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Abstract
At low temperatures, electrons in a superconductor exhibit pairing correlations
that result in a macroscopic, phase-coherent ground state. This leads to pecu-
liar electromagnetic properties such as the flow of dissipationless charge currents
and expelling of external magnetic fields. This thesis investigates superconduc-
tors that are brought out of equilibrium through injection of charge and heat
from normal-metal reservoirs. In particular for unconventional superconductors,
where the pairing correlations have a non-trivial orbital symmetry, the resulting
non-equilibrium is thus far only partially explored. A better understanding is
desirable both from a fundamental point of view as well as for applications in
superconducting devices.
As a step in this direction, we study transport in mesoscopic superconducting

hybrid structures with arbitrary mean free path using the quasiclassical theory
of superconductivity. In order for fundamental conservation laws to be satisfied,
a description of the non-equilibrium state requires a fully self-consistent solution
of the underlying equations. We present strategies on how such a self-consistent
solution can be achieved. Using these techniques, we investigate the non-linear
steady-state response of both conventional and unconventional superconductors
to an external voltage- or temperature-bias. Specifically, we study charge trans-
port in a conventional s-wave and an unconventional d-wave superconductor un-
der voltage bias, the thermoelectric effect due to elastic impurity scattering in
both systems, and the influence of spectral rearrangements on a suggested sub-
dominant s-wave order-parameter component in d-wave superconductors. Lastly,
we introduce a finite element method for the quasiclassical theory. It can be used
to study transport in two or more dimensions where geometric effects such as
current focussing and dilution can occur. We present exemplary results based on
this method for equilibrium transport in two dimensions.

Keywords: unconventional superconductors, transport theory, nonequilibrium
superconductivity, quasiclassical theory, finite element methods
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Chapter

1 Introduction

The aim of this chapter is to give some background to the work in this thesis.
What is a superconductor, and how can they be unconventional? What are meso-
scopic superconductors in non-equilibrium interesting? We will try to answer
these questions in the following.

1.1 Conventional superconductivity
At temperatures below a critical temperature Tc a range of metals can undergo a
phase transition and become superconducting. The defining experimental conse-
quences of this new phase of matter are the ability to carry dissipationless currents,
as first discovered by Kamerlingh-Onnes[2, 3], and the expelling of external mag-
netic fields, also known as the Meissner effect[4]. The theoretical explanation for
these observations was developed in the form of the Bardeen-Cooper-Schrieffer,
or BCS, theory[5, 6]. The key ingredient of the theory is the appearance of
non-vanishing pairing correlations for electrons around the Fermi surface as con-
sequence of an effectively attractive interaction. In the original theory this attrac-
tive interaction was the result of electron-phonon interaction. Within the pairing
theory of BCS, the interaction is assumed to be uniform in momentum space and
between electrons of opposite spin. As a result a complex scalar order parameter
is formed at Tc:

∆ = |∆|eiχ = V
∑
k
〈ck,↑c−k,↓〉, (1.1)

where V measures the strength of the net attractive interaction. The BCS ground
state of the system is then a condensate of correlated electron pairs, with a coher-
ent phase on the scale of the so-called coherence length ξ0. While the underlying
equations describing the system are invariant under transformations of the form
ck,↑(↓) → ck,↑(↓)e

iα the order parameter is evidently altered by such a transfor-
mation. A superconductor is thus said to spontaneously break the U(1) gauge
symmetry[7]. Superconductors that break this only symmetry are referred to as
conventional superconductors.

1



2 Chapter 1. Introduction

1.2 Unconventional superconductivity & cuprates
By definition, unconventional superconductors spontaneously break U(1) gauge
symmetry and additional symmetries after the phase transition[7, 8]. The order
parameter and the pairing correlations will typically show traces of this broken
symmetry, so we generalize Eq. (1.1) to allow for a non-trivial dependence on the
momentum k,

∆k = |∆0|η(k)eiχ, (1.2)

where η(k) is the orbital basis function characterizing the broken symmetry of
the unconventional superconductor. Signs of such unconventional pairing were
first discovered in He3[9, 10], heavy-fermion superconductors[11–13] and organic
superconductors[14].

Figure 1.1:
Unit cell in YBCO with
copper in green, oxygen
in grey, barium in orange
and ytrium in purple.

More relevant for this thesis, however, are the so-called
high-temperature superconductors (HTSC) that can ex-
hibit much higher values of Tc at ambient pressure than
all known conventional superconductors. After the initial
discovery of an HTSC by Bednorz and Müller in 1986[15,
16], a range of superconducting materials containing cop-
per oxides, such YBCO[17] and BSSCO[18], were discov-
ered. The common denominator of such cuprates is the
presence of copper oxide planes. A sketch of the unit
cell of YBCO is shown in Fig. 1.1 as an example for the
crystal structure in such materials.
A large body of experimental evidence points towards

a non-trivial d-wave symmetry, or dx2−y2 form of the pair-
ing, in such materials, possibly in combination with so-
called sub-dominant pairing with a lower Tc[19–22]. The
momentum dependence of the dx2−y2 basis function is
shown in comparison to the conventional s-wave case in
Fig. 1.2. In this case, the additional broken symmetry is
that of an (approximate) four-fold rotational symmetry
of the crystal lattice in such materials.

