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Efficient high-performance decoding of topological stabilizer codes has the potential to crucially improve
the balance between logical failure rates and the number and individual error rates of the constituent qubits.
High-threshold maximum-likelihood decoders require an explicit error model for Pauli errors to decode a specific
syndrome, whereas lower-threshold heuristic approaches such as minimum-weight matching are error agnostic.
Here we consider an intermediate approach, formulating a decoder that depends on the bias, i.e., the relative
probability of phase-flip to bit-flip errors, but is agnostic to error rate. Our decoder is based on counting the
number and effective weight of the most likely error chains in each equivalence class of a given syndrome.
We use Metropolis-based Monte Carlo sampling to explore the space of error chains and find unique chains
that are efficiently identified using a hash table. Using the error-rate invariance, the decoder can sample chains
effectively at an error rate which is higher than the physical error rate and without the need for thermalization
between chains in different equivalence classes. Applied to the surface code and the XZZX code, the decoder
matches maximum-likelihood decoders for moderate code sizes or low error rates. We anticipate that, because
of the compressed information content per syndrome, it can be taken full advantage of in combination with
machine-learning methods to extrapolate Monte Carlo—generated data.

DOI: 10.1103/PhysRevA.105.042616

I. INTRODUCTION

Quantum decoherence is one of the major challenges that
has to be overcome in building a quantum computer [1-6].
A prominent line of research to address this issue focuses on
topological stabilizer codes implemented on low-connectivity
lattices of qubits [7—11], with small stabilizer codes presently
being realized experimentally [12—-24]. The topological codes
provide protection against errors by encoding the quantum
information into entangled states that are removed from each
other by a code distance d, corresponding to the minimal num-
ber of local qubit operations required for a logical operation.
These logical operators act as effective Pauli operators on the
logical code space. Local stabilizers in the form of local Pauli
operations commute with the logical operators; measuring
these stabilizers provides a syndrome of the possible error
configurations, so-called error chains, that are affecting the
code. The error chains can be grouped into equivalence classes
depending on whether they commute with a given representa-
tion of the logical operators or not.
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To decide which corrective actions to take given a mea-
sured syndrome, there is a range of different decoders. A
maximum-likelihood decoder (MLD) aims directly at the core
problem of decoding a stabilizer code, which is to identify the
most likely equivalence class of error chains that correspond
to the syndrome, thus specifying a correction chain (or class
of chains) least likely to cause a logical error [9]. Ideally, an
MLD will be optimal in the sense of providing the highest
possible logical fidelity given the type of stabilizer code and
the error rate of individual qubits. Consequently, it will also
provide the highest possible threshold for the code [9,25-27],
corresponding to the error rate below which the logical failure
rate can always be decreased by increasing the code size.

In contrast to maximum-likelihood decoding, there are
heuristic decoders that suggest the correction chain based
on a rule or algorithm which is not guaranteed to fall in
the most likely equivalence class. The standard such algo-
rithm is minimum-weight perfect matching (MWPM) [9,28—
36], which is based on finding a most likely error chain by
mapping the syndrome to a graph problem with weighted
edges. Other examples are based on addressing the syndrome
successively from small to large scale, using the renormal-
ization group [37], cellular-automaton [38,39], or union-find
algorithm [40,41]. Such heuristic decoders generally have
higher logical failure rates and lower error thresholds than
MLDs. Nevertheless, because of the computational complex-
ity of MLDs, nonoptimal decoders may be preferable, or even
necessary, for practical purposes [11].

Following the recent transformative developments in deep
learning [42,43], with applications in quantum physics

Published by the American Physical Society
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[44-48], decoders based on machine-learning algorithms have
also been developed. Approaches using deep reinforcement
learning [49-53] or evolutionary algorithms [54] have the
appealing property that they can learn by exploring a model
of the errors and measurements of the physical code, but a
disadvantage is that they are difficult to train and to scale
to large code distances. Deep-learning approaches based on
supervised learning [55-62] have the potential for fast and
scalable decoding. However, supervised learning is based on
training data, which has to be generated using a reference
decoder, and the type and quality of the data will be crucial.
Part of the objective of the present work is to generate data in
a form which is compact enough for deep learning while still
containing information that allows for high performance and
flexibility with respect to error rate.

Two types of MLDs for general noise models are
the Metropolis-based Markov-chain Monte Carlo (MCMC)
algorithm by Wootton and co-workers [63,64] and the matrix-
product-states (MPS) decoder by Bravyi er al. [65]. Apart
from the high time complexity, a limitation of these decoders
is that they are fixed to the noise model and error rate, i.e., the
specific single-qubit error rates py, py, and p, for X, Y, and Z
Pauli errors, with p = py + p, + p; the total error rate. Given
a syndrome s consistent with a set of chains {C},, the proba-
bility Pg that this is caused by an error chain in equivalence
class E is proportional to the sum of the (a priori) probabilities
of the chains 7c, i.e., Pr ~ ZCEE 7tc. The MCMC decoder is
based on Metropolis sampling of the error chains, while the
MPS decoder performs an efficient truncated summation of
the probabilities. For both of these methods, a statement about
most likely equivalence class for a given syndrome does not
generalize beyond the error rates for which the calculation was
performed.

