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Figure 1: A collaborative system with universal physical coupling interfaces (PCIs) can support diverse ground/fying robot 
combinations; PCIs are indicated in red. 

ABSTRACT 
Flying and ground robots complement each other in terms of their 
advantages and disadvantages. We propose a collaborative system 
combining fying and ground robots, using a universal physical 
coupling interface (PCI) that allows for momentary connections 
and disconnections between multiple robots/devices. The proposed 
system may better utilize the complementary advantages of both 
fying and ground robots. We also describe various potential scenar-
ios where such a system could be of beneft to interact with humans 
- namely, remote feld works and rescue missions, transportation,
healthcare, and education. Finally, we discuss the opportunities and
challenges of such systems and consider deeper questions which
should be studied in future work.

CCS CONCEPTS 
• Computer systems organization → External interfaces for
robotics; • Human-centered computing → Collaborative in-
teraction.
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1 INTRODUCTION 
The fourth industrial revolution strongly emphasizes cyber-physical 
systems [17], where the internet of things (IoT) becomes both more 
ubiquitous across society and more integrated in everyday use 
[37, 38]. Devices become “smart” in the sense that they can access 
the internet and communicate with other devices, thereby man-
aging ranges of tasks more efectively [42, 46]. While most smart 
devices connect, communicate, and disconnect virtually through the 
internet, using purely virtual connection presents both challenges 
and opportunities [56]. 

We propose a coupling strategy where mobile smart devices, as 
well as their users, will beneft from momentary physical connection 
supporting applications such as battery charging, rapid and stable 
transmission of sensitive data, and so forth. Making use of physical 
infrastructure as an interface to couple two or more autonomous 
devices would enable them to operate jointly when needed, while at 
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other times collaborating at a distance or operating independently. 
Such systems, embracing the IoT features plus allowing physical 
coupling of multiple devices, could take advantage of these objects’ 
complementary capabilities. The coupled devices would thus be 
able to carry out a greater diversity of tasks, leading to new kinds 
of services, interactions, and experiences for users in a variety of 
settings, from domestic to industrial ones. 

In this paper, we present a concept for a universal physical cou-
pling interface (PCI) that allows for momentary connections and 
disconnections of multiple devices (see example in Figure 1). Here, 
the term “universal” means it is standard, modular and scalable, 
and designed to be applicable for all kinds of devices via the same 
protocol for communications. We mainly focus on the collaborative 
system of a ground robot and a fying robot using PCI; other kinds 
of primitives, e.g., ground-ground robots, fying-fying robots, sys-
tems of more than two devices and so on, are not yet studied here. 
We also demonstrate a variety of potential scenarios and features 
where the studied system could be of beneft when interacting with 
human users. Finally, the challenges afecting implementations of 
such systems and deeper questions that must be studied in future 
work will be discussed. 

2 RELATED WORK 
The defnition of “Robot” is adapted from ISO 8373:2021 as a “pro-
grammed actuated mechanism with a degree of autonomy to per-
form locomotion, manipulation or positioning”, where autonomy 
is specifed as the “ability to perform intended tasks based on cur-
rent state and sensing, without human intervention”, including 
both industrial robots and service robots [15]. Hence, robots can 
be autonomous or semi-autonomous. 

Flying robots or unmanned aerial vehicles (UAVs), commonly 
known as drones, are agile and can access a relatively large workspace. 
Drones can already be used in everyday life and work and will be-
come more commonplace [1, 34, 44]. However, one weak point of 
drones is their short battery life [50]. There exist some solutions 
for the battery shortage of drones [6, 7, 10, 25, 53], including utiliz-
ing ground robots to replenish or exchange drone batteries [3, 33]. 
A ground robot can be either fxed in place or mobile, such as a 
mechanical arm, a vehicle with autonomous features, or even a 
prosthetic limb, all of which have fewer power supply constraints 
compared to a drone, as they usually have direct connection to 
electricity or higher capacity batteries [30, 33]. A ground robot has 
better capabilities than a fying robot regarding extensibility and 
can be more fexibly integrated with various hardware and soft-
ware, due to its higher power capacity and larger payload which 
allows it to carry more powerful computers, more complex sensors 
and actuators to execute tasks [30, 33]. However, compared to a 
drone, the workplace of a ground robot is limited and relatively 
two-dimensional (2D), as its sensor and actuator ranges are limited 
by the fact that it’s on the ground. The drone is much more agile 
and can rapidly respond to changes when needed due to the limited 
ground robot speed [2]. Table 1 shows these complementary advan-
tages of ground robots, fying robots, and targeted ground/fying 
robot combinations. 

