.4: Eddy clustering framework

chemistry integration needed a forking operation which was avoided for the current version
of the model. The first approach is the most convenient if enough computational resources
are available. However, it will be shown later in the thesis that multiple LEM lines are
required to acquire a reasonable simulation output. It is essential to state that the second
approach is greatly sensitive to the selected time step. For large time steps, the LEM will
implement numerous eddies and solve diffusion and chemistry over the extended time step.
Choosing a large time step corresponds to clustering many eddies before running diffusion
and chemistry, which neglects the turbulent chemistry interaction effects. Therefore,
choosing a reasonable time step is crucial for the eddy clustering approach.
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3 Combustion closure in RILEM
One of this project’s primary goals is to use the LEM as a combustion model for ICE.

CFD and LEM require a coupling that ensures that the combustion information comes
from LEM. The following section describes the adopted strategy.

The coupling between the CFD solver and the LEM combustion model should be
pressure-based to include the heat effects, such as latent heat of evaporation and wall heat
losses, in the LEM, which are modeled on the CFD solver. A volume coupling, for instance,
demands separate modeling of these effects on the LEM side. These considerations
motivated the development of a stand-alone LEM driven by input parameters extracted
from a reactive CFD simulation, e.g., with the PaSR combustion model. Once the
stand-alone code produces satisfactory results, the second step is to couple the CFD to
the LEM using the same driving parameters as the stand-alone LEM. However, in this
case, the chemical state of the CFD will be updated uniquely from LEM.

3.1 Spherical LEM

3.1.1 Spherical Triplet Maps

One of the objectives RILEM is to utilize a combustion model that represents the
corresponding CFD domain. The original LEM code by Lignell [34] contains three different
LEM geometries: planar, cylindrical, and spherical. To ensure the representative aspect
between the LEM and the combustion chamber, the spherical LEM formulation was
chosen with a characteristic length equal to the combustion chamber bore. This LEM
formulation was useful in the CFD-LEM coupling method, described later in the thesis.
The triplet maps for both small eddies and large-scale motions need to be updated for the
spherical LEM. Both molecular and heat diffusion will be happening across a spherical
boundary, which requires a spherical adaptation to the fluxes . Implementing a triplet
map on a spherical LEM can occur in three possible scenarios, depending on where the
eddy boundaries are landing. We name A the left boundary and B = A + L the right
boundary of the eddy, respectively, and L is the eddy size.

1. Both A and B land on the left cone of the line

2. A land on the left cone and B lands on the right cone.

3. Both A and B land on the right cone of the line

The LEM implementation suggests a different rearrangement for each scenario. The
mathematical derivation has been discussed at length in [38]. The following figure
represents the different implementation for each scenario.
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Figure 3.1: Representation of the spherical LEM

Figure 3.2: Representation of spherical triplet maps per
scenario: 1: To the left. 2: The middle. 3: To the right

3.1.2 Pressure Coupling
The LEM line comprises several cells modeled as homogeneous reactors with constant

volume or pressure for chemistry integration. The LEM line advances under a constant
pressure condition, where the LEM pressure is equal to the CFD prescribed pressure.
However, fuel injection and combustion are local processes in individual cells that lead to
a change in the local pressure of the cells, which violates the constant pressure condition.
Additionally, the length of the LEM line is required to be equal to the characteristic length
of the CFD domain. These two constraints were possible to achieve using the spherical
formulation of the LEM and the split operator strategy explained in the next paragraph.

Split Operator Strategy
Combustion on the LEM is implemented as a constant volume process in each cell,

where the pressure is allowed to change locally, and the volume stays constant. Similarly,
the fuel injection process is also implemented as a constant volume process, where the new
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local densities are calculated based on the injected mass in the cells. These two processes
lead to a violation of the constant pressure constraint of the LEM. Additionally, the
pressure on the LEM should be equal to the CFD pressure. The split operator strategy
was the remedy to this issue. It goes through two processes; the first is an isentropic
process that allows the cell’s volumes to expand/compress to reach a target pressure:

V2 = V1

(
p1

pCF D

)1/γ

, (3.1)

where pCF D denote the target CFD pressure, γ = cp/cv, cp and cp the specific heat
capacities under constant pressure and constant volume respectively. In addition, ρ2 is
estimated based on equation (3.9) and Y2,s, and T2 are deducted from equations (3.8).
All LEM cells volume will change to match the CFD pressure in this operation.

Figure 3.3: Split Operator Strategy

The first procedure guarantees the resolution of the constant pressure limitation; however,
after applying the isentropic process on the line, the length of the line is different from
the CFD characteristic length, which violates the representation aspect of the model.
This problem is resolved by utilizing the spherical formulation of the LEM, which is the
second step in the split operator strategy. A new cone angle α of the line is calculated
based on the condition that the LEM length matches the characteristic CFD length, as
the following formula shows:

α = arccos
(

1 − 12VLEM

πD3

)
, (3.2)

where D represents the combustion chamber’s bore, and VLEM the total volume of the
LEM line. This step ensures the conservation of the LEM’s volume while matching the
characteristic length. Finally, the LEM cell boundaries are recalculated based on the new
cone angle.

3.1.3 Fuel Mapping Strategy
The fuel injection is simulated as a 3D process on the CFD side using a Lagrangian

spray model. The LEM only accepts fuel in its vapor phase, so a specific strategy is
required to correctly map the fuel on the LEM line. The first possible solution is to
develop an independent spray model on the LEM side. Although this solution is realistic,
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it was not adopted for complexity reasons. Instead, the following values provided from the
spray model on the CFD determine the fuel mapping on the LEM: Evaporated fuel mass,
vapor deposition length, and the volume of the cells that witness evaporation. The choice
of the second alternative is motivated by its simple implementation and the sustained
consistency between LEM and CFD compared to the first approach. The total volumes
of LEM and CFD will not necessarily match. However, it is essential to reinforce it when
extensive properties are communicated between the two sides; for this purpose, the volume
ratio Q is introduced:

Q = VLEM

VCF D
. (3.3)

The fuel mapping strategy is based on two main quantities:

• The vapor penetration length: It determines the number of LEM cells on which
the fuel will be mapped.

• The evaporated fuel mass: It specifies the amount of fuel vapor on the CFD
that will be injected in the LEM.

The injector is defined as the meeting point of the two LEM cones. Due to the line’s
orientation along the spray axis, the two cones will receive equal amounts of fuel symmet-
rically. The LEM vapor penetration length is calculated by matching the volume of the
cells with evaporation on the CFD.

