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Abstract
Context: Online experimentation has long been the gold standard for eval-
uating software towards the actual needs and preferences of customers. In
the Software-as-a-Service domain, various online experimentation techniques
are applied and proven successful. As software is becoming the main differen-
tiator for automotive products, the automotive sector has started to express
an interest in adopting online experimentation to strengthen their software
development process.
Objective: In this research, we aim to systematically address the challenges
in adopting online experimentation in the automotive domain.
Method: We apply a multidisciplinary approach to this research. To un-
derstand the state-of-practise in online experimentation in the industry, we
conduct case studies with three manufacturers. We introduce our experimen-
tal design and evaluation methods to real vehicles driven by customers at
scale. Moreover, we run experiments to quantitatively evaluate experiment
design and causal inference models.
Results: Four main research outcomes are presented in this thesis. First,
we propose an architecture for continuous online experimentation given the
limitations experienced in the automotive domain. Second, after identifying
an inherent limitation of sample sizes in the automotive domain, we apply
and evaluate an experimentation design method. The method allows us to
utilise pre-experimental data for generating balanced groups even when sample
sizes are limited. Third, we present an alternative approach to randomised
experiments and demonstrate the application of Bayesian causal inference
in online software evaluation. With the models, we enable software online
evaluation without the need for a fully randomised experiment. Finally, we
relate the formal assumption in the Bayesian causal models to the implications
in practise, and we demonstrate the inference models with cases from the
automotive domain.
Outlook: In our future work, we plan to explore causal structural and graph-
ical models applied in software engineering, and demonstrate the application
of causal discovery in machine learning-based autonomous drive software.

Keywords: Automotive software, Bayesian statistics, Causal inference, Em-
bedded software, Online experimentation.

i



ii



List of Publications
This thesis is based on the following publications:

[A] Yuchu Liu, Jan Bosch, Helena Holmström Olsson, Jonn Lantz, “An
architecture for enabling A/B experiments in automotive embedded software”.
Published in 2021 IEEE 45th Annual Computers, Software, and Applications
Conference (COMPSAC), July. 992-997.

[B] Yuchu Liu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson,
Jonn Lantz, “Size matters? Or not: A/B testing with limited samples in au-
tomotive embedded software”. Published in 2021 47th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Sep. 300-307.

[C] Yuchu Liu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson,
Jonn Lantz, “Bayesian propensity score matching in automotive embedded
software engineering”. Published in 2021 28th Asia-Pacific Software Engi-
neering Conference (APSEC 2021), Dec. 233-242.

[D] Yuchu Liu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson,
Jonn Lantz, “Bayesian causal inference in automotive software engineering
and online evaluation”. In submission to a Software Engineering journal.

Publication not included in this thesis:

[E] David Issa Mattos and Yuchu Liu, "On the Use of Causal Graphical
Models for Designing Experiments in the Automotive Domain", To appear at
2022 25th Evaluation and Assessment in Software Engineering (EASE 2022),
June.

iii



iv



Individual Contributions
I am the main author of all publication included in this thesis. I am respon-
sible for the planning, execution, analysis, and reporting of all research work
included in this thesis. The list below specify my contribution follow the
CRediT (Contributor Roles Taxonomy) system.

Conceptualisation: formulation of the research goals and aims in Paper
A, C, and D.

Methodology: developing and formulating the research methodology in
Paper A, B, C, and D.

Software: programming the statistical models presented in Paper B, C,
and D, no software was used for the data analysis in Paper A.

Formal analysis: formal analysis and data processing in Paper A, B, C,
and D.

Investigation: conducting a investigation process, specifically perform-
ing the experiments, interviews and data collection in Paper A, B, C,
and D.

Data Curating: managing and warehousing data collection in Paper A,
B, C, and D.

Writing: I am the main author and produced the complete draft of
Paper A, B, C, and D.

Project administration: I am responsible for the coordination with case
study companies and project management in our studies from Paper A,
B, and C.

v



vi



Acknowledgments
First, I would like to extend my gratitude to my supervisors, Professor Jan
Bosch, Professor Helena Holmström Olsson, and Dr. Jonn Lantz. I am grate-
ful for their patient guidance during the research and expert knowledge on the
topic. I would also like to extend my gratitude to Dr. David Issa Mattos, for
his insightful contribution in our collaboration. Moreover, I would like to pay
a tribute to my late examiner Professor Ivica Crnkovic for his support during
my research.
Second, I would like to take this opportunity to thank our industry collabora-
tors, Volvo Cars, AB Volvo, CEVT, and Zenseact, for sharing their resources
and experience on the topic.
Third, I would like to thank some of my fellow colleagues who are also pursu-
ing their doctorates from Volvo Cars and Chalmers University of Technology.
Although the collaboration opportunities were limited, they have been incred-
ibly supportive and reminded me that I am not alone in this journey.
Last but not least, I am extremely grateful for all my friends, especially Andrei
Ursachi, Bogdan Constantin Pomohaci, Brenda Eliza Harms, Carlos Viñas
White, and Martynas Šapoka. Without you, I will not be who I am today.

vii





Contents

Abstract i

List of Papers iii

Individual Contribution v

Acknowledgements vii

1 Introduction 1

2 Background 5
2.1 Online experimentation . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Challenges in automotive . . . . . . . . . . . . . . . . . . . . . 8

Hardware dependency . . . . . . . . . . . . . . . . . . . . . . . 8
Operation environments . . . . . . . . . . . . . . . . . . . . . . 9
Non-functional requirements . . . . . . . . . . . . . . . . . . . . 9
Functional requirements . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Potential outcome and causal inference . . . . . . . . . . . . . . 11
Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Stable unit treatment value assumption . . . . . . . . . . . . . 13
Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Exchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ix



Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Research objective and method 19
3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

RQ1: How to run large-scale online experiments in the auto-
motive domain in a fast and reliable fashion? . . . . . . 20

RQ2: How can the inherent limitation of sample sizes in the
automotive domain be addressed? . . . . . . . . . . . . 21

RQ3: Can causality be concluded in the absence of randomisa-
tion in a software online evaluation? . . . . . . . . . . . 21

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Empirical Experiment . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . 27
Internal validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
External validity . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Summary of included papers 29
4.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Paper C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Paper D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 An architecture for enabling A/B experiments in automotive em-
bedded software 33
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Background and constraints . . . . . . . . . . . . . . . . . . . 34

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Existing architectures . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Architecture and case studies . . . . . . . . . . . . . . . . . . . 42

System requirements . . . . . . . . . . . . . . . . . . . . . . . . 43

x



System characteristics . . . . . . . . . . . . . . . . . . . . . . . 44
Case study I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Case study II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Size matters? Or not: A/B testing with limited sample in auto-
motive embedded software 51
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Validity considerations . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 The Balance Match Weighted design . . . . . . . . . . . . . . . 57
The Balance Match Weighted design . . . . . . . . . . . . . . . 58
Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Propensity score distance . . . . . . . . . . . . . . . . . . . . . 59
Greedy full matching . . . . . . . . . . . . . . . . . . . . . . . . 60
The repetition parameter M . . . . . . . . . . . . . . . . . . . . 61

6.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Case study fleet . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Selected features . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Matched A/B groups . . . . . . . . . . . . . . . . . . . . . . . . 65
Experiment outcome . . . . . . . . . . . . . . . . . . . . . . . . 66
Recommended procedure . . . . . . . . . . . . . . . . . . . . . 67

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Existing data and unobserved variables . . . . . . . . . . . . . 69
Multiple driver households and car sharing . . . . . . . . . . . 70

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Bayesian propensity score matching in automotive embedded soft-
ware engineering 73
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Background and related work . . . . . . . . . . . . . . . . . . . 75
7.3 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



7.4 Bayesian propensity score matching . . . . . . . . . . . . . . . 79
Probabilistic graphical model . . . . . . . . . . . . . . . . . . . 81
Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Bayesian propensity score . . . . . . . . . . . . . . . . . . . . . 85
Matched A/B groups . . . . . . . . . . . . . . . . . . . . . . . . 86
Treatment effect . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Bayesian propensity score matching for observational test . . . 89

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . 92
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Bayesian causal inference in automotive software engineering and
online evaluation 97
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Randomised experimentation . . . . . . . . . . . . . . . . . . . 99
The potential outcomes framework . . . . . . . . . . . . . . . . 100
Bayesian statistics and inference . . . . . . . . . . . . . . . . . 102

8.3 The BOAT framework . . . . . . . . . . . . . . . . . . . . . . . 104
BOAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.4 Bayesian propensity score matching . . . . . . . . . . . . . . . 111
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Study I: Limited access to users . . . . . . . . . . . . . . . . . . 116
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5 Bayesian difference-in-differences . . . . . . . . . . . . . . . . . 120
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Study II: Seasonality effect . . . . . . . . . . . . . . . . . . . . 123
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.6 Bayesian regression discontinuity . . . . . . . . . . . . . . . . . 129
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Study III: Covariate dependent treatment assignment . . . . . 133
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Causal assumptions and domain knowledge . . . . . . . . . . . 138

xii



Extension to BOAT . . . . . . . . . . . . . . . . . . . . . . . . 138
8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9 Concluding remarks and future work 143
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

RQ1: How to run large-scale online experiments in the auto-
motive domain in a fast and reliable fashion? . . . . . . 144

RQ2: How can the inherent limitation of sample sizes in the
automotive domain be addressed? . . . . . . . . . . . . 144

RQ3: Can causality be concluded in the absence of randomisa-
tion in a software online evaluation? . . . . . . . . . . . 145

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

References 149

xiii





List of Figures

1.1 Challenges of online experimentation adoption in automotive
and proposed approaches and solutions. . . . . . . . . . . . . . 3

2.1 An illustration of a two-level experiment. . . . . . . . . . . . . 6

2.2 An illustration of relationships between treatment, outcome,
and confounder in a controlled experiment and an observational
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 A simplified graph showing the relationships of treatment (t ∈
T ), target variable (y ∈ Y ), and confounding factors (x ∈ X). . 14

2.4 An illustration of Bayesian inference of prior, evidence, and
posterior distributions. . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 A timeline showing the research questions, research methods,
and the corresponding activities. . . . . . . . . . . . . . . . . . 22

5.1 Existing A/B experiment framework categorised by environ-
ment and variant generation methods. . . . . . . . . . . . . . . 41

5.2 Process of the cloud-based A/B test architecture, illustrating
the general work flow of conducting an A/B experiment with
parametrised functions. . . . . . . . . . . . . . . . . . . . . . . 42

xv



6.1 Relationships of input features (X), treatment (τ) and target
variable (Y ) in the propensity score matching model. . . . . . . 57

6.2 Minimum total distance (∆k) calculated from the propensity
scores reduces as we increase the repetitions (M). . . . . . . . . 61

6.3 Scatter plots of feature 0 through 5 and their correlation to the
target variable, min-max scaled. . . . . . . . . . . . . . . . . . . 64

6.4 Kernel density estimation of the target variable, min-max scaled,
of A and B groups when matched at random (left), and matched
using the Balance Match Weighted design (right). . . . . . . . . 66

7.1 Probably graphical model of a Bayesian logistic regression, with
observed input features (xn), treatment indicator (yn), and la-
tent variables as regression model coefficients (α, β). . . . . . . 82

7.2 Posterior distributions of the Bayesian logistic regression coef-
ficient β = {β1, ..., β14}, and intercept α. . . . . . . . . . . . . . 84

7.3 Kernel density distribution of the propensity scores of the con-
trol (pc) and treatment (pt) groups calculated on the mean of
posterior distributions, and twenty-five values randomly sam-
pled from the posterior distributions representing uncertainties. 86

7.4 Kernel density distributions of the Bayesian propensity scores
for the control (pc) and treatment (pt) group, when, no match-
ing was done, matched with a caliper at 0.05, and matched with
1-1 nearest neighbour. . . . . . . . . . . . . . . . . . . . . . . . 87

7.5 Online software evaluation with limited sample sizes, by utilis-
ing Bayesian propensity score matching. . . . . . . . . . . . . . 89

8.1 A simplified directed acyclic graph showing the relationships of
treatment (t), target variable (y), and covariates (X). . . . . . 100

8.2 A decision flowchart on which Bayesian causal model from the
BOAT framework to apply when designing an online software
evaluation. (BRDD: Bayesian regression discontinuity, BPSM:
Bayesian propensity score matching, BDID: Bayesian difference-
in-differences) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.3 An illustration explaining the Propensity Score Matching model.
Note, figure does not represent real data. . . . . . . . . . . . . 112

xvi



8.4 Kernel density distribution of the propensity scores of the con-
trol (pc) and treatment (pt) groups calculated on the mean of
posterior distributions, and twenty-five values randomly sam-
pled from the posterior distributions representing uncertainties. 118

8.5 An illustration explaining the Difference-in-Differences model
and how the average treatment effect (ATE) is estimated. . . . 120

8.6 A simplified directed acyclic graph showing the relationships
of treatment (t), target variable (y), covariates (X), and time
dependent latent variables summarised as τ . . . . . . . . . . . . 122

8.7 Target variable y measured before the treatment (τ−1), when
the treatment is applied (τ), and after the treatment (τ1), for
the control and the treatment groups, y is min-max scaled. . . 128

8.8 An illustration explaining the Regression Discontinuity Design
model, and how the average treatment effect is estimated. . . . 129

8.9 A simplified directed acyclic graph showing the relationships of
treatment (t), target variable (y), assignment variable (X), the
cut-off point (c), and other confounding factors (Z). . . . . . . 130

8.10 Target variable measured before and after the cut-off point (c =
60), with respect to the assignment variable. . . . . . . . . . . . 136

8.11 Posterior distribution of the regression coefficients β, and the
regression intercept α. . . . . . . . . . . . . . . . . . . . . . . . 137

8.12 Posterior distribution of the regression coefficients β, β is or-
dered as Table. 8.5, and the regression intercept α. . . . . . . . 142

9.1 Challenges of online experimentation adoption in automotive,
proposed approaches and solutions, and future outlook of this
doctorate research. . . . . . . . . . . . . . . . . . . . . . . . . . 146

xvii





List of Tables

5.1 Papers selected which describing architecture of A/B experi-
ments, for web and embedded software). . . . . . . . . . . . . . 38

5.2 System components adopted by case study companies. . . . . . 47

6.1 Mean and variance of each of the five input features X, min-
max scaled, in the matched control and treatment groups. . . . 65

7.1 Descriptive statistics of the target variable and covariates, and
a description of how the variables are computed. Each variable
is aggregated to the vehicle level and max-min scaled. . . . . . 77

7.2 Propensity score in control and treatment groups, before and
after matching is applied. . . . . . . . . . . . . . . . . . . . . . 87

8.1 Guidelines of design science research method [95], and practices
applied following the guidelines in this research. . . . . . . . . . 108

8.2 Propensity scores in control and treatment groups, before and
after a matching is performed. . . . . . . . . . . . . . . . . . . . 119

8.3 Descriptive statistics of the target variable and covariates as
inputs to Bayesian difference-in-differences model, and a de-
scription of how the variables are computed. Each variable is
aggregated to the vehicle level and min-max scaled. . . . . . . . 125

xix



8.4 Average energy consumption (Wh/km) for the control and the
treatment group at each time step. . . . . . . . . . . . . . . . . 127

xx



CHAPTER 1

Introduction

With the digitalisation of modern vehicles, software is becoming the main fo-
cus of the automotive industry [1]–[3]. To remain competitive, gaining a good
understanding of real-world feedback such as vehicle usage and customer pref-
erence becomes of crucial importance. Companies are collecting and utilising
more and more customer data to build a comprehensive understanding of cus-
tomer preferences and to improve their decision making when designing the
software. The automotive domain is no exception.
Traditionally, automotive software development is driven by specifications

and requirements [4]. Due to the nature of such a development method, the
software specifications and requirements are frequently composed well before
the end product is introduced to the customers [5]. As a result, much of the
requirements are based on limited understanding of how the software function-
alities will be used; more often than not, there is little to no existing data to
support such assumptions. In recent years, learning lessons from the success
of data-driven software development in Software-as-a-Service (SaaS) compa-
nies [6]–[8], the automotive domain is collecting more and more vehicle and
customer data to understand the use of their vehicles in the real world; there-
fore, inform development organisations of more direct customer preference [9]

1



Chapter 1 Introduction

and vehicle performance in a wider range of real-world conditions.
To adapt to change more rapidly and continuously deliver new software

features, more and more automotive companies are adopting fast and flexible
contemporary development approaches, such as Agile, in their software or-
ganisations [3], [9]–[11]. At its core, the Agile methodology requires constant
feedback from stakeholders as input to feature prioritisation and properly de-
fine user stories. Although qualitative techniques such as surveys, customer
workshops, and interviews are valid approaches, these methods are expen-
sive, time-consuming, and as the reach is limited, companies often struggle
to collect representative samples. Moreover, while providing customer in-
sights, none of these qualitative approaches can help us to understand the
performance of the vehicles themselves. Therefore, quantitative approaches
powered by large datasets are more desirable for fast and iterative software
evaluation.
There are many well-known challenges of big data application in the auto-

motive domain, such as data collection, data transfer efficiency and handling
[3], [12], and data distribution within large development organisations [13],
[14]. In addition to all of mentioned above, unstructured and pure obser-
vational data do not offer counterfactual answers to interventions similar to
a software update - nowhere in a purely observed empirical distribution in-
forms you if a software change could improve the vehicle performance or the
user experience [15]. Climbing the ladder of causation requires a shift from
observation to intervention, e.g., experimentation. Thus, a systematic and
structured approach to software evaluation, online experimentation, has long
been the gold standard in the SaaS domain [16]–[18].
There are many forms of online experimentation. It is essentially a scientific

approach to controlling variables and concluding counterfactual outcomes [19],
one of which is the most well-known A/B testing. A/B testing is a two-level
experiment, the control (typically an existing version of a software feature,
and the treatment (a modified version of the same software feature). A large
amount of users are randomly split into two groups and are exposed to the
control or treatment version of the software at random, a process that ensures
the exchangeability of the two groups. A causal relationship between treat-
ment and effect can be established when the exchangeability is satisfied, since
it explicitly states that the treatment effect is a result of the treatment and
not the existing differences between the groups, observed or not [20]. By the

2
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Figure 1.1: Challenges of online experimentation adoption in automotive and pro-
posed approaches and solutions.

law of large numbers, the likelihood of balanced control and treatment groups
through randomisation becomes higher when the sample size becomes larger;
then an unbiased treatment effect can be inferred [16], [21].
The benefits of online experimentation experienced in the SaaS domain

are also expected or reported in automotive; however, the adoption of the
method is not without challenges [3], [22], [23]. As reported in literature and
from practise, the challenges include limited sample sizes, long software release
time, and so on. In this thesis, I summarise the challenges and the symptoms
they manifest in four main aspects. These are: (a) hardware dependency
- an inherent limitation of embedded software, (b) functional and (c) non-
functional requirements - the former limits our understanding for experiment
design and the latter limits the available experimentation sample sizes, and
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finally, (d) the experimentation is carried out in heterogeneous environments
in terms of weather, road and traffic conditions, and so on. The challenges
and their corresponding proposed approaches are summarised in a framework
in Fig. 1.1, the approaches presented in all publications included in this thesis
are a combination of engineering solutions and statistical modelling ones.
Compared to a limited collection of existing publications on online auto-

motive software experimentation [2], [3], [12], [22], [24], [25], this thesis offers
novelty in the following four aspects. First, we adopt an empirical approach
to this research and conduct the study in close collaboration with the automo-
tive industry. Some of the first online experimentation practises on real-world
customer vehicles in the automotive sector are documented in this thesis; as
well as industry insight and state-of-practise is reported in detail. Second, we
apply and evaluate statistical models for two-level experiment design and ob-
servational studies; while these statistical models have been explored in other
areas of science, the publications included in this thesis are the first ones
to apply them in software engineering online experimentation. Third, given
the limitations in the automotive sector, an alternative approach powered by
Bayesian causal inference is proposed. This approach allows us to evaluate
software in an online and continuous manner when a fully randomised exper-
iment is impossible, unethical, or undesired. Last but not least, we relate the
theory of causal assumptions and Bayesian causal inference to cases experi-
enced in the automotive domain, aiming to enable software online evaluation
and infer causality without the need of a fully randomised experiment.
The rest of this thesis is organised as follows; Chapter 2 introduces the

background of online experimentation, existing practises, and the theoretical
background of experiment. In Chapter 3, the research objective and method
is described. The summary of publications included in this thesis is presented
in Chapter 4, following the four publications listed in Chapters 5 to 8. In pa-
per A (Chapter 5), a comprehensive architectural solution is proposed aiming
to enable speed of online experimentation via a hybrid edge/cloud architec-
ture. Paper B (Chapter 6) presents an experiment design method utilising
pre-experimental data, and it enables quasi-random experiments even when
sample sizes are limited. An alternative approach to randomised experimenta-
tion is proposed and evaluated in paper C and D (Chapter 7 & 8). In Chapter
9, I discuss the concluding remarks and the future direction of the research.
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CHAPTER 2

Background

In this chapter, the background of online experimentation in the context of
embedded software is described. First, existing online experiment practises are
summarised from the literature and listed. Second, the challenges of adopting
online experimentation in the automotive sector are described. Third, software
online experimentation is put in the context of the Rubin potential outcome
framework, with the causal assumptions and the outcome model formalised.
Finally, an introduction to Bayesian statistics and its application in causal
inference is provided.

2.1 Online experimentation
From A/B testing to multi-armed bandits, online experimentation comes in
many shapes and flavours, however, all of which work with the fundamental
principle of causal inference, establishing a causal relationship between the
treatment and the effects through intervention.
In essence, the most straightforward and the most practised online experi-

mentation method [7], [8], [26], A/B testing, is a two-level experiment. When
performing an A / B test, the total sample of users (n ∈ N) is randomly di-

5



Chapter 2 Background

Software features

Treatment 

Average treatment effect

Control  

Target variable Target variable 

Figure 2.1: An illustration of a two-level experiment.

vided into control groups (Nc) and treatment (Nt) groups, two versions of the
same software feature (t = {0, 1}) are then introduced to each corresponding
group; in an example where a software update is being evaluated, it can be
written as t = {old_version,new_version}. A simple illustration is presented
in Fig. 2.1. In a properly designed A/B experiment, some performance indica-
tor that reflects the usage and/or the customer preferences is measured. This
measurement is defined as a target variable (y) in this thesis, and it embeds
the customer preferences and business strategical target for a given software
function, some call this the overall evaluation criteria [19]. As a trivial exam-
ple, suppose we want to evaluate a software component that manages vehicle
battery systems, the target variable that measures the treatment effect of the
software change could be total energy consumed in the vehicle, y = [150, 300],
measured in wh/km. It can be bounded since we are aware of the physical
limits of the vehicle. Typically, A/B testing is used to evaluate user-facing
features such as user interface or user experience [18], [27]–[29]. In recent
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years, A/B testing or similar online experiment practises have also been used
for improving machine performance resulting from embedded software changes
[22], [24]. The average treatment effect (ATE), is the difference in the mean
of the target variable between the control and the treatment group.
When multiple software versions are to be evaluated, an A/B/n test can be

conducted if we can safely assume that the software versions are not interact-
ing. An A/B/n test is conducted similarly as an A/B test, with the exception
that the there are multiple levels of treatment and the user samples are divided
into as many groups as the levels of treatment. However, if the assumption
of non-interaction between software changes does not hold, one-factor-at-a-
time or factorial experiments need to be designed. The former allows you
to evaluate the impact of one software feature at a time while holding all
the other changes constant; the latter allows you to study the interactions
between the software treatment and the target variable and the interactions
between different software features themselves. In a full factorial design, to
evaluate k different software features at two levels (e.g., t = {old,new}), the
minimum number of experiments required is 2k. Since the available user sam-
ples are limited, dividing them into multiple subgroups for A/B/n or factorial
experiments will likely lead to high statistical variance in the measured target
variable, low sensitivity, and unbalanced thus incomparable groups.
Another approach to experiment with multiple or continuously changing

software versions is the multi-armed bandit problem [30], [31]. Multi-armed
bandit is a sequential design of experiments, and it addresses the allocation of
resources, or in this case, users samples, for a better understanding of the op-
timal treatments. In a bandit problem, each k arm of the software treatment,
t = {t0, t1, ..., tk}, provides a random response following an unknown statisti-
cal distribution. We could start with absolute no initial knowledge about how
the users will response to the software treatments. The goal of most bandit
algorithms is to optimise the exploit-explore trade-off, that is, when a user
sample n enters the trial, should the user be shown the most effective soft-
ware version to our best knowledge, or should the user be exposed to another
software version to explore the expected response distribution. Multi-level
treatment is not further discussed in this thesis; instead, we pay special at-
tention to two-level treatment, since it is the most straightforward approach
in online experimentation in software engineering.
Traditionally, majority of the online experiments is analysed in the fre-
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quency statistical domain and with statistical tests such as t-test for suffi-
ciency [2], [16], [19], [21], [26], [32]. The likelihood of detecting a treatment
effect (or sensitivity) in frequency statistics is directly proportional to the sta-
tistical variance and sample size. In order to conclude the treatment effect
is sufficiently different from untreated samples, the sensitivity of the average
treatment effect needs to be high. The sensitivity of an online experiment can
be improved by various techniques, most of which falls in two categories, pre-
experimental design and post-experimental modelling. Techniques used for
experiment design are, for example, blocking (nuisance factors are held con-
stant within a block) and power analysis for determining sample size based on
the expected effect size. Post-experimental techniques including but not lim-
ited to, post-stratification and Controlled experiment Using Pre-Experiment
Data (CUPED), both of which aim to reduce variance of the target variable
thus measuring more sensitive treatment effects [16], [21].

2.2 Challenges in automotive
In this section, the challenges of adopting software online experimentation in
the automotive domain are listed. The challenges are derived from a lim-
ited set of literature [2], [3], [12], [22] and from the state-of-practise of the
industry. The challenges are summarised in four categories, hardware depen-
dency, vehicle operational environment such as weather and road conditions,
and those challenges that are related to the software design functional and
non-functional requirements that are specific to the automotive sector. The
four subsections are not organised in any particular order.

Hardware dependency
The majority of the automotive software are embedded software and they have
a strong hardware dependency. Historically, automotive software is delivered
together with the computational hardware from suppliers, which results in the
following two scenarios. First, automotive manufacturers have the tendency to
optimise for unit price and each hardware unit has little to no computational
power to spare. Second, the suppliers could own full copyrights to the software,
which limits the ability of the manufacturers to change or update the software
in the flexible and timely manner. While the later issue is addressed with the
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adoption of Agile methodology [11], the former remains unsolved.
From localisation and customisation options, automotive hardware and con-

sequently software have a large diversity in product variations. This results
in a highly heterogeneous sample group. Furthermore, there are fewer users
compared to the web domain, where the sample size is also reported to be
an issue [16], [21]. The available users to experiment with is significantly less
in the automotive domain by order of magnitude, at the same time, we often
want to experiment with a subset of the vehicles and users and this result in
a further reduction of sample sizes.

Operation environments
Different from a website or a mobile phone, the operation environment of
a vehicle is diverse and often unpredictable which creates a dynamic range
of contexts for software online experimentation. The performance of some
functions is strongly influenced by changing weather and road conditions. For
instance, a popular semi-autonomous feature, lane keeping assist, relies on lane
marking that can be different in style and quality from location to location,
thus becoming a confounding factor when evaluating a related software. While
we could rely on randomisation for producing balanced control and treatment
groups when the sample size is large, in practise, the experiments and group
designed could be unbalanced and confounded on the temporal or location
related conditions when we lack millions of users.
Furthermore, because of seasonality effects, some experiments need to be

conducted longitudinally, and unobserved temporal confounders might prevail.
Lastly, interaction with other vehicles could potentially cause issues in the
validity of the experimentation results, because it is a direct violation of the
stable unit treatment value assumption [33] - that the treatment only affects
the individual sample and not anything else. The stable unit treatment value
assumption is discussed and defined formally in the following section.