Collaborative systems of coupling fying and ground robots have 
been proposed in several diferent embodiments. Miki et al. designed 

Wang et al. 

Table 1: Complementary advantages of ground robots, fy-
ing robots, and targeted ground/fying robot combinations. 

Ground 
Robots 

Flying 
Robots 

Targeted 
Systems 

Workspace 
Power Supply 

Extension Capability 
Agility 

=advantage =disadvantage 

a system in which a UAV assists an unmanned ground vehicle (UGV) 
to climb clifs by attaching a tether, in order to conduct missions 
that neither UAV nor UGV could accomplish alone [30]; nonetheless, 
the system didn’t solve the UAV battery problem, and power supply 
and communication via the tether was suggested for the future 
work [30]. Power tethered UAV/UGV systems had already been 
developed [9, 21, 36, 54], but the tether would add extra weight 
and restrict the workspace of the robots as well as perhaps twist 
or entangle objects, causing safety issues. Narváez et al. presented 
a ground manipulator able to autonomously dock a UAV for its 
battery replenishment [33]; similarly, Barrett et al. presented a 
system enabling autonomous battery exchange for UAVs by using a 
robotic ground base, which greatly extended the endurance of the 
UAV [3]. However, these required extra space on board to store the 
batteries and the exchange procedures were somewhat complicated, 
and the ground base did not have any functions other than battery 
exchange. 

These previous works indicated the potential beneft of utilizing 
the advantages of both fying and ground robots, but how the two 
kinds of robots connected was somewhat complex and bothersome, 
and requires some better solution. Moreover, most aforementioned 
collaborative systems lacked consideration of how such systems 
would interact with humans. 

Some joint solutions have been studied, including physical in-
terfaces augmenting physical capabilities [23], interfaces for ubiq-
uitous grasping [52], interfaces that can stick to diferent kinds of 
surfaces [51], a modular interface for physical objects held on the 
back surface of smartphones [29], as well as some conceptual ideas 
[11, 31, 35]. These projects show various ways for conveniently 
joining diferent objects. 

We have found projects and ideas with elements partly similar to 
our proposal. For instance, collaborative systems of fying-ground 
robots with elaborate connecting solutions [3, 9, 21, 30, 33, 36, 54] 
and convenient solutions joining diferent objects other than robots 
[11, 23, 29, 31, 35, 51, 52] have been proposed. However, none of 
these systems combine collaborative fying-ground robots with a 
simple joint solution coming close to our proposed concept (see 
Figure 2), presented next. 

3 PROPOSED CONCEPT 
Partially inspired by the existing solutions, we come up with an 
idea of a universal physical coupling interface (PCI), as illustrated 
in Figure 3, which is the core component of our proposed system 
(shown in Figure 2). The coupler has a specifc shape for clamping, 
fastening the two devices together. A durable material is chosen to 
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Figure 2: Collaborative fying-ground robots operating in two interchangeable phases: physically disconnected (a); connected 
using PCI (b). Metaphor of horseback falconry (inspired by Piper 2018 [26]) (c). 