In this article, we explore a decoder based on a highly
reduced count of the error chains. We only consider the most
likely set of chains and their degeneracy in each equivalence
class, in order to approximate the probability of the equiva-
lence class. Defining an effective weight w, which takes into
account the relative probability of X, Y, and Z errors, the set of
most likely chains in each class is independent of the overall
error rate. The decoder is in this sense error-rate agnostic.
For codes with a single logical qubit and four corresponding
equivalence classes of error chains, each syndrome is char-
acterized by an octet of numbers corresponding to weight
and degeneracy of the most likely (lightest) chains in each
class. In contrast, an ideal MWPM decoder would identify one
lightest chain among all the equivalence classes, whereas the
MCMC decoder would take into account a large number of
error chains with varying weights. We find that for moderate
code distances, the limited information of weight and degen-
eracy is sufficient to provide near-optimal decoding, matching
results from the MCMC MLD for different noise bias for two
standard topological stabilizer codes.

We anticipate two potential uses for this effective weight
and degeneracy (EWD) decoder. The first is as a stand-alone
near-optimal decoder. While using Metropolis sampling to
find high probability chains, the decoder has comparatively
faster convergence than the MCMC decoder as equivalence
classes can be explored separately and at a higher error rate
than the physical error rate. The second use is to provide

high-information-content data for supervised deep-learning-
based decoders that may allow for flexibility with respect to
the overall error rate.

This article is organized as follows. We start in Sec. II with
a short review of the two stabilizer codes that we will use
to benchmark our decoder. In Sec. III we describe the basic
formulation of the decoder. After this, in Sec. IV we show
some test cases and compare to the MCMC decoder, the MPS
decoder, as well as exact analytical results. This is followed
by a discussion in Sec. V and a summary in Sec. VI.

II. TOPOLOGICAL STABILIZER CODES

To investigate the performance of the EWD decoder, we
consider two different stabilizer codes: the rotated surface
code and the XZZX code. The surface code [7-9] is of the
Calderbank-Shor-Steane type with stabilizers containing only
one type of Pauli operators [4,5]. (Formally, these are the
generators of the stabilizer group. Any product of the genera-
tors is also a stabilizer.) The rotated configuration reduces the
number of qubits without reducing the code distance [66,67].
Recently it was pointed out [68] that a modified version of the
code [69,70], with mixed XZZX stabilizers, has a very high
threshold for biased noise and also allows for efficient decod-
ing. For depolarizing noise the two codes are equivalent, but
for Z- or X-biased noise they have very different properties;
whereas the threshold decreases with bias for the surface code,
it increases for the XZZX code.

As illustrated in Fig 1, both codes consist of a square grid
of N = d? qubits on which N — 1 local (two- or four-qubit)
stabilizers act. The stabilizers commute and square to iden-
tity, which means that they split the Hilbert space into size-2
blocks specified by the parity (£1 eigenvalues) with respect
to each stabilizer. The logical code space, |0), and |1),, is
taken to be the all-even-parity block. Measuring the stabilizers
projects the state onto one of the blocks and any odd-parity
measurement is an indication that the state has been affected
by errors and escaped the code space. The set of odd-parity
measurements with their coordinates on the grid is referred to
as the syndrome.

Assuming Pauli noise, each qubit may be subject to one of
three errors X, Z, or Y = XZ (up to an overall phase), occur-
ring with rates py, py, and p., respectively, such that the total
error rate is p = py + p, + p., defined per measurement cycle
of the syndrome. This type of error model gives a standard,
approximate, representation of qubit decay and dephasing
[71,72]. In addition, in practice, the measurement of the sta-
bilizers requires additional ancilla qubits that are entangled
with the (data) qubits. As these ancillas are also noisy and the
measurement circuit involves several two-qubit gates, there
will be errors in the syndrome readout, which complicates
the decoding significantly [29,73]. Also, in standard qubit
architectures, leakage out of the qubit space leads to additional
complications, as do possible correlated errors affecting two
or more qubits [32,74,75]. Nevertheless, to benchmark and
discuss the basic features of the decoder we will use the basic
error model and assume perfect syndromes.

Logical operators act within the code space, thus commut-
ing with the stabilizers. For the surface code they are a string
of Z’s between two edges (Z;) and a string of X ’s between the
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FIG. 1. Illustrations of the two stabilizer codes used to bench-
mark our EWD decoder. (a) Rotated surface code for d = 5, showing
weight-4 and weight-2 stabilizers acting on a grid of d” physical
qubits (circles). The logical operators used to define the equivalence
classes of error chains are weight-5 strings: X;, on the left edge, and
Z;, on the top edge (not shown). (b) The XZZX code for d = 5. All
weight-4 stabilizers are equivalent, whereas the weight-2 boundary
stabilizers are complementary to the adjacent weight-4 stabilizer. The
logical X; used to define the equivalence classes is shown on the left
edge, with a corresponding mixed Z;, operator (not shown) on the top
edge.

other two edges (X;). For XZZX they are in general mixed
operators, except on the diagonals.

An arbitrary configuration of errors, or error chain C €
{I,X,Y,Z}®" is specified by an element in {/, X, Y, Z} acting
on each qubit, where [ is the identity operator. Each C has a
number of nonidentity operators, quantified by n,, n,, and n.,
and gives a unique syndrome s(C). It is a mapping of many to

one: A chain gives a unique syndrome, but a syndrome does
not give a unique chain. The a priori probability of chain C,
i.e., before measuring a syndrome, is given by

mc=(1-— p)Nrr(r;, (D

r_ Pz " Px nx Py n
nc_<1—p> (l—p) (l—p) @

is the probability relative to the empty chain.