Non-functional requirements
There are strict non-functional requirements associated with automotive soft-
ware, safety and legal requirements, among others. A software change in
the functionalities governed by legal requirements might require the renewal
of certain certifications that will reduce the speed of software delivery. The
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safety requirements should not be violated from alternative variants for online
experimentation, as the software would follow the same logic and go through
the same deployment testing pipeline [3], [24]. With that being said, most au-
tomotive manufacturers would avoid the possibility of large scale disruption
as even minor disturbances could directly cause profit losses for commercial
vehicles such as taxis and trucks. Moreover, software changes often require
explicit user consent due to privacy requirements. This combination of re-
quirements could limit users in participating the experiment therefore leads
to non-randomised user samples, selection bias, unobserved confounding ef-
fects, and the lack of generalisability in experimentation results.

Functional requirements
The last set of challenges in online experimentation adoption is related to
the functional requirements of automotive software development. Not to be
confused with functional requirements of experimentation platforms; in this
subsection, we focus on requirements that are related to the software itself.
In general, it is challenging to define a new automotive function especially
when there is a lack of user data, much of the functional requirements are
composed based on assumptions of how the vehicles is expected to be used.
This poses a challenge for experiment design, as the treatment and target
variables are often not clearly understood nor defined. In real-world experi-
ment design problems, it is often assumed that the relationship between input
and output is known. However that assumption might be false when we have
no existing knowledge of the systems [34]; to maximise the values of online
experimentation, a discovery of causal relation is required prior to conducting
experiments.
In addition, the interaction between software systems within the same ve-

hicle could pose a challenge in the design and analysis of experiments. There
are well documented approaches in the web domain for handling conflicts in
software changes, such as blue fonts shows on blue backgrounds on a website
[32], [35], however, this complexity might be less well understood in the au-
tomotive domain. Suppose we aim to measure the performance of a battery
preconditioning feature - prior to a trip, this system condition the battery to
ideal operating temperature with a series of heat pumps. The purpose of such
preconditioning is to firstly preserve the battery life through maintaining the
battery system in ideal operating conditions, secondly to improve electrical
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driving range during a trip as no extra energy is needed for conditioning the
battery during driving, therefore, reducing auxiliary power consumption. This
preconditioning software feature interacts with many other features, such as
battery management, interior climate, charging, just to list a few. Setting up
an aggressive heating strategy can improve battery life as it brings the battery
into operating condition faster; however, it can potentially reduce energy ef-
ficiency, increase charging time, and lead to discomfort in the vehicle interior
climate systems. Regarding expected performance improvement, locally opti-
mising any feature alone without considering interactions with other software
systems is never sufficient.
As a final point, from the complexity of the automotive product and the

diverse operating environment, understanding the cause and effect between
parameters with the same software feature and the interactions between soft-
ware becomes difficult to build. It is often a process that require that rely
on domain knowledge from the development organisations. The manual ef-
fort to a large extend hinders our ability to design experiments and scale the
activities across organisations.

2.3 Potential outcome and causal inference
In principle, online experimentation aims to establish a causal relationship
between treatment and effect and to model the expected outcome given the
treatment applied. This process is often referred to as causal inference. The
Rubin potential outcome framework describes such an expected outcome from
experimentation [36] and observational study [20]. In this section, it is intro-
duced in the context of online experimentation and when randomised exper-
iments cannot be conducted. The theory of potential outcome and causal
assumptions are defined formally.

Causality
Causality helps us reason with change [15]. Suppose that we observe a joint
distribution of two factors P (A,B), in this observation, the factors A and
B are dependent or correlated. We can infer the conditional distribution of
P (A|B) or P (B|A) through manipulation of the marginal and join probability
distribution with Bayes’ Theorem. However, the cause-and-effect between the
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Figure 2.2: An illustration of relationships between treatment, outcome, and con-
founder in a controlled experiment and an observational study.

two factors A and B in our system remains unknown. In other words, in an
observed marginal, join and conditional distribution, all three relationships
are probable, A → B, A causes B, A ← B, B causes A, or A ← Z → B,
a third confounder Z causes both A and B; therefore, a mere accumulation
of observational data offers little insight into the notion of change. Similar
reasoning is also presented in the literature, such as [15] and [34].
In a trivial example illustrated in Fig. 2.2, the relationship of interest is

between a change in software and the total energy consumed in a vehicle.
The software change is a treatment, t ∈ T , and the observed target variable is
the energy consumption y ∈ Y . We would like to establish that T causes Y ,
T → Y , and our objective is to estimate the average treatment effect (ATE)
of the software change, for all samples n ∈ N , which is formally defined as
the expected value differences from all levels of treatments. In a controlled
experiment, where the control and treatment groups are randomly assigned,
the confounding factors (x ∈ X), often also called covariates, are automatically
balanced from the randomisation process. The average treatment effect for
a two-level experiment is the difference in the expected target variable given
the treatment level T = 1 and the treatment level T = 0, formally,

ATE = E[Y |T = 1]− E[Y |T = 0] (2.1)
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Although ATE does not inform us about individual treatment effects, it
offers a causal understanding of treatment with respect to the average effect
of the two sample groups. Should the explicit assumptions be satisfied, the
unbiased causal conclusion in a controlled experiment is straightforward pro-
vided the experiment is designed and conducted properly - all external factors
are held constant and the only factor that could cause a change in the target
variable, is the treatment we introduced. To establish such as relationship
through observational study is more complicated due to the presence of con-
founding factors that are not controlled or even observed for, thus, requiring
further assumptions and adjustments. A formal discussion is offered in the
following two subsections. The explicit assumptions made in an experiments
are listed below.

Stable unit treatment value assumption
The stable unit treatment value assumption, or SUTVA, states the potential
outcome on one sample should be unaffected by the particular assignment of
treatments to the other samples [33], [37].

Consistency
The consistency assumption states the potential outcome of a sample given
the treatment received is the outcome that will actually be observed for that
sample [38], formally,

T (n) = t⇒ Yt(n) = Y (n) (2.2)

where T (n) represents the treatment to which a given sample (n) was
exposed, Yt(n) is the possible result of the individual sample n being treated
at level T = t, and Y (n) is the observed outcome for this individual sample.
Consistency is guaranteed in a controlled experiment by design, but in an
observational study, it is not a testable assumption [39].

Exchangeability
To draw a factual (the observed outcome under treatment and control) and
counterfactual (reasoning of what would have happened if a treatment is never
applied) conclusion, randomised experiment is key. The randomisation pro-
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Figure 2.3: A simplified graph showing the relationships of treatment (t ∈ T ),
target variable (y ∈ Y ), and confounding factors (x ∈ X).

cess allows one to randomly sample from the total population, and ensures
exchangeability of the control and treatment groups. Exchangeability explic-
itly states that the treatment outcome is independent of treatment assign-
ment, thus, the treatment effect is caused by the treatment itself and not by
some unobserved preexisting factors within the sample groups. In the denti-
tion below, ⊥ denotes independence, and | means that given the condition,
[Y |T = 0]⊥t reads as the outcome Y given treatment T = 0 is independent
from the treatment assignment T , formally,

[Y |T = 0], [Y |T = 1]⊥T (2.3)

Exchangeability assumption is automatically satisfied through randomisa-
tion. Therefore, in a controlled experiment, correlation is causation. In a
non-randomised study such as an observational study, the treatment assign-
ment might be confounded on covariates thus violating the exchangeability
assumption. Further assumptions are required for causal inference, i.e., con-
ditional exchangeability.

Conditional exchangeability

In an observational study or a quasi-random experiment, there are confound-
ing factors x ∈ X that influence the treatment and/or the target variable.
These confounding factors are often called covariates, or contexts. To draw
unbiased causal conclusions, the confounding factors need to be identifiable
and observed, so that the conditional exchangeability assumption holds. The
conditional exchangeability is a strong assumption that is not testable with
observational data alone. Formally,

[Y |T = 0], [Y |T = 1]⊥T |X (2.4)
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There are a few identification strategies for confounding factors X, such
as propensity score [20], difference-in-differences [40], regression discontinuity
[41], and instrumental variables [42], all of which made their own explicit
or implicit assumptions in order to draw causal conclusions. As [38] states,
causality cannot be inferred from observational data alone, behind all causal
conclusion there exist causal assumptions.

Positivity
Positivity is an important assumption for the observational study, stating that
all samples in both control and treatment groups are equally likely to be ex-
posed to the treatment given the confounders; therefore, it requires that there
be treated and untreated samples in every combination of the values of the ob-
served confounding factors [43]. This assumption is testable in observational
data through means such as visualisation of the confounding factors.

0 < P (T = t|X = x|) < 1 (2.5)

for all x ∈ X and t ∈ T .

2.4 Bayesian inference
As briefly mentioned in previous sections, Bayes’ theorem is a set of statisti-
cal rules describing the relationship between marginal, joint, and conditional
distribution. In this section, the concept will be introduced in detail and for-
mally. Moreover, particular attention is paid to using the language of Bayesian
statistics to describe causal inference.
Bayesian statistics focus on the inference of events based on prior knowledge

that are related to the event, and the degree of belief is updated as more
evidence is obtained. It describes the probability distribution of the event A
given B, given our previous observation on related events A and B. When
expressed mathematically,

P (A|B) = P (B|A)P (A)
P (B) (2.6)

where,
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Prior Evidence
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Figure 2.4: An illustration of Bayesian inference of prior, evidence, and posterior
distributions.

P (A) is the prior, the probability of a hypothesis before any evidence is
observed and presented.

P (B) is the likelihood, the probability of observing the evidence.

P (B|A): is the probably of observing the evidence given the prior.

P (A|B): is the posterior probability given the evidence, the observation,
and the prior.

The first component of the Bayesian model is the prior probability distri-
bution, P (A), often referred to as domain knowledge, is an important aspect
of Bayesian inference as it expresses the belief of an event before any obser-
vation is made and captures available knowledge. A prior can be determined
from previous observation, experimentation, or can be elicited from subjec-
tive assessment of an experienced individual, threats to validity aside. A prior
is described by an entire probabilistic distribution, and an informative prior
expresses high confidence with low statistical variance [44]. The second com-
ponent is the likelihood function P (B), which is computed from the observed
data. The combination of the prior and likelihood, the posterior probability
distribution can be inferred. The posterior distribution, P (A|B), informs the
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expected outcome and, at the same time, provides information on the uncer-
tainty of the said outcome. Their relation can be expressed graphically, as
shown in Fig. 2.4. Note that the figure is an illustration and is not plotted
from any data.
The language of Bayesian statistics is well suited in describing causal infer-

ence problems from observational study. Note that, usually the relationship
in a classic Bayesian network does not imply causality, in this section, we use
Bayesian language to describe a causal graph. Let us recall an observational
relationship illustrated in Fig. 2.3 between treatment T , response variable Y ,
and, for simplicity, a single confounding factor X, suppose we conduct an ex-
periment and all quantities in this graphical network are observed. Each node
is represented by a probabilistic distribution that is either independent (with
no edges pointing towards it) or dependent on other nodes, the relationship
of which is specified with the directions of the edges. In this particular exam-
ple, the probability distribution of the confounding factors X is simply P (X),
and P (T |X) for the treatment. The probability distribution of the expected
outcome is dependent on both the treatment T , and the confounders X, and
it is expressed as P (Y |T,X). The joint probability of event X, Y , and T is
implied in the graph structure, and can be expressed as,

P (X,Y, T ) = P (X)P (T |X)P (Y |T,X) (2.7)

Suppose we now introduce a treatment T = t, the treatment effect can be
inferred as the following. The dependency X → T no longer exists as we
intervene in T , therefore, the term P (T |X) is removed.

P (X,Y |T = t) = P (X)P (Y |X,T = t) (2.8)

Bayesian causal inference has been applied in many area of science such as
medicine[37], [45], transport engineering [46], and economic [47]. Compared
to the equivalent models in the frequency domain, Bayesian causal models are
reportedly less sensitive to sample sizes.
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CHAPTER 3

Research objective and method

In this chapter, the research objective is presented together with the research
methods applied in this research. The objective is broken down into three
goals that this thesis is aiming to address. The research methods are cho-
sen for achieving the goals provided there is a limited collection of literature
documenting online experimentation in the automotive domain, we conducted
case studies with our industry collaborators, as well as designed online soft-
ware experimentation at scale for evaluating causal inference models such as
Bayesian propensity score matching. In addition, threats to validity are dis-
cussed separately in terms of internal and external validity.

3.1 Objective
Following the success stories of online experimentation in software engineering,
the automotive domain expressed interests in adopting the method to build
more competitive software products. The objective of this doctorate research
is to enable online experimentation in software engineering in the automotive
domain given the challenges and limitations experienced in the domain. These
challenges prevent the manufacturer from conducting online and randomised
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experimentation altogether or they could invalidate the conclusion of exper-
imentation, as violations of causal assumption could occur. To achieve this
research objective, the following research questions are proposed.

RQ1 How to run large-scale online experiments in the automotive do-
main in a fast and reliable fashion?

RQ2 How can the inherent limitation of sample sizes in the automotive
domain be addressed?

RQ3 Can causality be concluded in the absence of randomisation in a
software online evaluation?

RQ1: How to run large-scale online experiments in the
automotive domain in a fast and reliable fashion?
The first research question is formulated with the aim of defining the nec-
essary components and actions of conducting online experimentation on a
scale in the automotive sector, given the understanding of the challenges of
online experimentation adoption in automotive, the state-of-the-art in online
experimentation approaches, and the current state-of-practise in the sector.
Online experimentation has been extensively applied in the SaaS domain,

such as the large-scale A / B tests reported by [32], [35]. Moreover, the
existing approaches pay special attention to scalability [7], [8], [29], [48], speed
of deployment [28], [29], [49], and the reliability of the results [7], [8], [19], [28].
However, none of the existing approaches addresses the shortcoming from the
nature of embedded software, as the experimentation models themselves do
not automatically address issues such as deployment speed and data collection.
The need of having a functional infrastructure, pipeline, and even data-driven
decision making mentality in place is highlighted by majority of the literature
documenting online experimentation in the SaaS even in the embedded domain
[3], [23], [50].
Moreover, this research question is formulated with emphasis on the core

component of experimentation, randomisation. For an experiment to be reli-
able, it requires that the control and treatment groups are randomly allocated
to ensure the causal assumption of exchangeability is satisfied [15], [20], [37].
With this research question, our aim is to understand whether randomisation
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can be achieved in practise and on a large scale without compromising safety
and privacy in the automotive setting.

RQ2: How can the inherent limitation of sample sizes in the
automotive domain be addressed?
Compared to the SaaS domain, where the lack of samples is sometimes report-
edly problematic [16], [21], the automotive domain has significantly fewer user
bases available for experimentation, by orders of magnitude. Netflix reported
around 214 million active users in 2021, while Volvo Cars reported a sales vol-
ume of just shy of 700,000 cars. Moreover, due to the high number of product
variants in combination with a wide range of operation environments, without
running experiments on a large scale, it is safe to assume that the sample size
will be an inherent limitation for the adoption of online experimentation.
First, when inferring the effect of a treatment in a randomised experiment,

a small sample size could cause a less sensitive measured treatment effect [16].
This means that the difference between the treated and untreated samples
is too small to conclude a significant change statistically speaking, therefore,
invalidating the experiment result. Second, when assigning control and treat-
ment groups at random from a limited sample population, there is a high
probability that the covariates of the groups are not balanced, creating bias
and introducing a confounding effect, therefore hindering the conclusion of
causality [17], [51]–[53]. Third, the datasets from automotive domain are low
in sample size, but high in data feature dimension. For evaluation of a soft-
ware function, hundreds of parameters could be collected in relation to the
evaluation. Gaining insights into which parameters are essential at expressing
software performance improvement, is challenging in a sample size efficient
manner. The research question RQ2 is drafted to cover all three aspects as a
result of the sample size limitation.

RQ3: Can causality be concluded in the absence of
randomisation in a software online evaluation?
Causal insight is achieved through randomisation and intervention. RQ3 is
formulated to address situations in which a randomisation is not an option due
to limitations manifested from the non-functional requirements of automotive
software, i.e., strict safety requirements, and the lack of user privacy and
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Figure 3.1: A timeline showing the research questions, research methods, and the
corresponding activities.

software update agreements. This dictates that we are only able to narrowly
access a subset of users instead of the total population of vehicles. As a
result, instead of a fully randomised experiment, automotive software online
evaluation is likely to be done in a quasi-random or even an observational
manner without randomisation at all.
Behind every causal conclusion lies an assumption, and each causal infer-

ence model has built-in specific assumptions [17], [20], [40], [41], [54]. We
aim to understand the assumptions in relation to scenarios experienced in the
automotive domain, such as seasonality effects from vehicle operational con-
ditions. Furthermore, this type of analysis can allow us to infer the treatment
effect post facto, which can be a valuable approach in a domain where there
are a large amount of observed data but the ability to experiment is limited.

3.2 Method
In general, there is a lack of publications documenting online experimentation
practises in the automotive sector. In this thesis, we combine case studies
with industry partners and empirical experiments conducted on a small- to
medium-sized scale to validate our hypotheses. In addition, to study the state-
of-the-art in online experimentation practises in the SaaS domain, for Paper A,
a literature review on experimentation architecture is conducted compliment-
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ing with a case study conducted with three automotive manufacturers. The
literature review aims to inform the case study with the state-of-art published
within and outside of the automotive domain. After identifying the necessary
components in enabling a continuous online experimentation through a case
study, case study II is designed aiming to address an inherent limitation in the
domain, sample size. Combining a case study with an empirical experiment, a
control/treatment group design method is applied and evaluated in practise,
utilising the software architecture implemented in place from case study I.
The same software architecture enabled the follow-up empirical experiment
on a much larger scale, which is designed to address and answer RQ3. The
research questions, methods addressing the questions, and their corresponding
activities are summarised in Fig. 3.1.

Literature review
To gain a good understanding of the existing online experimentation prac-
tises in the embedded and SaaS domains, we conduct a literature review. A
literature review is an important process in accessing and analysing relevant
information within a field of science from a large collection of publications.
It is considered a key practise in evidence based software engineering [55], as
it allows one to understand the state-of-art reported in the domain and with
that, identify the potential knowledge gap and improvements to be made.
Since 2004, There is an increase of number of publications applying literature
view as a research method in software engineering [56]. In our research, a
literature review is conducted primarily for building an understanding of the
existing online experimentation framework and/or software architecture, and
their applicability in the automotive domain.
In this study, data is collected through IEEE Xplore, ScienceDirect, and

Google Scholar with the following query, ("A/B testing" OR "A/B experi-
ment" OR "online experiment" OR "bucket testing" OR "continuous experi-
ment") AND ("software architecture") AND ("embedded software" or "auto-
motive software"). However, keyword combination with automotive software
return no results, therefore, it was removed at a later stage. This query returns
a total of 104 results excluding duplicates and the search is filtered over a time
frame of 2010 to 2020. Each search result is examined by at least one of the
authors by reviewing the keywords, abstracts, and body of the text. Publica-
tions that focus on describing software architecture or online experimentation
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framework are included.

Case study
Software case study is a well suited method for studding adoption of new de-
velopment methods in the natural context of a software company [57]. Case
study method is suited for investigating a novel development approach, such
as online experimentation, in context within the industry that is otherwise
difficult to investigate in an isolated fashion. In Paper A, our study has an
exploratory nature, that is to build understanding of the state-of-practise,
propose architectural solutions, and analyse and evaluate the solution close to
the end working environment that is the automotive domain. We understand
and are aware of the limitations of the case study as a research method in
software engineering, such as that it does not allow one to draw causal con-
clusions between the change and the response; however, in our application,
it is mainly a means of exploring in the face of limited publications on the
subject matter. A version of our software architecture is deployed to a fleet
of 50 vehicles.
In Paper B, a case study is carried out following the guidelines [58] and [59]

in combination with a quantitative analysis. Guided by careful research design
and extensive planning with our industry collaborator, we planed, deployed,
executed, and analysed an online experiment at scale with an automotive
company in situ for a total of six month, during which we work closely and
directly with the software development team. In addition, we conducted an
experiment on a vehicle fleet of 28 cars. The quantitative data are continu-
ously collected and used for evaluation of the experiment design method. All
participants of both case studies are members of the software development
teams, including software engineers, data scientists, product owners, team
managers, and technical experts.

Case study companies

In this thesis, we present case studies results from three separate automotive
company, all of which are multinational companies based in Sweden. Company
A and C are passenger vehicle manufacturers, and company B a commercial
vehicle manufacturer and operator. All three companies participated in the
study under non-disclosure agreements; thus, a brief description is provided.
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Company A is an original equipment manufacturer for passenger vehicles
and a multinational company with most of its operations in Europe, Asia,
and North America. In recent years, company A is transitioning from an
equipment manufacturer to a service provider aiming to provide mobility as a
service and similar products. This company also has the ambition of becoming
a software-orientated business to remain competitive in the rapidly changing
electric vehicle landscape.
Company B is an original equipment manufacturer of commercial vehicles

with its business covering truck, bus, construction, heavy duty equipment, and
maritime engines. With fleet management as part of their service, the vehicles
produced by company B are connected and rely on innovative software solu-
tions. Company B is a multi-national company with a head office in Sweden.
Company C is a design and development consultancy for personal passenger
vehicles; they develop and design passenger vehicles, software solutions, and
mobility products for different vehicle brands.

Case study participants

In Paper A, in order to gain a good insight on the current development of
online experiment adoption, we conducted interviews with twelve employees
from company A, and five each from company B and C. Their roles include
software engineer, software architects, product owner, data engineer, and data
scientist, working with some aspects of online experimentation. All interviews
are conducted by least one of the authors and the response of the participants
are documented as meeting notes.
In Paper B, we actively worked with the development team of company A in

situ for a period of six month; this development team consists of 34 members,
including software developers, data scientists, and product owners. At least
one of the authors organised and participated in the weekly project meeting
on the research topic throughout the period. All the research activities with
all case study companies are organised and managed by the main author of
the publications.

Empirical Experiment
The research approach for Paper B, C and D is based on empirical experi-
ments; the experiments are conducted with an industry collaborator (company
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A) on a fleet of 1,200 vehicles. This is a quantitative approach which allows the
highest possible level of repeatability and generalisability. We deploy software
treatments on a small- to medium-scale in a controlled manner, collect user
data for a continuous four-month period, and use the empirical data collected
as input to the causal models.
Compared to a simulated dataset, the use of empirical datasets allows us

to evaluate causal inference models in a real-world setting. We can further
evaluate the validity of the model by adapting to stochastic noise and the
applicability of the model when predictability is low. Moreover, in running
small- to medium-scaled online experiments, by introducing theoretical models
to industrial practises, hope that our results could inspire other researchers
and manufacturers to adopt online experimentation as a prominent approach
in software engineering.

Data collection

The total data collection period takes place between October 2020 and Decem-
ber 2021 for a total of four datasets from 1,200 unique vehicles in total. Using
on-board sensors and existing telecommunications modules on the vehicles,
measurements are done in a continuous fashion at 10 Hertz and sent to a cen-
tralised server for remote access. After post-processing, the data is collected
from 493,187 trips. The vehicles participating in the empirical experiment and
receiving the software treatments are driven by employees of the case company
A. They are company cars leased to the employees with special agreements to
allow such a software change. The vehicles’ users are informed of the software
change, however, not the details of the specific changes. All data collection is
done anonymously, and no metadata or data can be reconstructed to identify
drivers or vehicles.
The data feature generation from raw measurements is done together with

the development teams, and this process takes into consideration the physical
properties and limits of vehicles, such as the average trip speed shall never
exceed the rated top speed of the vehicle. First, all data features are gener-
ated from at least two or more measurements to triangulate the validity of the
sensor signals. Second, measurements generated from vehicles that are brand
new (with mileage under 100 kilometres) are discarded. Third, the data fea-
tures are aggregated on the user level, as we are interested in the treatment
effect on individual vehicles.
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3.3 Threats to validity
In this section, threats to validity are discussed first in terms of internal valid-
ity, and external validity. For each threat to validity, the mitigation strategy
is presented in the corresponding subsection.

Internal validity
As a type of internal validity, content validity refers to the degree to which the
elements in a study are representative of the domain that the study seeks to
measure. The most common threat to content validity is incomplete content,
that is when the study does not cover all aspects of the subjects that it aims
to measure. Our mitigation strategy is to iterate the study design amongst
the researches involved, to ensure that the relevant aspects to the research
questions are covered.
Criterion validity measures how well a test score predicts real-life outcomes,

for example if we measure the line-of-code produced by a software engineer,
are we able to predict this engineer’s future work efficiency. In this thesis,
no similar predictor is hypothesised, therefore, we do not consider criterion
validity and its related threats.
Construct validity addresses the concerns of whether the measures accu-

rately access what they are supposed to, in other words, whether the selected
measurements articulate the concepts of the research questions. In a qual-
itative research, a potential threat to construct validity could be that the
interviewer and the interviewees understand the terminology differently [57].
To mitigate such a threat in our studies, we exclusively interview people with
experience in online experimentation, and we distribute definitions to termi-
nologies that are critical to our interview questions prior to the interviews.

External validity
External validity refers to which extend can the conclusions be generalised to
other setting within the domain. Since the research has been conducted with
a limited numbers of companies, and with limited datasets, generalisability
is not a given. However, the ecological aspect of the external validity should
be well addressed, as all of our research is conducted empirically and their
findings are derived from real-world software engineering scenarios.
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Population validity - whether the findings are generalisable to a wilder con-
text of population, in this case, to companies in the automotive domain which
we did not conduct study with. This aspect is addressed in the following
ways. First, in qualitative research, results are only included when the same
perspective is mentioned by people from two or more organisations. Second,
we cross validate our results, from both qualitative and quantitative research,
with literature from within the domain and other area of science, to make sure
no spurious results are found. Last, the automotive sector is a standardisa-
tion focused domain, majority of the companies deploy similar development
processes and experiencing similar issues [60], thus, the conclusions derived
from our empirical experiments should be generalisable to a large extend to
other automotive companies.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Yuchu Liu, Jan Bosch, Helena Holmström Olsson, Jonn Lantz
An architecture for enabling A/B experiments in automotive embedded
software
©IEEE DOI: 10.1109/COMPSAC51774.2021.00134 .

A/B experimentation is a known technique for data-driven product devel-
opment and has demonstrated its value in web-facing businesses. With the
digitalisation of the automotive industry, the focus in the industry is shifting
towards software. For automotive embedded software to continuously im-
prove, A/B experimentation is considered an important technique. However,
the adoption of such a technique is not without challenge. In this paper,
we present an architecture to enable A/B testing in automotive embedded
software. The design addresses challenges that are unique to the automotive
industry in a systematic fashion. Going from hypothesis to practice, our ar-
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chitecture was also applied in practice for running online experiments on a
considerable scale. Furthermore, a case study approach was used to compare
our proposal with state-of-practice in the automotive industry. We found our
architecture design to be relevant and applicable in the efforts of adopting
continuous A/B experiments in automotive embedded software.

4.2 Paper B
Yuchu Liu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson,
Jonn Lantz
Size matters? Or not: A/B testing with limited samples in automotive
embedded software
©IEEE DOI: 10.1109/SEAA53835.2021.00046 .

A/B testing is gaining attention in the automotive sector as a promising
tool to measure causal effects from software changes. Different from the web-
facing businesses, where A/B testing has been well-established, the automotive
domain often suffers from limited eligible users to participate in online exper-
iments. To address this shortcoming, we present a method for designing bal-
anced control and treatment groups so that sound conclusions can be drawn
from experiments with considerably small sample sizes. While the Balance
Match Weighted method has been used in other domains such as medicine,
this is the first paper to apply and evaluate it in the context of software de-
velopment. Furthermore, we describe the Balance Match Weighted method in
detail and we conduct a case study together with an automotive manufacturer
to apply the group design method in a fleet of vehicles. Finally, we present
our case study in the automotive software engineering domain, as well as a
discussion on the benefits and limitations of the A/B group design method.