Figure 3.4: Representation of the LEM cone orientaed towards the spray

We calculate the ratio of injected vapor fuel on the CFD side as:

β =
∑
Vev,i

VCF D
. (3.4)

The volume with fuel evaporation can be calculated using β on the LEM side as:

Vfuel = βVLEM

Q
= βVCF D. (3.5)
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Based on the spherical geometry of the LEM domain, the corresponding radius of fuel,
which is the LEM fuel evaporation length, can be calculated as:

rfuel = 3
(

Vfuel

2π(1 − cosα)

)1/3
. (3.6)

Fuel vapor is added to all cells on the LEM domain with radius lower or equal that rfuel.
The second step is to determine the fuel mass that each LEM cell receives. The LEM
cell’s volume is the defining factor in determining the mass of each cell:

mLEM
ev,i = mCF D

ev Q
V LEM

ev,i∑
V LEM

ev,i

. (3.7)

The described method does not guarantee that the fuel vapor mass remains under the
saturation level in each cell. However, this limit did not cause any issues in the simulations.
Once the allocated mass in each LEM cell is determined, merging the existing quantities
with the introduced ones in each cell receiving fuel occurs. The merging will apply to
temperature, mass fractions, and densities, taking place using a constant volume process.
For ϕi = {Yi,s, Ti} we have equation (3.8) where ϕold denotes the scalars before adding
the fuel vapor and ϕadd the added ones:

ϕnew
i = ϕold

i mold
i + ϕadd

i madd
i

mold
i +madd

i

, (3.8)

and for the density ρ:

ρnew
i = ρold

i + ρadd
i

V add
i

V old
i

. (3.9)

The addition of vapor fuel to the LEM cells under a constant volume assumption leads to
undesirable changes in the local pressure of the cells where the injection occurred. The
Split Operator Strategy is used a second time to realize a homogeneous pressure on the
LEM which matches the CFD target pressure.

3.2 Spherical Stand Alone Linear Eddy Model (SSALEM)
A Spherical Stand-Alone LEM (SSALEM) was developed for debugging purposes and

extensive parameter investigations. SSALEM was also used as a testing platform before
proceeding to the CFD-LEM coupling. In a pre-processing step, a reacting CFD simulation
was run using the Well Stirred Reactor model (WSR) to extract driving parameters for the
SSALEM. A standard 1D slider-crank model has been used to calculate the combustion
chamber volume as a function of the engine speed. In SSALEM, the coupling is meaningful
only in one direction, from the CFD to the LEM, which means no feedback from the
LEM to the CFD to update the chemical state. Ignition on the LEM was triggered by
the enforced pressure trace extracted from the WSR simulation. Some snapshots of the
SSALEM simulation are presented in the result chapter. In order to benefit from LEM’s
combustion closure, it is required to have a coupling to the CFD solver that goes in both
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Figure 3.5: SSALEM framework

ways, creating a feedback loop that will influence the CFD parameters, such as the rate
of evaporation of the fuel and the turbulence level due to the increase of temperature.
RILEM always refers to the RANS-CFD coupling.

3.3 RILEM

The implementation of the CFD and LEM sides in different dimensions (3D for CFD 1D
for LEM) makes the coupling between the two sides a complex exercise. The utilization of
LEM as a combustion model for engine simulations follows a similar approach as in RIF
models. The coupling is implemented by mapping of the LEM solution in physical space
to a solution in a mixture fraction and progress variable space and calculation of the
mean values via a presumed Probability Density Function (PDF) approach. If transport
equations of species mass fractions are advanced on the CFD side, a source term for each
individual species must be sent from the LEM to the CFD. This approach can be costly
for substantially large chemical mechanisms as a transport equation for each species needs
to be solved on the CFD side. Instead, equations for the mean and the variance of the
mixture fraction Z are advanced. In addition, a transport equation for the combustion
progress variable c is advanced. Figure 3.6 represents the framework of RILEM at one
CFD time step. The left side of the figure shows the driving parameters extracted from
the CFD and the different processes that occur in the LEM. The right side describes the
conditioning operation of the selected reactive scalars, their mapping on the CFD from
LEM, and the temperature calculation.

3.3.1 Reactive Scalars Integration

The LEM provides a distribution of the reactive scalars in 1D physical space, which
needs to be communicated with the 3D CFD domain in a meaningful way. For that,
RILEM adopts a similar coupling concept to the RIF approach, where the LEM reactive
scalars are conditioned on a reference composed of either Z and c; the chosen resolution
was 200 bins in the Z direction and 100 bins in c, where a bin refers to a specific interval in
a space. This operation results in matrices for the reactive scalars referred to as solution
tables.
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Figure 3.6: RILEM configuration

The communication between the CFD and LEM is conducted by the Joint PDFs of
the mixture fraction Z and combustion progress variable c. The joint PDF is utilized to
determine the mean value of the scalars in a specific CFD cell:

ϕ̃k =
∫ 1

0

∫ 1

0
P̃Z,c(Zk, ck)ϕLEM (Z, c)dZdc. (3.10)

Statistical independence is considered between Z and c, simplifying the problem by
decomposing the joint PDFs to two independent PDFs:

PZ,c(Z, c) = PZ(Z; Z̃, Z̃”2)Pc(c; c̃). (3.11)

The solution of the mean and the variance of mixture fractions transport equations
provides a value of the two variables in each CFD cell, enabling us to utilize a presumed
β-PDF for Z:

PZ(Z; Z̃, Z̃”2) = Γ(γ)
Γ(α)Γ(β)Z

α−1(1 − Z)β−1, (3.12)

where Γ is the usual gamma function defined as:

Γ(t) =
∫ ∞

0
tx−1e−tdt, (3.13)

and α, β and γ are three coefficients defined as:

γ = Z̃(1 − Z̃)
Z̃”2

, α = γZ̃, β = γ(1 − Z̃). (3.14)
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A β-PDF can likewise be used for the combustion progress variable if a transport equation
of the combustion progress variable variance c̃′′2 is solved. However, the complexity of
formulating a transport equation of c̃′′2 encourages exploring other functions that can
describe the c distribution. More easily, one way to define it is as a step function based
on the mean value of the progress variable as shown in the following:

Pc(c; c̃) =
{

1−c̃
c̃ 0 ≤ c ≤ c̃
c̃

1−c̃ c̃ ≤ c ≤ 1
(3.15)

Using PZ(Z) and Pc(c), the integrated values of temperature and species mass fractions
can be formulated as:

T̃k =
∫ 1

0

∫ 1

0
P̃Z(Z; Z̃k, Z̃

”2
k )P̃c(c; c̃k)TLEM (Z, c)dZdc, (3.16)

Ỹk,s =
∫ 1

0

∫ 1

0
P̃Z(Z; Z̃k, Z̃”2

k )P̃c(c; c̃k)Y LEM
s (Z, c)dZdc. (3.17)

˜̇ck =
∫ 1

0

∫ 1

0
P̃Z(Z; Z̃k, Z̃

”2
k )P̃c(c; c̃k)ċLEM (Z, c)dZdc, (3.18)

where ċ denotes the source term of the combustion progress variable transport equation,
which will be defined in the next section.