Figure 1.2:
Comparison of the momentum-
dependence of the orbital basis
function η for the s-wave [left] and
d-wave [right] case.
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It is an important open question within condensed-matter physics what un-
derlying mechanism causes superconductivity in this class of materials. An exact
determination of the symmetry of the order parameter in Eq. (1.2), or equivalently
of the pairing correlations, is an important step on the way toward determining
the underlying mechanism of the pairing. One possible way to investigate it
is to probe the response of an SC to external perturbations. Investigating the
non-equilibrium effects in an SC can thus be used a tool to answer questions of
fundamental physical interest, such as that of the symmetry of the pairing in
unconventional superconductors.

1.3 Nonequilibrium in (mesoscopic) superconductors
A superconductor can be driven out of thermal equilibrium into a non-equilbrium
state by, for example, electro-magnetic radiation or injection of charge or heat
from other materials. This non-equilibrium can be an essential part of the oper-
ating principle of a device, such as in superconducting bolometers that are used
for Terahertz radiation detection[23] or in superconducting caloritronics[24]. In
other instances an induced non-equilibrium might be an due to unwanted envi-
ronmental influences that should be actively suppressed, for example quasiparticle
poisoning in superconducting qubits[25, 26]. In either case it is desirable to be
able to have some degree of control over the non-equilibrium state in a supercon-
ducting device. Inherently this requires an understanding of the physics at play.
In conventional superconductors, this non-equilibrium state has largely been in-
vestigated for temperatures close to Tc[27] or in the limit of effectively diffusive
transport, where approximations can simplify the theoretical description[28, 29].
The non-equilibrium regime in conventional superconductors is less well-studied
at very low temperatures T � Tc and in mesoscopic systems, despite its relevance
for current-day superconducting devices[30], Even less is known about the non-
equilibrium state in unconventional superconductors such as the d-wave cuprates.
The term mesoscopic refers to a length scale that is somewhere “in the middle”,

in this case in between the scale of atoms, and hence quantum mechanics, and
that of bulk materials that we might describe more in terms of classical physics.
For a condensed-matter system this means that it has to be large compared to
the Fermi wavelength λF of the given material in at least one spatial dimension.
Typical values of λF are on the order of tens of nanometers. At the same time,
the system should be smaller than the phase coherence length lφ that is on the
order of several hundred nanometers at sub-Kelvin temperatures[32]. The physics
in systems on this intermediate length scale can then be described in terms of
individual particles that still exhibit quantum-mechanical effects such as super-
conducting coherence. In the absence of inelastic scattering transport on such
lengthscales strongly depends on the ratio of the mean free path ` to the system
size L. The main interest of this thesis was in mesoscopic devices in the regime
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of ` ≈ L, where transport is neither fully ballistic nor fully diffusive.
As we will see later in this thesis, a d-wave superconductor is strongly affected

by impurities. As a result approximations made to study the non-equilibrium state
in conventional superconductors, such as that of fully diffusive transport, cannot
be made. Studying the non-equilibrium in unconventional superconductors thus
requires considerable conceptual and numerical effort. The work presented in this
thesis is trying to face that challenge and develop solution strategies and an under-
standing of the behaviour of unconventional superconductors out of equilibrium.
Our investigations are restricted to systems consisting of a single superconducting
region. In this case a stationary solution can be established[31]. Time-dependent
non-equilibrium phenomena are beyond the scope of this thesis, although this is
not a restriction of the quasiclassical theory.

1.4 Thesis overview
The remainder of this thesis is structured as follows.
In Chapter 2, we give an overview over the quasiclassical theory of supercon-

ductivity. Since we are interested in studying non-equilibrium phenomena, we
introduce concepts such as modes of the non-equilibrium distribution that are
useful to study non-diffusive superconductors out of equilibrium .
This is followed, in Chapter 3, by a presentation of solution strategies in one and

two dimension that were used to obtain the results in the appended papers. Specif-
ically, we introduce a stepping method that is natural to use in one-dimensional
systems. As an alternative approach to such a stepping method in higher dimen-
sions, we introduce a finite element method for the underlying transport equations
of quasiclassical theory.
In Chapter 4, we briefly discuss the different effects of non-magnetic impurities

on conventional s-wave and unconventional d-wave superconductors, as well as
the surface physics in d-wave superconductors, in equilibrium.
In the following Chapter 5, an introduction to the results of the appended pa-

pers on non-equilibrium and equilibrium transport in superconductors is given.
Specifically, we study the self-consistent response of both s-wave and d-wave SCs
to an external voltage bias or an external temperature bias. Additionally, we in-
vestigate the effect of a voltage bias on a proposed sub-dominant order parameter
near pair-breaking interfaces in d-wave SCs. Lastly, we briefly discuss two samples
problems for equilibrium flow in two dimensions.
The thesis concludes with a concise paper overview in Chapter 6, and a con-

clusion and outlook in Chapter 7.



Chapter

2 Quasiclassical theory

In this chapter, we introduce the concept of Green’s functions and how they
can be used to describe superconducting systems, both in equilibrium and non-
equilibrium, by the Gor’kov equation. We proceed to describe the quasiclassical
approximation which leads to the quasiclassical theory of superconductivity. This
theory forms the “toolbox” for the work in this thesis and we summarize the
underlying equations and definitions.