4.3 Paper C
Yuchu Liu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson,
Jonn Lantz
Bayesian propensity score matching in automotive embedded software
engineering
©IEEE DOI: 10.1109/APSEC53868.2021.00031 .
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Randomised field experiments, such as A/B testing, have long been the
gold standard for evaluating the value that new software brings to customers.
However, running randomised field experiments is not always desired, pos-
sible or even ethical in the development of automotive embedded software.
In the face of such restrictions, we propose the use of the Bayesian propen-
sity score matching technique for causal inference of observational studies in
the automotive domain. In this paper, we present a method based on the
Bayesian propensity score matching framework, applied in the unique setting
of automotive software engineering. This method is used to generate balanced
control and treatment groups from an observational online evaluation and es-
timate causal treatment effects from the software changes, even with limited
samples in the treatment group. We exemplify the method with a proof-of-
concept in the automotive domain. In the example, we have a larger control
(Nc = 1100) fleet of cars using the current software and a small treatment fleet
(Nt = 38), in which we introduce a new software variant. We demonstrate a
scenario that shipping of a new software to all users is restricted, as a result,
a fully randomised experiment could not be conducted. Therefore, we utilised
the Bayesian propensity score matching method with 14 observed covariates
as inputs. The results show more balanced groups, suitable for estimating
causal treatment effects from the collected observational data. We describe
the method in detail and share our configuration. Furthermore, we discuss
how can such a method be used for online evaluation of new software.
This paper was awarded the Best Paper in Software Engineering in Practice

at APSEC 2021.

4.4 Paper D
Yuchu Liu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson,
Jonn Lantz
Bayesian causal inference in automotive software engineering and online
evaluation
.

Randomised field experiments, such as A/B testing, have long been the gold
standard for evaluating software changes. In the automotive domain, running
randomised field experiments is not always desired, possible, or even ethi-
cal. In the face of such limitations, we develop a framework BOAT (Bayesian
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causal modelling forOvservAtionalTesting), utilising observational studies in
combination with Bayesian causal inference, in order to understand real-world
impacts from complex automotive software updates and help software develop-
ment organisations arrive at causal conclusions. In this study, we present three
causal inference models in the Bayesian framework and their corresponding
cases to address three commonly experienced challenges of software evalua-
tion in the automotive domain. We develop the BOAT framework with our
industry collaborator, and demonstrate the potential of causal inference by
conducting empirical studies on a large fleet of vehicles. Moreover, we relate
the causal assumption theories to their implications in practise, aiming to
provide a comprehensive guide on how to apply the causal models in automo-
tive software engineering. We apply Bayesian propensity score matching for
producing balanced control and treatment groups when we do not have access
to the entire user base, Bayesian regression discontinuity design for identify-
ing covariate dependent treatment assignments and the local treatment effect,
and Bayesian difference-in-differences for causal inference of treatment effect
overtime and implicitly control unobserved confounding factors. Each one of
the demonstrative case has its grounds in practise, and is a scenario experi-
enced when randomisation is not feasible. With the BOAT framework, we
enable online software evaluation in the automotive domain without the need
of a fully randomised experiment.
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CHAPTER 5

An architecture for enabling A/B experiments in
automotive embedded software

The layout has been revised.

5.1 Introduction
A/B experimentation or A/B testing is a method for evaluating software
changes in a quantifiable manner. Continuous A/B testing is an important
method in understanding and delivering measurable customer value. Many
web-facing companies have demonstrated success from A/B experiments, such
as Booking.com [18], Google [35] and Microsoft [28], [32], [48], just to list a
few. With the digitalisation of the automotive industry, software is becom-
ing a main differentiator of products [2]. A/B testing is an effective tool to
evaluate software and support organisations in making data-driven decisions
[61]. However, the adoption of continuous A/B experiments in automotive
embedded software is not without challenges.
Embedded software has hardware constraints. Such constraints could mani-

fest as limitations to computational power [24], long release cycles [2] and often
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dependency on suppliers [3]. Data collection and handling is also believed to
be challenging in the automotive specific applications [3], [12]. Although a fair
number of publications point out the challenges in A/B experiment adoption
[2], [3], [12], [24], we identified a gap in the literature concerning architectural
solutions to enable A/B experiments. Furthermore, there is little to no reports
on concluded or ongoing online A/B experiments in the automotive domain.
In this paper, we present an architecture that enables A/B experiments in

the automotive domain and aim to address the challenges that are unique to
this industry. We present a literature review of A/B experiment architecture in
embedded and web-facing environments. Moreover, we conducted a case study
of the architecture applied at scale and to report the state-of-practise of A/B
testing in automotive. Compared to the existing literature, the contribution
of this paper is two-fold. First, we present an architecture that enables A/B
testing automotive software. We reviewed the literature and did not find a
similar architecture for A/B experiments. Secondly, we apply this architecture
in practise, in fleets of considerable scale. We present the case study and state-
of-practise of two other automotive companies.
The rest of this paper is organised as following. In Section. 5.2, we introduce

the unique constraints in automotive industry for A/B testing. In Section. 5.2,
we present our research method. We summarise the existing A/B experiment
frameworks and architecture in Section. 5.2. In Section. 5.5, we present our
architecture design along with the case studies. Discussions and conclusion
are presented in Section. 5.6 and 5.7.

5.2 Background and constraints
In this section, we introduce the background on A/B testing and list the
constraints of adopting the method in automotive embedded software.

Background
A/B testing is a type of continuous experimentation where users or systems
are split into subgroups and issued with different variants of the same soft-
ware. By studying the response from each cohorts, A/B experiments can guide
product development in an effective manner [18], [32], [35]. Typically, eligi-
ble users are split into two groups, the A version (control) and the B version
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(treatment). For both user groups, their interactions with the functions are
recorded and evaluated based on a set of carefully designed metrics reflecting
business and/or customer values [62].
Almost all well-established A/B testing frameworks are for web-facing busi-

nesses. Such frameworks or models cannot be applied directly in an embed-
ded environment as they do not address specific challenges. These challenges
come from many aspects, they can be technical, business, and organisational
as demonstrated by Mattos et al. [2]. As embedded software often has de-
pendency on hardware, fast software release becomes difficult to accomplish
[3], [12], [24]. Although challenging to adopt, many advantages of continuous
experiments that were proven in the web-facing businesses are also expected
in the automotive industry [12].

Constraints
In addition to the challenges summarised by relevant literature [2], [3], [12], we
list the specific constraints in automotive which motivate our architecture de-
sign. Automotive embedded software is distributed to hundreds of Electronics
Control Modules (ECUs). These software are traditionally developed using
the "V-model" where the OEMs deliver specifications and suppliers deliver
implementations [4]. This model has exhibited its limitations.

Release cycles and speed

Combining the strict standards with the growing complexity, the automo-
tive software release process is rigid. First, the development and release of
automotive embedded software is usually strongly dependent on suppliers.
Secondly, automotive companies have traditionally designed software release
cycles based on their hardware release process [50]. This process cannot han-
dle rapid changes, as all integration and tests are planned at fixed periods.
Moreover, the most commonly adopted automotive software architecture AU-
TOSAR 1 lacks flexibility in partial updates [3]. If the new software is not
backwards compatible, all ECUs in the vehicle need to be updated. Last but
not least, updating software which are governed by legislation might require
renewal of certifications, which will add delays to the software release process.

1autosar.org
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Sample size and management

Controlling boundary conditions is impossible for online experiments, as ve-
hicles can be driven to everywhere and at anytime. Therefore, to conclude
sufficient treatment effects, A/B experiments need be conducted on large and
randomly selected sample groups. This large group of users needs to be man-
aged as online experiments require a flexible configuration of A/B or A/B/n
groups. However, the sample groups are difficult to manipulate when the
software needs to be updated through physical contact with the cars. Same
challenge could be experienced when an A/B test is concluded, and the soft-
ware needs to be inverted to the original version.
Managing sample groups longitudinally can be burdensome. Performance

of some automotive functions depends on temporal factors and has seasonality
effects, thus experiments need to be conducted longitudinally. Therefore, the
ability to orchestrate the A/B groups over time is beneficial.

Data infrastructure

To conclude a casual effect of the treatment, data collection for A/B exper-
iments requires certain level of accuracy. Storing such data locally in each
vehicle is not feasible, as it becomes difficult to access and it will require a
large memory on-board. The success of an A/B experiment is largely relied
on appropriate assumptions when designing an experiment and fast feedback
when conducting one. Sharing data within a large organisation can be prob-
lematic [14]. In order to maximise the data, all development teams need to
have easy access to relevant data. As a result, companies suffer from misrep-
resentation of customer values.

Safety requirements and fallback

Automotive software has high safety requirements. In an A/B test, all al-
ternative versions can never obstruct such requirements which might affect
road safety and/or legal compliance. The functional requirements need to be
safeguarded while ensuring a continuous release of alternative versions seems
impossible today. Another practise to decrease hazards on the road is to have
built-in fallback for safety critical functions. For instance, one could install
both the A and B alternatives on-board. Then the A alternative can be used
as a fallback when it is thoroughly tested and validated.
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5.3 Research method

In this paper, we combine a literature review with case studies. We studied
several existing A/B experiment frameworks inside and outside of the industry
through literature reviews, to compare our approach to existing frameworks.
Furthermore, to validate the architecture designed, we conducted case studies
based on a series of ongoing efforts in A/B experiments from three separate
automotive manufacturers.
We explore the following research question:

RQ1 What are the existing software architecture for online experimen-
tation?

RQ2What are the requirement for enabling continuous experimentation
with automotive embedded software?

Literature review

This literature review is done to understand existing A/B experiment frame-
works within and outside of the automotive domain. To identity and explore
work that is relevant for the research question, we follow the methodology
described by Kitchenham [63].

Data collection

We included the following terms in our search query: ("A/B testing" OR
"A/B experiment" OR "online experiment" OR "bucket testing" OR "continu-
ous experiment") AND ("software architecture") AND ("embedded software"
or "automotive software"). Alternative terms are included as there is no stan-
dard terminology. Keyword combination with "automotive software" yield no
meaningful results, thus we expanded the search query to also include embed-
ded software. The databases included in our search process are IEEE Xplore,
ScienceDirect, and Google Scholar, returning a total of 104 results excluding
duplicates. To ensure the results are relevant today, we limit the publications
to the recent ten years.
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Table 5.1: Papers selected which describing architecture of A/B experiments, for
web and embedded software).

No. Title of publication Authors Year
P1 Overlapping Experiment Infrastructure: More,

Better, Faster Experimentation [35]
Tang et al. 2010

P2 Architecture for Large-Scale Innovation Experi-
ment Systems [23]

Eklund &
Bosch

2012

P3 Eternal Embedded Software: Towards Innovation
Experiment Systems [50]

Bosch & Ek-
lund

2012

P4 Beyond data: from user information to business
value through personalized recommendations and
consumer science [49]

Amatriain 2013

P5 Online controlled experiments at large scale [32] Kohavi et al. 2013
P6 Design criteria to architect continuous experimen-

tation for self-driving vehicles [24]
Giaimo &
Berger

2017

P7 The RIGHT model for Continuous Experimenta-
tion [29]

Fagerholm
et al.

2017

P8 Experimentation growth: Evolving trustworthy
A/B testing capabilities in online software com-
panies [18]

Fabijian et
al.

2018

P9 The Anatomy of a Large-Scale Experimentation
Platform [48]

Gupta et al. 2018

P10 Scalable Data Reporting Platform for A/B Tests
[64]

Vasthimal et
al.

2019

P11 Experimentation in the Operating System: The
Windows Experimentation Platform [28]

Li et al. 2019

Inclusion criteria

Each paper resulted from the search process was reviewed by at least one of
the authors. We examine the keywords, abstracts, and the body of the pa-
per to identify A/B experiment frameworks and the applicable sector for said
frameworks. We selected publications which focus on A/B experiment archi-
tecture and/or framework from embedded applications. We did not include
publications discussing the benefits or challenges or feasibility of A/B testing.
This inclusion criteria resulted in a total of three papers. Since the technique
is well established in web-facing applications, we included work on A/B test-
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ing framework in the web domain. A total of 11 publications included in this
review are listed in 5.1.

Case study
Following guidelines from Runeson and Höst [57], we conducted two sets of
case studies with three separate automotive companies. In study I, we examine
the proposed architecture in practise on a cloud-based A/B experimentation
in a vehicle fleet at scale. We study the architecture for A/B testing in a fleet
from one of the three companies. The software for case study I was developed
in-house in company A. As online experiments are not commonly applied in
the industry, to the best of our knowledge, there is a lack of quantitative
data to study from. To understand the state-of-practise, we conducted semi-
structured interviews with two more OEMs as case study II.

Case study attendees

The three companies included in the case studies are large OEMs. In each
company, we conducted interviews and workshops with at least five different
employees from each company, working with varying aspects of software de-
velopment. Their roles include software engineer, software architect, product
owner, data engineer and data scientist.

Data collection

One of the authors was actively involved in the experimentation design from
ground up and supported the entire process. We document the process through
meeting notes and design specifications in the project. The questions from case
study II were specifically designed to understand the current state-or-practise
of A/B experiments in an automotive setting. We also aim to understand the
potential of cloud-based A/B testings in each company. During the interviews,
we presented our architecture design to the attendees along with questions re-
garding current practises adopted in their companies. All the interviews were
conducted by at least one of the authors. The responses were documented as
meeting notes, which were distributed to the interview participants.
We recognise the limitation of our case study approach, as the results of our

case studies were obtained from three companies. The outcome can be specific
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to these companies and without further investigation, we cannot generalise the
conclusion to the automotive industry.

5.4 Existing architectures
In this section, we present the results from our literature review. We included
11 publications [18], [23], [24], [28], [29], [32], [35], [48]–[50], [64] that focus
on describing A/B experiment architectures, in both embedded software and
online applications. From our literature review, we have discovered that there
is a general gap in the literature on architectures or frameworks designed
specifically for automotive software. Based on the topic, we summarise the
papers into four overlapping categories. They are grouped firstly by their
environment, i.e., embedded or web-facing. Paper [28], [29] are applicable for
both groups. We include OS and embedded applications in the same category,
as they share many common challenges for instance, the devices can be offline
[28]. Second, we identified in these papers how a software variant is shipped
to the users. Namely, if a complete software change is required, or variants
can be introduced through parameter changes. The categories are presented
in Figure 5.1. As can be seen, variant introduction through parameter change
is not a widely explored method within embedded software.
Although the design process is vastly different, there are a numbers of shared

components for embedded and web experiment architecture. This includes
experiment configuration, data collection, experiment analysis and metrics
evaluation. Therefore, some experiment models can be employed in various
environments including web, operation systems and embedded [29], [48]. Tang
et al. [35] and Kohavi et al. [32] both report a multi layered experiment con-
figuration system that can handle multiple A/B experiments. Users will be
assigned to A or B variant in a consistent manner [48], [64]. In the web en-
vironment, this is achieved by assigning unique IDs when users visit the web
pages.
Data infrastructure is a major component in any experiment framework. All

researchers include data infrastructure as part of their experiment frameworks,
particularly focused on trustworthiness [18], [29], [32], [35], [48], [64]. Such
data collection is also required in embedded environments, however, is more
difficult due to hardware limitations [50]. An experiment architecture [23] for
automotive software used an on-board data storage before uploading the data
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Figure 5.1: Existing A/B experiment framework categorised by environment and
variant generation methods.

through the vehicle’s telemetry.
Another key element for A/B experiments is rapid software release. We

found that all architectures for rapid experiments in an embedded environ-
ment rely on continuous deployment. The "RIGHT Model" discuss that if a
function is novel, continuous deployment might not be necessary [29]. How-
ever, most frameworks in embedded environments [23], [24], [50] require a
well-established continuous deployment process to achieve rapid experimenta-
tion loops. Software variant release through Over-the-air(OTA) can increase
delivery speed in automotive applications [23]. In the web environment, rapid
experimentation can be achieved more flexibly through an array of mecha-
nisms. For example, an offline and online experiment systems in Netflix, as
demonstrated by Amatriain [49]. Existing data can be used to train the mod-
els before they are introduced to an online experiment, which allows faster
and cheaper evaluation of software. Another technique in increasing experi-
ment speed is using parameter updates as mentioned by Tang et al. [35]. The
A/B variants in target functions are parameterised and configured through
data files. These parameters are changed more frequently than code, which
enables fast experiments provided the parameters exist.
Furthermore, to fully utilise the benefits of A/B testing, all papers high-

lighted the importance of the organisational and cultural mindset of making
data-driven decisions. Kohavi et al. [32] summarise prerequisites which an or-
ganisation needs to adapt, highlighting the importance of data-driven decision
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Figure 5.2: Process of the cloud-based A/B test architecture, illustrating the gen-
eral work flow of conducting an A/B experiment with parametrised
functions.

making mindsets. In the "Experiment Growth Model" introduced by Fabijan
et al. [18], all components of their A/B experimentation model become more
mature as the entire organisation evolves through different stages.

5.5 Architecture and case studies

In this section, we present a software architecture that could enable A/B
testing in the automotive domain. A hybrid architecture is presented. The
essence of the architecture is to imitate an online environment for an otherwise
offline application. In doing so, automotive A/B testing can benefit from the
flexibility of online experiments We present the components of our architecture
in Fig.5.2.
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System requirements
Our architecture enables continuous automotive A/B experiments and follows
a set of requirements. The architecture needs to respect the boundary con-
ditions of automotive domain and follow the principles of continuous experi-
ments. We list these requirements in two groups, technical and non-technical.
The technical requirements are:

• The A/B experiments rely on fast releases, continuous integration and
continuous deployment processes. The architecture should satisfy the
property of a continuous deployment alike environment while not con-
flicting with the release processes that are in place.

• The experiments can be managed in an easy manner. This includes
managing eligible users in control and treatment groups, tracking their
status over time, configuration of experiments if/when there are several
different treatments to be tested and ability to terminate an experiment
once a conclusion is reached.

• To conduct successful experiments, data quality is key. The signals to be
measured and their sample frequency should be specified accordingly to
the function of interest. We call these signals observables. Data should
be accessible to the development and analysis teams within the com-
pany through standardised pipelines and compatible with standardised
analysis tools.

• Alternative software variants running in the vehicles should have a built-
in safety fallback although it should always preform to standards. Fur-
thermore, the architecture should follow automotive security standards,
so that no unauthorised modification can be done to the software re-
motely or otherwise.

• The architecture should be scalable in terms of number of experiments
that can be conducted in parallel, and number of eligible target users.
This means, ideally any function can be tested on any group of users.

The non-technical requirements are:

• The A/B experiment architecture should promote decision autonomy
on the team level. Instead of a top-down approach, the development
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teams should be encouraged to explore functional changes freely and
take data-driven decisions from the outcome of their A/B experiments.

• There should be a high level of transparency and collaboration in be-
tween teams, in particular when functions have dependency on each
other. By providing a common platform for configuring and analysis
of experiments, this architecture can potentially improve collaboration
between teams.

System characteristics
We present a hybrid architecture (Fig.5.2) combining on-board and cloud
functionalities. The system is composed of six main components. These are
parameterised functions, a release process which most companies have in place.
There is a cloud host that writes parameters to the vehicles and collects data
from the vehicles. Finally, a centralised data storage and pipeline for dis-
tributing the measured data.
The system workflow can be described as follows. First, a function which

characteristics can be defined by a list of parameters is delivered. There are
two sets of parameters embedded in the function, the local set, which is the
default and the cloud set that can receive incoming values externally. The
benefit of parameterisation in A/B testing was also highlighted by [35]. A
set of observables which measure function performance is also predetermined.
The function and its parameters are delivered to a release process which will
integrate with other functions and release the software to vehicles. This release
and installation of software can be done through workshop visits or OTA.
Once the software is introduced to the vehicles, users are identified through

Vehicle Identification Numbers (VIN), which is unique and comprised of ve-
hicle meta-data. This ensures that although the software is introduced to all
cars, no experiments will be conducted unless the users are deemed eligible
in advance. Upon key-on of a vehicle, a vehicle will send its VIN to the A/B
test cloud. Since the A and B groups are configured in the cloud, the test
cloud will match the VIN and then return a status indicator to the vehicle.
Ineligible cars will have no match in the cloud and receive no response. For all
eligible vehicles, they can be partitioned into A and B groups through remote
configuration. The control group will use the functions’ local parameters and
the treatment group will receive cloud parameters. Since the parameter names
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are predefined, the vehicle cannot accept any other values, thus increase se-
curity. Furthermore, as the cloud parameters are blank values in the vehicles,
cloud parameter change can be done remotely. This design enables function
behaviour change through parameters provided the parameters exist. Devel-
opment teams can continuously A/B test and adjust the existing parameters
without complete software change and independently from the company-wide
release cadence. A complete software update is required only when new pa-
rameters need to be added.
Data collection is done through the cloud and it measures a set of predefined

observables. The observables are measured and temporarily stored on board,
then sent to the cloud at time intervals while driving. This data are collected
in a centralised data lake, cleaned, then distributed to development teams.
During a trip, time series data is collected for dynamic observables. For sta-
tionary observables, only one or a few snapshots are measured. After analysis
of the A/B tests, further actions can be taken such as adjusting cloud param-
eters, re-partitioning A/B groups, or concluding the experiments. When the
experiments are concluded, the connection to the cloud will be interrupted
and vehicles will invert back to the local parameters automatically. Moreover,
the local variant always serves as a safety fallback in critical situations.

Case study I
The first case study was performed in company A on an energy management
(EM) function that was developed internally. The function Energy Manage-
ment has a local and a cloud set of parameters which determined the local
and the cloud energy management strategy, respectively. The local strategy is
already available in vehicles of the same variants which company A sells in a
given market. By default, the vehicle will always run the local strategy unless
a connection to the cloud is established and the vehicle is deemed to be an
eligible user.
While the development team delivers the function through company A’s

existing software release process, a group of fifty eligible users were selected.
These users were selected at random from corporate customers who voluntar-
ily signed up for the experiments and their user agreement covers the data
collection. Each user was assigned to a vehicle for a total 18 month period,
during which the vehicles were used as regular family cars. In the fleet, there
are three types of unique vehicle model and powertrain combination. Internet
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connection through 4G were provided to the users as the function requires
active internet connection to the cloud. Therefore, when software including
EM function changes was introduced to all vehicles in the fleet, the A/B ex-
periment was only activated for eligible users. Furthermore, as part of the
experiment, the users were given the option to switch off the cloud strategy
manually form the vehicles.
To randomise the network and spill-over effects, the experimenters allocated

A and B groups dynamically on a schedule. Upon activating connections
to the fleet, the local strategy was ran on all vehicles for a short period to
establish a baseline response. Then the team automated the partitioning of
A/B groups through a rolling schedule while keeping the sample size of two
groups balanced, i.e. exactly half of the fleet runs on the A variant and
another half on B. During the experiment, there were in total 58 observables
being measured simultaneously to evaluate the EM function from both A
and B groups, including but not limited to net energy consumption, driving
dynamics and travel demand patterns. The experimenters also monitored how
frequently the users actively switch off the B variant themselves.
A number of automated mechanisms were put in place in the cloud to ensure

data quality. Some observables were measured and stored as high frequency
time series data while some were measured and stored as aggregate values
or snapshots. The experimenters were able to define the data requirements
according to their experiment hypothesis. The experimenters have access to
the data collected almost in real-time. The data collected was post-processed
in an automated manner in a database, while the teams can also choose to
export the raw data. The file size of data collected per week averages at 1.7
gigabytes when exported in CSV format. All the analysis and evaluation were
done to support decisions of further modifications to the cloud parameters
when needed. B, the cloud variant of the function can be changed from the
cloud without any modifications to the vehicles or the software within the
vehicles.
The EM function software has dependency on six or more ECUs that are

mostly supplier parts. Traditionally, changing the EM software means re-
building of all these ECUs completely through suppliers and downloading the
software to the vehicles physically. The usual lead time for such changes is
anywhere from three month to one year.
With the cloud-based setup, the configuration of experiments can be done
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with a simple flip of a switch and the parameter changes can be done within
the functional teams. This system caters an environment where continuous
experiments are independently from release processes that could be lengthy
at times. In average, the total distance travelled by all eligible users is over
18.000 kilometres per week and over 80% of the vehicles are being driven daily.
Comparing to any traditional test vehicle fleets, they are generating valuable
measurements at a much larger scale more quickly. These measurements are
also obtained from a wider range of driving conditions and more directly
reflecting customer usage patterns of the vehicles.

Case study II
The second case study is conducted to understand the state-of-practise in
company B and C, this is compared with the first implementation in company
A. The summary is listed in Table. 5.2. The components in our architecture
is listed, and the current adopted practises by each company are highlighted
with check marks.

Table 5.2: System components adopted by case study companies.

System components A B C
Parametrised function development X

Integration to the existing release process X X X

Write cloud parameters to vehicles X

Request observables from vehicles X X X

Centralised and cloud-based data collection X X X

Over-the-air software update X X

Even though neither company has experienced the complete cloud-based
A/B experiment system, but there are many commonalities in the components
adopted. Through our interviews, it was apparent that both company B and
C have adopted some levels of the practise, most specifically the off-board data
collection capabilities. Company B has invested intensively for an online data
collection system for their fleet vehicles, where they can monitor the entire
fleet in real-time. A set of predetermined observables are measured, their
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data collected and distributed to corresponding function development teams
through a centralised database. Each functional team within the company
can also request for more observables to be measured from the fleet, through
a service request to the data team. A similar approach was reported from
company C. A centralised cloud-based database was built to remotely acquire
high quality data in a fast manner. The teams have the freedom to determine
the sampling frequency accordingly to their measurement requirements. The
data collected was used for various product development purposes such as
remote diagnostics and predictive maintenance.

5.6 Discussion
In this paper, we presented a hybrid architecture combining in-vehicle and
cloud elements that solves many problems in adopting continuous A/B ex-
periments in automotive software. Comparing to existing A/B experiment
architecture for embedded software, our architecture offers the flexibility of
being independent from a continuous deployment process. By allowing param-
eter changes, the function can be experimented continuously without software
changes.
However, we foresee some potential weakness in the design and they are

discussed here. Firstly, the threshold of functional behaviour change through
parameters is low comparing to a complete software change. The system
enables A/B experiments for fine tuning of functions but not complete concept
changes. In other words, the A/B testing can be done on relatively mature
functions through our architecture.
Secondly, many parameters changes are not independent from each other

in an automotive setting. When multiple experiments are running simulta-
neously, the configuration of experiments becomes critical as suggested by
[35] and [32] from their experience in the online businesses. Similar to wed-
facing applications, we need to consider contradicting parameters. At the same
time, some parameters configurations can be hierarchical when one function is
deemed to be a sub-function of something else. For instance, battery cooling
temperature effects energy consumption management and climate comfort for
the driver. This type of parameters adjustment needs to be coordinated when
both functions are being A/B tested. Performance of hierarchical functions
cannot be determined individually. As a result, centralised, well-established
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and understood performance metrics need to be put in place before paral-
lel/multiple experiments can be conducted simultaneously.
Thirdly, each team can independently determine parameters and observ-

ables. Ideally, the teams shall coordinate their experiment designs when pa-
rameters or observables are shared in between different functions. Such co-
ordination requires organisational support [18]. As many automotive compa-
nies are going through agile transformation [3], the data-driven development
mindsets and support structure are gradually improving. The speed of the
transformation will influence how quickly an A/B experiment system can be
put in place.
Fourthly, receiving cloud-based parameters requires an active internet con-

nection that can be disrupted during a number of driving conditions, and
usually has a delay in response. Meanwhile the functions can be safeguarded
through using local parameters as fallback, a function which requires millisec-
ond response time cannot rely on cloud parameters. Common examples of
functions which are time critical include lane keeping assist, automatic break-
ing and active cruise control. A possible setup for time critical functions is to
embed the A and B versions of parameters in the software itself, and use the
cloud to trigger the switch in between them. As a trade-off, one will lose the
freedom of tuning parameters independently from release processes.
Last but not least, some types of software are strictly governed by legal

frameworks. Most types of legal requirements cover two dimensions. First,
functional changes can not demonstrate deteriorated performance in legal
compliance tests. Second, vehicles cannot behave worse on the road in com-
parison to the lab tests. We did not specifically address this issue in our
software architecture, since legal compliance testing is built into software re-
lease processes in the industry. Moreover, the potential performance change
from cloud parameters can be demonstrated in advance if we limited the upper
and lower limits of parameters changes for all legally governed functions.