3.3.2 Reactive Scalars Exploitation
3.3.2.1 Temperature and Species Mass Fractions

The mean temperature value in each CFD cell can be directly calculated from the
temperature solution table extracted from the LEM, as described in the previous section.
The temperature was, however, iterated based on the calculated species mass fractions
and the solution of the total enthalpy transport equation based on calorific heat equation:

h̃k(T̃ ) =
N∑

s=1
Ỹs,k(t)hs(T̃ ), (3.19)

with
hs(T ) = ∆h0

s +
∫ T

T 0
cp,s(T )dT, (3.20)

where hs denotes the mass-specific enthalpy values of the species s, ∆h0
s the standard

heat of formation, and cp,s the mass specific heat capacity at constant pressure. Two
values of temperatures can be calculated on the CFD side. T̃pdf,k which is the mean value
of temperature from the temperature solution table from the LEM, and T̃,k, which is
calculated based on the mean value of species mass fractions and the solution of the total
enthalpy transport equation. The two temperature values should ideally closely match in
case that the LEM is representative of the combustion process. The similitude is possible
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due to the intrinsic inclusion of the communicated pressure to the heat effects that appear
as a source term for the total enthalpy equation. However, T̃k and T̃pdf,k do not match in
the volume coupling; The heat loss effects on the CFD are intrinsically communicated via
the pressure trace on the pressure coupling. In the volume coupling, however, the LEM
requires a heat loss term in the heat equation to account for the heat losses on the CFD.

3.3.2.2 Combustion progress variable

The source term of combustion progress variable ċ describes the evolution of the fuel
state. Since LEM is responsible for the chemical closure, the ċ has to be provided by the
LEM, and its choice is crucially important. Since the progress variable c is determined
based on O2 mass fractions, the ċ should respect the same choice, and it was defined as
the following:

ċ = dYO2/dt

YO2 , b− YO2 , u
, (3.21)

where dYO2
dt is defined as the following:

dYO2

dt
= R[O2]WO2

ρ
, (3.22)

where R[O2] denotes the net production rate of O2 and WO2 represents the molecular
weight of O2. As described in the previous section, ċ is conditioned on Z and c spaces on
the LEM and ˜̇c is calculated based on both Pz(Z) and Pc(c) to advance the transport
equation of the progress variable on the CFD.

3.4 mRILEMs
The current version of RILEM successfully considers the 3D effects by using the spherical
geometry of the LEM. However, the stochastic nature of the eddies causes an issue in
the construction of the solution table. The problem is formulated as follows: The LEM
line implements a sequence of eddy events that generates a distribution of the turbulent
scalars in the LEM space. This distribution will be reflected in the conditioning step,
which leads to filling the table uniquely with the data that the line has discovered on
the corresponding time step. Based on the chosen eddy sequence and the resolution in
the Z and c spaces, only specific locations in the table are filled, leaving other parts
undefined. Initially, data exists only for Zi = 0 since injection did not happen yet. The
concern occurs in the integration process according to (3.10), which uses Pz(Z) and Pc(c)
and data over the whole Z and c spaces. If the LEM fails to encounter that required
combination, the CFD cell will be calculating the mean values with not enough data for
the two spaces. The solution to the presented problem is to advance multiple LEMs by
changing the eddy sequences solely and maintaining the rest of the driving parameters
identical between the lines. Each LEM line builds a solution table corresponding to the
distribution generated by its corresponding eddy sequence. The data from each table are
averaged to generate a general representative table that the CFD will utilize to calculate
the mean values of the reactive scalars. This approach is referred to as mRILEMs and
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Figure 3.7: mRILEMs configuration

sketched in Figure 3.7. The averaging process between the tables created by each LEM
line is done as simple arithmetic mean value:

ϕij =
∑nij

k=1 ϕ
k
ij

nij
, (3.23)

where nij denotes the total number of hits for a position i, j in a table (Zi, cj), where
i ∈ [1, nZ ] and j ∈ [1, nc], and nZ and nc the resolution (number of bins) of the Z space
and c space respectively. This approach is valid only if all the tables have significant
values for the corresponding Z and c combination, i.e., nij equal to the number of the
LEM realizations.

A series of simulations have been done using the mRILEMs approach with 24 LEMs.
The findings displayed in the results chapter demonstrate that utilization of 24 lines
appears to be not enough to complete the solution table. This issue can be solved in
principle by utilizing substantially more LEM lines. Here we suggest an alternative
approach by following a method that suggests the following:

1. ϕ built from 24 LEM lines

2. Scaling the PZ(Z) and Pc(c) of the turbulent scalars

3. Maintaining the LEM time history

The motivation behind this method is to avoid integrating empty data on Z and c bins,
which boils down to having as much data as possible on the averaged solution table ϕ
and scaling the integral of the PDFs to unity.
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PDF scaling

The PDF scaling will be explained in this section. Calculating a mean value of a turbulent
scalar conditioned on Z and c spaces is done by utilizing the following formula:

ϕ̃ =
∫ 1

0

∫ 1

0
P̃Z(Z; Z̃k, Z̃

”2
k )P̃c(c; c̃k)ϕLEM (Z, c)dZdc (3.24)

However, the holes in the solution tables of ϕ represent discontinuities in the distribution of
the turbulent scalar in Z and c spaces, which means that utilizing an integral formulation
as depicted in (3.24) to express the mean value calculation is incorrect; Equation (3.24)
will instead be expressed as a discrete sum as described in the following:

ϕ̃ =
∑

i∈N(z)

∑
j∈N(c)

P̃Z(Zi; Z̃k, Z̃
”2
k )P̃c(cj ; c̃k)ϕLEM (Zi, cj)∆Z∆c, (3.25)

where N(z) and N(c) correspond to the set of solutions found in the corresponding
solution space. Z̃k, Z̃

”2
k , and c̃k represent respectively the mean of the mixture fraction,

the variance of the mixture fraction and the mean of the progress variable in a CFD cell
k.