For an arbitrary syndrome s, consider an arbitrary chain C
consistent with that syndrome. The equivalence class E(C) of
the chain C is the set of all 2V~! chains generated by acting
with all elements of the stabilizer group. (A general element of
the stabilizer group consists of a product of stabilizers or the
identity operator acting on the N — 1 faces of the code.) Three
other equivalence classes with an equal number of chains
are generated by acting with one of the logical operators
X1, Z;, or Y, = X;Z;. The equivalence class of the chain
E € {1,X.,7Y, Z} is then decided by whether it commutes with
X; and/or ViR

The product of any two chains with the same syndrome
gives a chain with a trivial syndrome, but unless the two chains
are in the same equivalence class, the product will correspond
to a logical operator. Thus, maximum-likelihood decoding
corresponds to providing an arbitrary correction chain in the
most likely equivalence class.

where

III. MODEL AND DECODER
A. Effective weight parametrization

As discussed in Sec. II, we only consider single-qubit Pauli
errors with error rates p, + p, + p, = p and assume noise-
free stabilizer measurements. We also assume Z-biased noise
Dz 2 Dx, Py After an ideal stabilizer measurement cycle, the
probability of a particular error chain with n,, n,, and n;
errors is (relative to the empty chain) given by Eq. (2). It is
convenient to rewrite this in terms of the most likely error,

using the relative error rate p, = l’fp, as

"= (p)" = e P, 3)

with § = —In p, taking the role of an inverse temperature.
Here we have defined the effective weight of the chain as

w = ny; + Oy Ny + aynyy (4)

'In order to uniquely specify the equivalence class, it is necessary
to choose a specific representation of the logical operators. As the
error chain does not commute with all stabilizers, deforming a logical
operator may change the equivalence class classification. For the
surface code we choose X, as the product of X operators on the
left edge and Z; as the product of Z operators on the top edge such
that the class of the chain can be identified from the the parity of Z
errors on the left edge and the parity of X errors on the top edge, and
similarly for the XZZX code, where the operators on the edges are
mixed.
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with «; given by

Pz o _ Dx

<l—p> _(1—p>’ ©)
p: \° _ Py

(1—17) _<l—p)' ©

The set of parameters (p;,a,,«,) provides a convenient
parametrization of the space of error rates (py, py, p;), with
Px + py + p; = p < 1. For fixed o, and oy, which includes
standard error models such as depolarizing, uncorrelated, and
pure phase- or bit-flip noise, the single scalar w specifies
the probability of an error chain according to Eq. (3). For
this reason, the representation is also used for enhanced
minimum-weight-matching decoders, where the weight of
edges corresponds to their relative probability [36,68].
Limiting to p, = p, with @ = o, = «,, the total error rate
pisrelated to p; by p = p, + 2p7, with p = %}. Depolariz-
ing noise corresponds to « = 1, such that w = n, + n, + n,,
while pure phase-flip noise (for p < 0.5) corresponds to o =
00, such that any chain with an X or Y error would have
infinite weight, consistent with their vanishing probability.
The parametrization for Z-biased noise in [67,68,76] in terms

of fixedn = 5 ’_’;p» and p, = p, corresponds to fixed « only for

depolarizing noise n = % and pure phase-flip noise n = oo,
while in general there is a mapping

_ In p, ~ln 277' )
In p,

Which parametrization to use for a single bias and error
rate is a matter of convenience, but the advantage of the «
parametrization is that the weight of a chain is conserved
under changes of the overall error rate. (A disadvantage could
be that the mapping between total and individual error rates is
less direct.) In practice, this means that for a given syndrome,
the same lightest chains will most likely be independent of
error rate.

For reference, uncorrelated noise, i.e., independent bit-flip
and phase-flip errors, would correspond to oy = 1 and o, = 2.
Note, however, that for uncorrelated noise, p is conventionally
defined as the independent rate of X or Z errors. The definition
of effective length should still reflect the relative error rates,
such that Eq. (6) is replaced by

[p(l - p)}“"' _ P
(1—-py? (I-p2

®)

B. Effective weight and degeneracy decoder
1. Calculating the probabilities of equivalence classes

The probability of an equivalence class E of a given syn-
drome s is simply the probability of all chains in the class
normalized with respect to all chains that are consistent with
the syndrome

Py = 2ceETC Dy Ng(w)e P
Y CsC)=s TC Dy Ner(w)e P
where Ng(w) is the total number of unique chains in class £

with effective weight w. The numbers Ng(w) are combina-
torial; they depend on the syndrome, but are independent of

(€))

the overall error rate given by 8, provided the relative error
rates set by « are fixed. In principle, Nz (w) can be calculated
by finding one chain, using, e.g., minimum-weight matching,
acting on this chain with the full stabilizer group and, to
switch equivalence class, the logical operators.