withstand countless connection cycles, and an inductive metal used 
for the connection surface, transmitting both signal and electricity 
for power charging. The two parts are identical and interchange-
able, enabling the two devices to connect and disconnect easily 
and autonomously. This mechanism is designed to be standard and 
universal, can be attached to all kinds of devices and equipment, 
and should employ a universal communication protocol between 
devices. An example is the TCP/IP protocol applied by industrial 
robots [48, 49]. This protocol is designed to transfer information 
both over wire and wirelessly. Information may include position, 
velocity, acceleration, and current and voltage of the robots. This 
common physical interface provides the proposed system with 
fexibility, leading to possibilities for various extensions and con-
nectivity with future devices, and could even be retroftted to older 
devices. For instance, a drone could land on any kinds of ground 
robot, while a ground robot could receive drones of diferent sizes 
in diferent scenarios and settings. 

With the universal PCI (indicated in red in Figure 2; details shown 
in Figure 3), we propose a complementary system that combines the 
advantages of both ground and fying robots while compensating 
for each ones’ disadvantages. As illustrated in Figure 2, a ground 
robot (in this example, a mechanical arm on wheels, but it could 
be a variety of other primitives) is paired with a drone, and they 
can operate in two interchangeable phases. In Phase 1, the ground 
robot and the drone operate separately; they are connected over 
the network but physically disconnected. They can either focus 
on diferent tasks or cooperate with the same mission. In Phase 2, 
the ground robot is physically connected to the drone, so they can 
operate as a whole unit. In this phase, the drone can be charged 
via the port and share any data which is too massive or sensitive 
to be transmitted wirelessly. In both phases, the two robots can 
share sensor data and be commanded to work either separately or 
collectively, thus the whole system is smarter and more versatile 
than each device on its own. A good metaphor for the proposed 

d

b

a

c

Figure 3: The proposed Physical Coupling Interface (PCI) 
consists of a coupler (a), device surface (b), and power-and-
control wires (c). The PCI can be connected or disconnected 
(d). 

collaborative system is a falcon commanded by a falconer on horse-
back (see Figure 2(c)). As shown in Figure 2, the drone is likened to 
the falcon, and the robot arm on wheels to the falconer on a horse. 
Both are mobile but work together, the falcon can follow the rider 
even if they move around, and it won’t get lost. The combination 
of the horse and the rider is yet another collaborative system. 

Our work is novel in the following aspects, as we propose: (i) an 
easy and simple coupling interface for collaborative fying-ground 
robots, which may be better than the existing solutions that use 
tethered or complex interfaces; (ii) a universal PCI may allow innu-
merable combinations of multiple devices and even enable these 
combinations to be fexibly transformed, thus creating a great po-
tential for new diverse applications (see Figure 1). In addition to 
the above, (iii) we consider how the collaborative system would 
interact with humans under diferent scenarios. 
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4 POTENTIAL SCENARIOS OF APPLICATION 
We studied some robotic applications for various scenarios, such 
as: remote feld works [12, 14] and rescue missions [8, 18, 24, 32], 
transportation [27], healthcare [13, 40, 45, 47, 55], and education 
[4, 20, 22, 39], where our proposed system may be of value. As our 
concept may open such an interesting range of possibilities, we 
believe it will be inspiring for future researchers to further develop 
such systems. 

4.1 Remote feld works and rescue missions 
People carrying out remote feld work, such as mining [12], survey-
ing, research in the desert or Antarctica or even on the moon [14], 
may fnd our system appealing. These professionals usually with-
stand extreme environments, severe weather, and isolation. The 
ground robot could include various kinds of equipment ftted with 
the universal physical coupling interface, paired with autonomous 
drones, sensors, and other devices. The system would increase a 
feld worker’s capabilities, such as taking over dangerous rescue 
tasks in areas otherwise too unsafe to enter. They may also be good 
companions in the feld. Similarly, these characteristics could be 
also very useful for rescue missions [18, 28, 30], by allowing them 
to examine the unsafe areas and provide temporary emergency 
communication support [5] and so forth. Figure 4 shows a scenario 
where the collaborative system assists a rescue worker by ofering 
multiple functions. For example, while the ground robot removes 
heavy obstacles and the fying robot largely extends the search 
areas, the system provides the human worker both with overview 
and focus. The rescue worker may give commands to the robots to 
perform diverse tasks. This is a future research feld for emergency 
services, the military, etc. 

a b

Figure 4: Collaborative system with PCI applied for a rescue 
mission. The monitor of the rescue worker shows both the 
focused view from the ground robot (a), and the overlooking 
view provided by the fying robot (b). 