Scaling the PDFs is essentially utilizing the following formula:

ϕ̃ =
∑

i∈N(z)

∑
j∈N(c)

P̃ ∗
Z(Zi; Z̃k, Z̃

”2
k )P̃ ∗

c(cj ; c̃k)ϕLEM (Zi, cj)∆Z∆c, (3.26)

where P ∗
z and P ∗

c are the scales PDFs expressed as the following:

P ∗
z (zi) = Pz(zi)∑

i∈N(z) Pz(zi)
, P ∗

c (cj) = Pc(cj)∑
j∈N(c) Pc(cj) (3.27)

Persistence of the LEM results

The persistence approach implies maintaining the encountered values of the reactive scalar
ϕ in previous time steps. If a new result is found, the old value gets simply overwritten
by the new one. The persistence approach aids with minimizing the effect of the scaling
method, namely bringing

∑
j∈N(c) Pc(cj) and

∑
j∈N(z) Pz(zi) closer to unity, especially at

the start of the simulation where the solution tables are still empty. Different variations
for scaling and persisting the turbulent scalars were tested and presented in the results
section.
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4 Results and Discussions
4.1 Numerical Setup
The selected case for validating the model is a single-cylinder metal research engine with
a 15.8:1 compression ratio corresponding to a Volvo 13L six-cylinder heavy-duty truck
engine. It has previously been investigated in [16], where n-dodecane is injected at high
pressure in the combustion chamber. Table 4.1 summarizes the operating conditions.
The simulation is a part load injection case using both RILEM and WSR. The chemical

Initial pressure (bar) 1.69
Initial temperature (K) 395

Initial composition O2 N2 CO2 H2O
% Mass 16.5 75.3 5.97 2.26

IMEP (bar) 7.08
Engine speed (RPM) 1200

Start of injection 3.1° bTDC
End of injection 3.3° aTDC

Injected mass (mg) 13

Table 4.1: Operating conditions for the engine case

mechanism utilized in this case is a reduced n-dodecane mechanism with 54 species
proposed by Yao et al. in [39]. The findings are also compared to experimental data and
the CFD results obtained with the WSR model.

4.2 SSALEM

Figure 4.1 represents snapshots of a single Spherical Stand-Alone LEM (SSALEM)
simulation using the driving parameters extracted from a WSR reacting case. The
physical presentation of the LEM was possible by plotting the positions of the LEM
cells centers. In addition, the representation of the LEM scalars, such as temperature,
mixture fraction, or mass fraction for a specific species, was also possible. It is essential to
highlight that the evolution of the LEM line represented by the presented figures will vary
if a different eddy sequence is utilized due to the stochastic behavior of the small eddies.

The right side of figure 4.1 displays the ignition process on the LEM, where high
temperatures appear in the regions where the fuel was consumed after passing by the
stoichiometric mixture fractions. The intermediate species CO is following the development
of the flame, leaving only a tiny amount of fuel on the edges of the line to be consumed.
The fuel mass fraction is nearly entirely consumed in the right side of figure 4.1, and the
CO mass fraction is still present on the line but should disappear after some time since
it is an intermediate species. Another observation is the two distinct flames existing on
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Figure 4.1: Physical representation of Ignition on the LEM line

the LEM that can clearly be observed on the right side of the figure due to a large-scale
vortex that distributed the fuel from the center of the line to a different region. It was
also possible to run multiple SSALEMs with different eddy sequences. The results of this
process will be shown in the mRILEMs section since they describe the same purpose.

4.3 RILEM
As highlighted in the previous section, the LEM line’s development is associated with the
implemented eddy sequence. This correlation can generate empty bins in the solution
tables since the latter are constructed based on the LEM distribution of the turbulent
scalar. Running two RILEM simulations with different LEM eddy sequences can lead to
different results since the mean values on the CFD are calculated based on two different
solution tables. This matter can be considered an artifact of the RILEM method, which
will be improved using the mRILEMs approach. There are several options to initialize and
fill the table in Z and c spaces during a simulation which are explained in the following
section.

4.3.1 Unburnt Composition Initialization
The first investigated approach utilizes the unburnt state to initialize the solutions across
both Z and c spaces. This method, combined with the persistence approach, will ensure
that no holes are present in the solution tables, which will help the solver reach the end
of the simulation without crashing. All CFD cells will have a total enthalpy value and a
species mass fraction composition to iterate the temperature. However, this method leads
to unrealistic low-temperature values and missing ignition processes. This is because the
fuel-air mixtures favorable for fast ignition process (Z ≈ 0.05) can only be created in a
short time by turbulent mixing, i.e., by eddies hitting the fuel injection zone. With just
one LEM line, it cannot be guaranteed that the sequence of turbulent eddies can always
create these favorable conditions for ignition. As a result, this initialization approach

28



with just one LEM does not allow for ignition in a robust way.

Figure 4.2: Pressure trace of the unburnt initialized RILEM solution

4.3.2 Interpolation between unburnt and equilibrium initializa-
tion

One of the straightforward solutions to get meaningful solutions for high values of c is
to utilize the equilibrium solution. The solution tables are initialized based on a linear
interpolation between the unburnt and the equilibrium state. This method gives different
results depending on which strategy is utilized for the ċ solution table.

The following scenario clarifies the rationale behind combustion occurring for this
approach: It is understood that ignition occurs if a CFD cell has the combination of a
mixture fraction close to stocheometry in a high-pressure, high-temperature environment.
For the CFD to calculate the mass fractions corresponding to an ignition scenario, it
will extract mass fractions from the solution table with a specific Z, c combination. The
solution tables were either empty or initialized with the unburnt composition in the
previous methods; additionally, the sequence of turbulent eddies of one LEM cannot
guarantee the creation of ignitable air-fuel mixtures. The combination that the CFD
requires is fulfilled by the information originating from the initialized solution table. It is
worth stressing that the calculated mean value did not originate from the LEM but from
the initial values of the solution tables. This strategy will create a feedback loop between
the CFD and the LEM that will be described in the following: A high-temperature region
on the CFD will increase the number of turbulent eddies on the line, this increase will
lead to more turbulence, expanding the possibility of creating ignitable regions on the line.
The high CFD pressure is enforced on the LEM due to the pressure coupling technique,
which will lead to even more effortless ignition on the line.
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Figure 4.3: Pressure trace of the interpolated initialized RILEM solution between the
unburnt and equilibrium solutions without scaling the PDFs for ċ

Despite the results of the pressure trace being relatively satisfying, a fundamental
problem can be pointed out with this method. The issue lies in the interpolation approach.
Applying this approach to species mass fractions is not entirely correct due to the
unrealistic representation of T (Z, c) and Ys(Z, c) by a simple linear interpolation, which
are highly non-linear functions of Z and c. A reliable functioning combustion model should
give the correct composition at each time step. Using this method, the absent intermediate
species in both the unburnt and the burnt compositions will lead to missing values for
these species on the CFD. The only values that will appear are the ones originating
from the LEM. This problem will lead to wrong temperatures in the intermediate stages
of combustion since it results from a composition that lacks the complete spectrum of
intermediate species mass fractions. An initialization using the homogeneous reactor with
a prescribed volume can solve the problem that the interpolation method was causing.
A homogeneous reactor initialization will ensure that the solution table of species mass
fractions has the intermediate species information. However, the homogeneous reactor
approach will completely neglect the turbulence-chemistry interaction that is important
for predicting pollutant formation. The expectancy is that the LEM will overwrite the
solution table in the middle of the simulation to account for the turbulence-chemistry
interactions. An alternative solution is to develop a method where the use of LEM is
maximized and the simulation time is reduced.
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Figure 4.4: Pressure trace of the interpolated initialized RILEM solution between the
unburnt and equilibrium solutions with scaling the PDFs for ċ