2.1 Green’s functions & the Gor’kov equation
In condensed-matter theory and statistical physics, we often try to describe many-
body systems with a macroscopically large number of particles N ≈ 1023. As
a quantum-mechanical starting point such a system can be described in terms
of its Hamiltonian H. To obtain any physical quantity of interest – say the
spectrum, charge conductances, or response to a magnetic field – we “only” have
to solve the Schrödinger equation for the N -particle wave function Ψ. Since N
is typically too large for many-body systems there are intractably many degrees
of freedom and a solution of the Schrödinger equation itself is impossible. To
solve this problem alternative mathematical descriptions of many-body systems
have been derived. They rely on “appropriate” approximations to discard some of
information contained in Ψ in order to make the problem tractable. The theory
used in this thesis uses so-called Green’s functions that contain less information
than Ψ but still allow for the calculation of observables within the accuracy of the
approximation[34]. We briefly outline the underlying theory, more details can be
found in [35–37]. For fermions, the retarded (R), advanced (A), and Keldysh (K)
single-particle Green’s functions are defined as

GR(rt; r′t′) ≡ −iθ(t− t′)
〈{

Ψ(r, t),Ψ†(r′, t′)
}〉
, (2.1)

GA(rt; r′t′) ≡ iθ(t′ − t)
〈{

Ψ(r, t),Ψ†(r′, t′)
}〉
. (2.2)

GK(rt; r′t′) ≡ −i
〈{

Ψ(r, t),Ψ†(r′, t′)
}〉
, (2.3)

with two positions r, r′ and times t, t′, and {A,B} denoting the anticommutator.
In the Heisenberg picture the quantum-mechanical field operators Ψ(r, t) and

5



6 2 Quasiclassical theory

Ψ†(r, t) are, for example,

Ψ(r, t) ≡ e−iHtψ(r)eiHt, (2.4)

and similarly for Ψ†(r, t). In equilibrium at finite-temperature T , the 〈. . . 〉 in
Eq. (2.3) is a statistical average, with β = 1/kBT and Tr a sum over states, given
by 〈Â〉 ≡ Tr e−βHA/(Tr e−βH). We interpret GR and GA in Eqs. (2.1)–(2.2) as
propagation probabilities. What is the likelihood of finding a particle at position r
at time t if it was inserted at r′ at time t′? From the above definitions the retarded
(advanced) function is only non-zero if t > t′ (t < t′) holds. The retarded (ad-
vanced) function thus describes propagation forward-in-time (backward-in-time),
GK in Eq. (2.3) describes how the occupation of states propagates. The above
functions are “single-particle” Green’s functions. The time evolution of Ψ(r, t) and
hence GR,A,K is determined by the full Hamiltonian, including all many-body ef-
fects by Eq. (2.4). In practice this is just as intractable as solving the Schrödinger
equation. The advantage of Green’s function methods is that we can start from a
solvable problem, for example non-interacting free electrons with a Hamiltonian
H0 which gives a “free” Green’s function GR

0 . To include the interaction V we
split the full Hamiltonian into H = H0 + V , this leads to a Dyson equation for
the full Green’s function GR,

GR(rt; r′t′) = GR
0 (rt; r′t′) +

∫
dr′′GR

0 (rt; r′′t′′)V (r′′, t′′)GR(r′′t′′; r′t′). (2.5)

Solving this equation gives then a Green’s function GR that includes the effects
of the interaction V . By inserting GR on the right-hand side, Eq. (2.5) gives an
infinite series that might be impossible to sum up. By representing the series in
the form of Feynman diagrams, it is often possible to gain some intuition for the
approximations that are physically appropriate. If a summation is possible, the
effects of the a given interaction can be expressed through a self-energy Σ that
alters GR. Once they are obtained single-particle Green’s functions can be used
to obtain single-particle physical observables. The charge current, for example, is
given by an integral over the spectral current density,[36]

ej(ε) ≡ − e

2m
(
~∇− ~∇′

) [
GK(r; r′)−

(
GR(r; r′)−GA(r; r′)

)]∣∣∣
r=r′

. (2.6)

The time argument t in Eqs. (2.1) - (2.4) can, in equilibrium, be replaced by an
“imaginary time” τ = it. The equilibrium, imaginary-time Green’s functions is
then

Gσ,σ′(rτ ; r′τ ′) ≡ −
〈
TτΨσ(r, τ),Ψ†σ′(r′, τ ′)

〉
, (2.7)

where σ, σ′ label the spin orientation and Tτ is the “time”-ordering operator.
Gor’kov first introduced two additional Green’s functions[38], referred to as anoma-
lous Green’s functions or Gor’kov functions.
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They are defined, analogously to Eq. (2.7), as

F †σσ′(rτ ; r′τ ′) ≡
〈
TτΨ†σ(r, τ),Ψ†σ′(r′, τ ′)

〉
, (2.8)

Fσσ′(rτ ; r′τ ′) ≡ 〈TτΨσ(r, τ),Ψσ′(r′, τ ′)〉 . (2.9)

The label anomalous indicates that they are zero in the normal state, but non-
zero in superconductors. The two functions F and F † are thus referred to as
superconducting correlations. From the additional definition

∆σσ′(r) ≡ |λ|Fσσ′(r, r), (2.10)

it is clear that a non-zero superconducting order parameter ∆ is indicates the pres-
ence of such superconducting correlations. We now define a Nambu, or particle-
hole, space matrix Ĝ

Ĝ(rτ ; r′τ ′) ≡
(
G(rτ ; r′τ ′) F (rτ ; r ′τ ′)
−F †(rτ ; r′τ ′) G(rτ ; r′τ ′)