5.7 Conclusion
In recent years, some research effort was put in the adoption of A/B exper-
iments in the automotive domain [3], [12], [24]. In this paper, we raised a
research question on how to enable continuous experiments in an automotive,
and presented an architecture that demonstrated such capabilities. Through
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a literature review, we found that embedded experiment architectures share
many components with web-facing ones, however, lack the capability of rapid
changes. The architecture design is a hybrid A/B testing model that address
many challenges in the industry. Comparing to existing frameworks, our hy-
brid architecture enable rapid software changes without compromising the
high safety and security standards. Similar framework for automotive soft-
ware A/B testing is not previously discussed in literature. We shared case
studies of cloud-based A/B experiments at scale, which shows high potential
of the parameterised hybrid architecture. The components of our architec-
ture were compared with the state-of-practise of two other large automotive
manufacturers. We found that the case study companies have applied many
components, thus paving the way to an A/B experiment capable architecture.
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CHAPTER 6

Size matters? Or not: A/B testing with limited sample
in automotive embedded software

The layout has been revised.

6.1 Introduction
A/B testing, or A/B experimentation, is an online experiment technique for
evaluating causal effects from software changes [16], [21]. In recent years, there
is an increasing interest in adopting A/B testing in the automotive software
businesses as it is considered an important tool for product development [3],
[12].
As an online experimentation method, A/B testing relies on large sample

sizes that are not always available in the automotive business. With hundreds
of millions of users, challenges in increasing sample size were experienced in
the web domain as reported by [16] and [21]. In the automotive domain,
the available users to experiment with are notably more limited by orders of
magnitude comparing to the web domain. Since the most popular vehicles are
sold in the ballpark of one hundred thousand units annually, with an average
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model sold in the range of tens of thousand units, and almost all vehicle
models have local versions in their perspective sales markets. Moreover, we
would want to experiment with a fraction of the total population of vehicles.
For instance, our experiments often only involve a particular model of a sedan
with a specific electrical machine in Northern Europe, which further reduces
the available sample sizes. Thus, obtaining larger samples in automotive A/B
testing is often unrealistic.
Two problems that occur from the use of experimentation with limited

and small samples is the presence of random imbalance, i.e., the experimen-
tal groups are not compared prior to the experiment, and metric sensitiveness
due to limited experimental power. Methods such as the CUPED (Controlled-
experiment Using Pre-Experiment Data) and stratification [16], [21] are used
in the web domain to increase the detection of changes within low sensitive
metrics, i.e. metrics with high variance, however, they still require large sam-
ple sizes. Moreover, these methods are commonly used only with a single
covariate and cannot be used interchangeably with numerical and discrete co-
variates. Re-randomisation and seed selection are often a potential solution to
random imbalance, but it can increase the time to conduct an experiment and
they are not guaranteed to provide balanced groups if there are changes in the
design of different experiments. Research literature on A/B testing, experi-
mentation in the software domain and in the automotive software development
does not provide clear guidance on how to conduct experiments with low sam-
ple size and potentially imbalanced groups. Inspired by recent developments
in the area of medicine and clinical trials, in this paper, we present a case
study in automotive software utilising the Balance Match Weighted method
[52] to create an experimental design that minimises group variance by balanc-
ing the control and the treatment groups with similar observed features (or,
covariates). The design is guaranteed to provide maximum balance among
the covariates and the analysis takes into account the covariates to reduce
metric sensitiveness. Moreover, this design allows to include both numeri-
cal and categorical covariates. In this paper, features and covariates refer to
the independent variables in a statistical model and the two terms are used
interchangeably.
The contribution of this paper is three-fold. First, we present the Balance

Match Weighted method to design experiments in detail. While this design
has been used in other areas of science, this is the first paper to apply it to
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experimental design in software development and in A/B testing. Second,
we provide a case study, in the automotive domain, of the Balance Match
Weighted design. With this design, we are able to draw valid conclusions
from the experiment with significantly lower sample sizes compared to the
randomised field experiments usually conducted in the web domain. Third,
we discuss the advantages and limitations of the Balance Match Weighted in
the design of experiments in the automotive domain.
The rest of this paper is arranged as follows. In Section 6.2, we present

background and related work. Our research method is reported in Section
6.3. We describe the Balance Match Weighted design in detail in Section 6.4.
The results from our empirical validation case study are presented in Section
6.5. The discussion and conclusion are shown in Section 6.6 Section and 6.7
respectively.

6.2 Background
The two-group design, also called A/B testing, is an experimental design
method [26], [65]. In this design, users are randomly assigned to different vari-
ants of the product, the control variant (the current system) and the treatment
variant (the system with a modification). The users are randomly assigned to
different variants, and, after a period, the instrumented metrics for each vari-
ation are statistically compared. One of the assumptions of this design is that
if that the users of each variant group are equally comparable, i.e., the only
systematic difference between them is the introduced software variant. If this
assumption holds, the research and development organisation can establish
a causal relationship between the software modification and the differences
observed in the metrics. Kohavi et al. [26] provide an in-depth discussion of
common experimental design techniques used in online experiments.
Web-facing companies rely on randomisation and on a large number of users

to ensure that the groups are comparable. However, due to the presence of ran-
dom imbalance, even with large numbers randomisation is not guaranteed to
produce comparable groups [48]. For instance, Bing used to re-randomise one
out of four experiments due to random imbalance. Besides re-randomisation,
Microsoft also utilises historical data to perform multiple A/A tests in order
to find the best seeds to find the best-balanced groups [48].
A large number of diverse users in each experimental group lead to an in-
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crease in the variance of the metrics. This increase in the variance leads to
less sensitive metrics [61]. Research on A/B testing has provided different
statistical methods to reduce variance on experiments such as stratified sam-
pling and the CUPED method (Controlled experiment Using Pre-Experiment
Data) [16], [21]. The CUPED method is similar to using control covariates in
a regression. This method utilises pre-experiment data to identify covariates
that can reduce the variance in the estimation and compensates for it in the
average treatment effect.
Our proposed approach using the Balanced Matched Weight method ad-

dresses both the balance of the groups in small samples as well as reduces
the variance in the metrics. It requires pre-experiment data to identify the
features (or covariates) to balance the groups and utilises these features in a
regression framework to reduce the variance of the metrics similarly to the
CUPED method.

6.3 Research method
The objective of this study is to explore and validate A/B group design with
the Balance Match Weighted method, in order to effectively A/B test with
limited samples in the automotive domain. We employ a case study method to
empirically explore the A/B group design method in an automotive company,
following guidelines from [58] and [59].
This study is part of a larger research collaboration between several auto-

motive companies aiming to introduce A/B testing at scale. As a first step to
adopt A/B testing, the study company has deployed fleets of vehicles driven
by internal users as testbeds for developing software architectural solutions,
data analytic tools, and so on. Furthermore, as already identified in previ-
ous research [2], [3], [22] one of the limitations of A/B testing in automotive
companies is the smaller sample size. In this context, the goal of this research
is to identify techniques and experimental design methods aimed at inference
with small samples.
Within medicine, experimental design minimisation techniques are widely

used for small samples experiments [51], [52], and for experimental designs
where there is prior information regarding the user characteristics and large
variances between the users [66], the Balance Match Weighted yields good
variance reduction by balancing the groups compared to full randomised ex-
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periments.
This paper investigates the use of the Balance Match Weighted for exper-

imental design in the automotive domain. This is captured by the following
research questions:
RQ1: How can we apply Balance Match Weighted design for the partition

of A/B groups in the automotive domain?
RQ2: What are the advantages and limitations of the Balance Match

Weighted design in the automotive domain?
To address these research questions, we conduct a case study with an au-

tomotive company. The case study company is an automotive manufacturer.
Their business includes the design, development, and manufacturing of pas-
senger vehicles. We chose to utilise a case study method for the following
reasons. First, A/B testing is not yet an adopted practise in the embedded
system domain to the best of our knowledge, thus there is a lack of literature
and empirical data. Second, a well-designed case study allows us to empiri-
cally validate the method in an automotive context, and it allows us to analyse
the advantages of the design in its intended applications.

Data collection
In our research, we take advantage of the resources in the case study company
and utilise two main sources of data collection. First, we actively worked with
a software development team in situ for a period of six months. This devel-
opment team consists of 34 members, their roles include software engineer,
product owner, data scientist, etc. The team focuses on software solutions
for vehicle energy management and optimisation. At least one of the authors
participated in every project meeting, workshop, and discussions during the
entire period, and provided inputs in relation to A/B testing. We collected
meeting notes and design documentation.
The second source of our data collection is quantitative. From October

2020 to March 2021, we collect measurements from a fleet of 28 cars leased to
employees of the case study company. The vehicles are commissioned for ac-
quiring immediate user feedback of novel functionalities and they are driven
as regular private vehicles. We instrument the vehicles with software that
actively measures 51 signals through vehicle on-board sensors. The raw mea-
surements are sent off-board and are permanently stored, and the research
group is granted full access to the database.
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Validity considerations

In this subsection, we present the threats to validity in our case study and
how the threats are mitigated.

Internal validity

The propensity score model in the design method makes a strong ignobility
assumption, which assumes that the effect on the target variable from the
unobserved variables is minimum. Since our case study is designed around
existing software, the observed variables are defined prior to the study. This
implies that some co-founding variables might not be observed. No special
action is taken to mitigate this risk as the ignobility assumption should be
considered as an inherent limitation of the design method.
The quantitative trip data collection was done during a twenty-week period.

We raised concerns on if an usage pattern can be established during a relativity
short period. We mitigate this risk in two ways. First, after analysing the data,
we have discovered that on the aggregated level, data from over 13,000 valid
trips were collected and they are collected from a total of 205,000 kilometres
driven distance. On average, each vehicle has made more than 250 trips during
the period. Second, we have observed that the usage pattern of each individual
vehicle does not differ drastically from week to week. Therefore, we consider
the number of trip samples sufficient and we assume the seasonality effects in
this fleet are low.

External validity

In this case study, we have applied the experiment design method to one soft-
ware developed by one automotive company. We recognise the limitations of
the approach and our findings might not be applicable to the entire automo-
tive domain. However, we believe the design method can be adapted to run
A/B experiments on similar software developed by other automotive manufac-
turers, as we demonstrated the design method using quantitative usage data
that is arguably independent of the vehicle manufacturer.
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Figure 6.1: Relationships of input features (X), treatment (τ) and target variable
(Y ) in the propensity score matching model.

6.4 The Balance Match Weighted design
This section provides a detailed description of the theoretical background of
the Balance Match Weighted design method.
The Balance Match Weighted design is an extension to the propensity score

matching method [20], proposed by Xu and Kalbfleisch [52]. In the original
literature, the Balance Match Weighted design was used to select balanced
groups for controlled experiments for medical research. Similar to some medi-
cal applications, A/B experimentation in software testing is not a traditionally
controlled experiment, i.e., we cannot manipulate the boundary conditions of
when and how the software is used. As a result, the measured treatment
effects could be caused by other variables rather than the treatment itself.
These variables could also result in a large variation in the measured treat-
ment response, thus making treatment effects undetectable.
Prior to the experiment, when treatment has not been applied and the

outcome is not known, Balance Match Weighted can be used in pre-experiment
data to select the participants for each experimental group [52], [54], [66].
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After the experiments have been conducted, the covariates used in the Balance
Match Weighted are used to reduce the variance in estimating the average
treatment effect [51].

The Balance Match Weighted design
Consider an A/B experiment, where the sample size N is small. If the groups
are partitioned at random, it is likely we produce unbalanced groups. As a
result, the response measured in the target variable Y could have high variance
and we risk inconclusive experiments.

Algorithm 1 The Balance Match Weighted method
Inputs: M repetitions, N total number of users participating in the exper-
iment

1: Identify the relevant features X.
2: Randomise N/2 subjects in control (τ = 0) and another N/2 subjects in

treatment (τ = 1) group.
3: while m < M do
4: From the identified features X, compute estimated propensity score

distance δkn.
5: Perform greedy full matching based on the propensity score distance

by minimising ∆km =
∑N/2
n=0 δkn.

6: Record the triplet {∆km, n|τ = 1, n|τ = 0}
7: Select the control and treatment where ∆km is minimum.

The Balance Match Weighed design was formulated by Xu and Kalbfleisch,
the purpose is to reduce the imbalance and to increase the precision of the
estimated treatment effect [52]. Comparing to the literature, we make a slight
modification to the matching process to satisfy our constraints. It is an it-
erative process, described as the algorithm in Algorithm 1. In the following
subsections, we discuss each step of the algorithm.

Feature selection
We use a network diagram to illustrate relationships in features, the target
variable, and the treatment, as shown in Fig. 6.1. The shaded nodes are ob-
served variables, the transparent node indicates if the sample is in the control
or treatment group, and arrows indicate dependency.
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Consider a set of i features, X = {X0, X1, ..., Xi}, which are observed prior
to the experiments. The observation is done for each individual subject sample
n in the entire sample set N ∈ {0, 1, ..., n}, and believed to be predictors to the
target variable Y . The changes in Y are dependent on X. The target variable
Y is also what the treatment τ aims to influence. We use τ as an indicator on
whether the treatment is applied, τ ∈ {0, 1}. X is independent from τ . We
consider cases when control and treatment groups are even. Treatment will
be applied to N/2 samples, with another N/2 in the control group.
In a successful A/B experiment, the treatment effect is sufficient to detect

and therefore the expectation of the target variable Y is, E(Y |X, τ = 1) −
E(Y |X, τ = 0) 6= 0.
An important assumption made in the model is ignobility [20], [51]. That is,

we assume unobserved features do not affect the target variable Y . To satisfy
this assumption, an optimal model includes all known features which correlate
to the target variable only and not to the treatment [67], [68]. As shown in Fig.
6.1, there is no dependency in between features X and treatment τ . When the
sample size N is small, including a large number of i features, might not be
feasible [51]. In this case, a recommendation made by Rubin [66] suggests to
first include a small set of features known to be related to the target variable,
perform the matching and experiments, then include more features if bias is
high in the outcome. One should not include the target variable Y in the
propensity score model.

Propensity score distance

After selecting features that are highly informative of the target variable, the
next step is to calculate the propensity score. To compute the propensity
score ρ, we fit the input features X to a logistic regression, with indicating
variable τ = 0 for the control group and τ = 1 for the treatment group.
We obtained the propensity score from the outcome of the logistic regres-

sion. The propensity score is a probability value that falls between 0 and 1.
The individual propensity score distance for each subject n is defined as the
absolute difference of propensity score in the control (X|τ = 0) and treatment
(X|τ = 1) group,

δkn = |ρn,τ=0 − ρn,τ=1| (6.1)
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where,

ρτ=1 = P (Z = 1|Xn) = eβ0+βX

1 + eβ0+βX (6.2)

and β are fitted coefficients for the linear logistic regression model, β0 is
the fitted intercept. The total propensity score distance for all subjects in the
control and treatment group is defined as:

∆k =
N/2∑
n=0

δkn (6.3)

Prior to an A/B experiment, the treatment indicator τ is unknown. There-
fore, in the scenario of calculating propensity scores to design experiment
groups before the treatment is applied, we randomise the control and the
treatment groups as step 2 of the Balance Match Weighted method.

Greedy full matching
After computing the propensity scores, one should perform a matching of
control and treatment groups. There are some commonly applied matching
methods, including caliper matching, 1:1 nearest neighbour [54] matching, and
full matching [52], [69].
In the existing literature proposing the Balance Match Weighted design,

matching is achieved through the optimal full match [69]. Optimal full match
makes replacement, meaning that one subject in the control group can be
matched to multiple subjects in the treatment group. Furthermore, optimal
full match allows discarding of subjects from the sample group, which is con-
sidered as a hard constraint in our case study for the following two reasons.
First, our experiment subjects, the vehicles are costly to run without being
included in the experiments. Second, since the matching is done prior to the
experiment with an unknown treatment effect, we do not yet know the target
variable but an expected outcome, discarding subjects at this stage is consid-
ered premature. Thus we suggest a greedy full matching should be performed
to match all subjects. In practise, after the treatment is applied, one can
discard subjects based on propensity scores computed from the actual control
and treatment groups.
We formulate the matching of propensity scores as an optimisation problem,
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Figure 6.2: Minimum total distance (∆k) calculated from the propensity scores
reduces as we increase the repetitions (M).

with the objective to minimise the global propensity score distance (∆k) in
between control and treatment groups. We perform the greedy matching
without replacement as we assume all subjects are independent. This means
that each subject in the control group can have only one corresponding subject
in the treatment group.

The repetition parameter M

In the literature, Xu and Kalbfleisch [52] suggest the larger M is, the better
the results this design will obtain. We decide on the number of repetitions by
running the design with increasing repetitions of resolution 10, that is M ∈
{1, 10, ..., 1000}, and analysing the trend of minimum total distance ∆k as M
increases. We illustrate an example in Fig. 6.2, for N = 28 with six features,
the improvement for ∆k becomes negligible after M ≈ 500 repetitions. An
elbow effect is reached when the improvement of ∆k becomes minimum and
the improvement no longer justifies the computational cost.
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6.5 Case study
We carried out our case study from October 2020 to March 2021, with a fleet
of 28 passenger vehicles. These vehicles belong to a large project of collabora-
tive development with company car users from the case study company. All
vehicles from the fleet are driven by corporate users as their primary family
cars. In our case study, we select vehicles of the same model with the same
electrified propulsion, and the selected vehicle model is commercially avail-
able. The vehicles are in the possession of users since December 2019, and all
users reside in Västra Götaland County, Sweden.
We aim to test the vehicle energy management (VEM) software, that can

help reduce energy consumption through the prediction of vehicle routing.
From the confidential consideration of the software, we will not further discuss
the functionality itself in this paper. We introduce a variant A of the software
to the fleet for a continuous period to collect pre-experiment data. Utilising
this data, we design the partitioning of control and treatment groups with
the Balance Match Weighted method. The B software variant is then shipped
to the treatment group accordingly to the group partition. The results of
our group design with pre-experimental data, and the experiment design and
outcome are presented in this section.

Case study fleet
This case study is done in two distinct periods. First, we have a twenty-week
interval that is the observation period prior to applying treatment. Data
generated from this period are used to partition the A/B groups. After that,
there is an experiment period for two weeks during which the treatment is
applied. Data collected during the experiment period are for analysing the
group design and the actual treatment effects.
Aiming to simulate the real usage of cars in the case study, we do not

dictate how the vehicles are driven. All the measurements and testing are
done single-blinded, i.e., we do not interact with the users at all and they are
not informed of the details of the A/B experiment. Measurements are done
through the on-board sensors of the vehicle. We trust the measurements to a
very large extent as the same sensors are used for calibration and diagnostic of
all other functions in any commercially available vehicle. The measurements
are done continuously during all trips, and transmitted to a cloud storage

62



6.5 Case study

through the telematics system of the vehicles via 4G. The data generated
are in time series at 10 Hertz, marked by an anonymous version of the vehicle
identification number (VIN) for each vehicle and a unique ID for each trip. We
measure 51 signals from each vehicle, including but not limited to velocity,
engine usage, climate system usage, GPS position, and so on. In the data
collection, we discard measured trips that are less than one minute in duration,
or one hundred meters in distance. In post-processing, we generate a number
of observed features from the raw measurements.
The VEM software tested in this paper was developed internally and shipped

by the function development team. The software was tested and validated
through the standard processes in the case study company. To enable full
flexibility of an online A/B experiment, we adopt a hybrid architecture for
this software. The architecture determines that the software has two sets of
parameters, local (A) and cloud (B). The local set of parameters are defaults
for all vehicles with the same configuration. While the cloud set of param-
eters are blank onboard but can receive external values from a cloud. Since
the VEM function is fully parameterised, this setup allows us to configure the
function behaviour remotely. During the observation period, all 28 vehicles
are set on the A variant of parameters. After the data is collected and anal-
ysed from the observation period, we partition the A and B groups and switch
to the cloud parameters for group B.

Selected features
We approach our feature selection both quantitatively and qualitatively. As
the vehicles were generating data from over 51 signals at 10 Hertz, on the
weekly average, the dataset size is around one gigabyte when exported in the
CSV format.
In the quantitative selection process, we first aggregate all raw signals mea-

sured from the time series and compute the target variable Y and all potential
features from a few of these signals. We do this on both the trip level and car
level. We generate descriptive statistics to explore the correlation of target
variables and all potential features. In the end, we select six of the variables
to be included in our features. We examine the change of target variable over
time, as well as its correlation to the features, see Fig. 6.3. These variables are
expected to be informative to the target variable. The features are strongly
correlated with the target variable and such correlation is consistent over time
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Figure 6.3: Scatter plots of feature 0 through 5 and their correlation to the target
variable, min-max scaled.

for the same vehicle. Feature 0 and 1 have a negative correlation with the
target variable, at -0.32 and -0.37 respectively. Feature 2 through 5 are posi-
tively correlated with the target variable. The minimum correlation is at 0.26
in between feature 4 and the target variable, and the maximum correlation is
0.47 in between feature 5 and the target variable.
To ensure all known covariates which affect the target variable are included

in the input features, we validate our features selected quantitatively with
expert workshops. We present our feature selection method and outcomes to
a group of experts who actively developed the VEM software. Our proposal
derived from data aligns with expert knowledge. With that being said, we are
testing a novel function which implies that we do not have more experience
or data to rely on. We are aware there could be unobserved covariates that
can affect the target variable. Such shortcomings should be considered as an
inherent limitation of the Balance Match Weighted design method for A/B
experiments.
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Table 6.1: Mean and variance of each of the five input features X, min-max scaled,
in the matched control and treatment groups.

Feature 0 Feature 1 Feature 2

Mean Control 0.51 0.64 0.46
Treatment 0.46 0.67 0.43

Variance Control 0.06 0.03 0.10
Treatment 0.04 0.06 0.07

Feature 3 Feature 4 Feature 5

Mean Control 0.42 0.53 0.48
Treatment 0.41 0.48 0.43

Variance Control 0.06 0.08 0.06
Treatment 0.07 0.08 0.08

Matched A/B groups

At the end of the observation period, we collected the data from all vehicles.
We extract the features X and the target variable Y from the raw measure-
ments. The Balance Match Weighted design is applied to the dataset following
the steps prescribed in Section 6.4.
For each of the 28 subjects, the six features included in the model are ag-

gregated on the vehicle level and stored in a 28 × 6 matrix. That is, each
vehicle has six features that represent its usage pattern, all of which strongly
correlate to the target variable. The target variable Y is not included when
estimating the propensity scores. Before calculating the propensity score, the
observed features are scaled with their perspective minimum and maximum
values to minimise bias from extreme values in the observation. We run the
design with a high number of repetitions, M = 1000, and obtain the A/B
group partition with N/2 = 14 subjects in each group. We show the ker-
nel density estimation of the target variable measured during the observation
period. The distribution is shown for when the groups are partitioned are ran-
dom, and when the groups are partitioned using the Balance Match Weighted
design, see Fig. 6.4. Comparing to random split, the matched A/B groups
have a more balanced distribution of the target variable when the groups are
running the same software.
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Figure 6.4: Kernel density estimation of the target variable, min-max scaled, of A
and B groups when matched at random (left), and matched using the
Balance Match Weighted design (right).

The goal of matching is to achieve feature balancing, namely features in
the control and treatment groups are from the same empirical distribution,
p (X|τ = 0) = p (X|τ = 1). Following advice from literature [51], [67] , we
further diagnose the validity of the matched groups by comparing their scaled
mean and variance of the features. We present the results in Table.6.1, as
can be seen, the means are demonstrated to be similar in the matched groups
as well as the variance in the two groups. The average propensity score for
the matched control and treatment group is 0.49 and 0.50, respectively, while
the minimum values are 0.46 and 0.45, and the maximum values are 0.54 and
0.56, respectively. The resulting group partition exhibits high similarities in
the empirical distributions with merely 14 subjects in each group. A higher
level of similarity in the empirical distributions would be expected, if the
number of subjects N increases [52].

Experiment outcome
We conduct the A/B experimentation by introducing the B version of the soft-
ware through a set of cloud-based parameters to the matched B group. This
A/B experiment serves as a demonstration of the Balance Match Weighted
design method. The experiment was run for a continuous two-week period,
we measure the target variable Y which is expected to reduce with using the
new software.
We include an analysis of a paired test. A paired test is when we compare
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the target variable Y from the same group of users, measured before and after
the treatment is applied. This type of paired analysis can eliminate variation
caused by the individual subject’s preferences, however it is limited in quan-
tifying external seasonality effects. We include this analysis to illustrate the
benefit of an A/B test with matched groups in comparison to a pseudo-random
experiment. In the matched A/B test, the mean squared error (MSE) shows
an 17.9% improvement from the paired test, similarly to what is reported by
[52] at N = 30 with eight input features.
In terms of the expected treatment effect E(Y ), We found that, comparing

to a paired test, a matched group A/B test returns 37.87% less standard
deviation in the target variable. The min-max scaled average treatment effect,
(Ȳ |X, τ = 1) − (Ȳ |X, τ = 0), is -0.134 and -0.180 for the paired test and
matched A/B test, respectively. The matched group A/B test yield lower
variance in the target variable measured, at the same time returning a larger
average treatment effect.

Recommended procedure
We summarise the procedure of our experiment design and list them here in
a step-wise manner.

Determine eligible subjects and observe for a period

The eligibility of the subjects shall be determined based on the purpose of the
A/B tests. It is ideal if the subjects themselves are directly comparable. For
example, in the same A/B test, only the same vehicle model or engine types
are included. Or, if deemed necessary, the categorical variables or dummy
variables which determine such vehicle properties can be included in the input
features. Moreover, decisions on the duration of data collection should take
probable seasonality effects into consideration. The seasonality effects could
either be well-known before the observation starts or discovered during the
observation. In the second case, the observation period should be reasonably
extended to measure such effects.

Select input features

The input feature selection shall be done both quantitatively and qualitatively.
As the data from the potential experiment subjects are collected through
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observations, selecting features based on pure statistical correlation might lead
to spurious correlations and other problems alike. We strongly recommend
a more comprehensive approach that combines expert inputs with data, to
ensure that all known covariates are taken into account in the model.

Run the Balance Match Weighted design

For the case study, we have implemented the Balance Match Weighted design
algorithm in Python. The code takes the features X, repetition number M
and total sample size N as input, returns the ideal partition of A and B
groups, the total propensity score distance ∆k, and propensity score δkn for
each pair of subjects. The code will not be shared at this stage due to our
confidentiality agreement with the case study company. However, there are
similar and publicly available R packages1 for performing the matching design
[52], [69].

Apply treatment and collect data

After the groups are designed and the treatment applied to the B group, the
A/B experimentation shall run for a continuous period of time. In our case
study, we have predetermined the length of the experiment as we observed
our subjects to have a consistent travel pattern from previous data. To avoid
false positive or false negative conclusions, if or when there is a high variance
of the features and the target variables over time, the experimentation shall
not have a predetermined duration but terminate only when a conclusion is
reached.

Analyse experiment outcome

When analysing the experimentation outcome, instead of directly computing
the treatment response, one should also analyse if there is a significant differ-
ence in the input features before and after applying the treatment to validate
the group partitioning. This is to ensure the balanced group portioning mod-
elled from pre-experimental data still holds, and the A/B groups are still
directly comparable. If there are discrepancies between the features measured
prior and during the experimentation, one may perform a propensity score

1github.com/markmfredrickson/optmatch
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matching to only select subjects that are comparable. Instead of comparing
the point estimates, we suggest to visualise and compare the total distribution
of the target variable measured in the A and the B groups.

6.6 Discussion
In this section, we discuss the use, advantages, and limitations of the Balance
Match Weighted design method applied in automotive software engineering.
This design method allows us to conduct A/B testing on limited samples,
which is considered a major challenge in adopting A/B testing in the automo-
tive domain [3]. While our case study is an extreme example of limited sample
size, through the study, we have demonstrated the intuitiveness of the group
design method and the simplicity in adopting such method. Small sample
A/B testing can also be beneficial when applied in an agile development pro-
cess, where the sample size can be gradually increased at each development
iteration if the experiments are conclusive. With that been said, we have
discussed and experienced some limitations in applying the Balance Match
Weighted design method in the automotive domain. They are listed in the
subsections below.