Figure 4.5: RILEM interpolated species with scaling the PDF of ċ results for CAD =
363.00 ċ distribution on the left and temperature on the right.
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Figure 4.6: RILEM interpolated with scaling the PDF of ċ results for CAD = 363.00. CO
mass fraction on the left and OH mass fraction on the right.
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4.4 mRILEMs

4.4.1 mRILEMs with unburnt matrices initialization

In this approach, the solution tables for mRILEMs were initialized based on the unburnt
composition, which means that the LEMs need to provide chemical closure for ignitable
fuel-air mixtures on the CFD without the assistance of interpolation or a homogeneous
reactor. 16 LEM lines were utilized for this simulation. Figure 4.7 demonstrates that

Figure 4.7: Pressure trace of the scaled and persisted 16 mRILEMs empty initialized
solution

utilizing mRILEMs provided a more pronounced pressure peak than the output provided
by unburnt RILEM. This observation indicates that the utilization of multiple LEMs
with different turbulent eddy sequences indeed helps create more ignitable cells on the
LEM lines. The first evident approach is to maximize the number of LEM lines utilized
to cover the solution tables completely.

4.4.2 mRILEMs with scaling and persistence

Based on the previous result, the LEM lines struggle to update the CFD state accurately
due to incomplete solution tables for PDF integration. As described in the previous chapter,
two approaches are possible to solve this issue: A large number of LEM realizations to
update the entire set of solution tables at each time step or realizing fewer LEM runs
with scaling the PDFs and persisting the LEM time history. In this section, we use the
second approach combined with 16 LEM realizations.

33



Figure 4.8: Pressure trace of the scaled and persisted 16 mRILEMs empty initialized
solution

The LEM lines are initialized empty for this simulation, which signifies that all solutions
observed from the CFD result from the data discovered on the LEM lines. Figures 4.9
and 4.10 clearly show that utilizing more LEM lines results in the acquiring more data,
which motivates the utilization of multiple LEM lines. However, empty bins can still be
observed, which signifies that PDF scaling and persisting the LEM solutions is required
for all turbulent scalars. Figure 4.8 show a pressure trace that follows the expected trend
and successfully predicts the peak and the tail of the pressure trace. LEM is working as a
pure combustion model in this case, since the the chemical state is updated exclusively
from the LEM advancement and not from the initialization of the solution table.
Figure 4.11 shows the results of the ignition point CAD≈ 359, where on the temperature
field is displayed right side. A high temperature can be noticed around the stocheometric
region of the spray which corresponds to what is expected. On the left side, the progress
variable source term is shown
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Figure 4.9: Representation of temperature statistics for 1 line on the left and 16 lines on
the right for different c values
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Figure 4.10: Representation of CO mass fraction statistics for 1 line on the left and 16
lines on the right for different c values
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Figure 4.11: mRILEMs results with scaling all PDFs for CAD = 359.00. ċ term on the
left and temperature on the right

Figure 4.12: mRILEMs results with scaling all PDFs for CAD = 363.00. ċ term on the
left and temperature on the right
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Figure 4.13: mRILEMs results with scaling all PDFs for CAD = 363.00. CO mass
fraction on the left and OH mass fraction on the right
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5 Conclusion and future work
The objective of this work was to use LEM as a mode and regime-independent combus-

tion model for RANS simulations. Transport equations of continuity, momentum, energy,
mean and variance of mixture fractions, and mean combustion progress variable are
advanced using the open-source solver (OpenFOAM 2.2.5). Driving parameters such as
pressure, fuel mass, vapor deposition length, and turbulence statistics are communicated
from the CFD to the LEM, where the concurrent process of molecular diffusion, chemical
reactions, and turbulence advection occurs. The pressure coupling of CFD-LEM enforces
a constant pressure on the line, where maintaining the representative status of LEM
in the CFD combustion chamber was ensured by combining the spherical geometry of
LEM and the split operator strategy to enforce the CFD pressure while keeping the
characteristic length of the line constant. Species mass fractions Ys and the combustion
progress variables source term ċ are conditioned on (Z, c) spaces. The mean values are
calculated on the CFD using the probability density functions P̃ (Z) and P̃ (c) for Ỹs.
Temperatures on the CFD are iterated using the calorific equation of state by combining
the solution of the total enthalpy equation h̃ and Ỹs.

The results extracted from RILEM are examined by comparing them with the WSR
and the experimental data. It has been noticed that the initialization of the solution
tables has a significant impact on the CFD pressure trace, which is mainly due to the
stochastic nature of the turbulent eddy events. Different configurations of solutions
tables initialization have been analyzed. The approach that had the best result for an
individual line was the combination of an interpolated solution table and scaling the
PDFs of the progress variable source term while persisting the LEM time history. The
recently developed mRILEMs approach using 16 LEM lines, persistence, and scaling of
the PDFs has shown promising results with no required initialization of the turbulent
scalar solution table. The CFD state was entirely updated from the LEM advancement,
which has proven the utility of LEM as an accurate combustion model for ICEs.

Running internal combustion engines on hydrogen is one way to decrease its environmen-
tal effect since the emissions are mostly water if pure hydrogen is used as fuel. Running
RILEM and mRILEMs on hydrogen can be tested and compared against simulation
results of a truck compression ignition engine powered by hydrogen. [40]. The diffusion
coefficients used in the LEM equations are mixed averaged, which allows us to detect the
different effects of hydrogen as a main fuel due to its fast diffusive nature compared to
other species. Investigations of differential diffusion effects are planned to be performed
using RILEM and mRILEMs.
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Abstract - As a result of the increase of the use of combustion engines, more restrictive emission standards are applied. New combustion 

technologies are being constantly developed to enhance the internal combustion engine, this is motivated by overcoming issues that are 

relevant for both engine efficiency and the environmental aspects. To do that, turbulent combustion modelling is needed. 

In this paper, an updated version of the Linear Eddy Model (LEM) will be presented. LEM is capable of simulating premixed, non- 

premixed and mixed mode combustion, and it is a regime independent model that runs under the assumption of finite-rate chemistry that 

is sensitive to turbulent chemistry interactions, which makes it suitable for prediction of pollutant formation. A New coupling scheme to 

the CFD-RANS simulation is proposed, the coupling is based on linking the two models via pressure. The benefits of pressure coupling 

are that the effects of wall heat losses and latent heat of evaporation that are modelled on the CFD side are an intrinsic part of the 

pressure term that is linking the two models, in contrast to volume coupling in which these relevant phenomena need supplementary 

modelling on the LEM side. The pressure coupling results in a radially uniform dilatation of the LEM domain reflecting the combined 

effects of pressure change, fuel addition, and cylinder volume change during the engine cycle. Consistency of the LEM cone volume and 

the CFD domain volume is maintained by adopting a split operator strategy involving a volume correction that adjusts the cone angle. 