)
, (2.11)

where G is the particle-hole conjugate of G. The equation of motion for this
matrix is the Gor’kov equation[38],

(
τ̂3
∂

∂τ
+ Ĥ − Σ̂

)
Ĝ(rτ ; r′τ ′) = 1̂δ(r− r′)δ(τ − τ ′), (2.12)

where

Ĥ =
(

p2/(2m)− µ −∆
−∆∗ p2/(2m)− µ

)
, (2.13)

p = −i~∇ is the momentum operator, τ̂3 is the third Pauli matrix in Nambu
space, and Σ̂ is a self-energy matrix that describes the effects of interactions, as
discussed above. In the conjugate equation, all derivatives instead act on the
primed coordinates and time, it reads

Ĝ(rτ ; r′τ ′)
(
−τ̂3

∂

∂τ ′
+ Ĥ′ − Σ′

)
= 1̌δ(r− r′)δ(τ − τ ′), (2.14)

where Ĥ′ and Σ′ are obtained by replacing r → r′ and p → p′ in Eq. (2.13).
A solution of the Gor’kov equation would give the full Green’s function for a
superconductor and allow the calculation of observables. In practice the Gor’kov
function contains still “too much” information which lead to the development of
the quasiclassical approximation.
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2.2 Quasiclassical approxiation & Eilenberger
equation

Eilenberger[39], and separately Larkin and Ovchinnikov[40], argued that most
relevant excitations in a superconductor happen in a small energy shell around
the Fermi surface. This is effectively an expansion in a small parameter, namely

∆
EF
� 1. (2.15)

For conventional superconductors this ratio is on the order of 10−3, for unconven-
tional ones it usually on the order of 10−2−10−1. Physical observables, such as the
charge current in Eq. (2.6), involve taking the limit of ~r → ~r ′ after differentiation
in real space representation. This corresponds to a momentum integration in the
momentum-space representation. The quasiclassical approximation then consists
in replacing such momentum integrations in the spirit of

d3p

(2π~)3 ≈ dξp
dΩ~p

(2π~)3vF
, (2.16)

where ξp is the dispersion relation in the normal state and vF is the Fermi velocity.
The quasiclassical Green’s functions are then obtained by integrating the full
Green’s function G over ξp,

g(p̂) ≡
∫ dξp
πi
Ĝ(~p), (2.17)

implicitly assuming that Ĝ is peaked at |p| = pF, such that the resulting function
ĝ only depends on the orientation of the momentum vector on the Fermi sphere,
p̂, while the magnitude of the momentum is assumed to be equal to the Fermi
momentum pF . This procedure then gives an equation of motion for the (retarded)
quasiclassical Green’s function, in the steady state it reads

i~vF · ∇ĝR =
[
ετ̂3 − ĥR, ĝR

]
= 0. (2.18)

The missing normalization, due to the trivial right-hand side, was found by Eilen-
berger, and Larkin and Ovchinnikov, to be

(ĝR) = −π2. (2.19)

The condition Eq. (2.15) is equivalent to assuming the superconducting coher-
ence length, the natural lengthscale of superconducting phenomena,

ξ0 ≡
~vF

2πkBTc
, (2.20)
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Figure 2.1: The quasiclassical Green’s
function (red) describes the envelope of
the atomic-scale oscillations of the Gor’kov
Green’s function (green).

is much larger than the Fermi wave length λF of a given material, ξ0 � λF[41].
Pictorially, we can imagine that the quasiclassical Green’s function neglects fast
oscillations on the atomic scale and instead describes the envelope of the oscil-
lations, as seen in Fig. 2.1. As a result, the quasiclassical theory is not valid on
atomic scales, resulting in mismatches at atomically sharp surfaces that have to
be treated in separate boundary conditions, see Sec. 2.3.3.
In the generalization of Eq. (2.18) to the non-equilibrium case, due to Eliash-

berg[43] and Larkin and Ovchinnikov[44], the full quasiclassical Green’s function
ǧ becomes a two-by-two matrix in the so-called Keldysh space. It can be written
as

ǧ(pF,R, ε) =
(
ĝR(pF,R, ε) ĝK(pF,R, ε)

0 ĝA(pF,R, ε)

)
. (2.21)

The retarded and advanced components, ĝR and ĝA, fully determine the spectrum
of the system. The remaining Keldysh component ĝK then contains all informa-
tion about the occupation of states. Throughout this thesis, we will consider
systems in the time-independent steady state and note that the more general ex-
pressions for time-dependent phenomena can be found in, e.g., Refs. [42, 45]. In
the time-independent case ǧ satisfies the equation of motion

i~vF · ∇ǧ +
[
ετ̂31̌− ȟ, ǧ

]
= 0, (2.22)

where [Ǎ, B̌] is commutator between matrices Ǎ and B̌, ε is an energy, vF is a
Fermi-velocity vector, and ȟ is a self-energy matrix in Keldysh space. It has a
structure correspdonding to that of ǧ,

ȟ(pF,R, ε) =
ĥR(pF,R, ε) ĥK(pF,R, ε)

0 ĥA(pF,R, ε)

 . (2.23)

Eq. (2.22) has be combined with the normalization condition

ǧǧ = −π21̌, (2.24)

which gives two independent conditions

ĝRĝR = ĝAĝA = −π2, ĝRĝK + ĝKĝA = 0 (2.25)
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The components of ǧ and ȟ are in turn matrices in Nambu, or particle-hole, space.
Their elements are labelled as