Existing data and unobserved variables
Similar to the CUPED method [16], [21], performing the Balance Match
Weighted design requires pre-experimental data. When the software in a novel
product (e.g., a new model of vehicle) is the subject of interest, there might
not be relevant existing data nor existing users. The Balance Match Weighted
design can only achieve balance in the features that are observed [66]. But
when a novel software is being tested, we do not always have a comprehensive
picture of which features should be included in the observation. An incre-
mental approach can be taken. To start, the development teams hypothesise
the appropriate features and target variable prior, then gradually increase
the number of features and sample size if the treatment effects are positive.
This development activity can be planned accordingly to agile methods. As
an alternative, an experiment group design method called Minimisation can
be applied. Minimisation matches users as they enter the experiments [70].
Because it is reasonable to expect the number of eligible users to gradually
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increase.

Multiple driver households and car sharing
During the case study, we did not have any reliable method to define if/when
the vehicle is driven by different people. Technology and privacy agreements
limit the identification to individual vehicles only. This means that if there
is more than one driver sharing a vehicle, we will not be able to capture the
variation in the measurements caused by the driver change. However, we
do not believe that this affects the case study outcome greatly as the VEM
function does not interact directly with the drivers, therefore the function
behaviour does not strongly depend on the preferences of individual drivers.
In the automotive setting in general, we recognise the benefits of distin-

guishing multiple drivers sharing the same vehicle. To capture the actual
preferences of the drivers, user matching, partitioning of groups, and A/B
testing should be done on the driver level instead of vehicles. As driver dis-
tinction would generate more informative features, and an understanding of
driver preferences is arguably necessary when user-facing software is tested.

6.7 Conclusion
A/B testing with limited samples is a challenge in the automotive sector.
To address this challenge, we evaluate and report an experiment group de-
sign method, Balance Weight Matched design, that can effectively increase
the experiment power with small samples. In this paper, we provide a de-
tailed presentation of the design method and a step-by-step implementation
procedure. In collaboration with an automotive company, we conduct a case
study to apply, demonstrate and evaluate the design method in a fleet of 28
vehicles with two versions of an energy optimisation software. In the case
study, we worked within a development team in situ. From pre-experimental
data, we found that feature balance can be achieved with merely 14 subjects
in each group. After introducing the software treatment to the matched B
group, compared to a paired test, the matched A/B test returns 37% less
standard deviations in the target variable while improving the MSE by 17%.
We conclude that this design method is advantageous for conducting A/B
testing in the automotive embedded software domain. As shown in our case
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study, balanced groups can be produced when the sample sizes are consider-
ably small and it improves the power of small sample experiments. Finally,
we discuss some potential challenges and limitations in applying the Balance
Weight Matched design in the automotive domain, including the ignorability
assumption, conducting experiments with no prior data and we highlight the
importance of differentiating drivers when a vehicle is shared.
In our future work, we plan to further investigate the Balance Weight

Matched design method with more datasets and software, as well as develop
tools for experiment analysis.
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CHAPTER 7

Bayesian propensity score matching in automotive
embedded software engineering

The layout has been revised.

7.1 Introduction
Over the past decade, field experiments (or, online experiments) have become
a ubiquitous part of software development. Software-as-a-Service (SaaS) com-
panies have long shared success stories of the use of experiments to assess the
value software features deliver to users [16], [21], [35]. These success stories
have led companies beyond the SaaS domain, specifically automotive compa-
nies, to show interest and even start running experiments [2], [3], [22], [24],
[71]. Nevertheless, the automotive domain faces many unique restrictions com-
pared to SaaS companies, such as number of software variants, architecture
restrictions, safety-regulation constraints, number of vehicles available for ex-
perimentation, driver consent, and the ability to frequently update software
in customer vehicles due to limitations such as user and privacy agreements
among others [3], [22]. A combination of these challenges leads to many sit-
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uations were the design of an online experiment is not: (1) possible, such as
in limited samples; (2) desired, such as in safety-critical systems; (3) ethical,
such as without explicit consent of the drivers on the scope of the software.
These restrictions to properly conduct a field experiment require that the

research and development organisation to utilise a range of different causal
inference techniques to assess the value delivered by the new software. In this
paper, we propose the use of the Bayesian propensity score matching technique
for observational causal inference in the automotive domain. We introduce
the BOAT (Bayesian propensity score matching for OvservAtional Testing)
method. This method is used to generate balanced control and treatment
groups from observational data and estimate causal treatment effects from
software changes, even with limited samples. The BOAT method is based
on the propensity score matching framework by Rubin [67]. The propensity
score matching framework has been developed and wildly applied in medical
science [51], [52], [54], [66], in traffic safety analysis [46], [72], in SaaS systems
[17], and in automotive software for experiment design [71].
We demonstrate the BOAT method using a proof-of-concept in the auto-

motive domain. We ship a modified software variant to a part of our case
company’s internal fleet, and compare that to a larger population of vehicles
that are equipped with the existing variant of the software. As in the au-
tomotive sector, the access to update customer vehicles is significantly more
limited than data collection. When we can collect data from more vehicles
than we can ship software to, we have skewed sample sizes in the control and
treatment group. Our proof-of-concept is designed to simulate such scenar-
ios. Therefore, the new software is only download to a limited number of
vehicles, these vehicles are driven by the employees as their primary personal
cars. The control group (Nc = 1100) of cars uses the current software vari-
ant and the treatment group (Nt = 38) utilises the new software. We collect
measurements from vehicle on-board sensors for a continuous period of five
months, engineer the input features to BOAT, and perform a matching to
produce control/treatment groups with balanced empirical distribution of the
features. Note that, features and covariates refer to the independent variables
in statistical models, and we use the two terms interchangeably.

Comparing to the existing literature, this paper provides the following con-
tributions. First, we describe the theoretical background of Bayesian propen-
sity score matching model. To the best of our knowledge, this is the first time

74



7.2 Background and related work

such a model is used in software development publications. Second, we dis-
cuss the feasibility of such an application in automotive software engineering.
Third, we share the process of rolling out small-scale observational testing
of automotive software. In combination with the BOAT model, we are able
to introduce observational testing of novel software in a fast and more ro-
bust manner, and conclude the causal effects of such software change from
observational studies.
The rest of the paper is organised as follows. In Section 7.2, background

and related work are introduced. In Section 7.4, we describe the Bayesian
propensity score matching theory in detail. We present the data structure
and collection method in Section 7.3. The results are presented in Section
7.5. The discussion and conclusion are presented in Section 7.6 and Section
7.7 respectively.

7.2 Background and related work
To evaluate software changes, companies use randomised field experiment
techniques such as A/B testing [16], [21], [26], [35]. In their experiments, users
are randomly split into two large groups and introduced to different variants
of the software. The variants usually include the existing variant (control)
and a modified one (treatment). The assumption of such online experiments
is that the sample size is large enough, thus the two or more groups are bal-
anced and directly comparable, and the only difference is the software variant.
When the assumption holds, the experimenters can establish a causal relation
in between the software change and the treatment effect through measuring
carefully designed metrics. Online experiments conducted by SaaS companies
benefit from their large user base. Yet unbalanced groups could be produced
in those experiments due to high diversity in users [16], [21], known con-
founding factors such as user preferences [17], or other unknown confounding
factors [48]. These issues are addressed through techniques such as propensity
score matching for online quasi-random experiments [17], stratified sampling
and the CUPED method (Controlled experiment Using Pre-Experiment Data)
[16], [21].
Conducting large and fully randomised online experiments can be more

challenging in the automotive domain [2], [3], [22], [24]. First, the available
users in the automotive domain are comparably more limited than in SaaS,
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and most manufactures have a high diversity in their products (e.g., vehicle
customised options), which will further reduce the available samples for large
online experiments [3], [71]. Second, a vast majority of automotive software
are in safety critical systems [12], [24]. Although the risks of safety compromise
are minimum since the modified software variants will go through the same
release process [3], but even minor disturbances at a scale can be directly
translated to the profit lost for commercial vehicles such as trucks and taxis.
Thus, it is undesirable to ship software for safety critical systems to a large
portion of the vehicle fleet at once. Last but not least, software update and
data collection requires explicit consent from the vehicle users.
As a result, comparing to large and fully randomised online experiments,

automotive software online evaluation is much more feasible to be done in the
format of small-scale observational studies, where the new software is only
introduced to a small and selective group of vehicles. An observational study
is to be conducted when a randomised experiment is not feasible and a causal
relation of treatment and effect is to be established [73]. Therefore, it is critical
to present causal inference methods, such as propensity score matching. With
propensity score matching, one can utilise pre-experimental data to design
balanced control and treatment groups, as previously demonstrated by [52],
[66] in the medical sector and [71] in the automotive domain. Moreover,
propensity score matching has been applied in the field of software engineering,
in the efforts of analysing development efficiency [74], [75].
Bayesian propensity score matching (BPSM) is an extension of the tradi-

tional framework of propensity score matching, in which the propensity score
is estimated through a Bayesian network. Using Bayesian statistics, one can
conjugate the posterior distribution based on a prior, a likelihood and ev-
idence. In other words, Bayesian statistics allows one to model based on
the data and the domain knowledge [76]. Instead of providing only a point
estimate of the dependent variable, Bayesian models will return the entire
posterior distribution, therefore, quantifying uncertainty. BPSM, as applied
in the filed of traffic research [46], has shown a higher performance than the
frequency approach for small samples.
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7.3 Input data
In this section, we will present the data used for the BPSM model, the collec-
tion methods, and how each data feature is engineered from the measurements.
The data collection is done from the 26th of October 2020 to the 22nd of March
2021. The measurements are collected from two specific vehicle models.

Table 7.1: Descriptive statistics of the target variable and covariates, and a descrip-
tion of how the variables are computed. Each variable is aggregated to
the vehicle level and max-min scaled.
Variables Variable description Group Mean Std.

Target variable
Fuel consumption
[g/km]

total fuel injected in engine /
total distance

A 0.391 0.155
B 0.354 0.123

Covariates
Share of trip start
with full battery

number of trip where
soc_start >80%

A 0.356 0.177
B 0.397 0.178

Share of trip end
with low battery

number of trip where
soc_end <21%

A 0.258 0.155
B 0.120 0.150

Number of trips
made on weekdays

number of trips taken place
during weekdays

A 0.290 0.167
B 0.225 0.153

Number of trips
made on weekends

number of trips taken place
during weekends

A 0.269 0.173
B 0.190 0.154

Average trip
distance [km]

total trip distance / total
number of trips

A 0.301 0.132
B 0.343 0.124

Maximum trip
distance [km]

longest trip occurred during
the observation period

A 0.278 0.193
B 0.240 0.186

Average trip speed
[km/h]

total trip distance / total
trip duration

A 0.575 0.110
B 0.624 0.117

Maximum trip
speed [km/h] highest trip speed occurred A 0.637 0.125

B 0.640 0.135
Share of distance
on "hybrid"

share of distance driven in
hybrid mode

A 0.956 0.103
B 0.987 0.033
Continued on next page
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Table 7.1 – continued from previous page
Variables Variable description Group Mean Std.

Share of trips with
a trailer attached

share of trip with trailer
attached

A 0.034 0.081
B 0.034 0.075

Average number of
engine starts

share of occurrence of engine
RPM >500

A 0.169 0.112
B 0.176 0.176

Average ambient
temperature [◦C]

average temperature
measured at car

A 0.371 0.084
B 0.372 0.071

Minimum ambient
temperature [◦C]

minimum temperature
measure at car

A 0.497 0.135
B 0.563 0.150

Maximum ambient
temperature [◦C]

maximum temperature
measure at car

A 0.388 0.101
B 0.374 0.099

The measurement of the vehicles are done through on-board sensors for
vehicle control, calibration, and diagnostics. We select low level signals for
their robustness and reliability. The measurements are done during each drive
cycle of the vehicle in a time series format at ten hertz frequency, marked by
an arbitrary vehicle ID that cannot be decoded to identify the user nor the
vehicle, and a drive cycle ID. Drive cycle refers to the events in between each
vehicle key-on and key-off, and a trip for the user could consist multiple drive
cycles. The measurements are sent to a central server of the case company
through a telecommunications module in the vehicle, no physical access is
needed to obtain the data.
To further increase the robustness of the measurements collected, we read

the values from two or more sensor signals for each measurement. We intend
to exclude drive cycles in which multiple signals yield drastically difference
values. However, we found that the same measurement calculated from dif-
ferent signals only differ by a decimal point on the drive cycle level. For
example, the drive cycle distance can be calculated through integrating the
instantaneous vehicle velocity, or through a wheel speed sensor that measures
the angular velocity of the wheels. These two signals differ by 0.0227 kilome-
tres for the 75 percentile of drive cycles. Moreover, we measure values in base
units. E.g., fuel consumption is measured in grams, because the commonly
used unit litre is a secondary value dependent on the pressure and tempera-
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ture. Furthermore, we do not include entries if they have any of the properties
listed below. After postprocessing, we have in total 421,881 drive cycles made
by 1138 vehicles of which 38 are in the treatment group.

• Drive cycle is made by vehicles with odometer distance less than 100
kilometres, i.e., brand new vehicles.

• Drive cycle average speed is greater than 200 km/h.

• Drive cycle total distance is less than 0.5 kilometres.

• Drive cycle total duration is less than one minute.

Data structure
The input data features to BPSM model is produced from the time series
values collected from the vehicles. Note that due to our confidentiality agree-
ment with the company, the input data will not be shared nor shown without
scaling in this paper. First, we aggregate each measurement per drive cycle
through multiple vehicle signals. Since multiple signals do not return a differ-
ent outcome beyond a decimal point, we select one value to keep. After this
step, we produce a dataframe that compresses of one drive cycle per vehicle
per row.
Second, we calculate the features based on all trips per vehicle and produce

14 input features and one target variable to BPSM. The input features are
stored in a matrix with dimension 1138× 14, which corresponds to 1138 vehi-
cles and 14 features. The features and how they are calculated are presented
in Table 7.1 along with the descriptive statistics. Each feature is scaled with
their perspective minimum and maximum values.

7.4 Bayesian propensity score matching
In this section, we present the theory of Bayesian propensity score matching
(BPSM) in detail. A probabilistic graphical model is used to illustrate the
Bayesian logistic regression generative model, and we present the prior, the
evidence and the posterior in this Bayesian network. Finally, we describe
different matching strategies and the ones applied in the paper.
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Propensity score matching, first introduced by Rosenbaum and Rubin [20]
in 1983, is a causal inference model for estimating treatment effects from
observational studies. In an observational study, the measured treatment
effects could be caused by confounding variables than the treatment itself, thus
raise bias in the results. When the sample sizes are limited, propensity score
matching can help us create balanced and comparable groups by matching the
control and treatment groups, so that the covariates from both groups form
similar empirical distributions. Propensity score matching can be used to
design partitioning of control and treatment groups based on pre-experimental
observations [52], [54], [66], [71], or used for causal treatment/no-treatment
effect analysis of existing observational studies postmortem [17], [46], [72]. The
most important assumption of propensity score matching is ignorability [51],
which implies the unobserved covariates do not influence the target variable,
thus ignorable. In other words, propensity score matching can only balance
covariates that are observed but a fully randomised experiment with a large
sample can balance all covariates, observed or not.
In a two-group observation study with total sample size N , the average

treatment effect (ATE) is defined as the difference of the average expected
value of the target variable in the control (E(zn|yn = 0)) and treatment group
(E(zn|yn = 1)),

ATE = 1
N

N∑
n=1

(E(zn|yn = 1)− E(zn|yn = 0)) (7.1)

Where yn ∈ {0, 1} is a control (yn = 0) or treatment (yn = 1) indicator for
each sample n = {1, 2, ..., N}. For each n, we observe a total of I numbers of
covariates xi, xi = {x1, x2, ...xI}, which are correlated with the target variable
zn, denotes as xn for all samples N . The xn is a matrix with dimension
N × I. Covariates xn are the confounding variables that would potentially
influence the target variable zn. The potential outcome of the target variable
is independent of the treatment assignment given the covariates,

(zn,c, zn,t)⊥yn|xn (7.2)

The average expected treatment effect becomes conditional to both treat-
ment yn and the covariates xn,
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ATEPSM = 1
N

N∑
n=1

(E(zn|xn, y = 1)− E(zn|xn, y = 0)) (7.3)

There are two steps in propensity score matching. The first step is the
estimation of propensity score through logistic regression followed by per-
forming matching of samples in the control and treatment groups based on
their propensity scores. In BPSM, the estimation of the propensity score is
done through a Bayesian logistic regression, which returns a mean propensity
score for each sample and their uncertainties.

Probabilistic graphical model

A probabilistic graphical model for Bayesian network is a directed acyclic
graph, in which the shaded nodes represent the observed variables such as fea-
tures and treatment indicator variable. The bright nodes are latent variables.
The directional edges indicate conditional dependencies in between variables,
and the unconnected nodes are conditionally independent. The plate is a
representation of the number of observations, i.e., samples. The first step in
BPSM is to estimate the propensity score through a logistic regression. A
probabilistic graphical model for Bayesian logistic regression is shown in Fig.
7.1.
Consider a non-randomised study where the users in the treatment group

are not randomly assigned and there are only a limited number of users in
the group. We have a total number of samples N , in which there are more or
equal number of samples in the control group (Nc) than the treatment group
(Nt), Nc ≥ Nt. The regression coefficients, α and β are latent variables. That
is they are not observed but inferred from other variables that are observed.
The treatment indicator yn is binary, and it follows a Bernoulli distribution,

yn ∼ Bernoulli(yn|pn) (7.4)

where the propensity score pn is calculated as,

pn = eα+βxn

1 + eα+βxn
(7.5)

The regression intercept α has a prior of Gaussian distributions of 0 mean
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yn xn

α β

yn ∼ Bernoulli(yn|pn)

logit(pn) =
∑
βxn + α

α ∼ N (α|0, λα) β ∼ N (β|0, λβ)

N

1

Figure 7.1: Probably graphical model of a Bayesian logistic regression, with ob-
served input features (xn), treatment indicator (yn), and latent vari-
ables as regression model coefficients (α, β).

and a variance of λα,
α ∼ N (α|0, λα)

similarly, the regression coefficient β has a prior of Gaussian distributions
of 0 mean and variance of λβ ,

β ∼ N (β|0, λβ)

Bayesian networks are generative models and to generate the joint proba-
bility distribution of the regression model, the generative process is stated as
the following Algorithm 2.

Algorithm 2 Bayesian logistic regression generative process
Inputs: xn covariates, λα prior distribution of α, λβ prior distribution of β,
yn control/treatment indicator

1: Draw α ∼ N (α|0, λα)
2: Draw β ∼ N (β|0, λβ)
3: for each vector of covariates xi in {x1, x2, ..., xI} do
4: Draw yn ∼ Bernoulli(yn|Sigmoid(α+ βxn))
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By Bayesian Theorem, the posterior distribution of the network is the prod-
uct of the likelihood and the prior. In this case, the posterior distribution is
a joint probability of yn, α, and β marginalised over p(yn), that is,

p(yn, α, β|xn, λα, λβ)
= p(α|λα) · p(β|λβ) ·

∏N
n=1 p(yn|α, β, xn)

(7.6)

In many cases, the exact posterior distribution cannot be solved analyti-
cally, but it can be approximated with stochastic (e.g., Markov Chain Monte
Carlo) or deterministic (e.g., variational inference) methods. In this paper,
we approximate the posterior distribution through a stochastic method, the
No-U-Turn Sampler (NUTS) in Hamiltonian Monte Carlo algorithm. Using a
recursive algorithm, NUTS constructs a set of possible candidate point spans
widely across the target distribution [77]. NUTS stops automatically if it re-
traced its steps, hence the name "No-U-Turn". We set up a NUTS sampler
with a single chain, 3000 samples, and 200 warm-up samples were discarded.
We include the model setup of the Bayesian logistic regression, the inference
solver, and the trace plots in the online appendix.

Matching
After inferring the propensity score from the Bayesian logistic regression model,
the second step of BPSM is to match the control and treatment pairs based
on their propensity score distances. The objective of the matching is to form
balanced control and treatment groups, that is, minimising the propensity
score distance.
The propensity score distance (δpn) is defined as the absolute difference of

the propensity score in the control and treatment group,

δpn = |pn,τ=0 − pn,τ=1| (7.7)

There are a few different methods for matching, such as calliper matching
[78], 1:1, or n:1, nearest neighbour matching [54], and full matching [52], [69].
Matching can be done with or without replacement. When matching with
replacement, one sample in the control group can be matched with multi-
ple samples in the treatment group, and vice versa. Full matching method
matches with replacement, such as the optimal full matching algorithm [69].
There are matching methods that do not allow sample replacement, and by
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Figure 7.2: Posterior distributions of the Bayesian logistic regression coefficient
β = {β1, ..., β14}, and intercept α.

using such matching methods, the matched control and treatment groups will
have the same number of samples. Commonly applied methods include cal-
liper matching, where the highest permitted calliper for δpn is predetermined,
and control and treatment pairs will be matched based on this calliper. Cal-
liper matching is computationally cheap and intuitive [78], however, it could
result in a reduction in number of samples in the treatment groups if the
propensity score distances fall out of the predefined calliper. Sometimes it
could be less ideal to reduce sample numbers in the treatment group, as they
are usually considered as expensive samples especially in the embedded do-
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main. Another matching method, 1:1 nearest neighbour matching, selects one
controlled sample to match one treated sample with the smallest distance δpn
[54]. Using 1:1 nearest neighbour matching, no samples from the treatment
group will be reduced and the sample reduction will only happen in the con-
trol group. In this paper, we apply both calliper matching and 1:1 nearest
neighbour matching. As our objective is to find samples in the control group
to be compared with the treated samples.

7.5 Results
In this section, the results of the Bayesian propensity score matching are
presented. We show the propensity score computed from Bayesian logistic
regression, along with matched groups from two different matching methods.
Finally, we present the process of Bayesian propensity score matching for
Observational Testing for evaluating software online.

Bayesian propensity score
Following the generative process described in 2, a Bayesian logistic regression
model is implemented in Pyro [79]. The model takes covariates xn and the
prior distributions of α and β as inputs, and returns tensors of posterior
distributions of α and β. A NUTS sampler in Hamiltonian Monte Carlo is used
to infer the posterior distribution. We set up the sampler with a single chain,
3,000 samples, and 200 burn-in. Moreover, we apply a variational inference
method to triangulate the results. The Brooks-Gelman-Rubin convergence
criteria of R̂ < 1.1 is met, at R̂ = 1.0003. The variational inference uses
a multivariate normal distribution as a guide. We define 40,000 steps for
optimisation and the solver reaches a stable solution after the first 10,000
steps. Two inference methods return similar posterior distributions and point
estimates. We show both methods in the online appendix attached. However,
we will only focus on reporting the inference results from the NUTS sampler
in this section.
Each regression coefficient β has a prior of β ∼ N (0, λα = 1), Gaussian

distribution, and the regression intercept follows the prior distribution α ∼
N (0, λβ = 1). Combining the priors, the posterior, p(yn, α, β|xn, λα, λβ), is
inferred from the observations xn and the evidence yn. We illustrate the
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Figure 7.3: Kernel density distribution of the propensity scores of the control (pc)
and treatment (pt) groups calculated on the mean of posterior distri-
butions, and twenty-five values randomly sampled from the posterior
distributions representing uncertainties.

total posterior distributions of all α and β in Fig. 7.2. From the posterior
distributions, we can fit the logistic regression from a point estimate that is
the mean value of the intercept α̂ and the coefficients β̂, and the uncertainty
of the model is quantified from the total posterior distribution.
The propensity scores for the control group (pc) and the treatment group

(pt) are estimated as eα̂+β̂xn/1+eα̂+β̂xn . Without matching, the mean propen-
sity score in the control and treatment group is 0.0319 and 0.0633 respec-
tively. In each group, the standard deviation of the propensity score is 0.0175
and 0.0309. In Figure 7.3, we show the kernel density distributions of the
propensity scores in the control and treatment groups before performing the
matching. Since the entire posterior distribution is available, we illustrate the
uncertainty on the propensity scores by randomly drawing 25 samples from
the posterior distributions of the intercept and coefficients, and computing
the propensity scores from the drawn α and β.

Matched A/B groups
After the Bayesian propensity scores are estimated, the second step it to match
pairs from the control and treatment group to minimise the propensity score
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Figure 7.4: Kernel density distributions of the Bayesian propensity scores for the
control (pc) and treatment (pt) group, when, no matching was done,
matched with a caliper at 0.05, and matched with 1-1 nearest neigh-
bour.

Table 7.2: Propensity score in control and treatment groups, before and after
matching is applied.

Propensity score
Groups Mean Std.

Before matching A 0.0319 0.0175
B 0.0633 0.0309

Calliper matching (calliper = 0.05) A 0.0626 0.0300
B 0.0633 0.0309

1-1 nearest neighbour matching A 0.0627 0.0302
B 0.0633 0.0309

distance δpn. A kernel density plot of the propensity score distribution before
and after matching can be found in Figure 7.4.
Two matching methods are used, both methods find matches without re-

placement. The first matching method is a calliper matching, in which a
maximum propensity distance is specified and matched pairs are produced if
a treated sample has its corresponding pair in the control group. The number
of samples in the control and treatment group is largely skewed in this dataset,
using a calliper of 0.05, every treated sample returned a matched controlled
sample. However, if there are too little controlled samples or if the calliper is
determined to be too small, calliper matching could return no match for the
treated samples. After calliper matching, the mean propensity score in the
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control group is 0.0626.
The second matching method is a 1-1 nearest neighbour match. Similarly to

calliper matching, 1-1 nearest neighbour match will return one-to-one matched
pairs, but it does so without a specified range of propensity score distance.
For each treated sample, the algorithm k-nearest neighbours searches for one
closest neighbour from the control samples. The mean propensity score in
the control group becomes 0.0627 after matching. We show the mean and
standard deviations of the control and treatment propensity score in Table
7.2. On this dataset, both matching methods return similar outcome. Both
methods find corresponding controlled samples for the treated samples. The
average propensity score distance between the control and treatment group
is 0.000757 and 0.000608 for the calliper matching and 1-1 nearest neighbour
matching respectively. The covariates balance is assessed by comparing the
empirical distribution of covariates in the control and treatment group. With
a calliper matching, we found an average of 4.1 % reduction in the covariates
variance compared to unmatched groups.

Treatment effect

The treatment, i.e., the new software, is expected to reduce the target variable
fuel consumption. However, a number of other covariates could influence
fuel consumption, such as temperature, trip frequency, trip distance, average
speed, and etc. When the control and treatment group is not partitioned at
random and with a large population, it is impossible to conclude a causal effect
from the software change even a treatment effect is observed. Note that this
focus of this study is not the actual software performance, thus, the results
from this subsection serve as a demonstration.
The treatment effect is analysed using both the calliper matched and 1-1

nearest neighbour matched groups. The average treatment effect is calculated
as the mean difference of the target variable between the control and treatment
groups, and all 1138 measured values are min-max scaled. The average target
variable is 0.379 and 0.391 for the control group when matched with calliper
and 1-1 nearest neighbour, respectively. The average target variable is 0.355
in the treatment group. The average treatment effect is -0.024 and -0.036
for the control group when matched with calliper and 1-1 nearest neighbour,
respectively.
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Figure 7.5: Online software evaluation with limited sample sizes, by utilising
Bayesian propensity score matching.

Bayesian propensity score matching for observational test

In this subsection, we will describe in detail the process of utilising BPSM
for evaluating software online with limited samples, as can be seen in Figure.
7.5. An observational testing, different from large randomised experiment be-
cause the partitioning of control and treatment group is not done at random,
and such software online testing is usually done with a very limited sample
group. Furthermore, unlike a pure observational study where no intervention
is applied, we introduce treatment to a small cohort. As discussed previously,
with the limitations of automotive embedded software, small-scale observa-
tional testing is often the only option in this domain. To utilise this model
for evaluating software online when samples are limited and non-randomised,
we recommend the following process.
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Select treatment software and target variable

The target variable, that is, the metric of the software evaluation, should re-
flect the customer and business value the software is aiming to deliver. The
target variable should be measurable. Moreover, in rare occasions, some soft-
ware does not need online evaluation as this additional activity does not add
more value to the product.