 A Spherical Stand-Alone Linear Eddy Model (SSALEM) has been created to conduct relatively fast simplified code development and 

parameter studies. SSALEM input parameters were drawn from a WSR-RANS simulation and a 1D slider-crank model that calculates 

the combustion chamber volume that corresponds to a given crank-angle. Model results show the capability to physically track the 

evolution of several scalars that are solved on the LEM line such as temperature, fuel, and intermediate species in the combustion 

process. 

 

Keywords: Linear Eddy Model – Pressure coupling – Stand Alone Model – Volume adaption 

 

1. Introduction 
Considering the increase in pollutant emissions due to the surge of the use of internal combustion engines, new 

combustion techniques such as homogeneous charge compression ignition (HCCI), reactivity control combustion ignition 

(RCCI) and high levels of exhaust gas recirculation (EGR) require further development. Turbulent combustion modelling is 

considered as a crucial tool for the development of these combustion techniques. 

Several combustion models have been used and developed during the last years for classical usage such as gasoline 

combustion (premixed) or diesel combustion (non-premixed). They are typically limited to these two combustions. For 

example, flamelet models [1] assume the formation of laminar flame structures in a turbulent flow field, resulting in limited 

interaction between chemistry, molecular transport, and turbulence in the flamelet models because of the parametric coupling 

that these models are based on. The coupling in flamelet models depends on scalar dissipation rate for non-premixed cases 

and mean turbulent velocities for the premixed cases.  

The Linear Eddy Model has been used a sub-grid model to overcome this limitation. It is a regime and mode independent 

model that is based on the statistical representation of flow time advancement along a physical line of sight represented by a 
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one-dimensional computational domain. Because LEM captures direct interactions between turbulent advection, 

diffusion, and chemical reactions, it can predict highly unsteady effects such as extinction and re-ignition without 

supplementary modelling. It can be used in different geometries (planar, cylindrical, or spherical) depending on the 

application case requirements. LEM can be coupled as a sub-grid model in several ways. It has been used in the context 

of LES simulations in the LES-LEM approach [2] which is a one-dimensional representation of the turbulent combustion 

process in every LES cell with spatial and temporal resolution comparable to direct numerical simulations. The 

disadvantage of the LES-LEM model is the computational cost of this high resolution. 

 In the context of this paper, one LEM line represents the entire combustion chamber, thereby greatly reducing the 

computational cost. A previous version of this formulation was termed RILEM [3] , which stands for the representative 

interactive linear eddy model. In this model the coupling was done based on a volume constraint, which required 

supplementary modelling of the heat effects on the LEM side. However, in this paper, LEM will be presented in a one-

way-coupled form in which the results of a WSR-RANS simulation supply the pressure time history to LEM but LEM 

does not provide chemical or other closure information to the CFD. 

 

2. Mathematical Model 
The Linear Eddy Model [4, 5] was proposed originally as a scalar mixing model for non-reactive flows. It was later 

extended to describe reactive flows. It consists of two main processes. The first process is the turbulent transport, 

represented by a stochastic sequence of independent eddy events. The second process time advances all other effects, 

which are diffusion, and chemical reactions in the present application. The Linear Eddy Model provides affordable full 

resolution of spatial and temporal scales by solving the reactive zero-Mach number equations on a one-dimensional line 

of sight. 

 

2.1. LEM Diffusion and Chemical reactions 
The LEM code is based on a pre-existing C++ implementation of One-Dimensional Turbulence (ODT) by David 

Lignell [4]. The ODT code offers certain features that are adopted in the LEM framework such as grid adaptation and a 

Lagrangian formulation of the balance equations for species mass fractions 𝑌𝑠 and enthalpy ℎ. The balance equations 

are the following: 
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𝜌 is density, 𝑗𝑠 the species diffusion flux, 𝑀𝑠 the species molar mass, 𝑝 the pressure , 𝑞 the heat flux, ℎ𝑠 

the enthalpy of species s including the heat formation heat, and 𝑤̇𝑠 the chemical source term. The temperature is calculated 

using the caloric equation of state.  

 

 
ℎ(𝑇) = Δℎ𝑠

0 + ∫ 𝑐𝑝,𝑠(𝑇)𝑑𝑇
𝑇

𝑇0

 

 

(3) 

 

where Δℎ𝑠
0 is the standard heat of formation of species s and 𝑐𝑝, denotes the mass specific heat capacity at constant pressure. 

The continuity equation in the lagrangian formulation for the one-dimensional line is 𝜌𝛥𝑥 =  𝑐𝑜𝑛𝑠𝑡. 

The above-mentioned balance equations are solved using a second- order accurate scheme with central discretization.  
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of the diffusion terms. The chemistry solver that is used for chemical reactions is the CVODE package using the stiff chemical 

source integrator an implicit BDF Method. The chemistry is solved in parallel using open MP, where it is possible to specify 

the number of threads on which the chemistry will be solved.  

 

2.2. LEM Turbulent Transport 

The turbulence advection in LEM is represented by stochastic eddy events. An eddy event in the context of LEM is a 

so-called “Triplet Map.” This operation is a rearrangement of the scalars that constitute the state of each LEM cell. It mimics 

the effect of turbulent vortices. In addition to the usual LEM representation of the turbulent cascade, triplet maps are also 

used to represent large-scale fluid motions inside the combustion chamber. 

 

2.2.1. Small Scale Turbulence 
The triplet map process follows the presented steps: Once the eddy is decided to be implemented on a certain region of 

the line, that section of the line will be copied three times, the middle copy gets inverted, the three copies are then connected 

back with each other and finally the result is compressed back to the original length of the eddy. The described operation 

increases the gradient within the interval where the eddy happened similarly to the effect generated by the compressive strain 

in a turbulent flow. 

Three quantities are needed to specify an eddy event, size of the eddy 𝑙, the eddy’s location and an eddy event time. In 

the LEM the eddy size is sampled from a prescribed size distribution. Assuming Kolmogorov inertial-range scaling [5], the 

eddy distribution is 

 

 
𝑓(𝑙) =

5

3

𝑙−8/3

𝜂−5/3 − 𝑙𝑡
−5/3

 

 

(4) 

Using the turbulent Reynolds number 

 

 
𝑅𝑒𝑡 =

𝑢′𝑙𝑡

𝜈
 

(5) 

 

where ν is the kinematic viscosity and 𝑢′ is the root mean square velocity fluctuation, 𝑙𝑡 the integral length scale, the 

Kolmogorov length scale η  is determined from the inertial scaling law.  