ĝR,A =
(
g f

f̃ g̃

)R,A

ĝK =
(
g f

−f̃ −g̃

)K

. (2.26)

The diagonal elements gX and g̃X are the propagators for electron-like and hole-
like quasiparticles, while the off-diagonal elements fX and f̃X describe supercon-
ducting electron-hole correlations. The self-energy matrix ȟ has the elements

ĥR,A =
(

Σ ∆
∆̃ Σ̃

)R,A

ĥK =
(

Σ ∆
−∆̃ −Σ̃

)K

. (2.27)

Self-energies describe effects such as (in)elastic impurity scattering, electron-electron
interaction, or spin-orbit coupling. For the retarded and advanced components,
the diagonal elements Σ and Σ̃ are quasipartice self-energies that shift and broaden
quasiparticle states, while the off-diagonal elements ∆ and ∆̃ affect the supercon-
ducting coherence. The Keldysh selfenergies, in contrast, describes the effects
on the occupation of interaction with quasiparticle states (ΣK) or the condensate
(∆K).
All elements of ĝX and ĥX are, generally, two-by-two matrices in spin space.

We use σ0 and σ1/2/3 to denote the unit matrix and the three Pauli matrices in
spin space, respectively, and define a vector σ ≡ (σ1, σ2, σ3). The spin structure
for the retarded and advanced functions can then written as

ĝR,A =
(

g0σ0 + g · σ (f0σ0 + f · σ)iσ2
iσ2(f̃0σ0 − f̃ · σ) g̃0σ0 − σ2g̃ · σσ2

)R,A

, (2.28)

see also Ref. [46]. We will return to the spin structure of the Keldysh component
in Sect. 2.5.
Lastly, we note that a central symmetry within quasiclassical theory is particle-
hole conjugation that can be expressed as the “tilde”-symmetry

A(ε,pF,R) = A∗(−ε∗,−pF,R). (2.29)

2.3 Ricatti parametrization & distribution functions
Any solution to Eq. (2.22) has to satisfy the normalization condition, Eq. (2.24).
This can be guaranteed by the usage of appropriate parametrizing functions for
the elements of ǧ. For the retarded and advanced elements ĝR and ĝA, one such
parametrization uses the so-called coherence amplitudes γ and γ̃[47–49]. Their
physical interpretation is that of a local probability of conversion from hole to
electron (γ) or electron to hole (γ̃)[50].
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The retarded component in Eq. (2.26) can be written as

ĝR = −2πi
(
G F
−F̃ −G̃

)R

+ iπτ̂3, (2.30)

where

GR ≡ (1− γRγ̃R)−1, FR ≡ GRγR =
(
1− γRγ̃R

)−1
γR. (2.31)

Note that the latter two functions are fully determined by the γ and γ̃. An
analagous expression exists for the advanced element ĝA. Starting from Eq. (2.22)
one can derive transport equations for γ and γ̃, they read

(i~vF · ∇+ 2ε) γR,A =
(
γ∆̃γ + Σγ − γΣ̃−∆

)R,A
. (2.32)

(i~vF · ∇ − 2ε) γ̃R,A =
(
γ̃∆γ̃ + Σ̃γ̃ − γ̃Σ− ∆̃

)R,A
. (2.33)

For a spin-degenerate, spin-singlet superconductor, where ∆ = ∆0iσ2, the bulk
solution is

γR = γR
bulkiσ2 = −∆0iσ2

ε− (Σ− Σ̃)/2 + i
√

∆0∆̃0 − (ε− (Σ− Σ̃)/2 )2
, (2.34)

where ε has a small positive imaginary part for the retarded function. Eqs. (2.32)
– (2.33) are so-called Ricatti equations and well-studied in literature[59]. An
important property of Ricatti equations is that knowledge of a single particular
solution – for example the above bulk solution – allows the construction of a
general solution, we will return to this in Sec. 3.2.1.
The Keldysh component ĝK is similarly parametrized in terms of the coherence

functions γ and γ̃ and two distribution-like functions x and x̃,

ĝK = −2πi
(
X Y
Ỹ X̃

)
≡ −2πi

(
G F
−F̃ −G̃

)R (
x 0
0 x̃

)(
G F
−F̃ −G̃

)A

, (2.35)

where GA,FA etc. are obtained by replacing the retarded functions with advanced
ones in Eq. (2.31). The distribution function x itself then satisfies a variant of
the Boltzmann equation that includes the effects of superconducting coherence.
In the time-independent steady state it reads

i~vF · ∇x−
(
γ∆̃ + Σ

)R
x−x (∆γ̃ − Σ)A

= −γRΣ̃Kγ̃A + ∆Kγ̃A + γR∆̃K − ΣK. (2.36)

The directional derivative vF · ∇ in the equations for both γ and x indicates
that they are transport equations. They thus have to be solved along trajectories
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parallel to the given direction vF. For a trajectory starting at r0, the spatial
coordinate r of solutions can then be parametrized by a scalar parameter ρ as
r = r0 + ρv̂F . In order to obtain stable solutions, it is important for the equation
is solved from the start point to the end point of a given trajectory for γR, γ̃A, and
x. The remaining functions γ̃R, γA, and x̃ have to be integrated in the opposite
direction.
In this thesis, only systems with a cylindrical Fermi surface in at most two

dimensions are considered, the Fermi surface is then effectively a circle with radius
kF. For transport along a unique spatial direction x, we then parametrize the
Fermi velocity vector vF using a single parameter ϕF via

vF =
(
vxF
vyF

)
= vF

(
cosϕF
sinϕF

)
(2.37)