Since the number of elements in the stabilizer group grows
exponentially with the number of qubits N, it quickly becomes
infeasible to find or store the complete set of values. However,
in the case that the partition function Zg of each equivalence
class is dominated by the contribution of the lightest chains,
we expect to obtain a good approximation by having an ex-
plicit count of only those chains

Zp =Y Np(w)e " ~ Nje P, (10)
w

where wy, is the effective weight of lightest chain(s) in the
class and N = Ng(wjy,) is the number of such chains. Thus,
the probability of an equivalence class Pz = Zg/ ) . Zp ac-
cording to this approximation requires knowledge of an octet
of values

{wi, Nile—(1.x.z.y)- (11)

2. Algorithm

The EWD algorithm, which uses the above approximation,
is outlined in pseudocode form in Algorithm 1, using a hash
table to store and identify unique chains. The Metropolis up-
date rule (for more detail, see Sec. V) that sets the probability
of accepting a new error chain is operated at an error rate
Dsample> Which may be different from the physical error rate
p. Since the weight of an error chain is set by the bias «,
independently of p, chains can be generated and stored at an
arbitrary error rate. Sampling chains at an appropriately cho-
sen (typically high) error rate has the advantage of avoiding
the algorithm becoming stuck in a low-weight configuration.
The sampling error rate is effectively a hyperparameter of the
decoder algorithm, which should be optimized such that the
logical failure rate is minimized. We remark that in bench-
marking the decoder using randomly generated error chains,
it is of course important that the starting chains in the four
equivalence classes are well randomized to ensure that it isnot
possible to underestimate the failure rate.

A variation of the EWD algorithm, referred to as “All” in
Sec. IV, evaluates the probability based on all unique observed
chains, i.e., with Zg = Zw Ng(w)e™Pv If keeping the infor-
mation content per syndrome to a minimum is not a priority,
this version of the algorithm is more accurate, at least for
noninteger .

3. Limitations of applicability

Formally, the requirement for the approximation of
Eq. (10) to hold is that the probability density for chains of
length w, Ng (w)e~#", is monotonically decreasing with chain
weight. Otherwise the probability of each equivalence class
will not be dominated by the lightest chains, which invalidates
the basic assumption of the decoder. In other words, it should
satisfy

Ne(w + Sw)e P < Ng(w) (12)
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Algorithm 1. The EWD decoder

Algorithm 1: The EWD decoder

1if Syndrome s is nontrivial then

2 foreach equivalence class E do

3 Create empty hash table Tg;

4 Get an error chain C' € E consistent with s;

5 Calculate the weight of C: w;

6 Calculate a hash of C: H;

7 Store w in T[H];

8 for N iterations do

9 Apply a random stabilizer to C' to get a new
chain C’;

10 Calculate the weight of C": w’;

11 Use w and w’ to calculate the relative
probability a = m¢/ /e using the error rate
psamplc;

12 Generate a uniform random number
u~U(0,1);

13 if a > u then

14 C <+ C;

15 w—w'

16 Calculate a hash of C: H;

17 Store w in Tp[H];

18 end

19 end

20 Find lowest weight wx in Tk and count its

multiplicity Nz;

21 end

22 Output probability of each equivalence class

according to P = Zg/ Y 5/ Zg with
Zrp = Ng e PV using the physical error rate p;
23 Apply an arbitrary correction chain from the
equivalence class with the highest Pr on the
physical qubits;
24end

for any w > wy, with dw the shortest difference between
effective weights. Correspondingly, for large w, ‘“;—wNE < B.
Generally, the number of chains grows exponentially with
the length (for w < d?) as (averaged over syndromes and
equivalence classes) Y g Ng ~ d*’, where we have found that
the parameter @ > 0 depends on type of code and error model,
but only weakly on error rate. The latter dependence follows
from the changes in the distribution of syndromes with error
rate. This gives a corresponding upper bound on d versus
error rate, as d < e#/® for the approximation of estimating the
partition function using only the lightest chains.

In practice, going beyond this limit to larger code dis-
tances or larger error rates (smaller 8), the EWD decoder will
perform worse than optimal. In this regime, the distribution
Ne(w)e #* will be centered on heavier chains such that eval-
uating the partition function based on the lightest chains will
be an increasingly poor approximation with increasing d or
increasing p. We have not explored the limitations in detail,
but the relatively sharp threshold presented for depolarizing
noise (see Sec. IV) indicates that the decoder gives close to
optimal results for d < 20. For sufficiently low error rates
(depending on d), the decoder will be optimal, as the lightest
chains will dominate asymptotically.

For general noninteger «, it is less clear how to motivate
the approximation, as dw, the difference between effective
weights, can become arbitrarily small. Nevertheless, as dis-
cussed in Sec. IV below, even though the approximation may
be quantitatively quite poor for specific syndromes, aggre-
gated over many syndromes, the effect of this discrepancy is
found to be small.

IV. RESULTS
A. Test cases

To demonstrate the capacity of the EWD decoder we apply
it to several test cases, depolarizing noise (o« = 1), moderately
biased noise (¢ = 5), and highly biased noise (o« = 10 000),
focusing primarily on the XZZX code. For all these cases,
the Metropolis sampling is done at a high error rate (psample =
0.3) compared to the error rate at which the syndromes are
generated. The decoder is run for 254> Metropolis steps in
each equivalence class. Due to the long correlation length,
only every fifth step is considered and added to the set of
observed chains throughout all tests. Unless otherwise stated,
equivalence classes are seeded with a random chain consistent
with that syndrome and class. For each configuration of d and
p, syndromes are randomly generated and solved in order to
estimate the logical failure rate Py. The latter is the fraction
of all generated syndromes for which the randomly generated
chain that provides the syndrome is not in the most likely
equivalence class predicted by the decoder for that syndrome.
For d < 11, 10000 syndromes are solved; for d = 13, at
least 4000; and for d = 15, at least 2000. Error bars indicate
one standard deviation based on the number of sampled syn-
dromes and the mean logical failure rate.