4.2 Transportation 
The proposed system has great potential for use on the road. In 
this case, the vehicle is set to have autonomous features and is thus 
considered a robot by defnition [15], and the physical interface 
is located somewhere inside the driver’s cab. The autonomous 

drone is by default physically connected to the vehicle inside of the 
cab. However, if the driver runs into bad weather or trafc jams, 
the drone can fy out and report back with a bird’s eye view of 
conditions ahead and give feedback to the driver. The drone can 
also fy out to carry out thorough inspections around large vehicles 
such as lorries (Figure 5) to guarantee travel safety. In addition to 
these functions, the system, especially the drone, might take on 
a secondary role as a companion interacting with drivers to help 
alleviate boredom and loneliness on long journeys. 

a

b

Figure 5: Collaborative system with PCI applied as a road 
companion: companionable interaction with the driver (a); 
a fying robot fies out to check road conditions and vehicle 
conditions (b). 

4.3 Healthcare 
As a greater percentage of the population is aging resulting in a 
shortage of young caregivers, while at the same time facing wide-
scale health crises, healthcare services are under more pressure than 
ever before. There exists great potential to meet some of these de-
mands using robots to supplement or replace the human workforce. 
In some cases, robots may even ofer an advantage over humans, 
for example by reducing the risk of spreading an infection among 
healthcare workers and patients, or by providing reliable support 
services during periods of unstable employment. While meeting 
the aims of humanitarian activity, robots can also help fght the 
on-going pandemics [45, 47, 55]. 

The complementary robot system could be applied as a personal 
assistant for people in need, as shown in Figure 6, such as older 
adults, those with chronic illness, children, and even infants. The 
autonomous drone allied with the ground robot can help to over-
come three problems: (i) reducing reaction time when an emergency 
happens, reaching people faster when needed, (ii) providing the 
bird’s eye view that is important for fall detection [16], (iii) ignor-
ing ground obstacles, as the drone can easily move around people, 
change the angle of view and improve the accuracy of remote di-
agnosis [2]. The robotic assistant could also follow users while 
monitoring their condition, for instance measuring their tempera-
ture, breath, heartbeats, and so forth; scan the environment to fnd 
and retrieve high or far away objects, and safeguard users and call 
for help if they get into trouble. Additionally, the system may also 
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behave like an animal companion, ofering comfort to help users 
relax and support their mental health. 

a

b c

Figure 6: Collaborative system with PCI applied as personal 
healthcare assistant: the ground and fying robots operate as 
physically connected (a) or physically disconnected (b); red 
areas indicate the PCI (c). 

Another potential application may be to integrate a drone into 
a prosthetic limb. A very similar concept already exists, namely 
a prosthetic arm which has a USB port for charging drones [13]. 
However, this existing concept does not count the prosthetic arm 
and the drone as a complementary system – the drone does not 
extend the capabilities of the prosthetics and is used only for gam-
ing. We think a drone that coupled with a prosthetic limb could be 
more than a toy - for example, it could fy away to fetch or manip-
ulate objects out of reach. This could extend the functionality of 
prosthetics and enhance the capability of the human body in new 
ways. This leads to some ethical and even philosophical questions, 
which we will take up in the discussion (see the 4th paragraph in 
section 5). 