For later usage, we then define the Fermi surface average of a function A as

〈A〉FS (. . . ) ≡
2π∫
0

dϕF

2π A(ϕF, . . . ), (2.38)

where the . . . indicate dependencies on other variables such as position or energy.
In addition, we define partial Fermi-surface averages

〈A〉±(. . . ) ≡
2π∫
0

dϕF

π
A(ϕF, . . . )Θ(± cosϕF). (2.39)

The Heaviside step function Θ(± cosϕF) equals unity if the x component of vF,
see Eq. (2.37), is positive (+) or negative (-), and zero otherwise. Clearly,

〈A〉FS =
〈A〉+ + 〈A〉−

2 , (2.40)

by the choice of normalization in Eq. (2.39) in comparison to (2.38).

2.3.1 Modes of the nonequilibrium distribution
The parametrization of ĝK by means of the distribution x, as in Eq. (2.35), is not
the only possible choice. Another option is that in terms of a distribution matrix
f̂ with elements

f̂(ε,pF,R) ≡ f1(ε,pF,R)1̂ + f3(ε,pF,R)τ̂3

=
(
h(ε,pF,R) 0

0 −h̃(ε,pF,R)

)
, (2.41)
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where h and h̃ are real functions. We will, for now, assume spin degeneracy which
gives the elements of f̂ a trivial spin structure. In terms of f̂ , the matrix ĝK is
written as

ĝK = ĝRf̂ − f̂ ĝA. (2.42)

This parametrization was originally introduced by Larkin and Ovchinnikov[40].
We refer to the two functions

f1(ε,pF,R) ≡ h(ε,pF,R)− h̃(ε,pF,R)
2 , (2.43)

f3(ε,pF,R) ≡ h(ε,pF,R) + h̃(ε,pF,R)
2 . (2.44)

as energy-like (f1) and charge-like (f3) modes. They can be used to describe
different types of non-equilibrium imbalances that can be induced in a system.
The charge-like mode is related to a charge imbalance caused by a difference in
occupation of electron and holes. The energy mode, in contrast, captures an
excess population of equally many electrons and holes that can be related to a
higher effective temperature. By using the tilde symmetry, Eq. (2.29), we find

f1(ε,pF,R) = −f1(−ε,−pF,R), f3(ε,pF,R) = f3(−ε,−pF,R). (2.45)

The functions can can be seen as momentum-resolved generalizations of the so-
called energy and charge modes used in the theory of diffusive superconductors[27].
In the following we suppress the explicit arguments (ε,pF,R) for brevity.
One benefit of the reformulation in terms of f̂ is that it allows for easier interpre-

tation of the results. For example, the non-equilibrium distribution of electron-like
quasiparticles is simply given by

fe ≡
1− h

2 = 1
2 (1− f1 − f3) . (2.46)

The hole-like quasiparticle distribution is similarly related to h̃. In equilibrium,
h is simply given by

heq(ε, φ, T ) = tanh ε− eφ2kBT
, (2.47)

so that fe reduces to a Fermi-Dirac distribution at temperature T and electro-
chemical potential µ = eφ.
Since ĝR,A are traceless[50], Eq. (2.41) implies that most non-equilibrium ob-

servables are fully determined by one of the two modes alone, see also Sec. 2.5. It
can thus also be illuminating to study the modes themselves or (partial) Fermi-
surface averages. The full Fermi-surface averages are simply given by

fL(ε,R) ≡ 〈f1(ε,pF,R)〉FS , fT(ε,R) ≡ 〈f3(ε,pF,R)〉FS . (2.48)
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Here, the labels L and T refer to to the original nomenclature of longitudinal and
transverse mode for diffusive superconductors. They are also referred to as the
energy and charge mode, respectively. As a result of the momentum average, the
(anti)symmetry in Eq. (2.45) reduces to fL (fT) being an odd (even) function of
energy.
For transport that is not fully diffusive, partial Fermi-surface averages for only

right-moving (left-moving) quasiparticles can be of interest as well. In order to
obtain quantities that have the same energy symmetry as the full averages in
Eq. (2.48), we define the combinations

f1→ =
〈h〉+ −

〈
h̃
〉
−

2 , f1← =
〈h〉− −

〈
h̃
〉

+

2 , (2.49)

f3→ =
〈h〉+ +

〈
h̃
〉
−

2 , f3← =
〈h〉− +

〈
h̃
〉

+

2 . (2.50)

They are energy-like and charge-like modes for quasiparticles that are right-
moving or left-moving since they have a positive or negative group velocity, re-
spectively.
It is possible to generalize the definitions given above to the case of non-trivial

spin-structure. As an example, we consider the case of non-degenerate spin po-
larization along the spin z-axis. Then f̂ changes to

f̂ = (f1,0σ0 + f1,zσ3)1̂ + (f3,0σ0 + f3,zσ3)τ̂3) (2.51)

=
(
h0 + hzσz 0

0 −h̃0 − h̃zσz

)
. (2.52)