 

 
η = 𝑁𝑛𝐿𝑅𝑒𝑡

−
3
4 

 

(6) 

The mean number of eddy events per unit time per unit length of the 1D domain is 

 

 
𝜆 =

54

5

𝜈𝑅𝑒

𝐶𝜆𝑙𝑡
3

(𝑙𝑡/𝜂)5/3 − 1

1 − (𝜂/𝑙𝑡)4/3
 

 

(7) 

 

where Cλ =  15 and Nη = 10.76 are model constants with values that can be found in the literature [6]. The turbulent 

diffusivity on the LEM line corresponds to 

 

 𝐷𝑡 = 𝑢′𝑙𝑡/𝐶𝜆 (8) 
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Eddy locations, where location is nominally defined as the location of left boundary of an eddy, are randomly 

sampled from a uniform distribution of eddies over the line and the eddy time is sampled under the assumption of a 

Poisson process with a mean eddy occurrence time. 

 

 𝛥𝜏𝐸𝑑𝑑𝑦 = (𝜆𝐿)−1 (9) 

 

where L is the domain size. For boundary conditions other than periodic, sampled eddies that extend beyond the right 

boundary of the domain are not implemented. 

 

2.2.2. Large Scale Turbulence 

It is possible to implement large scale turbulence effects such as swirl and tumble on the LEM line, like what 

happens in the context of real engines. These effects are represented by big eddies that are introduced to the LEM line 

to obtain sufficient dispersion of fuel from the vapor deposition region to other regions of the domain. The big eddies 

respect a constant size which has been chosen to be equal to the half of the combustion chamber bore. 

Like the small eddies, big eddies are randomly sampled uniformly along the LEM line. A big-eddy time scale is calculated 

based on the exit velocity of the fuel 𝑣𝑛 and engine cylinder length scale 𝑙𝑐  using 

 
τ𝐵𝑖𝑔𝐸𝑑𝑑𝑦 = θ

𝑣𝑁

𝑙𝑐
 

(10) 

 

where θ is a mixing time constant that accounts for the effect of different geometries and flow conditions on the mixing. 

Previously and in this study, θ is set equal to unity. The number of the large eddies that would happen in the entire simulation 

is fixed at the beginning to be the time for one engine cycle divided by the big-eddy time scale and their occurrence times 

are independently sampled based on a uniform distribution of occurrence time during one engine cycle. 

This sampling process of the large eddies is different from one used for the small eddies to avoid excessive cycle 

to cycle variability of the fuel dispersion process that can be created from significant cycle variability of the number of 

large eddies. 

 

2.3. LEM Pressure Coupling 

LEM and CFD can be coupled in two different ways: i) with volume coupling that was applied in the previous 

version [3] and ii) via pressure coupling which has been developed and implemented in the current project so far. 

 In the pressure based CFD-LEM coupling the pressures on the CFD and the LEM match while the volume can (and 

will) slightly deviate. This is achieved by imposing the CFD pressure on the LEM. The main advantage of the pressure 

coupling compared to the volume-based coupling is that relevant phenomena such as latent heat of evaporation and wall 

heat losses, which are modelled in detailed 3D geometry on the CFD side, are implicitly encoded into the pressure. The 

pressure coupling therefore allows consistent LEM treatment of those effects, which otherwise would require additional 

modelling on the LEM side. 

 

2.4. Split Operator Strategy 
In the pressure-based coupling we enforce a spatially constant LEM pressure matching the spatially averaged time 

dependent pressure of the CFD. This can be achieved in several different ways, here we adopt the following strategy 

which we call the split operator strategy: 

1. Implementation of physical processes (fuel injection, combustion, diffusion, etc.) as constant volume processes in 

each LEM cell. This will lead to a change of pressure in each individual LEM cell. 

2. Isentropic compression of each LEM cell to the target CFD pressure under the assumption of a fixed composition. 

This step will alter pressure, temperature, and density within each LEM cell.  

3. Calculation of the total volume of the LEM domain. 
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4. Adjusting the cone-angle of the LEM domain with a prescribed length of the LEM domain to match the volume 

calculated in step 3. 

5. Re-distribution of cell boundaries on the LEM domain. 

In the following we describe some of the steps mentioned above in more detail. 

 

2.4.1. LEM Volume Adjustment 
As mentioned above, the LEM domain is a double cone. Therefore, the volume of the LEM domain can be adjusted by 

changing the length of the cone and/or the cone angle. Here we adjust the volume by changing the cone angle and keeping 

the length fixed. This is motivated by the assumption that the cone is oriented in direction of a spray jet and therefore, under 

this assumption the length of one LEM cone is limited by the distance between the injector and the cylinder walls.  

If D denotes a characteristic length of the cylinder, e.g., the bore or the stroke, the cone angle  α is given by: 

 
α = 𝑎𝑐𝑜𝑠 (1 −

12𝑉

π𝐷3
) 

(11) 

where 𝑉𝐿𝐸𝑀 is the total volume of the LEM line, which is known after step 3 of the split-operator approach. Since we know 

the volume of each individual LEM cell, the position of the cell faces on the LEM domain can be re-calculated. 

 

2.4.2. Fuel deposition on the LEM line 

Fuel injection is modelled in detail on the CFD side via the spray model. However, evaporated fuel on the CFD domain 

needs to be added to the LEM line which only represents the gas phase. For this, two main parameters are extracted from the 

CFD side to be imposed on the LEM to represent the fuel injection process: i) the evaporated fuel mass in one CFD time step 

and ii) the total volume of cells where fuel has been evaporated. In principle it would be possible to implement a spray model 

on the LEM line itself, however, it is easier and probably more consistent to use information from the CFD spray model. To 

have a consistent representation of quantities from the CFD to the LEM, a volume ratio between the CFD and LEM is defined 

as 

 
𝑄 =

𝑉𝐿𝐸𝑀

𝑉𝐶𝐹𝐷
 

(12) 

which is used to scale the vapor deposition volume between the CFD and the LEM. 

Evaporated fuel on the LEM line is injected symmetrically relative to the meeting point of the two cones. The current 

fuel deposition strategy matches the total volume of the cells with and without evaporation on the CFD and the LEM side. 

On the CFD we evaluate the volume ratio of cells with evaporation to the total volume as 

 

 
𝛽 =

∑𝑉𝑒𝑣,𝑖

𝑉𝐶𝐹𝐷
 

(13) 

This ratio defines an initial guess of the volume and the associated radius 𝑅𝐿𝐸𝑀
𝑖𝑛𝑗

 around the center of the LEM domain 

over which fuel on the LEM line is injected. The actual fuel mass deposited in each cell depends on its volume based on 

 
𝑚𝑒𝑣,𝑖

𝐿𝐸𝑀 = 𝑚𝑒𝑣
𝐶𝐹𝐷.𝑄.