As shown in Fig. 2, we find an approximate threshold for
depolarizing noise which is close to that of the MLDs for per-
fect syndrome measurements: py, = 18.5% [63—65]. Note that
for depolarizing noise, the XZZX code and the rotated surface
code are equivalent. For larger bias o =5, we find good
correspondence with the results using the MPS decoder as
implemented in Ref. [68,77], with a threshold near p &~ 30%,
as shown in Fig. 3(a). At p = 0.30 and o = 5, corresponding
to n = 18.3, the hashing bound [78] is in fact ppasn = 0.307,
confirming the exceptional nature of the XZZX code.

For very large bias o = 10000, results are expected to
be very close to those for o« = oo, i.e., pure Z noise, with a
threshold of 50%. For the latter, the following exact expres-
sion follows from the fact that there is only a single pure Z
operator (on one diagonal) that commutes with all stabilizers.
It is not part of the stabilizer group, i.e., it is a logical op-
erator, which implies that for every syndrome there are only
two possible error chains in two different equivalence classes.
Consequently, maximum-likelihood decoding implies that the
decoder will suggest the lighter of the two and will always fail
when the heavier chain occurs. For odd d (and p < 0.5), the
expression is

4 /d
Pra—oo(p)= ) (w)pw(l—p)d“’. (13)

w=[d/2]

Figure 3(b) shows good correspondence between the numeri-
cal data from the EWD decoder and this expression.
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FIG. 2. Performance of the EWD decoder for depolarizing noise.
(a) Logical failure rate P; as a function of physical error rate p for
depolarizing noise (¢ = 1) for the XZZX code and the rotated sur-
face code using the EWD decoder on several different code distances
d. The vertical blue line marks the approximate threshold at 18.2 %
. (b) Logical failure rate as a function of code distance for error rates
close to the threshold for depolarizing noise on the XZZX code. The
transition from decreasing to increasing failure rate with increasing
code distance indicates a threshold near an error rate p ~ 18%. The
number of syndromes for d > 15 is at least 200.

For the rotated surface code, we show in Fig. 2 results
for depolarizing noise that, as expected, coincide with those
for the XZZX code. In Fig. 4 we show results for o« =5,
compared to the MPS decoder. As expected for phase-biased
noise on the surface code and contrary to the XZZX code, the
threshold is reduced compared to depolarizing noise.

B. Specific syndrome example
1. Integer weights

To better illustrate the workings and performance of the
EWD decoder, it is useful to not only consider aggregate
results on the logical failure rates over many syndromes, but
to also look at individual syndromes. The example syndrome

Physical error rate p

FIG. 3. Performance of the EWD decoder for biased noise on
the XZZX code. The logical failure rate Py is plotted as a function
of physical error rate p for (a) moderately biased noise ¢ =5 and
(b) large bias @ = 10000 compared to (a) data obtained using the
MPS decoder as implemented in [77], with the vertical line indicating
the threshold at 30.5 %, and (b) exact results [Eq. (13)] for pure
phase-flip noise o = oo.

shown in the inset of Fig. 5(a) has the interesting property
that the most likely equivalence class may (depending on the
noise bias) change as the error rate is increased. We con-
sider a noise bias & = 2, where the weight of an error chain
depends on the number of X, Y, and Z errors according to
w = n; + 2(n, +ny).

Figure 5(a) shows the number of unique chains observed
through Metropolis sampling at an error rate psample = 0.3 for
25 x 5° Metropolis steps in each equivalence class starting
from a randomized initial chain in each class. There is a
single minimum-weight chain in class Z (wy = 10, N; = 1),
which will dominate the probability distribution at low error
rates, while at larger error rates the larger number of one-unit
heavier chains in class I (w; = 11, N = 12) will be more
important to decide most likely equivalence class, as seen in
Fig. 5(b). Here we also see that using only the most likely
chains in each class gives results that are in close correspon-
dence with those given by evaluating Pr based on all unique
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FIG. 4. Performance of the EWD decoder for moderately biased
noise o =5 on the rotated surface code. The logical failure rate
is plotted as a function of physical error rate, obtained with the
EWD and MPS decoders for several code distances. The error rate
used for sampling was pgmple = 0.3 for all code distances except
d = {13, 15}, which were sampled at psampie = 0.15. The vertical line
indicates the approximate threshold at p = 0.101.

observed chains, as well as by using the MCMC decoder of
Ref. [63].

As is clear from Fig. 5(b), the data allow for the evaluation
of the equivalence class probabilities for any error rate p. In
this sense, the decoder is error-rate agnostic. Notably, whereas
the EWD curves are smooth (being generated from the same
data), the MCMC results have large variations with error rate.
For the latter, each error rate corresponds to generating a
different Markov chain, and even though convergence crite-
ria are applied on the most likely class, we find substantial
variations in class probabilities. Even aggregated over 10 000
syndromes, the fluctuations are visible.

2. Noninteger weights

The previous example considered biased noise with o = 2,
i.e., an integer value, which implies that chain weights come
in well-separated integer steps. Given limited knowledge of
individual qubit noise biases, it may be reasonable to assume
depolarizing noise or some other integer « bias, especially
if the bias is large. Nevertheless, it is interesting to explore
the consequences of noninteger «. Figure 6(a) shows the
distribution of unique chains for the same syndrome [inset
of Fig. 5(a)] for an arbitrary fraction, o = 1.873, close to
o = 2. As expected, the bars of equal-weight chains are now
fractionalized, i.e., fewer chains now have the same weight.