The spin-splitting thus introduces two additional modes that have, in the diffu-
sive case, been referred to as spin-imbalance mode (f1,z) and spin-energy mode
(f3,z)[51]. Completely analogous to the spin-degenerate case we can define (par-
tial) Fermi-surface averages for the two additional modes by adding the respective
spin label to Eqs. (2.48) – (2.50).
Lastly, we mention that it is possible to transfer between the distributions x

and h by using the relations

x = h+ γRh̃γ̃A, (2.53)

and the inverse

h =
∞∑
n=0

(
γRγ̃R

)n (
x− γR

x̃γ̃A
) (
γAγ̃A

)n
. (2.54)

Analogous expressions exist for x̃ and h̃[45]. Note especially that in the normal
state where γX = γ̃X = 0, we have x = h and x̃ = h̃.
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The main reason to solve the equation of motion for x is that the solution
theory is developed further than for h. We mention here the boundary condi-
tions, see Sec. 2.3.3, and a solution method that is numerically advantageous,
discussed in Sec. 3.2.1. The transformation to h provides an tool to analyse the
non-equilibrium state in terms of concepts that are well-established in the theory
of diffusive systems.

2.3.2 Splitting of the distribution function
In addition to different parametrizations of the Keldysh Green’s function ĝK, the
underlying distribution functions x and h can be split into a (local) equilibrium
part and a so-called anomalous part that captures the non-equilibrium contribu-
tions, as introduced in Ref. [45]. The most natural starting point is to generalize
Eq. (2.47) to allow for locally varying electrochemical potential and temperature,

h(R)le = hle(ε, φ(R), T (R)) ≡ tanh ε− eφ(R)
2kBT (R) . (2.55)

We refer hle(R) as the local equilibrium distribution. For a given full non-
equilibrium distribution h(R), we can then define the anomalous distribution
as

ha(R) ≡ h(R)− hle(R). (2.56)

It thus captures all non-equilibrium effects that can not be described through a
spatially varying chemical potential or temperature. In the following we will not
explicitly write out the dependence on the spatial coordinate. Based on the above
definitions, we can analogously split x into a local-equilibrium component

x
le ≡ hle + γRh̃leγ̃A = tanh ε− eφ2kBT

− γR tanh ε+ eφ

2kBT
γ̃A, (2.57)

and an anomalous component

x
a ≡ x− x

le. (2.58)

Since ĝK is in linear in h (or x), these definitions can be used to similarly split

ĝK = ĝle + ĝa, (2.59)

by using only the local-equilibrium or anomalous part of the parametrizing dis-
tribution in Eq. (2.35) or Eq. (2.41) . For an observable A that is linear in ĝK,
see also Sec. 2.5, this then naturally gives

A = Ale + Aa. (2.60)
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As we will see in Sec. 2.5 this splitting allows to distinguish, for example, the
charge current carried by quasiparticles and by the condensate. We note also
that the modes introduced in Sec. 2.3.1 can be split into local-equilibrium and
anomalous parts. Taking the energy mode f1 in the spin-degenerate case as an
example, we have

f1(ε,pF,R) = h(ε,pF,R)− h̃(ε,pF,R)
2

= hle(ε,R)− h̃le(ε,R)
2 + ha(ε,pF,R)− h̃a(ε,pF,R)

2
= f le

1 (ε,R) + fa
1 (ε,pF,R). (2.61)

Note that the local-equilibrium part f le
1 does, by definition, not depend on the

momentum orientation pF. This splitting is equally possible for the charge mode
f3.
Additionally, the splitting makes the numerical solution of the equation of mo-

tion for x, Eq. (2.36), more stable. Since x
le is entirely determined by the local

quantities φ and T , it does not have to be propagated along trajectories. Instead,
we only need to solve the equation of motion for the anomalous function x

a. The
equation of motion for xa is, in the stationary state, given by Eq. (3.10) with the
replacements

x→ x
a, (2.62)

∆K → ∆K + ∆Rh̃le + hle∆A, (2.63)
EK → EK −

(
ERhle − hleEA

)
− i~vF · ∇hle. (2.64)

The local electrochemical potential φ(R) enters these transformed self-energies
through hle, h̃le, and

vF · ∇hle = −vF ·
(
∇µ+ ε− µ

T
∇T

) dhle

dε
, (2.65)

where µ = eφ. As a consequence, φ has to updated after each solution step by
means of the definition in Sec. 2.5 until self-consistency, similar to the self-energies
in Sec. 2.4. More details and generalizations of the concepts introduced here can
be found in Ref. [45].

2.3.3 Boundary Conditions
The solution formulas in Sec. 3.2.1 allow the propagation of the coherence func-
tions and distribution functions in a system with constant pairing strength. Spe-
cial care has to be taken, however, at an interface between a superconducting and
a normal-metal region, or two different superconductors. Such atomically sharp
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interfaces are beyond quasiclassical theory and boundary conditions need to be de-
rived externally, for example using scattering theory. All results presented in this
thesis assume that scattering at the interface is specular, that is, the momentum
parallel to the surface is conserved in the scattering process. The corresponding
boundary conditions have been derived, for both sets of function, in the spin-
degenerate case[52] and for general spin structure[53]. Generalizations to a fully
general boundary condition, e.g., for multiband systems or diffusive interfaces,
exist[45] as well as alternative formulations using a t-matrix approach[54]. We
follow the form used in [53]. The interface itself is described by the associated
normal-state scattering matrix, for electrons it reads

Se =
(
SR SD
SD −SR

)
, (2.66)

and the matrix for holes Sh = S̃†e . For a system with two independent spin
components, the elements can be parametrized as