4.4 Education 
Robotic systems have been used in education in various ways [4, 20, 
22, 39, 43]. We consider the proposed system would be a useful and 
powerful tool for novel educational uses. The two interchangeable 
phases of a fying drone and a grounded base could be used to create 
a system to demonstrate concepts to children in a tangible way, such 
as models from physics, chemistry, mathematics, biology, etc. For 
instance, in physics, as shown in Figure 7, the autonomous drone 
could play the part of the electrons of an atom, and the ground 
robot the nucleus, so the drone could orbit around the ground 
robot to demonstrate the atomic structure. The ground robot could 
contain a projector to add further visual efects and information 
about the subject. A system such as this could provide teachers with 
multiple modalities of describing concepts, which could help in the 
instruction of students with diferent kinds of learning needs. Visual 
and tangible interaction creates possibilities for students to learn in 
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a lively and intuitive, vivid and three-dimensional fashion. While 
a considerable body of research exists within HCI for interaction 
and education, further study of the interaction between the system 
and its users, in this case both teachers and students, is required in 
order to better develop this educational tool. 

Figure 7: Collaborative system with PCI applied as an edu-
cational tool: the teacher can demonstrate atomic structure 
and orbits to students with multiple modalities. 

5 DISCUSSION AND FUTURE WORK 
The four scenarios presented here demonstrate features and ben-
efts across diferent embodiments of the proposed system. The 
collaborative system of fying-ground robots with the modular and 
scalable physical coupling interface (PCI), is a signifcant advance-
ment of past works, and takes advantage of the capabilities of both 
ground robot and drone in an easier way, so that the system can 
better obtain the capability of managing a larger and 3-dimensional 
workspace, respond with speed and agility to emergencies, and 
preserve its durability to maintain working frequencies. 

The universal PCI enables a variety of combinations of fying 
and ground robots with potential benefts for a range of scenarios. 
Moreover, the universal PCI may be integrated into other prim-
itives, allowing an enormous number of potential collaborative 
systems (see example in Figure 1), which may be studied in the 
future. Unexpected benefts may be possible upon further study, 
for example the physical connection between devices could help 
keep data private, as transfer of confdential data directly between 
devices, rather than over the internet, is less vulnerable to data 
breaches. 

As the system interacts with humans, pet-like behaviors may 
also enhance how people perceive them as companions rather than 
cold machines. Users might fnd the system more comfortable and 
enjoyable if it can easily blend into society. However, this raises 
some ethical questions: is it ethical to manipulate humans’ per-
ceptions by integrating pet-like behaviors into the robots? Could 
this be seen as a kind of deceit, and furthermore, is it an appro-
priate response to social isolation? Despite these worries, Sharkey 
et Sharkey suggested that robot pets might improve users’ lives if 
used carefully [41]. 

There is currently a lack of guidelines explicitly addressing ethi-
cal, legal and societal implications in the development of wearable 
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robots [19]. Ethical considerations come into play when modifying 
or adding to the human body. For example, the drone coupling 
with a prosthetic limb raises questions about how we perceive and 
interact with such a system once it becomes part of a person with 
disability. That is, the user experience of this system will depend 
on whether the drone is in use. When the drone fies the weight 
of the prosthesis is lower. When the drone hits an object at a far 
distance, the user may experience a collision stimulus or even pain. 
What could be the implications of such unprecedented technology? 
Should we really encourage modifying human capabilities in the 
sense that they need enhancement to be more “useful”? And what 
of enhancing perfectly abled bodies? Such questions remain to be 
addressed. 

Besides, there are signifcant technical challenges to develop 
such systems. Not only do the mechanical components and elec-
tronics need to be designed and realized, but the algorithms and 
controlling solutions must also be well considered and validated, 
especially when two or more robots are coupled as a unit. Moreover, 
introducing a physical interface between devices will increase the 
overall cost, and each individual device itself will become more 
expensive. 

We believe the diversity of the challenges proposed and discussed 
here suggest an exciting path of future research, where our concept 
needs to be prototyped and empirically validated under the various 
application scenarios listed above. The development of collaborative 
systems with PCI can lead to a wealth of new knowledge in both 
engineering and human-robot interaction. 
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