Determine covariates according to treatment

To produce balanced control and treatment groups, covariate selection is im-
portant as propensity score matching can only balance the variables that are
included in the model. The decision on what covariates to be included shall
be made both quantitatively and qualitatively. The optimal covariates should
correlate to the target variable but not the treatment [68]. The strict statis-
tical correlation between the covariates and the target variable is only part of
the inclusion criteria. The qualitative domain knowledge of the software and
its effect should be taken into consideration, especially when a new software
is being evaluated and no high quality user data is available.

Eligible users for the control and treatment group

The treatment software will be shipped to a subset of users, often to users who
have special user agreements in place. When selecting eligible users for the
control group, one needs to make sure their existing software is comparable to
the treatment software. The only systematic difference between the control
and treatment group should be the applied treatment, else one could encounter
confounding treatment effects from multiple software changes, i.e., a factorial
treatment. In our study, we mitigate this issue by reading the software part
number from all effected control units, and only include vehicles with the same
part number in the control group. Additionally, in automotive, some software
behaviours are heavily influenced by the devices and their operating locations.
One can include users who drive a certain type of vehicle models in a given
country, or include vehicle metadata as categorical variables in the covariates
input to BPSM.
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Data collection

After the sample groups have be determined and the new software is shipped,
data collection for both groups starts simultaneously. The control and treat-
ment vehicles are running in parallel so that seasonality effects can be miti-
gated. The required data collection infrastructure is already in place for our
study. It is an important enabler for online evaluation of software and we
recommend companies to implement data collection capabilities before run-
ning any online experiments. Additionally, a level of understanding of the
physical machinery is required when collecting data from embedded systems.
We suggest a cross-disciplinary approach when building such data pipelines
for vehicle embedded systems.

Run Bayesian propensity score matching

When the online evaluation has been made and data collected, the Bayesian
propensity score matching can be done. The propensity score is computed
from all the covariates and the treatment indicator in a Bayesian logistic re-
gression, and matching is done accordingly to the matching method and the
propensity score. We implement the Bayesian logistic regression in Python
Pyro, as can be found in the online appendix. The two simple matching meth-
ods used in the paper are implemented together with the case company. The
code for the matching algorithms cannot be shared due to our confidentiality
agreement, however, some matching algorithms are publicly available in R.
Such as package optmatch1 by [80].

Assess group balance and analyse treatment effect

After the control and treatment groups have been matched with their prospec-
tive propensity scores, an assessment of covariates balance should be done.
The covariate balance can be accessed through the absolute standardised
mean difference, which compares the absolute difference in means per unit
of standard deviation. Moreover, the mean and variance of each covariate in
the control and treatment group should be compared. Rosenbaum and Ru-
bin [53] suggest an iterative process of diagnostics where additional covariates
should be added after an assessment of the groups balance returned from the

1github.com/markmfredrickson/optmatch
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initial propensity score model. The average effect is analysed by comput-
ing the average difference of the target variable between the matched control
and treatment groups. The new software variant should be introduced if a
treatment effect is detected and indicates an improvement.

7.6 Discussion
In this section, we present the threats to validity in our research and we
discuss the generalisability of the Bayesian propensity score matching for ob-
servational testing model. Moreover, we share some known limitation to the
Bayesian propensity score matching model, and what the limitations entail
when BPSM is applied in online software evaluation in the automotive do-
main.

Threats to validity
The threats to validity of our research approach are presented in this subsec-
tion. In this paper, we present a proof-of-concept conducted with our case
company on a software which optimises energy consumption of hybrid vehicles.
In the treatment group with 38 vehicles, the vehicles are leased to company
employees as their company cars and the users have explicit user agreements
for participating such tests. The introduction of the new software variant is
made aware to the users, however, we do not disclose the details of the soft-
ware to them. Moreover, both the existing and new variants of the software
are developed by the case company and we made no inputs to the software
itself.
The set of signals measured are predetermined prior to our study, the de-

velopment teams measure around 500 signals from vehicles, and our data
features are engineered from a selected numbers of signals. We recognise that
this means there is a slight risk, some confounding factors might not have
been observed in the first place, and their effects on the target variable are
unknown to us. In this study, no special action is taken to mitigate this risk
as unobserved and unknown confounding factors should be considered as an
inherent limitation of the propensity score matching model.
This study is done on one automotive manufacture and one software. We

accept this limitation to this approach, as the results and conclusions might
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not be applicable to all software developed by the same company or general-
isable to the automotive domain.
First, the piece of software studied does not directly interact with users.

There is no graphical interface, nor does it require user manual input. We have
not explored how the propensity score matching model reacts to stochastic in-
puts such as user preferences. However, as reported by [17] from LinkedIn,
propensity score matching model is used to support online user-facing soft-
ware evaluations and shows promising improvements when the user groups are
non-randomised. We foresee similar non-randomised user groups with preex-
isting preferences in the automotive setting. Furthermore, we demonstrate
the BOAT method using quantitative data measured in the newest vehicles.
We argue that such quantitative data is rather independent from the vehicle
manufacture. Last but not least, we acknowledge companies within the au-
tomotive domain could follow difference processes for software development.
Our proposed method that utilises small and non-randomised users for soft-
ware online evaluation offers a high level of flexibility, and aligns with the
core values of the Agile methodology that many automotive companies have
adopted [2], [3], [10]. As agility is responsiveness to change [11], thus, we
are optimistic of the value of enabling online software evaluation with small
samples in a fast, safe, and ethical manner while maintaining causality.

Limitations
In this subsection, we discuss the limitation of the Bayesian propensity score
matching for observational testing method. First, unlike a fully randomised
control and treatment group split which can balance all covariates, propensity
score matching can only balance the covariates that are observed. To make
sure the ignorability assumption holds, including the correct covariates is im-
portant. But, when the software is new and there is limited usage data, it
can be difficult to have comprehensive knowledge of which covariates should
be included in the model. In this case, an iterative approach can be applied,
in which covariates can be added or removed depending on the group balance
[53].
Second, Bayesian inference is an expensive method in terms of modelling

efforts and computational resources. The expense can be justifiable since
Bayesian models are flexible as they allow prior input, and they are compre-
hensive as they return the entire posterior distribution instead of a point esti-
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mate which can provide values in post-modelling analysis. Bayesian propen-
sity score matching returns better results when sample sizes are small but does
not show significant improvement as the sample sizes grow [46]. Therefore,
whether to use Bayesian propensity score matching or regular propensity score
matching should be a decision made based on the sample size, and a trade-
off between computational expense and result improvement. Finally, we have
addressed a scenario where two software versions are to be compared with
propensity score matching in this paper, but in practise, multiple candidate
software might need to be evaluated. Propensity score matching can be used
for multilevel treatment effect modelling, however less straightforward, as re-
ported by [81].

7.7 Conclusion
Online software evaluation is gaining attention in the automotive domain,
but large-scale randomised experiments are not always an option with limi-
tations in this industry such as safety and ethics. In this paper, we present
an alternative method to randomise experiments so that online evaluation
can be done on small sample groups, enabled with Bayesian propensity score
matching model. This is the first paper to document such a model applied in
automotive software engineering.
We describe the theory of Bayesian propensity score matching in detail and

demonstrate the model with a proof-of-concept from an automotive company.
In the study, we introduce a new software to a treatment group of 38 vehicles
and the control group of 1100 vehicles use the existing software. The vehicles
in the treatment group are leased to company employees. We observe both
groups for a continuous five month period, during which we collected data
from over 400,000 trips. Data collection is done through the vehicle sensors,
and we produce 14 input features to the Bayesian propensity score match-
ing model. Two matching methods were used, calliper matching and nearest
neighbour matching. They produce similar results on our dataset and reduce
the variance of the covariates by an average of 4.1%. Finally, we present the
software engineering process of utilising Bayesian propensity score matching
for evaluating new functions before shipping them to a larger group of users.
This working method can be complimentary to Agile methodologies to enable
responsiveness to change and to allow development teams making data-driven
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decisions.
In our future work in the domain of automotive software online evaluation,

we plan to continue to explore and apply different causal inference models. We
see a potential in statistical models which enable online evaluations with lim-
ited sample size. Additionally, we plan to evaluate more automotive software,
user-facing functions included, using causal inference methods and develop
toolsets for modelling and analysis.

Online appendix
We attached an online appendix for the Bayesian logistic regression model.
The online appendix can be found as a Jupyter Notebook via the following
link: github.com/yuchueliu/BPSM.
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CHAPTER 8

Bayesian causal inference in automotive software
engineering and online evaluation

The layout has been revised.

8.1 Introduction
Randomised online experiments, such as A/B testing, is a technique for eval-
uating the impact of software changes towards real users. With the demon-
strated success of online experiment implementation in Software-as-a-Service
(SaaS) companies [16], [21], [35], the automotive domain starts to raise inter-
est in adopting such a method, and even starts to conduct experiments for
evaluating embedded software online [3], [12], [71], [82]–[84]
Despite the known advantages and benefits, the automotive domain strug-

gles to scale experimentation activities [3], [22], [82]. Some of the identified
challenges are the limited number of users, limited capability of Over-the-Air
(OTA) software deployment, strict user agreements, safety-critical and valida-
tion constraints among others. These limitations often create roadblocks that
limit the scope and feasibility of conducting experiments in customer vehicles.
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To overcome these limitations, practitioners are looking to leverage collected
observational data to understand the causal impact of a software change [17].
In our previous study [83], we empirically applied and evaluated the use

of causal modelling for software engineering, in which a Bayesian propensity
score matching model is applied for generating balanced control and treatment
groups in observational software testing. However, as we have experienced fur-
ther needs in causal inference in the automotive domain due to a number of
limitations, to address this need, this paper evaluates the use of three differ-
ent Bayesian causal models for treatment effect inference from observational
studies, applied to automotive software development. This work extends the
method BOAT (Bayesian causal modelling for OvservAtional Testing) [83]
to include the Bayesian propensity score matching model for producing bal-
anced control and treatment groups, the Bayesian regression discontinuity de-
sign for identifying covariate dependent treatment assignment, and Bayesian
difference-in-differences model for causal inference on treatment effect over-
time. While these models have been widely used in the frequentist setting in
other domains of science (such as medicine [45], traffic and transport [46], so-
cial studies [47], [85]), this is the first paper to apply and evaluate these models
in the Bayesian setting and in the context of automotive software engineering.
We demonstrate the BOAT method with three cases from our industrial

collaborations, utilising automotive embedded software deployed on real ve-
hicles and users. Comparing with the existing literature, the contribution of
this paper is three-fold.

• We present an overview and discussion of potential outcomes and causal-
ity in automotive software development, along with three illustrative ex-
amples that reinforce the need for Bayesian causal inference in software
online evaluation.

• We apply and evaluate three different Bayesian causal inference mod-
els to assess the causal effects in their corresponding examples. These
models are the Bayesian regression discontinuity design, the Bayesian
difference-in-differences, and the Bayesian propensity score matching.

• We relate the causal assumptions made in causal inference in relation to
online observational studies conducted on automotive software, and we
discuss their specific implications.
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The rest of this paper is arranged as following. We elaborate the importance
of causality in automotive software engineering and present the theory and
assumption in the potential outcome framework in 8.2. In Section 8.3, we
present the BOAT framework and our research method. The three Bayesian
causal models and their related cases are described in Section 8.4, 8.5, and
8.6. The discussion and conclusion are in Section 8.7 and 8.8 respectively.
Moreover, we include an online appendix to share our Bayesian models and
their inference.

8.2 Background
In this section, we introduce the concept of randomised experimentation ap-
plied in software engineering, the potential outcome framework, and its rel-
evant theories. Moreover, we give an overview of Bayesian statistics and its
inference.

Randomised experimentation
Randomised experiment methods, such as A/B testing, are common practises
adopted by SaaS companies [16], [21], [35]. In a two-level experiment, the
sample group is split into control and treatment at random and exposed to
different versions of the same software. When an experiment is fully ran-
domised, the outcome is independent of the treatment assignment, this is
defined as exchangeability. In other words, the control and the treatment
groups are interchangeable and do not have any preexisting differences, thus
the observed outcome can only be caused by the treatment. Therefore, ran-
domised experiments help us at establishing a causal relationship between the
intervention and the outcome.
Causal knowledge helps us cope with change [15]. Through data analytics,

i.e., passive observation, we could compute a joint distribution of vehicle usage
and performance – however, such a distribution cannot inform us if a change
in our product would or would not improve the product performance and user
experience. With intervention, randomised experimentation enables direct
feedback from the users and helps organisations answer the "what-if" question
to software changes. Randomised experiment has long been the gold standard
for evaluating software in an online and continuous manner.
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t
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Figure 8.1: A simplified directed acyclic graph showing the relationships of treat-
ment (t), target variable (y), and covariates (X).

In the automotive domain, the ability to conduct large scale and fully ran-
domised experiments is significantly more limited, as reported in [2], [3], [12],
[22], [82]. The automotive domain faces many unique restrictions compared
to SaaS companies, such as the number of hardware and software variants
[3], architecture restrictions [71], safety regulation constraints, number of ve-
hicles available for experimentation [82], driver consent, and the ability to
frequently update software [3], [22]. A combination of these challenges leads
to many situations where a randomised experiment is not: possible, such as
in limited samples; desired, such as in highly regulated systems; or ethical,
without explicit consent of the vehicle owners and users on the complete scope
of the new software.
When a randomised experiment is not feasible, there present confounding

factors that can often cause a spurious correlation and hinder us from drawing
causal conclusions [15], [20], [36]. To address this issue, observational studies
in combination with causal inference models and causal assumptions need to
be applied. We will further discuss the empirical scenarios from the automo-
tive sector and the underlying implications of causal assumptions on software
observational testing in the following sections.

The potential outcomes framework
The potential outcome framework [36] describes causal inference from an in-
tervention introduced in randomised experiments. In this section, we discuss
the potential outcome from both experiments and observational studies, the
later is extensively explored in studies such as [20], [37]. Potential outcome
models quantify the treatment effect from the intervention introduced, or from
known systematic differences between the control and treatment groups.
Let us consider an experiment in which we introduce two software variants

to two groups, control (Nc) and treatment (Nt). We denote the two levels of
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software variants as t = {0, 1}. For each individual in the sample population
n ∈ N , we measure a target variable, y, to understand the possible outcomes,
and a set of covariates x ∈ X that are predictive of the outcomes and po-
tentially influence the treatment. The covariates X, are also often referred
to as context, or confounding factors. In practise, the two treatment levels
of software could be t = {old_version,new_version}, for evaluating a change
to an existing software. The potential outcomes of such an evaluation of an
energy management software, could be reported as y = [150, 300] measured in
Wh/km.

Suppose we are interested in two treatment levels in a study, t = {0, 1}. In
the Rubin potential outcome framework, the average treatment effect (ATE)
can be expressed as,

ATE = E[y|t = 1]− E[y|t = 0] (8.1)

where the E(y) represents the expectation of the outcome from the sam-
ples at different treatment levels. In order to infer the treatment outcome,
an important assumption made in the potential outcome framework, is the
stable unit treatment assumption, stating that the treatment only effect the
individual sample the treatment is applied to.
Note that, when the experiment is randomised, the treatment outcome is

unconditional to the control and treatment group assignment. In other words,
the two groups are exchangeable. Therefore, we can explicitly establish a
causal relationship between treatment and the potential outcome in a ran-
domised experiment. Exchangeability is expressed as,

[y|t = 0], [y|t = 1]⊥t (8.2)

where ⊥ denotes independence, and | means given the condition, y|x⊥t
reads as y is independent of t given x.

The potential outcome and/or treatment assignment in an observational
study is influenced by covariates X. In a trivial example, all covariates influ-
ence both the treatment assignment and the outcome, a confounding effect.
We illustrate such an example in a directed acyclic graph (DAG) in Fig. 8.1,
to infer causality from this DAG, a valid adjustment set of covariates should
block every path from the treatment t to the target variable y in the DAG.
If such a set of covariates exists and can be identified in an observational
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study, we assume the exchangeability persists, and it is conditional on the
adjustment set (X) given the set of covariates can be observed and identified.
Formally,

[y|t = 0], [y|t = 1]⊥t|X (8.3)

In an observational study, it requires that there shall be treated and un-
treated samples in every combination of the values of the observed confounding
factors X [43], the positivity assumption, is formally expressed as,

0 < P (T = t|X = x|) < 1 (8.4)

In addition, covariates can be used to estimate the conditional average treat-
ment effect (CATE) in observational studies, namely,

CATE = E[y|t = 1,X = x]− E[y|t = 0,X = x] (8.5)

The inference of conditional average treatment effect is helpful in heteroge-
neous studies. For example, we can study the treatment effect in subgroups
of vehicle models or locations, provided the covariates heavily influence the
treatment outcome.

Bayesian statistics and inference

A short overview of Bayesian statics and inference methods will be provided
in this subsection. To put the Bayesian causal inference models in context,
we present the the basic principle of Bayes’ theorem and inference methods
used in this study. However, we do not provide a comparison of frequency and
Bayesian statistics, as the difference in reasoning is beyond the scope of this
paper and we refer such a comparison to other works in software engineering
[76], [86], [87].

In Bayesian statics, the probability of an event is expressed as a degree of
belief which is based on the prior knowledge of said event. The intuition of
Bayesian statistics is that the degree of belief is updated by observing new
data, evidence, and the sensitivity of the outcome to the prior reduces as
more observations are made. In the application of causal inference, apply-
ing Bayesian statistics allows us to incorporate available prior knowledge on
model parameters when inferring the counterfactual outcome [88]. The Bayes’
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theorem is expressed as,

P (A|B) = P (B|A)P (A)
P (B) (8.6)

where,

• P (A) is the prior, the probability of a hypothesis before any evidence is
observed and presented. This is often referred to as domain knowledge.

• P (B) is the likelihood, the probability of observing the evidence.

• P (B|A): is the probably of observing the evidence given the prior.

• P (A|B): is the posterior probability given the evidence, the observation,
and the prior.

In most cases, the exact posterior distribution of the model parameters
cannot be solved analytically, but it can be approximated numerically with
Markov Chain Monte Carlo (MCMC) or variational inference methods. In
this paper, we approximate the posterior distribution through the No-U-Turn
Sampler (NUTS) in Hamiltonian Monte Carlo algorithm. Using a recursive
algorithm, NUTS constructs a set of possible candidate point spans widely
across the target distribution [77]. NUTS stops automatically if it retraced
its steps, hence the name “No-U-Turn”.
The prior distributions are an integral part of Bayesian model and they al-

low researchers the flexibility of incorporating domain knowledge of previous
research to create better and more robust models. The priors often act as
constraints of plausible probabilities of parameter values. With small sample
sizes, the prior or the domain knowledge has a higher influence. While with
larger sample sizes, the evidence overcomes the impact of the prior in the
posterior. Priors can be specified to be non-informative, weakly informative,
and informative for their models. A non-informative prior is based on an un-
bounded uniform distribution and does not aggregate any information to the
posterior and are often non proper. Weakly-informative are those that do not
aggregate much information in the posterior parameters and serves as regu-
larisers in the inference and convergence of the MCMC solver. An example of
such a prior would be a normal distribution with a large variance compared to
the expected parameter value. Finally, informative priors are those that incor-
porate domain knowledge on the subject and set stricter bounds to parameters
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in the model. If the evidence is accordance with the prior, convergence hap-
pens faster due to the smaller search space for the MCMC solver. If evidence
points out to a parameter outside these bounds, either domain knowledge or
data collection should be revised and convergence might be slow.

8.3 The BOAT framework
In this section, we present an alternative approach to randomised exper-
imentation in software engineering, BOAT (Bayesian causal modelling for
OvservAtional Testing). In this framework, we combine the notion of quasi-
random treatment assignment with data obtained from pure observations,
aiming to address the situations where a fully randomised experiment is not
feasible. Different from an observational study, in which the treatment is
inferred from known systematic differences of the control and the treatment
groups, our method allows one to actively intervene with a treatment group
that is not randomly sampled. This framework enables development organisa-
tions to evaluate their software online without the need of a fully randomised
large scale experiment.

BOAT
The BOAT framework is induced from the potential outcome theory, and is
applied and validated through exemplary cases with our industry collaborator.
We describe the framework in detail and the research method applied for the
validation of the BOAT framework. A fully randomised experiment is often
challenging to conduct in the automotive domain, in the absent of randomisa-
tion, it requires a series of causal modelling techniques to mimic randomisation
or to adjust covariates before a treatment effect can be inferred. We list the
challenges in randomisation and their corresponding solutions in the BOAT
framework as the following.
The first challenge in adopting online experiment is the limited access to

the entire user base. To start, the automotive domain has a significantly
smaller user based comparing to the SaaS domain, as a result of product di-
versity and hardware dependency [3], [82]. Moreover, in combination with the
limitation of safety-critical software and the lack of explicit user agreements,
shipping new software to the entire fleet is typically undesired, impossible, or
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unethical. As a result, the control and the treatment groups are likely to be
unbalanced and the treatment effects are confounded by one or more unbal-
anced covariates. In situations when the treatment effect is confounded by
more than one covariate, it is impossible to balance the control and treatment
groups by stratification, therefore, a propensity score needs to be modelled
from all covariates included in the system. Propensity score matching, first
proposed by Rosenbaum and Rubin [20], is a method for matching samples
from the control and treatment group based on the propensity score calculated
from observed covariates, thus adjusting for covariates and estimating unbias
treatment effects. The Bayesian propensity score matching model is used for
designing a balanced control and treatment group in traffic safety analysis [46]
and in automotive software engineering [82].
Second, the performance of automotive software functions are often heav-

ily influenced by temporal factors such as weather and time of week. Such
a seasonality effect can be observed in software functions related to energy
consumption [89] and crash safety [90], [91]. In practise, if we want to evalu-
ate an energy management software for battery electric vehicles, suppose we
compare the energy efficiency before and after the software change on the
same vehicles, the conclusion could be bias and confounded by unobserved
temporal factors, e.g., temperature. To address this particular issue, we sug-
gest to apply difference-in-differences model in the Bayesian framework. This
model is first presented by Card and Krueger [40] in analysing the treatment
effects of increasing the minimum wage. In our model, we include a control
group of vehicles running on the old software version through observation.
Therefore, any bias caused by factors common to the control and treatment is
implicitly controlled for, even when the confounders are not observed. Besides
econometrics, Bayesian difference-in-differences model is applied to analyse
the treatment effect over time for diabetes patients [45].
Third, we see a need of modelling and analysing software studies where

the treatment assignments depend on one continuous covariate. Since many
software functions in vehicles are only activated or beneficial for users around
a certain threshold of a variable, such as speed or trip distance. This is the
case when we are analysing the fuel saving potential from route prediction of
plug-in hybrid vehicles, as the trip distance heavily influences the prediction
accuracy and the fuel saving potential. It is believed that the software is
particularly beneficial, when the driver travels slightly further than the pure
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Figure 8.2: A decision flowchart on which Bayesian causal model from the BOAT
framework to apply when designing an online software evaluation.
(BRDD: Bayesian regression discontinuity, BPSM: Bayesian propen-
sity score matching, BDID: Bayesian difference-in-differences)

electric range of the vehicle on the daily basis. In this scenario, the regres-
sion discontinuity design [41] could help us model the treatment causal effect
through identifying a threshold of an assignment covariate where the treat-
ment is mostly influenced. Bayesian regression discontinuity design is applied
in other areas of science such as economics [92] and medicine [93].
To further illustrate the use cases of the BOAT framework in automotive

software engineering, we provide a flow chart in Fig. 8.2. When designing a
software online evaluation, the first assessment criteria is the available sample
size determined by a power analysis of expected size of the treatment effect.
In the scenario of all users can be accessed and a randomised sampling pro-
cess can be done, a fully randomised experiment is always more ideal for a
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strong causal conclusion. Since randomisation for sampling from the total
user base not only ensures exchangeability, it also ensures representativeness
thus removing sampling bias. The second step is to determine if we can safely
assume all the covariates and their relationship to the expected outcome is
known and observable. Under this assumption, there is a need to identify
if there is one or more covariates, since the balancing of a single and cate-
gorical covariate can be achieved through stratification as well. In situations
where there are more than one categorical covariate, a Bayesian propensity
score matching (BPSM) shall be performed to design a balanced control and
treatment group. In the case of one continuous and dominating covariate, the
design calls for the use of a Bayesian regression discontinuity (BRDD) model,
which utilises the continuous covariate as an assignment variable for assign-
ing samples to the control and treatment group. If the assumption of known
covariates cannot be made, which is often the case when evaluating a novel
software functionality, or conducting a longitudinal evaluation. In the former
scenario, there is usually no available data to analyse the causal structure, and
in the latter case, the number of covariate required for identification quickly
scales as the study is conducted during a prolonged period of time. The de-
velopment organisations need to decide if the unobserved (latent) variables
need to be modelled and inferred, if not, a Bayesian difference-in-differences
(BDID) model can be applied. BDID is an effective strategy to infer treatment
effect overtime, without the need of observing any time dependent covariates.
Although the BOAT framework provides a structured guidance for software

development organisations for their design decisions of online software evalu-
ations, and to a large extend, enables such online evaluation that is otherwise
challenging or impossible particularly in the automotive domain. We recog-
nise that the framework is not in anyway complete. For example, if the causal
relation is unknown, a causal discovery process [94] or a graphical model is
needed [84]. To that end, if a latent variable is deemed to be important and
needs to be modelled, methods such as instrumental variable [95] can be ap-
plied. We will further discuss the limitations and the potential extension of
the BOAT framework in the discussion section.

Research Method
To validate our proposed BOAT framework and its applicability in automotive
software engineering, we employ the design science research method following
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guideline from [96]. The BOAT framework, can be considered as a design
artifact crated to address an important research and organisational problem
– in the absence of randomisation, how do we evaluate software in an online
fashion and infer causality. The relevance of the problem is assessed and
addressed through the challenges of randomisation experienced in practicse.
We list the practices of this research following guidelines from [96] in detail
in 8.3. In 8.3, we replace the original description from [96] of the step-wise
guideline with the approaches taken in our research activities.

Table 8.1: Guidelines of design science research method [95], and practices applied
following the guidelines in this research.

Guideline Practise in this research
Guideline 1: Design as
an artifact

We present the BOAT framework to three soft-
ware development organisations, the framework
addresses varies limitations in randomised online
experiments, assess practical scenarios to provide
Bayesian causal modelling suggestions. The frame-
work is derived from the theory of potential out-
come, and all of the modelling approaches within
the framework are extensively applied and vali-
dated in other areas of science [20], [45]–[47], [52],
[66], [85].

Guideline 2: Problem
relevance

To ensure the technical solution developed is rel-
evant to the domain, we derive the problem from
existing literature addressing the challenges on on-
line experimentation adaptation in automotive [3],
[12], [71], [82], [83], and literature stating the chal-
lenges of online experimentation in other domains
[16], [21], [35]. All of the literature included in the
analysis are based on empirical research in their re-
spective domains. Additionally, the scenarios that
limit randomised experimentation are also experi-
enced and reported by our industry collaborator.

Continued on next page
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Table 8.1 – continued from previous page
Guideline Practise in this research
Guideline 3: Design
evaluation

The evaluation of the BOAT framework is done
quantitatively through three separate empirical
cases. The empirical study are designed together
with development organisations as suggested by
[51], [52], [66], and deployed to a selective num-
ber of customer vehicles to simulate three scenar-
ios of online software evaluation in the absent of
randomisation. The quantitative data is collected
from the vehicles through telecommunication units
onboard. We determine the target variable and the
covariates together with the development teams
which also developed the software changes. Ad-
ditionally, we assess the validity of the causal as-
sumptions in practise with domain knowledge pro-
vided by experts from the development organisa-
tions.

Guideline 4: Research
contributions

Not to be confused with the research contribution
of a publication, the research contribution in de-
sign science is assessed by implementability and
representational fidelity. The former criteria is sat-
isfied as there are commonly available tools for
computing the the causal models, as well as the
authors of this paper have implemented the code
in Pyro [79]. The later is ensured through the close
collaboration with an automotive manufacturer.