𝑉𝑒𝑣,𝑖
𝐿𝐸𝑀

∑𝑉𝑒𝑣,𝑖
𝐿𝐸𝑀 

(14) 

The implemented fuel deposition method does not guarantee that the fuel vapor mass in each cell stays below the 

saturation level. However, so far this has not been a problem in the simulations, but it is straightforward to extend the fuel 

deposition strategy to take local saturation levels into account. 
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After vapor deposition new values for density, mass-fractions, and temperature in each affected cell need to be updated 

applying a simple mixing process at constant volume (the volume of the LEM cell). For the new LEM cell density in cell i 

we have 

 
𝜌𝑛𝑒𝑤,𝑖 = 𝜌𝑜𝑙𝑑,𝑖 + 𝜌𝐹𝑢𝑒𝑙,𝑖.

𝑉𝐹𝑢𝑒𝑙,𝑖

𝑉𝐿𝐸𝑀,𝑖
 

(15) 

and for the updated mass-fractions 

 

 
𝑌𝑠,𝑛𝑒𝑤,𝑖 =

𝑌𝑠,𝑜𝑙𝑑,𝑖.𝑚𝑜𝑙𝑑 + 𝑌𝑠,𝑎𝑑𝑑,𝑖.𝑚𝑎𝑑𝑑

𝑚𝑜𝑙𝑑 + 𝑚𝑎𝑑𝑑
 

 

(16) 

The temperature of the mixture is calculated with a simplified mixing rule ignoring the difference in specific heats of 

the added fuel vapor and the mixture within the LEM cell: 

 

 
𝑇𝑛𝑒𝑤 =

𝑇𝑜𝑙𝑑.𝑚𝑜𝑙𝑑 + 𝑇𝐹𝑢𝑒𝑙.𝑚𝐹𝑢𝑒𝑙

𝑚𝑜𝑙𝑑 + 𝑚𝐹𝑢𝑒𝑙
 

 

(17) 

Due to the mixing process LEM cells with fuel injection have changed density, composition and temperature, therefore 

they have changed pressure as well. To have a constant pressure on the line we correct the pressure and adjust the LEM cell 

faces and the cone angle according to the split operator approach described above. 

 

3. Spherical Stand-Alone Linear-Eddy Model (SSALEM) 
A stand-alone engine LEM model has been created. The stand-alone model offers the following possibilities: simplified 

code development and validation, faster computation to enable many parameter variations, and modularity for easy coupling 

to any combustion CFD software. 

The time-varying driving parameters for the LEM model (turbulence parameters, cylinder pressure traces and evaporated 

fuel mass deposition rate and penetration distance) can be provided by simple models or - as done here - with a separate CFD 

simulation based on the Well Stirred Reactor (WSR) in a pre-processing step. A standard 1D slider-crank model has been 

added to the stand alone LEM that calculates the volume of the combustion chamber as a function of the engine speed.  

 

4. Results  
4.1. Case Description : Volvo Heavy Duty Engine  

The investigated case is a single cylinder of a Volvo 13L six-cylinder heavy-duty truck engine. It has a high-pressure 

fuel injector located in the centre of the top of the combustion chamber and a compression ratio of 15.8:1. The simulation 

was on a part load configuration with the following operating conditions initial pressure 1.69 bar, initial temperature 395 K, 

IMEP 7.08 bar, engine speed 1200 RPM, start of injection 3.1° bTDC, end of injection 3.3° aTDC, injected mass 13 mg, and 

initial gas composition by mass O2 16.5%, N2 75.3%, CO2 5.97%, H2O 2.26%. The chemical mechanism that was used for 

this study is a reduced mechanism for n-dodecane combustion which involves 54 species and 256 chemical reactions [7]. 

 

4.2. Results 
The input parameters for running the SSALEM were created by running a Well Stirred Reactor (WSR) RANS simulation 

of the case, which is based on Lib-ICE, which is a set of OpenFOAM libraries and solvers for internal combustion engines 

which is implemented by the ICE group at Politecnico di Milano. Once the inputs are generated, the SSALEM is simulated. 

As described before, the stand-alone spherical LEM has been created to investigate different parameters on the LEM 

line for faster simulations. The possibility to represent the LEM line in physical space has also been added to the code, which 
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provided the ability to investigate in detail the different processes that modify the LEM physical state and geometrical 

structure. The aim of this simulation is to observe the output that SSALEM can provide. 

To describe the evolution of the LEM line, the temperature and the n-dodecane mass fraction were chosen to represent 

the different states the LEM line is experiencing. The following two figures display the distribution of temperature, fuel mass 

fraction, and carbon monoxide mass fraction on the LEM line. 

 

 

Fig 1: Snapshot of the LEM solution at CAD = 360.34 

In Fig 1, the simulation has reached the crank-angle 360.34, It is seen that the LEM line is relatively combusted with the 

highest temperature on the line reaching 𝑇𝐿𝐸𝑀𝑀𝑎𝑥
= 2100𝐾. It also appears that the fuel is decreasing which corresponds to 

the consumption of the fuel due to combustion. 

 

Fig 2: Physical representation of a developed LEM line CAD = 363.85 

The combination of the small-scale turbulence, the large-scale turbulence, the diffusion, and the output of the chemistry 

solver resulted in the state of the LEM line represented above in Fig 2. The LEM representation tool provided the possibility 

to visually verify the state of the line. The split operator strategy appears to be working by maintaining the LEM length be 

equal to the combustion chamber bore diameter.  
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5. Conclusion 
Based on the reported results, the pressure-coupled SSALEM can potentially be used as a combustion model by linking 

it to a CFD-RANS simulation, which is a promising strategy to explore. LEM’s sensitivity to turbulence chemistry 

interactions potentially enables investigation and prediction of pollutant formation.  

The development of the SSALEM is an important step in the construction of the pressure-coupled RANS-LEM thanks 

to its efficiency in code debugging and its clarity in displaying the important steps of the model’s framework. It is also useful 

as a physical representation of the regime evolution along the one-dimensional line during the engine cycle, which can be 

used for parameter investigation.  

LEM is to be coupled with CFD using a pressure constraint. The scalars that are solved on the SSALEM level will be 

conditionally based on a CFD-level model of the joint PDF of mixture fraction and progress variable. The conditioning will 

generate outputs that will be mapped to each CFD computational cell. Coupling the LEM with the CFD will result in a 

different link between the two solvers in terms of pressure than in SSALEM. In the current configuration pressure is pre-

calculated using conventional CFD, while in the coupled scheme the pressure will be time advanced at the CFD level after 

each time interval of LEM advancement, resulting in interesting phenomena that will appear on both the CFD and the LEM 

sides. These phenomena are to be investigated in future work. 
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