As shown in Fig. 6(b), the EWD algorithm still gives the
correct equivalence class for low error rates and it qualitatively
captures the transition between class Z and class I, but at
an incorrect error rate (outside of the view of the figure). In
fact, for this syndrome, using only the most likely chains in
each class, it is clearly a better approximation to round o
to o = 2, as can be seen by comparing Figs. 5(b) and 6(b).
However, as seen from Fig. 7, which shows the logical failure
rate averaged over 10000 randomly generated syndromes at

N < <

10" 5

Unique chains per class Ng(w)

N

IIIIIIIIIIIIIIA
777
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100 .

10 11 12 13
Weight w
(b)
%
100% Class Method
1 — All
3 — X === EWD
=07 e,
5% _Y e MCMC

50%

Probability per class Pg

25%

:
T o e et ey P

0% | &= -

0 0.025 0.05 0.075 0.1
Physical error rate p

FIG. 5. Statistics of error chains obtained for a specific syn-
drome. (a) Number of unique error chains Ng(w) for biased noise
o =2, as a function of weight w and equivalence class E =
{I,X,Y,Z} for the syndrome on the d =5 XZZX code shown in
the inset. The data are obtained from Metropolis sampling of error
chains at an error rate of pgmple = 0.3 for 25 x 5% Metropolis steps.
Nonstriped bars show the lowest weights in each equivalence class.
Chains with w > 13 are not shown. (b) Probability of equivalence
class as a function of error rate for the syndrome in (a). Two different
methods are used to evaluate Eq. (9) from the observed unique chains
Ng(w), using only the most likely chains in each equivalence class
(EWD) and using all observed chains (All), compared to the MCMC
decoder, which is not based on identifying unique chains.

o = 1.873, decoded using the EWD at o« = 1.873 and 2, to-
gether with decoding using all identified chains, the difference
at the aggregate level is small. The syndrome considered here
as an example is thus an outlier.

As argued in Sec. I11, it is only when it is important to have
a compact representation of the equivalence class probabilities
for a syndrome (such as for possible deep-learning purposes)
that the EWD decoder using only the lowest-weight chains
serves a potential purpose. If this is not the intent, there is
no reason not to use all observed unique chains, regardless of
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FIG. 6. Statistics of error chains obtained for the syndrome in
the inset of Fig. 5(a) for a noninteger noise bias. (a) Number of
unique error chains Ng (w) for biased noise & = 1.873, as a function
of weight w and equivalence class E = {I, X, Y, Z}. Nonstriped bars
show the lowest weights in each equivalence class. (b) Probability of
equivalence class as a function of error rate using data from (a). The
methods are the same as in Fig. 5(b).

weight, to evaluate the relative class probabilities using the
first expression in Eq. (10).

C. Decoding efficiency

The number of stabilizers grows exponentially with the
code size d as 2¢° such that a brute force decoder aiming
to generate all error chains of a given syndrome will have
an exponential time complexity ¢ ~ 0(24"). As discussed in
Refs. [63,64], the time complexity of the MCMC decoder
using parallel tempering is superpolynomial in d. It should
be noted that this measure is based on convergence of the
algorithm, implying close to optimal maximum-likelihood de-
coding. If the aim only is to improve on heuristic methods
such as MWPM, the runtime can scale significantly better
with d. The single-temperature (ST) algorithm formulated in

0.75 Method e
—— MCMC
——- EWD
....... EWD (a — 2)
0.5

All

Logical failure rate Py

0.01
0.25 0
-0.01
0
0 0.2 0.4 0.6

Physical error rate p

FIG. 7. Comparison of decoding accuracy of different methods
for noninteger bias « = 1.873 on the XZZX code. The methods used
are the EWD decoder (i.e., accounting for only the lightest chains in
each class) with @ = 1.873 and 2, weighing in all observed chains
in each class (All), and the parallel-tempering (MCMC) decoder.
The inset shows relative variations, which do not display any sys-
tematic differences. The data are obtained by averaging over 10 000
syndromes for d = 5.

Ref. [64] is based on estimating the partition function (10) in
terms of the expectation value of the chain weight over a fixed
number of Metropolis steps number in each class, (w) g g. This
was found to significantly improve on MWPM failure rates at
the cost of an extra O(d?) factor for the runtime.

To study the time complexity of the EWD decoder we have
considered two different regimes for depolarizing noise, of
high error rates p = 0.15 and asymptotically low error rates.
For high error rates we compare the method to the MCMC
decoder using parallel tempering and to the aforementioned
ST decoder. As shown in Fig. 8, the convergence for mod-
erate code sizes is significantly more rapid than the MCMC
decoder, which we ascribe to the overhead of the latter from
parallel tempering. The ST algorithm, although it has similar
improved convergence as the EWD decoder, converges to a
worse logical failure rate. In fact, the ST algorithm has a
suboptimal threshold for depolarizing noise (inset of Fig. 7
in Ref. [64]) of between 15% and 16%.