Continued on next page
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Table 8.1 – continued from previous page
Guideline Practise in this research
Guideline 5: Research
rigor

Conducting research with design science often re-
quires mathematical formalism to describe the de-
sign artifact [95], [97]. We formulate the Bayesian
causal models and assumptions in the BOAT
framework mathematically, as well as providing an
algorithmic description for model implementation.
In the BOAT framework, the relationships between
factors within the system is assumed to be known;
the inputs, such as covariates, and the outputs are
selected based on the domain knowledge. Claims
about the quality of design artifact is dependent on
the choice of performance metrics. Therefore, we
evaluate the causal models following advice from
existing literature introducing the models to other
areas of science [20], [40], [41].

Guideline 6: Design as
a search process

As a research method, design science is iterative
and a way to discover an effective solution to the
problem. In our research, we maintained close col-
laboration with the development teams through
weekly design meetings, in which we discuss all
aspects of the cases including the potential con-
founding factors, the expected treatment effects,
and etc. The selection of covariates is done in
an iterative manner to ensure the covariates with
strong correlation to the target variable is included
in the model. Moreover, the scenarios addressed in
the BOAT framework is derived from literature [3],
[22] and validated from the state-of-practise in au-
tomotive software engineering.

Continued on next page
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Table 8.1 – continued from previous page
Guideline Practise in this research
Guideline 7: Commu-
nication of research

The results of our research is communicated in the
following three ways; (1) we host popularised sci-
ence presentations for our industry collaborators
on a regular basis every three month. The partic-
ipants of these presentations usually occupy man-
agerial positions such as product manager, project
manager, and product owner. (2) we communicate
the BOAT framework, the implemented Python
code, and the results to the development organisa-
tions through our weekly meetings, during which
we also provide tutorials of the Bayesian modelling
approach. Participants are usually developers and
data scientists alike. (3) we communicate our work
to the scientific community through publications.

The successful adoption of a new framework in software engineering requires
the framework to be investigated in the business organisations it is applied in,
therefore, together with our industry collaborator, we design and validate the
framework empirically with three software development organisations. The in-
dustry collaborator is an automotive manufacturer with operation in Europe,
China, and North America, and this research is part of a long term collabora-
tion. Additionally, to evaluate the Bayesian causal models, we deploy software
and collect empirical data from a total of 1,364 vehicles driven by real-world
customers. The vehicle data collection took place during an nine-month pe-
riod, between December 2020 to September 2021. The detailed setup of the
three empirical cases are discussed in their corresponding sections.

8.4 Bayesian propensity score matching
In this section, we present the theory, our observational study, and the results
from the Bayesian propensity score matching (BPSM) model. The theory
and assumption of the model is presented formally, followed by a discussion
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Figure 8.3: An illustration explaining the Propensity Score Matching model. Note,
figure does not represent real data.

on different matching strategies. Finally, we introduce the setup of our ob-
servational study utilising BPSM as an identification strategy and we present
the results.
To estimate the unbias treatment effect in an observational study is chal-

lenging, as the treatment assignment and effect could be confounded by co-
variates. We use the illustration in Fig. 8.1 to demonstrate this scenario.
Propensity score matching [20] addresses this issue through covariate adjust-
ment and allows us to generate balanced control and treatment groups even
when the sample size is limited. The covariates from matched control and
treatment group should form similar empirical distribution, thus reducing
bias in the estimated treatment effect. We illustrate the concept of propen-
sity score matching in Fig. 8.3, as can be seen, samples are matched based
on their propensity score similarity, also called propensity score distance. In
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previous literature, propensity score matching has been used for experiment
design when the sample size is small [52], [54], [66], [82], and for causal effect
analysis post facto [17], [46]. Propensity score matching is done through a
Bayesian network, which is reportedly less sensitive to sample sizes [46].

Theory
Propensity score, denoted as e(x), is a function of one or more covariates
x ∈ X. Propensity scores are modelled and matched in the control (t = 0)
and treatment (t = 1) groups, so that the conditional probability distribution
of the covariates given the propensity score p(x|e(x)) is similar in both groups
[20]. The strong exchangeability assumption, extends from the conditional ex-
changeability, stating that the control and treatment outcome pair is assumed
to be independent from treatment assignment, given the observed covariates,
formally,

([y|t = 0], [y|t = 1])⊥t|X (8.7)

This assumption implies that the treatment or the outcome is only con-
founded by observed covariates and the covariates that are ignored from the
data do not effect the treatment or outcome. The average treatment effect
identified through propensity score matching (ATEPSM ) is conditional to the
treatment t and the propensity score inferred from all observed covariates,
e(X). Given the assumption holds, the average treatment effect adjusted with
the propensity score is an unbias estimate of the average treatment effect,

ATEPSM = E[y|t = 1, e(X)]− E[y|t = 0, e(X)] (8.8)

There are two steps in propensity score matching. First, we estimate the
propensity score through a Bayesian logistic regression, then we perform the
matching of samples based on their propensity score distance. We present the
two steps separately in the following subsections.

Bayesian logistics regression

In a BPSM, the propensity score is estimated with a Bayesian logistic re-
gression. Sticking to the same notations, the treatment indicator t, follows a
Bernoulli distribution,
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Algorithm 3 Bayesian logistic regression generative process
Inputs: X covariates, λα prior distribution of α, λβ prior distribution of β,
tn control/treatment indicator

1: Draw α ∼ N (α|0, λα)
2: Draw β ∼ N (β|0, λβ)
3: for each vector of covariate x ∈ X do
4: Draw t ∼ Bernoulli(t|Sigmoid(α+ βx))

t ∼ Bernoulli(t|e(X)) (8.9)

where the propensity score e(X) is expressed as,

e(X) = eα+βX

1 + eα+βX (8.10)

The regression intercept and coefficients, α and β are latent variables. That
is, they are not directly observed but inferred from other variables X. We
normalise the prior Gaussian distributions for the regression intercept α, as a
result, this prior distribution has a 0 mean and a variance of λα,

α ∼ N (α|0, λα)

similarly, β has a Gaussian distributions of a 0 mean and variance of λβ as
prior,

β ∼ N (β|0, λβ)

By Bay’s theorem, the posterior distribution of this network is simply the
product of the likelihood and the prior. Therefore, for all samples n ∈ N , the
posterior distribution is a joint probability of t, α, and β marginalised over
p(t), that is,

p(t, α, β|X, λα, λβ)

= p(α|λα) · p(β|λβ) ·
N∏
n=1

p(t|α, β,X)
(8.11)

Bayesian networks are generative models, to generate the joint probabil-
ity distribution of the regression model, the generative process is stated in
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Algorithm 3.

Matching

The second and final step of BPSM is matching samples from the control and
treatment groups based on their propensity score distance, and to minimise the
average distance for the two groups. The propensity score distance (δe(X)n)
is defined as the absolute difference of the propensity score of each sample (n)
in the control and treatment group,

δe(X)n = |e(X)n,t=1 − e(X)n,t=0| (8.12)

Many matching methods have been explored in the literature, calliper match-
ing [78], 1:1, or n:1 nearest neighbour matching [54], and full matching [52],
[69], just to name a few. In general, there are two categories of matching
methods, with or without replacement. Matching can be done with or with-
out replacement. Matching with replacement means one sample in one group
can be matched with multiple samples in another group, an example of such
method is the optimal full matching algorithm [69].
By using matching methods without sample replacement, the matched con-

trol and treatment group will yield the number of samples. Calliper matching
is a type of matching method, in which a maximum allowed δe(X)n,max is pre-
determined and all samples exceeding the threshold are discarded. Although
calliper matching could result in a reduction on sample size if the calliper is
too fine, it is an intuitive and computationally efficient matching method [78].
Moreover, the choice of calliper can effect the result bias [98]. As treated sam-
ples are usually more expensive to obtain, discarding those samples could be
considered unfavourable in the automotive application. Therefore, a second
matching method is explored in the study, 1:1 nearest neighbour matching
[54]. In a 1:1 nearest neighbour matching, the algorithm looks for a control
sample with the closest propensity score distance to a given treated sample,
thus, no treated samples will be discarded. In this study, both calliper match-
ing and 1:1 nearest neighbour matching are applied, as our objective is to find
control samples to be compared with the treated samples.
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Study I: Limited access to users

In the automotive domain, a fully randomised experiment on a large scale is
often impossible due to their already limited numbers of users and it is often
undesired to serve new software on the entire fleet. When a safety critical soft-
ware is the subject of interest – a majority of automotive software are in safety
critical systems – introducing a novel software feature to a larger number of
vehicles might not be desirable; although the likelihood of catastrophic failure
is low [3], but any minor disturbances at a scale could still cause profit loss
for commercial vehicles. Combine this with the fact that we often only want
to examine software features on a specific vehicle model driven in a specific
region, it further limits the available sample size. As an alternative to large
scale randomised experiments, we propose a small-scale rollout to a limited
number of vehicles. However, when the control and treatment groups are no
randomised, the exchangeability assumption does not hold and the observed
change in the target variable could be confounded on preexisting differences
between the groups instead of the treatment itself. Thus, we apply Bayesian
propensity score matching for matching comparable treated and untreated
vehicles based on a number of observed covariates.
We design a study to simulate this scenario and learn the feasibility of

applying BPSM as an identification strategy in observational studies such
as this. In Study I, we aim to analyse treatment effects from an energy
management software. Based on how the vehicle is historically driven, this
software predicts the current trip proprieties such as expected route, and
based on the prediction, energy consumption is optimised through actions
such as downshifting before a hill climb. This software was difficult, if not
impossible, to validate in a lab-like environment as the energy saving potential
is strongly dependent on the prediction accuracy, however, since the software
feature involves safety critical systems such as engine control, it is undesirable
to introduce it to a large group of users for a fully randomised experiment.
Instead, we passively observe 1100 vehicles in the control group running on
an existing software driven by real-world customers, while only serving the
modified software to 38 vehicles as our treated samples. The treated samples,
are vehicles leased to employees whom use the vehicles as their regular cars.
This study occurred from October 2020 to March 2021, and all vehicles are
driven by users reside in Sweden. We discard data generated by brand new
vehicles with mileage less than 100 kilometres, and trips with average speed
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higher than 200 kilometres per hour. After post processing, we have collected
data from a total of 421,881 trips made by 1138 vehicles.
A fundamental assumption of applying propensity score as an identifica-

tion strategy for observational study is the strong exchangeability assumption
(often called ignorability [20]), implies that the treatment outcome is not de-
pendent on unobserved covariates. This strong assumption cannot be checked
empirically from pure observational data. Essentially, the assumption implies
that all the confounders that potentially influence the outcome are observed
and it inherently limits us to draw causal conclusion when no covariate is
known. In other words, propensity score matching can only balance covari-
ates that are observed, while full randomisation can balance all covariates,
observed or not [66]. In practice, to design a study utilising BPSM requires
existing data or knowledge of the software systems, as the results are strongly
dependent on covariate selection [68]. To this end, an iterative procedure can
be applied when selecting covariate and performing BPSM [53]. In our study,
we include a total of 14 covariates in the final BPSM model as a outcome of
domain knowledge provided by our industry collaborator and two iterations of
model design. We present the descriptive statistics of the covariates included
in the final model in Table. 7.1.

Results
In this subsection, we present the results from Study I. First, we show the
propensity score inferred from a Bayesian network. Second, we present matched
control and treatment group with the two matching strategies discussed in the
previous section.
We implement a Bayesian logistic regression in Pyro [79] following the gen-

erative process described in Algorithm 3. We set up a NUTS sampler for
inference to infer the posterior distribution with a single chain. We generate
3,000 samples of which 200 burn-in. The Brooks-Gelman-Rubin convergence
criteria of R̂ < 1.1 is met, at R̂ = 1.0003. To triangulate the results, a varia-
tional inference model is used. We use a multivariate normal distribution as a
guide for the variational inference model. We define 40,000 steps for optimisa-
tion and the solver reaches a stable solution after the first 10,000 steps. Two
inference methods return similar posterior distributions and point estimates.
We show both methods in the online appendix attached and we will only focus
on reporting the inference results from the NUTS sampler in this paper.
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Figure 8.4: Kernel density distribution of the propensity scores of the control (pc)
and treatment (pt) groups calculated on the mean of posterior distri-
butions, and twenty-five values randomly sampled from the posterior
distributions representing uncertainties.

We assign a prior distribution β ∼ N (0, λα = 1) to each regression coeffi-
cient β, and similarly, α ∼ N (0, λβ = 1) to the regression intercept α. Com-
bining the priors, the posterior, p(t, α, β|X, λα, λβ), is inferred. Then, the
propensity score e(X) is calculated follow Equation. 8.10, before matching,
the mean propensity score in the control and treatment group is 0.0319 and
0.0633 respectively. In each group, the standard deviation of the propensity
score is 0.0175 and 0.0309. We also quantify the uncertainty of the propensity
score from the posterior distribution. A visualisation of the propensity score
distribution before a matching is performed can be seen in 8.4, in which we
plot the propensity score distribution in the control (pc) and treatment (pt)
computed from the mean point estimates as well as random samples from the
posterior distribution of the regression intercept and coefficients.
A matching based on propensity score distance δe(X)n is performed after

the scores are computed. In this paper, we perform matching with 1:1 nearest
neighbour and caliper matching method, the results are presented in Table 8.2.
As can be seen from the table, both matching methods return similar outcome
in this study, the mean propensity score distance is 0.000757 and 0.000608 for
the calliper matching and 1-1 nearest neighbour matching respectively. First,
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Table 8.2: Propensity scores in control and treatment groups, before and after a
matching is performed.

Propensity score
Group Mean Std.

Before matching Control 0.0319 0.0175
Treated 0.0633 0.0309

Calliper matching (calliper = 0.05) Control 0.0626 0.0300
Treated 0.0633 0.0309

1-1 nearest neighbour matching Control 0.0627 0.0302
Treated 0.0633 0.0309

a calliper matching method is used with a specified maximum propensity score
distance, δe(X)n,max = 0.05, and every treated sample returned a matched
control sample. The mean propensity scores in the control group were 0.0626
after applying caliper matching.
Second, we apply 1-1 nearest neighbour matching method. Similarly to cal-

liper matching, 1-1 nearest neighbour match will return one-to-one matched
pairs, but the matching is done without specifying maximum allowed propen-
sity score distance. The algorithm k-nearest neighbours searches for one clos-
est neighbour from the control samples to the treated samples. The mean
propensity score in the control group is 0.0627 after 1-1 nearest neighbour
matching. Both methods find the corresponding control samples for the
treated samples. The covariates balance is assessed by comparing the descrip-
tive statistics such as variance and the empirical distribution of covariates
in the two groups. With a calliper matching, we found an average of 4.1 %
reduction in the covariates variance compared to unmatched groups.
The treatment effect is analysed for both the calliper matched and 1-1

nearest neighbour matched groups. The average treatment effect is calculated
as the mean difference of the target variable between the control and treatment
groups, and all values are min-max scaled. The average target variable is 0.379
and 0.391 for the control group when matched with calliper and 1-1 nearest
neighbour, respectively. The average target variable is 0.355 in the treatment
group. The average treatment effect is -0.024 and -0.036 for the control group
when matched with calliper and 1-1 nearest neighbour, respectively.

119



Chapter 8 Bayesian causal inference in automotive software engineering and
online evaluation

O
ut

co
m

e

Pre-treatment Post-treatment
τ -1 τ τ +1

Control

Treatment

Observed outcome in
treatment group

Observed outcome in
control group

Parallel trend
assumption

ATE

Observed state in both
groups before treatment

Figure 8.5: An illustration explaining the Difference-in-Differences model and how
the average treatment effect (ATE) is estimated.

8.5 Bayesian difference-in-differences
In this section, Bayesian difference-in-differences (BDID) theory and our ob-
servational study is presented. We describe the theory and assumptions in
the model formally, we present our study setup and how the model is utilised
as an identification strategy for analysing treatment effects over time.
Difference-in-differences, proposed by Card and Krueger [40], is a discrete

time dynamic causal model. The model is designed to identify and control
time-dependent covariates in observational studies, disregarding if the covari-
ates are measured or not [45], and model the average treatment effect. Dif-
ferent from cross-sectional treatment effect estimates, where the treatment
effect is aggregated overtime, or time-series treatment effect estimates, where
time is treated as a continuous variable. This model can be used to measure
treatment effects in discrete time steps. We demonstrate the concept of model
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in Fig. 8.5, as shown in the figure, the model replies on the parallel trend as-
sumption, which implies the treatment group and control group are assumed
to follow a similar trend for the target variable without a treatment. The
factual outcome is the observed target variable after the treatment is applied,
the counterfactual outcome, what would have happened if a treatment is never
applied, is inferred from the parallel trend assumption. Bayesian difference-
in-differences have been applied in studying the influence of policy change on
diabetes treatment quality [45]. But there is no documented application of
BDID in software engineering to the best of our knowledge.

Theory

By including a group of untreated samples through passive observations from
the same time period as the treated samples, all time dependent covariates are
implicitly controlled for in a DID model, observed or not. Recall the directed
acyclic graph in Fig.8.1, we now extend it to include a τ variable to represent
time dependent latent variables (Fig.8.6), to conclude causal effect, both the
covariates X and the time dependent latent variables τ need to be adjusted
for. In the difference-in-differences model, the most important assumption
is the parallel trend assumption. It implies the counterfactual - what would
have happened in the absent of a treatment - is an assumption inherently
unobserved. This assumption supports the exchangeability assumption as
stated in Eq.8.2, i.e., the treatment assignment is not based on the outcome,
rather that the outcome is influenced by the applied treatment. We can
express this assumption formally, note that we adopt the same notations from
Section 8.3 and 8.4. Additionally, we use τ = {−1, 0, 1} to denote the time
periods before, during, and after a treatment is applied.

E[y0(1)− y0(−1)|t = 1] = E[y0(1)− y0(−1)|t = 0] (8.13)

In Eq. 8.13, y0(−1) is the target variable with treatment level 0 at time
step τ = −1 (pre-treatment status in Fig.8.5), and y0(1) is the target variable
with treatment level 0 at time step τ = 1 without a treatment being applied.
We use the superscript to represent the counterfactual status of the treatment
group, if a treatment is never applied. The parallel trend assumption states
that the target variable measured from the control and treatment group will
follow similar trend over time, if no treatment is applied at τ , this is often
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Figure 8.6: A simplified directed acyclic graph showing the relationships of treat-
ment (t), target variable (y), covariates (X), and time dependent latent
variables summarised as τ .

referred as the counterfactual outcome. The parallel trend assumption can be
check from observational data through means such as data visualisation.
The average treatment effect identified through DID model (ATEDID) is

estimated as the following,

ATEDID

= (E[y(1)|t = 1]− E[y(−1)|t = 1])−
(E[y(1)|t = 0]− E[y(−1)|t = 0])

(8.14)

That is, the difference of the target variables in the treated group measured
at time step τ = −1 and τ = 1, subtracted with the difference in the control
group measured during the same time period, namely, the difference in differ-
ences. The target variable y can be estimated as a linear regression from the
data observed,

y ∼ t+ τ + α+ βX + ε (8.15)

In the regression model, we also assign a dummy variable t indicating if a
treatment is applied. The latent variables regression intercept α and coefficient
β have a Gaussian distribution as prior, formally,

α ∼ N (α|0, λα) (8.16)

Let us consider a total j numbers of covariates X, and regression coefficient
is a vector of length j,
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Algorithm 4 Bayesian difference-in-differences generative process
Inputs: X covariates, λα prior distribution of α, λβ prior distribution of β,
treatment effect yn

1: Draw α ∼ N (α|0, λα)
2: Draw β ∼ N (β|0, λβ)
3: Draw ε ∼ N (ε|0, σ2)
4: for each vector of covariate x ∈ X do
5: Draw y ∼ N (y|t+ τ + α+ βTx, σ2)

βj ∼ N (βj |0, λβj
) (8.17)

Moreover, since we cannot describe all variations in the data with a linear
model, a error term ε is included in the model which represent the observation
noise. We have,

ε ∼ N (ε|0, σ2) (8.18)

The joint distribution is factorised as the blow, it is a straight forward
application of Bay’s theorem. Moreover, we list the generative process for
this join distribution in Algorithm 4.

p(y, α, β|X, σ, λα, λβ)

= p(t) · p(α|λα) · p(βj |λβj
) ·

N∏
n=1

p(y|t, τ, α, βj , σ,X)
(8.19)

Study II: Seasonality effect
A large portion of software in the automotive domain is influenced by the
vehicle operating conditions, e.g., precipitation, temperature, humidity, and
icing [89]–[91], and most importantly, the mobility needs of people. In the
first case, these operating conditions are often seasonal and from the diversity
of vehicle markets today, they are difficult to predict beforehand and often
requires the software to be evaluated longitudinally to cover a wider range of
operating conditions and increase confidence in the conclusion. Additionally, it
is naturally reasonable to assume that there are seasonality effects that cannot
be observed in an effective manner nor can it be predicted, such as public
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events, extreme weathers and so on. The travel demand of users can be largely
unpredictable similar to the operating conditions of the vehicles. To adjust for
time dependent covariates over a relatively long period of time, requires one
to observe a high number of covariates that are frequently unknown when the
study is designed. For example, external factors such as cost of fuel, traffic,
and parking fare attributes to car owners’ preferences on the travel modal [99],
and most of which factors are challenging to observe from the perspective of
the vehicle. Thus, in a longitudinal software evaluation, there is a need for
models that can control covariates even when they are not observed.
Study II is designed to explore the scenario described above, that is, (a)

when the performance of the target software treatment is highly dependent
on external and seasonal factors such as temperature, (b) and there are po-
tentially latent variables that cannot be observed in an effective manner such
as travel demands of individuals. The study is designed to assess the applica-
bility of the BDID model in addressing the challenge and to verify the causal
assumption in BDID has real-life relevance. The software deployed in study
II is a battery management system for electric vehicles. Battery inside of an
electric vehicle have an ideal window of operating temperatures, at the start
of a trip, the battery management system will have to either warm up or
cool down the battery into said window of operation, this is done at a cost of
driving range. Therefore, the ideal preconditioning operation shall take place
during charging prior to the trip, utilising the electricity from the grid instead
of from the battery. Moreover, if there is a large difference between the am-
bient temperature and ideal operating temperature, the energy required to
precondition the battery is naturally higher. In other words, it is reasonable
to expect a dynamic seasonality effect on the final average treatment effect.
The treatment, is a software solution that controls and optimises the precon-
dition of battery during chagrining, and it is expected to improve range as the
vehicle no longer needs to heat up or cool down the battery during driving op-
erations. Therefore, decrease the energy consumption (measured in Wh/km),
and if the software performs as expected, the average treatment effect shall
be negative.
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Table 8.3: Descriptive statistics of the target variable and covariates as inputs to
Bayesian difference-in-differences model, and a description of how the
variables are computed. Each variable is aggregated to the vehicle level
and min-max scaled.
Variables Variable description Group Mean Std.

Energy
consumption

total electrical energy
consumed / total distance

Control 0.277 0.296
Treated 0.257 0.276

Covariates

Time period dummy, 0 for pre-treatment
and 1 otherwise

Control
Treated

Treatment dummy, 0 for control group
and 1 for treated group

Control
Treated

Average ambient
temperature [◦C]

average temperature
measured at car

Control 0.667 0.318
Treated 0.954 0.465

Minimum ambient
temperature [◦C]

minimum temperature
measure at car

Control 0.630 0.294
Treated 0.557 0.272

Maximum ambient
temperature [◦C]

maximum temperature
measure at car

Control 0.429 0.484
Treated 0.745 0.626

Average trip
distance [km]

total trip distance / total
number of trips

Control 0.257 0.192
Treated 0.314 0.310

Maximum trip
distance [km]

longest trip occurred during
the observation

Control 0.229 0.322
Treated 0.270 0.392

Average coolant
temperature [◦C]

coolant temperature
measured at battery outlet

Control 0.559 0.333
Treated 0.821 0.396

Average discharge
[Wh]

average battery energy
discharge / number of trips

Control 0.612 0.587
Treated 0.506 0.582

Average initial
battery level [Wh]

average battery capacity
measured at start of a trip

Control 0.635 0.608
Treated 0.531 0.616

Mean
state-of-charge [%]

average displacement of
battery state-of-charge

Control 0.609 0.579
Treated 0.484 0.562

The study took place between the 1st of August 2021 to the 30th of Septem-
ber 2021, note that during our study, there is a two-week duration that is a
typical vacation period in Sweden where the vehicles users reside. We choose
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to conduct the study during this period as the weather conditions are dy-
namic as well as the travel demands, to further demonstrate the power of the
BDID model. During the period, we collected data from 24,286 trips and in
total of 616,212 kilometres. The control group, similarly to study I, is running
the existing version of the software and we do not intervene with the vehicles
besides passive data collection. The treatment group, are randomly sampled
from a larger fleet of vehicles leased to company employees, and these vehicles
received the battery preconditioning software as described above. There are
in total 176 vehicles included in the study, similarly to study I, we discard
data generated by vehicles with odometer less than 100 kilometres and all
trips with average speed higher than 200 kilometres per hour as it exceeds the
digital speed limiter implemented in the vehicles. We have in total 9 covari-
ates, and their descriptive statistics are presented in Table. 8.5. All values are
presented min-max scaled due to nondisclosure agreement with our industry
collaborator.
While the Bayesian difference-in-differences model essentially allows a post

facto analysis of time dependent treatment effect analysis, it is based on the
assumption of parallel trend, as formally defined in Equation 8.13. In prac-
tise, this trend states that the control and the treatment group should follow
similar trend overtime, if no treatment is applied, implying the difference in
between the groups comes from the unobserved time dependent confounding
factors. For BDID to identity treatment effect, the assumption needs to be
empirically validated through for example visualisation, i.e., by comparing the
target variable over time between the treatment and the control group before
an intervention is introduced. Another validation method is to fit the BDID
model before and after the treatment is applied, to test if the functional form
of the counterfactual is correct [100]. Empirically, some observe the samples
pre-treatment for as long as possible, to discovery any unknown or underlying
trend over time [101]. Furthermore, some matching is required when selecting
the control group to compare with the treated group. In practise, this match-
ing process can be done by selecting untreated samples that are as similar as
possible to the treated samples, such as vehicle model and engine types, mar-
kets, and so on. To ensure the two groups are comparable, we select vehicles
with the same vehicle type and have the same battery capacity, and all of the
vehicles are registered and driven in Sweden.
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Table 8.4: Average energy consumption (Wh/km) for the control and the treatment
group at each time step.

Control Treated Difference
τ−1 205.30 190.45 - 14.85
τ1 218.93 204.36 - 14.57
Change 13.627 13.915 -0.280

Results
In this subsection, the results from study II is presented. We show the BDID
regression model inferred from a Bayesian network, we illustrate the paral-
lel trend assumption, and the final average treatment effect of the software
change.
First we inspect the parallel trend assumption through visualisation and

the result is presented in Fig. 8.7. First, we compute the average of the
target variable before a treatment is applied, at discrete time step τ−1 for
both control and treatment groups, and the target variable at the time when
the new software is introduced, τ . As can be seen from the figure, the target
variable from both groups follow a upward trajectory. Last, we compute
the average of the target variable after the treatment is applied at discrete
time step τ1. The visualisation result confirms our assumption that both the
control and treatment groups follow similar trend over time, if no treatment
is applied, and the target variable observed in the treatment group changes
trajectory after the treatment application.
The BDID regression is implemented in Pyro, similarity to the Bayesian

logistic regression in study I. We follow the generative process as prescribed
in Algorithm 4. The MCMC NUTS sampler is set in Pyro with 3.000 samples
and 200 burn-ins with two chains. The Brooks-Gelman-Rubin convergence
criteria of R̂ < 1.1 is met (R̂ = 1.0007 for α, R̂β,mean = 1.0066 for all β,
and R̂ = 0.999 for the error term σ). We attach the trace plots in the online
appendix.
We assign a weakly informative prior distribution of α ∼ N (0, 1) and

β ∼ N (0, 1) to the regression intercept and coefficients to introduce scale
information to regularise inference, in this case, min-max scalded covariates.
We infer the posterior distribution p(y, α, β|X, t, τ, σ, λα, λβ), in Figure.8.12
(attached at the end of the chapter), we present the posterior distribution of
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Figure 8.7: Target variable y measured before the treatment (τ−1), when the treat-
ment is applied (τ), and after the treatment (τ1), for the control and
the treatment groups, y is min-max scaled.

the regression intercept (α) and the regression coefficients β. As can be seen,
the posterior distribution of the two dummies variables indicating the time
period and if a treatment is applied (β1 and β2) are informative of the treat-
ment outcome as expected. While the posterior distributions for covariates
describing the high voltage battery activity level such as total energy discharge
and state-of-charge change (β9 to β10), contribute positively to average energy
consumption, however, the uncertainty of the effect is high.
Last, we include a difference in differences average treatment effect analysis

following Equation.8.14. First, we compute the difference of expected target
variable E[y] at time step τ−1 between the control (t = 0) and the treatment
(t = 1) groups, this value can be interpreted as the preexisting differences
between the groups as a result of unobserved confounding effects. Second, we
calculate the difference of E[y] between the control and treatment group at
time step τ1, this difference is a sum of the preexisting differences and the
treatment effect if the parallel assumption holds. The results are presented in
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Figure 8.8: An illustration explaining the Regression Discontinuity Design model,
and how the average treatment effect is estimated.