For low error rates we have studied the time (in terms of
the number of Metropolis steps) required to identify a weight
Wmin = (d — 1)/2 chain for syndromes for which these are
the shortest possible chains. In the limit p — 0, the shortest
chains that can fail (given the MLD) have weight (d + 1)/2,
so establishing the time required to find weight-wy,, chains
gives a good measure of the time complexity for low error
rates. Specifically, we generate random error chains of weight
w = (d — 1)/2, deform them by a large number of random
stabilizers and logical operators to produce heavy chains in
all four equivalence classes, and then let the decoder find
unique chains in the four classes, stopping when a weight-
w = (d — 1)/2 chain is identified. The results are plotted in
Fig. 9, showing an approximate scaling t < O(d”). However,
there is an indication of superpolynomial behavior as d is
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FIG. 8. Convergence of the logical failure rate as a function of
the number of Metropolis steps executed on a fixed set of 10000
syndromes for three different decoders: our EWD decoder, the
MCMC decoder [63,64], and the single-temperature Monte Carlo—
based decoder of Ref. [64]. The number of attempts is normalized
with the number of equivalence classes (four) for the EWD and ST
decoders and with the number of parallel tempering levels (seven)
for the MCMC decoder. All algorithms are seeded with the en-
hanced MWPM solutions [64] based on Blossom V [79], giving
an initial logical failure rate of approximately 0.23. The syndromes
are generated on the standard (nonrotated) surface code with code
distance d =7, subject to depolarizing noise (¢ = 1) with error
rate p = 0.15. The sampling error rate for the EWD decoder is set
t0 Psample = 0.25. The inset shows the early convergence (using a
different random set of 20 000 syndromes).

increased, which may be consistent with the complexity dis-
cussed in Ref. [63] for the MCMC decoder.

The inset in Fig. 9 gives the distribution of the number of
steps required for d = 9, as an example, showing that for most
syndromes the lightest chain is easily found, while there is a
long tail of rarer syndromes for which it takes the decoder
significantly longer. The standard implementation of MWPM
using the Blossom algorithm on a complete syndrome graph
has a time complexity O(d®logd), which can be reduced
significantly in practice, for a realistic set of syndrome graphs,
and by reducing the number of neighbors, to O(d 2) [80,81].

It is quite clear that the EWD decoder is not an efficient
decoder compared to heuristic decoders such as MWPM and
union find. Nevertheless, as discussed in Sec. V B below (see
Table I), since it is a maximum-likelihood decoder, the EWD
decoder will provide lower logical failure rates.

V. DISCUSSION

A. Comparison with parallel-tempering-based decoders

As the implementation of the EWD decoder uses Metropo-
lis sampling of error chains similarly to the MCMC decoder
formulated in [63,64], a closer discussion of the similarities
to and differences from these decoders is motivated. The
probability of an equivalence class is the probability of an
error chain in the class given a syndrome s according to
Eq. (9). Using the Metropolis algorithm, a Markov chain of

10°4 — = 95% .,/«:
] 50% /
——_—— o JAT3
0 | Z 34,00 /.'/
) 10% 5 ~ 7
2 E
§ ]
S 103 3
S ]
s
102~E
0 12500 25000
3 5 7 9 11 13 15

Code distance d

FIG. 9. Estimated time complexity of the EWD decoder at
asymptotically low error rate based on the number of Metropolis
steps (¢) required to identify a weight w = (d — 1)/2 error chain for
randomly generated syndromes that are guaranteed to have a chain
with such weight. Shown is the maximum number of steps required
to find 95% and 50% of the lowest weight chains and fitted to sin-
gle exponents. The inset exemplifies the data for d = 9 (containing
2 x 10° syndromes) showing the number of syndromes versus the
number of steps the decoder takes to find the weight (d — 1)/2 chain.

M <« 2V*1 (4 times the number of chains in each class) error

chains {C;},i =1, ..., M, representing the true distribution
b1
Po= o, (14)
ZC:S(C):S Tic

is generated. The probability Pz = ) . Pc of the equiva-
lence class E is thus approximated by the relative number of
observed chains in E:

P ~ Z ziw (15)

i.C;eE

The Markov chain is generated by acting with random
stabilizers that deform the error chain C — C’ without chang-
ing the syndrome, with the new chain accepted in standard
fashion with probability min(1, ¢ /7). However, stabilizers
will not change the equivalence class, so in addition it is also
necessary to act with logical operators to generate chains in all
equivalence classes. Whereas the stabilizers are weight-4 (or

TABLE 1. Fraction of failed chains with weight w = (d + 1)/2
for the XZZX code and depolarizing noise, comparing MWPM (us-
ing [80]) and EWD. The relative fraction corresponds to the relative
asymptotic (p — 0) logical failure rate for the two decoders. Enough
chains are sampled such that the digits specified are precise within
one standard deviation.

d MWPM EWD
5 0.075 0.040

7 0.0086 0.0028
9 0.00073 0.00018
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-2) operators, the logical operators are weight d, which makes
these exponentially (with d) less likely to be accepted. A naive
implementation would thus require exponential computational
time to generate a Markov chain which is appropriately bal-
anced between the equivalence classes.

In order to deal with this problem, parallel tempering [82]
is employed in [63,64], in which chains are generated and
exchanged between several layers of the stabilizer code with
different error probabilities. The probability of accepting a
swap of chains C and C’ between layers with error rate 5 and
p' is given by

“we(P)me(p)

The error rates progress from the physical error rate to the
top layer where all error chains are assumed equally likely
such that proposed logical operators are always accepted.
For depolarizing noise p, = p, = p, = p/3, the interpolation
is straightforward, changing p from the physical value to
p =0.75 in the top layer [63]. For biased noise, we have
implemented an interpolation at constant ¢, with p, ranging
from the physical value to p, =1 in the top layer, where
the effective weight is irrelevant [83]. An alternative ap-
proach to account for the heavy logical operators in the Monte
Carlo sampling is to use Bennett’s acceptance-ratio method to
progress from high to low error rates, as discussed in Ref. [84].