Table.8.4.

8.6 Bayesian regression discontinuity
In this section, we present the Bayesian regression discontinuity design (BRDD)
theory and observational study III that is designed to demonstrate the use case
of BRDD for evaluating automotive software. The theory and assumptions of
the model is presented formally along with the algorithm for Bayesian infer-
ence. We present the study III, the setup, data collection method, and how
BRDD is used as a strategy for identifying continuous covariate dependent
treatment assignment.
Regression discontinuity design, proposed by [41], is a causal modelling ap-

proach aiming to determine the treatment effect when the treatment assign-
ment is confounded by one continuous covariate by assigning a cut-off point.
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Figure 8.9: A simplified directed acyclic graph showing the relationships of treat-
ment (t), target variable (y), assignment variable (X), the cut-off point
(c), and other confounding factors (Z).

This continuous covariate is referred as the assignment variable, in Fig.8.8, we
illustrate the principle of RDD. Observations of the target variable is made
around the threshold, in this case, average treatment effect can be inferred
without the need of a randomised experiment. In practise, visualising of the
assignment variable and the target variable is a simple yet powerful tool to
inspect their relationship [102]. While RDD allows inference of treatment
effect with the absent of randomisation, the model alone does not explicitly
or implicitly conclude causality as it does not identify other unobserved con-
founding effects. Moreover, RDD design essentially infer treatment effect with
single covariate X = x, in that perceptive, the model has a limited degree of
external validity. However, the RDD model is similar to a randomised experi-
ment with bias below 0.01 standard deviations on average especially analysed
with the Bayesian approach [92], indicating a high internal validity. In our
study III, we investigate the scenario when a software is only useful in re-
ducing the fuel consumption of the vehicle, if the average trip distance of the
given vehicle is over a certain threshold, without ex-ante randomisation.

Theory
In [41], RDD is discussed in the context of regression, and in this subsection,
we will describe it in the potential outcome framework provided the condi-
tional exchangeability assumption holds as formulated in Equation. 8.3. We
illustrate the relationship between variables in a RDD in 8.9. As can be seen,
the outcome y is influenced by the assignment variable as well as the prede-
termined cutoff point c. As mentioned in paragraph before, a RDD does not
automatically eliminate other confounding factors in the system, we illustrate
that with Z in the directed acyclic graph. The fundamental concept of RDD
is that the treatment assignment is deterministic by a covariate X (we call
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this the assignment variable) with a fixed threshold, the assignment variable
X is assumed to be correlated to the target variable y, and their correlation
is smooth. Under this assumption, any discontinuity of the target variable y
as a function of X is interpreted to be the causal treatment effect around the
predetermined threshold. Let X = c be the predetermined cut-off point of the
assignment variable with c being an arbitrarily determined value, formally,

E[y|X = x, t = 1], and E[y|X = x, t = 0] (8.20)

are continuous in x.
This assumption also implies that the probability distribution of y given

the covariate X = x is smooth. This assumption is stronger than needed, as
the continuity without a treatment effect is only expected around the cut-off
point X = c and the assumption above covers such a scenario. Different from
a matching problem, the requirement for overlap requires control and treated
samples to have all possible combinations of the covariates, in a DID model,
for all values of x, the propensity of treatment assignment is either 0 or 1, i.e.,
on either side of the cut-off point c. We call this a sharp design, as opposed
to fuzzy design. In practise, a fuzzy design might be more attractive, as it is
reasonable to include samples close to either side of the cut-off point.
Without the need of extrapolating due to the lack of overlap, at the cut-

off point X = c, we can infer the average treatment effect from regression
discontinuity design (ATERDD) as,

ATERDD = E[y|X = c, t = 1]− E[y|X = c, t = 0] (8.21)

That is, the difference between average observed target variable y with
or without the treatment t = {0, 1}, at a given cut-off point X = c. This
average treatment effect can be estimated as we have made the smoothness
assumption in Equation. 8.20. We would like to empathise that although
we demonstrate a linear regression for the prediction of target variable in
a BRDD, a polynomial regression can be applied to handle more complex
relations between the assignment variable and the target variable. When the
smoothness assumption holds, the target variable y can be predicted using
a simple linear regression for the sharp design at X = c, stated as following
centred around the cut-off point,
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Algorithm 5 Bayesian regression discontinuity design generative process
Inputs: X covariates, λα prior distribution of α, λβ prior distribution of β,
treatment effect yn

1: Draw α ∼ N (α|0, λα)
2: for each β ∈ βj do
3: Draw β ∼ N (β|0, λβ)
4: Draw ε ∼ N (ε|0, σ2)
5: Draw y ∼ N (y|α+ β1(x− c) + β2t+ β3(x− c)t+ β4Z, σ

2)

y ∼ α+ β1(x− c) + β2t+ β3(x− c)t+ β4Z + ε (8.22)

where, the α is the regression intercept, βj are the regression coefficients.
They are both latent variable inferred from a Bayesian network. t is a dummy
variable indicating if a treatment has been applied, and ε represent the lin-
ear noise in the model. We assign a Gaussian distribution as a prior to the
regression intercept and coefficients, namely,

α ∼ N (α|0, λα) (8.23)

and,

βj ∼ N (βj |0, λβj ) (8.24)

An error term ε is included in the model which represent the observation
noise as a linear model has its limitations for describing the noisy reality. We
have,

ε ∼ N (ε|0, σ2) (8.25)

The joint distribution is factorised as the blow applying Baye’s law. We
describe the generative process for this join distribution in Algorithm 5.

p(y, α, βj |Z, t, x, c, σ, λα, λβj
)

= p(t) · p(α|λα) · p(βj |λβj
) ·

N∏
n=1

p(y|Z, t, x, c, α, βj , σ)
(8.26)
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Study III: Covariate dependent treatment assignment

In absent of randomisation, assuming automotive software functions to be
independent from their operation environment or usage by the customers is a
naïve approach for estimating the treatment effect of software changes. To that
end, the performance or even the activation of certain automotive function is
dictated by the usage, in other words, we frequently run into the situation
in which a covariate that determines treatment assignment. To understand
the performance of this type of software is important for the following two
reasons, first, it brings insights on the usefulness of a given software feature,
validating assumptions made during development against how the product is
actually utilised. Second, it allows the development organisations to evaluate
the software effectiveness in conditions that are most determining of the effect.
In study III, we present a case that illustrate the importance of causal inference
when the treatment effect is strongly dependent on a covariate.
Plug-in hybrid vehicle, is a type of electrified vehicle with two sets of propul-

sion, combustion engine and electric motors. This type of vehicles usually have
limited pure electrical range, and to maximised the benefit of eclectic drive
such as high efficiency during city driving, zero direct emission; automotive
manufacturers typically have a number of control software solutions to opti-
mise the distribution of the electrical and chemical energy on a given trip. A
simple version of the optimisation strategy, is to prioritise the electrical energy
whenever available and deplete the battery first before using the combustion
engine. This type of strategy usually works well when the driver is expected to
travel less distance than the electrical range, and not on highways where the
combustion engine works more efficiently than the electrical motor. Alterna-
tively, the optimisation can be done through a prediction of trip distance and
destination – if the trip is predicted to be farther than the electrical range,
the car will not prioritise the use of electrical energy and deplete the battery
early in the trip, with the rationality that the drivers is predicted to enter the
city later where direct emission from the combustion engine is undesirable.
Thus, the assignment of this software is determined by the trip distance by
design. The performance of this type of software function is highly dependent
on how the cars are driven, more specifically, on the trip distance. Thus, to
evaluate such a software feature, we chose a cutoff point of the assignment
variable trip distance, at around the designed electrical range of the vehicle
where the software is expected to have the most impact, and apply the BRDD
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model for treatment effect inference and modelling.
Study III is conducted in Sweden, on a fleet of 50 plug-in hybrid vehicles.

The study took place between the 19th of October 2020 to the 28th of Febuary
2021, and during which, 12,231 numbers of trips are observed and the vehicles
have driven a total of 191,552 kilometres. The software is designed so that if
the predicted trip distance is less than the electrical range, the car will pri-
oritise and use the electrical energy first. If not, the vehicle will optimise the
energy usage between the electrical motor and the combustion engine accord-
ing to the predicted trip distance and destination. We apply the same data
post-processing logic as study I and II, namely, data collected from brand new
vehicles and trips with higher than possible average speed are excluded from
the model. In study III, the target variable is the average fuel consumption,
and the assignment variable is the total trip distance.
There are two important assumptions in a regression discontinuity design.

First, we assume unobserved covariates do not effect the treatment effect
or assignment. This is a strong assumption, similarly to what is previously
discussed for BPSM and most causal inference problems, to satisfy this as-
sumption, it requires prior knowledge to how the software interact with the
users and inputs from the domain experts. The second assumption of BRDD
is the expectation of the target variable E[y] is continuous with respect to the
assignment variable X. Mathematically speaking, function f(x) continuity at
x = c can be determined if limx→c f(x) exist, and limx→c f(x) = f(c). A
continuity check should not be performed on observational data which is per
definition discontinuous, instead, the continuity assumption can be check with
a density test, as suggested by [103]. Last but not least, the choice of cut-off
point X = c, requires that the assignment mechanism to be known to the
development teams. In practise, the cut-off point might not be a sharp dif-
ferentiation but rather a bandwidth, which can be determined either through
the design intend of the software or through observational data collected prior
to a treatment is introduced.

Results
In this section, we present the results from BRDD. As discussed in the pre-
vious subsection, there are other covariates that could potentially confound
the treatment effect, in Z. In this analysis, to adjust for the covariates, we
condition on one covariant that is the total displaced state-of-charge, Z ∈ Z.
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This covariate indicates how much battery is used during a given trip, nat-
urally, if a trip distance is fixed, the more battery is used, the less the fuel
consumption there is. Thus, to ensure the trips are comparable disregard the
software treatment, we only look at E[y|Z > 90], they are trips during which
the battery has been depleted. The cut-off point is arbitrarily determined at
c = 60, which is the approximated pure electrical range of the vehicle model
we are observing. We do not min-max scale the value in Fig.8.10, due to that
the cut-off point of the assignment variable represents a physical measurement
and we choose to articulate the physical meaning through presenting the un-
scaled value. As a min-max scaled value is difficult to interpret, to reflect the
physical meaning of the measurement while maintaining our confidentiality
agreement, we remove the units of the measured target variable instead. Two
linear regression is fitted on either side of the cut-off point, to illustrate a dis-
continuity of the regression line at cut-off as a representation of the software
treatment effect, as can be seen in Fig.8.10, at c = 60.
Following Algorithm 5, we implement the BRDD regression model in Pyro.

The MCMC NUTS solver is set with 2 chains of 2,000 samples each and we
discard the first 200 steps as warm-up steps. The model, in wide format,
has the following four input features, x − c (so that the regression is fitted
centred around the cut-off point), with x being the assignment variable of
trip distance and c = 60, t = {0, 1} (to effectively control the regression
model), (x− c)t ((x− c)t = 0 for the controlled group, and 1 otherwise), and
the change of the state-of-charge of the battery named Z. The convergence
criteria R̂ < 1.1 is met at R̂ = 1.0004 for α, R̂β,mean = 1.0017, R̂ = 1.0000 for
the error term σ. The trace plots are attached in the online appendix. For the
prior distributions, we have a weakly informative prior of α ∼ N (0, 1), and
we select a more informative prior for β ∼ N (0, 0.5). We choose a weakly
regularising prior for the standard deviation σ ∼ Half-Cauchy(0, 5), as it
approximate uniform distribution and it is weakly informative near 0. We
plan to start with a non-informative prior for the error term and adjust if
the solver does not converge. The solver meets the convergence criteria with
the priors mentioned above. The posterior distribution from this Bayesian
network, p(y, α, β|Z, t, x, c, λα, λβ , σ), is inferred. The posterior distribution of
the regression intercept, α, returned a Gaussian distribution centred around
αmean = 0.626, with a standard deviation of αstd = 0.0056. Similarly, the
posterior distribution of the error term ε is a Gaussian distribution centred
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Figure 8.10: Target variable measured before and after the cut-off point (c = 60),
with respect to the assignment variable.

around σ = 0.213 with standard deviation of 0.0010. We present the posterior
distributions in Fig.8.11.
The outcome for BRDD, is two linear regression lines at either side of the

cut-off point. Using the posterior distribution, the regression expression (yc)
to the left hand side of the cut-off point can be expressed as,

yc ∼ α+ β1x+ β4Z + ε (8.27)

and the regression expression for the treated samples (yt) to the right hand
side of the cut-off point can be expressed as,

yt ∼ (α+ β2) + (β1 + β3)x+ β4Z + ε (8.28)

The average treatment effect ATERDD is inferred following Equation.8.21,
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Figure 8.11: Posterior distribution of the regression coefficients β, and the regres-
sion intercept α.

we find that, at the cut-off point (X = c), the expected target variable treated
and untreated differ by ATERDD = yt(x = c) − yc(x = c) = −1.1954. This
is an unbias estimation of the local conditional treatment effect. As can be
seen in Fig.8.10, the discontinuity at the cut-off point can be interpreted as
the treatment effect.

8.7 Discussion

In this section, we provide a discussion on the advantages and limitations of
the BOAT framework from the perspective of causal inference and piratical
applications in the automotive domain.
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Causal assumptions and domain knowledge
Causality cannot be inferred from observational data alone [15], behind every
causal conclusion, there are some complementary causal assumptions that
might not be testable empirically. Before adjusting for confounding biases,
some judgements must be made based on domain knowledge as also discussed
by [15], [51], [52], [66].
Take propensity score matching as an example, different from a randomi-

sation process, in which all covariates will be balanced in the control and the
treatment groups observed or not, causal inference with covariate adjustment
requires the covariates to be observed. Performing propensity score matching
in combination with observational study, requires a set of carefully chosen
covariates which rely heavily on domain knowledge. To that end, similar re-
quirements on domain knowledge is also experienced with other models in the
BOAT framework. In order to select samples in the control group for observa-
tion that are as similar as the treated samples as possible, a matching process
is recommended. The judgement on "as similar as possible" is a judgement
that cannot be made without existing data on the cohorts and domain knowl-
edge. Likewise, domain knowledge is required for selecting the cut-off point
for the assignment variable in a regression discontinuity design.
The requirement on domain knowledge implies that causal inference from

observational studies need manual input when applied in software engineering
practises. While randomised online experiments can be automated to a large
extend, as demonstrated in the SaaS domain [16], [21], [35], causal inference
with observational data is a process that would potentially require more man-
ual efforts. The extra overhead of efforts from developers could potentially
pose a challenge in implementing causal inference in combination with ob-
servational studies in automotive software engineering. Thus, the application
of BOAT framework on a larger scale cannot be done without some form of
data-driven causal discovery methods.

Extension to BOAT
As shortly discussed in Section.8.3, the BOAT framework does not cover all
potential scenarios in causal inference of observational studies in the automo-
tive domain. Since there are a few more techniques that can be applied when
inferring causal treatment effect without randomised experiments. In this sub-
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section, we offer a discussion on our decision to why some of the models are
not included in the BOAT framework as if now. These models, useful in many
domains as literature reports, we have yet to find their feasible applications
in the automotive sector.
First, the positive decision to whether there is a need to infer the latent

variable is intentionally left out from the flow chart, when a latent variable
needs to be inferred, methods such as instrumental variable can be applied
[95]. Instrumental variable method uses a latent variable to explain the corre-
lation to the error term. The method should account for unexpected behaviour
between variables, however, the explanation it provides cannot be interpreted
with a physical meaning. In many automotive software where interpretability
is considered crucial, especially for development organisations to take design
decisions. Moreover, instrumental variable method has the tendency to pro-
duce bias results when the sample is small, which is a known limitation in the
automotive domain.
Second, a popular school of causal inference method, structural causal

model and do-calculus [15] offers a comprehensive approach to causal inference
provided the causal structure is known. This causal structure is represented
in a DAG, such as the trivial example in Fig.8.1. Each component in a DAG
has their graphical and numerical representations, then through the language
of do-calculus, for example p(Y |do(T ), X), we can represent intervention and
infer treatment effect from a DAG. In order for a structural causal model to be
effective, the structure of the model, i.e., the DAG, needs to be learnt either
through domain-knowledge or though a data-driven causal discovery process.
The formal is time consuming and potentially subjected to biases of individ-
uals, the latter requires large amount of data yet does not address limitations
such as sampling bias, measurement error, and confounding effects [94].
Finally, there are other methods addressing preexisting differences between

the control and the treatment groups, such as inverse propensity weighting.
While achieving similar objective as propensity score matching (adjusting for
confounding factors), inverse propensity weighting is a parametric method
and it is known to be creating imbalance groups when the sample size is
insufficient.
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8.8 Conclusion

In this paper, we introduce the BOAT framework for software engineering in
the automotive domain, enabling online evaluation of the software in a causal
fashion when a fully randomised experimentation is impossible, undesired, or
unethical. Applying the Bayesian causal inference models, we demonstrate
how a causal conclusion can be drawn in absent of randomisation utilising the
high flexibility of Bayesian inference towards sample size, as demonstrated in
other areas of science [45]–[47], [85]. Combining theory with practise, we in-
clude three illustrative cases from the automotive domain for further enforce
the need of causal inference in software engineering. The three cases are con-
ducted together with our industry collaborator, we introduce three software
to a fleet of vehicles driven by real-world customers. We relate the causal
assumptions to scenarios experienced in practise, aiming to provide a guide-
line on when and how to better apply the causal modelling for inferring the
software effects from different software evaluation needs.
We provide a decision making flowchart along with the three causal in-

ference models included in the BOAT framework. The flowchart is design
with the objective of guiding development organisations on which causal in-
ference models should be used to address their corresponding challenges in
real life. In the BOAT framework, we include three models, they are, (1)
Bayesian propensity score matching for generating balanced control and treat-
ment groups without randomisation, (2) Bayesian difference-in-differences for
controlling unobserved seasonal factors over time, (3) Bayesian regression dis-
continuity design for analysing the treatment effect when treatment assign-
ment is determined by a continuous covariate. All of the three models and
their assumptions have their implications in practise, as experienced from the
automotive domain when attempting to evaluate software without randomi-
sation, in this work, we provide a formal discussion of the inference models,
as well as their corresponding real world implications and applications. The
three cases are designed together with software engineering teams in our case
company, to simulate challenges experienced when evaluating software online
without randomisation. With the development teams, we introduce new soft-
ware treatment to a fleet of vehicles, conduct data collection, and use the
empirical data as inputs to the BOAT framework, additionally, we assess the
causal assumption in relation to the empirical cases. We find the causal mod-
els in the BOAT framework to be highly applicable in automotive software
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engineering, and they enable the development organisations to evaluate soft-
ware changes in an online and causal manner. Furthermore, we find there is
a strong dependency on domain knowledge when designing an online observa-
tional study as the cause-and-effect is not always known, and when validating
some of the causal assumptions empirically.
In our future work, we aim to incorporate causal discovery process when

designing an online experiment or observational study, since we cannot al-
ways assume the cause-and-effect of a system is known [34]. Moreover, we
plan to explore data-driven causal discovery methods to inform and poten-
tially automate the design of experiments, with the objective of increasing
the efficiency and the effectiveness of online experimentation in automotive
software engineering.

Online Appendix
The online appendix can be found as a Jupyter Notebook via the following
link: github.com/yuchueliu/BOAT.
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Figure 8.12: Posterior distribution of the regression coefficients β, β is ordered as
Table. 8.5, and the regression intercept α.
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CHAPTER 9

Concluding remarks and future work

In this chapter, I present the concluding remarks and the outlook of the future
research in this doctorate research. This thesis presents a framework of how
to enable online experimentation in the automotive domain, provided the
challenges and limitations experienced in the sector. The thesis consists of
four publications, each addressing one aspect of the obstacles posed in the
adoption of online software experimentation. In the end, a future outlook of
this doctorate research is presented.

9.1 Conclusion
In this thesis, an exploratory research is done to discover and analyse the state-
of-practise and limiting factors for online experimentation adoption. After
identifying the inherent limitation of the sample size in the domain, an ex-
perimental design method is empirically evaluated. Moreover, an alternative
approach to fully randomised experimentation is proposed, aiming to address
limitations resulted from software non-functional requirements, such as safety
and privacy. An overview of the background and theory to online experi-
mentation in the potential outcome framework is introduced. The research
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objective and methods are presented, along with a discussion on threats to
validity.

RQ1: How to run large-scale online experiments in the
automotive domain in a fast and reliable fashion?
This research question RQ1 is addressed through studying the existing online
experimentation architecture and exploring the limitations in the automotive
domain. With a combination of case study and literature review, we find that
most, if not all, existing architectures are not applicable in the automotive
domain as they do not explicitly address the limitations experienced in the
domain. As a result, we propose a hybrid architecture, which combines edge
and cloud infrastructure to enable fast and reliable software parameterised
changes and remote data collection. This architecture is then compared with
the current state-of-practise through a case study, and we find many compo-
nents are common to what has already been adopted in two other automotive
companies. We introduced the software architecture to a fleet of 50 vehicles,
to test the robustness of the design, and to validate its usability. This archi-
tecture is designed to specifically address limitations that are manifested from
the hardware dependency and non-functional requirements of the embedded
software.

RQ2: How can the inherent limitation of sample sizes in the
automotive domain be addressed?
After identifying a potentially inoperable challenge of online experimentation
in automotive, we formulate RQ2. This research question focuses on the inher-
ent limitation of sample size. To answer this question partially, we conduct a
study that utilises causal modelling for experiment design, presented in Chap-
ter. 6. In this research, we apply and evaluate an experiment design method
that allows balanced control and treatment groups to be generated provided
pre-experimental data. With our industry collaborator, we evaluate the ap-
proach of designing experiment qualitatively through an in situ case study
running for six month, and a online experiment designed with the method on
28 vehicles. The design approach is highly adoptable in software engineering,
and the causal model is proven to reduce both variance and biases in the mod-
elling of the treatment effects comparing to a fully randomised experiment at
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the same sample size. While the method has been applied in other areas of
science, this is the first paper to evaluate it in the context of software engi-
neering. This study shows that a data informed experiment design can in fact
reduce the need of large samples for balancing covariates between the control
and treatment group.
Additionally, when sample size is small due to a limited access to available

vehicles, the treatment assignment becomes confounded on covariates such as
a scenario we demonstrate in Chapter. 7. In this case, the randomised experi-
ment is no longer an option, the software evaluation becomes an observational
study, and the treatment effect needs to be inferred through causal modelling.

RQ3: Can causality be concluded in the absence of
randomisation in a software online evaluation?
In the absence of randomisation due to limited sample size, undesired due to
safety requirements, or unethical due to the lack of user consent, the causal
assumption of exchangeability is violated and causality cannot be concluded
without further assumptions. We conduct studies from three separate cases
in an automotive company, on a fleet of 1200 cars, and three different soft-
ware features to empirically evaluate Bayesian causal inference models. We
combine Bayesian causal inference models with observational testing, propos-
ing an alternative approach to fully randomised experimentation in the ab-
sence of randomisation. Furthermore, we relate the built-in assumption in
the Bayesian causal models to specific challenges experienced in practise, that
further enforces our proposal of observational testing powered by Bayesian
causal inference. We address issues related to non-randomised samples due to
non-functional requirements, seasonality and externally dependent treatment
assignment due to the dynamic operating conditions of the vehicles.

9.2 Future work
Recall the framework, Fig. 1.1, presented in Chapter 1, note that it is now
extended with future outlook marked in light blue within the same framework,
presented in Fig. 9.1. In the continuation of this doctorate research, the main
research efforts will remain enabling online experimentation in the automotive
sector with a stronger focus in causal modelling.

145



Chapter 9 Concluding remarks and future work

Hardware
dependency

High product  
variations

Long release cycle
and low speed

Non-functional
requirements

Strict safety
requirements

Privacy & update
agreements

Functional
requirements

Vehicle operation
environments

Dynamic weather
and road conditions

Interactions with  
other vehicles

Lack of user data
for novel functions

Interaction with
other systems

Seasonality effects in
treatment outcome

Violation of the stable unit
treatment value assumption 

Non-randomised
user samples

Direct and indirect
treatment effects

Data-driven or domain
knowledge-driven causal

discovery

Paper D

Paper C

Limited sample
size

Paper B

Paper A

Sequential
software releases

Policy evaluation
over time

Causal transportability with
limited experiments

Externally dependent
treatment assignment

In this thesis

Future work

Learning and
experimentation on edge

Figure 9.1: Challenges of online experimentation adoption in automotive, proposed
approaches and solutions, and future outlook of this doctorate research.

Similarly to most research efforts in causal inference [34], we assume the
input and output variables are known in this thesis. However, in practise,
the causal structure might be vastly unknown prior to the experiments. This
means that we cannot confidently design and conduct and experiment, and be
certain of its benefits for the development organisations. Therefore, a causal
discovery process might be required prior to design of an experiment espe-
cially in complex systems such as autonomous drive or active safety related
functions. We intend to explore data- and knowledge-driven causal discovery
methods, and run empirical studies to analyse their applicability in automo-
tive software engineering. Causal graphical models are a direct output of
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causal discovery; utilising the graphical models, experiments can be designed
utilising the theory of D-separation [15], [38]. Moreover, we can analyse di-
rect as well as indirect treatment effects from the same experiment. A causal
graphical model will enable us to study the effect of software change in a more
comprehensive and systematic fashion, and it will allow us to study the in-
teractions between different systems [104]. However, interactions with other
samples such as other vehicles, could result a direct violation in the stable
unit treatment value assumption that is critical to an experiment, in which
case, a network effect needs to be understood [105].
As a result of software release practises in the automotive sector, a model

for sequential software evaluation is of strong interest in the continuation of
this research. This type of modelling calls for more advanced machine learning
models as the changes are also dependent on temporal factors. We consider
modelling such a sequential software change as a policy evaluation problem,
we aim to present an approach that is the most suited for supporting decision
making over time [106].
From the limitations that is privacy and user consent for software changes,

we see a value in building a learning system and experimentation on edge
devices. Such a model also brings value in terms of personalisation - online
experimentation can inform you of the average treatment effect, but lack in-
formation in individual treatment effects [107]. For that reason, a software
that is optimised for everyone does not necessarily guarantee satisfaction of
individual customers. Therefore, models that empower experimentation and
learning on individual vehicle or even user level is of research interest for
privacy preservation and product optimisation.
Last but not least, the empirical application and validation of the theory of

causal transportability [108], [109] with limited further experiment is highly
applicable in the automotive domain, especially in software features that are
considered impossible to validate due to the large amount of experiments
expected. Imagine an ideal scenario, in which we could validate a piece of
autonomous drive feature, such as object detection, in a randomised and small-
scale experiment, and the causal learning can be formally transferred to a
wider context with confidence without the need of further experimentation.
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