The accuracy of the MCMC decoder depends crucially on
appropriately exploring all four equivalence classes through
parallel tempering. It is thus quite sensitive to the convergence
criteria. In particular, we have found that for low error rates the
decoder has quite poor accuracy. We interpret this as being
due to an inefficiency in finding the short-effective-length
error chains that will dominate the class probabilities. At low
error rates, i.e., low temperatures, the exploration effectively
becomes frozen into a small nonrepresentative part of the
configuration space.

In contrast, the EWD decoder is based on explicitly eval-
vating the contribution of the most likely chains. In order
to find the chains, we use Metropolis sampling, but without
parallel tempering. Since the algorithm is based on an explicit
identification and count of unique chains, there is no need to
find a properly class-balanced set of chains. In addition, even
within a class, there is no need that the Markov chain actually
follows the distribution corresponding to the physical error
rate. As long as the effective weight of the chains is conserved,
i.e., fixed o, one may use a different error rate to explore and
identify the chains, allowing for more efficient exploration.
From a computational perspective, the EWD algorithm can
also be run efficiently within memory constraints by using a
hash-table data structure for identifying chains as unique, as
there is no need to store the actual chains, but only the total
number of unique chains according to weight.

B. Comparison with minimum-weight-matching algorithms

The information used in the EWD decoder is the weight
and number of the most likely error chains in each equivalence
class. Standard minimum-weight-matching decoding has two
severe shortcomings in this respect. First, bit- and phase-flip
errors are treated as separate graph problems. This amounts

to measuring the weight using a model of uncorrelated errors
(t; =y =1 and «, = 2) such that the suggested lowest-
weight chain(s) may not be the actual lowest-weight chain(s).
Second, degeneracy of chains with the same weight is not
considered. The latter is crucial for the high performance of
the EWD decoder, as without this information, syndromes are
always decoded according to the p — 0 class prediction.

To quantify the effect of the first issue (incorrect weight
of chains containing Y'), we have studied the failure rate for
chains of weight (d + 1)/2 for depolarizing noise for the
XZZX code (with equivalent results for the rotated surface
code). These are the lightest error chains that will give failure,
since for a small fraction of such chains there is a (d — 1)/2-
weight chain which is in another equivalence class. These
chains will subsequently give the asymptotic failure rate at
low p, Py ~ pt1/2 with a prefactor that is given by the
number of failing chains. Table I shows the results of this
study. The MWPM algorithm fails on a significantly larger
fraction of these chains, due to overestimating the weight of
chains containing Y errors.

Using Metropolis sampling as in this work eliminates both
the incorrect weight of chains and the failure to take into
account degeneracy, but is computationally expensive. There
are also a number of works which provide improvements
to minimum-weight-matching schemes by reweighting graph
edges to better reflect the actual error rates and account for
degeneracy of chains. We note in particular the method to
enhance MWPM presented in Ref. [36], which addresses both
of these issues, using multiplicity counts and belief propa-
gation on error rates, resulting in high thresholds for both
uncorrelated and depolarizing noise on the surface code.

VI. CONCLUSION

We have implemented a decoding algorithm for topological
stabilizer codes, which is based on evaluating the most likely
equivalence class of error chains for a given syndrome, based
on the effective weight and number of most likely chains
in each class. This effective weight and degeneracy decoder
is error-rate agnostic in the sense of being invariant under
changes that preserve the weight of error chains, correspond-
ing to fixed relative bias of phase- to bit-flip errors. It thus
represents a type of decoder which is intermediate between
maximum-likelihood decoders, which work at a fixed error
rate, and heuristic decoders, e.g., minimum-weight matching,
which are insensitive to the error rate.

While related to the Markov-chain Monte Carlo-based
decoder of Refs. [63,64], using the Metropolis algorithm to
sample error chains, we find that the EWD decoder is sig-
nificantly more efficient, flexible, and has better convergence
properties. The reason for these advantages is that the error-
chain sampling can be done independently in the equivalence
classes and at a higher error rate than the physical, which facil-
itates efficient exploration. A drawback of the same freedom
is that the results may be sensitive to the sampling error rate.
We have found that it is useful to think of the sampling rate
as a hyperparameter and tune it for best results. For optimal
performance the decoder is limited to moderate code sizes
or low error rates, for which the distribution of error chains
is dominated by the most likely chains. However, for large
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code sizes the Metropolis sampling becomes prohibitively
expensive such that the limitations may not be very important
for practical purposes.

We have found that the EWD decoder can be used as a
relatively fast and flexible maximum-likelihood decoder for
exploring novel stabilizer codes [85]. In addition, we argue
that the compact data representation, where, for a given error
bias, each syndrome is described by a small set of numbers
(weight and degeneracy of most likely chains in each class),
can be suitable for supervised deep-learning approaches that
would allow for fast decoding while having flexibility with
respect to the overall error rate.

Future work should also further explore the inclusion of
circuit level noise leading to imperfect stabilizer measure-
ments [30,64], which can be incorporated into the algorithm
by appropriately including the weight of faulty measurement
events on a three-dimensional lattice. Even though the EWD

decoder is slow compared to matching or union-find decoders
and not practical for large codes, it may be useful for establish-
ing approximate maximum-likelihood thresholds to provide
upper bounds on code performance.

The software for running the EWD and MCMC decoders is
available on the repository [83], while the implementation of
the MPS decoder used in this work is available from Ref. [77].
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