SR =
√R↑eiϑ/2 0

0
√
R↓e

−iϑ/2

 , SD =
√D↑eiϑ/2 0

0
√
D↓e

−iϑ/2

 . (2.67)

Here, we use ϑ to denote so-called spin-mixing angle of the interface and the
probabilities for reflection, Rσ, and transmission, Dσ, have to In order for the
resulting scattering matrix to be unitary, S†eSe = 1, the probabilities satisfy Rσ +
Dσ = 1. In the spin-degenerate case, we just have ϑ = 0, R↑ = R↓, and D↑ = D↓.
We label the functions on the two sides of a given interface by indices 1 and

2. Incoming functions are indicated by small letters, e.g, γR
1 and x2. Outgoing

functions are then represented as capital letters with the respective index, for
example ΓR

1 and X1. A sketch of the different incoming and outgoing functions
can be seen in Fig. 2.2. As an example, we specify the outgoing retarded coherence
function ΓR

1 and the distribution function X1 on side 1, which are propagated away
from the interface in the direction of v1o

F . Their boundary conditions read

ΓR
1 = rR

1lγ
R
1 S
†
R + tR1lγ

R
2 S
†
D, (2.68)

X1 = rR
1lx1r̃

A
1r + tR1lx2t̃

A
1r − aR

1lx̃2ã
A
1r. (2.69)

The equations use the definitions

rR1l = SR − γR2 S
†
Rγ̃

R
2

1− γR1 S
†
Dγ̃

R
2 SD − γR2 S

†
Rγ̃

R
2 SR

, (2.70)

tR1l = SD − γR1 S
†
Dγ̃

R
2

1− γR1 S
†
Dγ̃

R
2 SD − γR2 S

†
Rγ̃

R
2 SR

, (2.71)

aR1l = −
(
rR1lγ

R
1 S
†
RSR + tR1lγ

R
2 S
†
DSR + SRγR1

) (
SD − γ̃R2 SDγR1

)−1
. (2.72)



18 2 Quasiclassical theory

side 1 side 2

Figure 2.2: Sketch of the different functions of the trajectories that are coupled for
specular reflection at an interface between two regions. The labels “fw” and “bw”
indicate if the given functions move in the direction of the respective vF or opposite
to it.

In the stationary case that we consider here, the advanced quantities can be
obtained by the symmetries r̃A

1r = (rR
1l)†, t̃A1r = (tR1l)†, and ãA

1r = (aR
1l)†. All

quantities in the above example, as well as γ, are still matrices in spin space.
Implicitly, it is assumed in Eqs. (2.70) – (2.72) that we do not have a fully reflective
(Dσ = 0) or fully transmissive (Dσ = 1) interface for either of the two spin
components. The simpler boundary conditions for these two special cases can be
derived following the original references. Boundary conditions for the functions
on the other side of the interface can be obtained by exchanging the indices 1 and
2 in the above quantities, up to an unimportant global sign in rR2l, tR2l, and aR2l.
The different momentum orientations shown in Fig. 2.2 can be expressed as

angles to the x̂ axis in momentum space. In a quasi one-dimensional system, an
incoming trajectory v1,i

F , with the angle ϕF, scattered into the reflected outgoing
trajectory v1,o

F with momentum angle

ϕ′F = π − ϕF. (2.73)

Specular scattering at the interface thus mixes different trajectories. The bound-
ary condition for ΓR

1 . Eq. (2.68), is thus a functional dependence of the form

ΓR
1 (ϕ′F) = f

(
γR

1 (ϕF), γ̃R
1 (ϕ′F), γR

2 (ϕ′F), γ̃R
2 (ϕF)

)
. (2.74)

With slight changes to Eq. (2.73), the same boundary conditions are valid in two-
dimensional systems, we will return to this in Sec. 3.3.5. We can model a tunnel
cone via a transparency that depends on the momentum orientation, we use

D(ϕF) = D0(e−β sin2 ϕF − e−β)/(1− e−β). (2.75)

in the appended papers.
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2.4 Self-energies
In Sec. 2.2 we introduced the elements of the self-energy matrix ȟ. In order to
obtain physical results all self-energies must be determined self-consistently when
solving the Eilenberger equation, Eq. (2.22). In this work we use

ȟ = ȟMF + ȟs, (2.76)

where the two terms describe the mean-field superconducting order parameter
and scalar impurity scattering, respectively.
The first term, ȟMF, has the Keldysh-space structure

ȟMF =
∆̂R

MF 0
0 ∆̂A

MF,

 (2.77)

so that the Keldysh component ĥK
MF is zero. For the mean-field component, the

retarded and advanced self-energies are identical[45] and their Nambu-space ele-
ments read

∆̂R,A
MF = (∆′τ̂1 −∆′′τ̂2)iσ2 =

(
0 ∆

∆∗ 0

)
iσ2, (2.78)

where ∆′ (∆′′) denotes the real (imaginary) part of the order parameter and iσ2
signals a spin-singlet order parameter. In the general case we can have different
pairing channels, corresponding to s-wave, p-wave, d-wave, . . . superconductivity.
The complex, scalar function ∆ itself can then be written as

∆(ϕF) =
∑
Γ

∆ΓηΓ(ϕF), (2.79)

where the index Γ = s, p, d, . . . marks the respective pairing, and η(ϕF) is the
basis function for a given channel. The basis functions can be chosen real, and for
the s-wave and d-wave superconductors that we will consider the basis functions
read

ηs(ϕF) = 1, ηd(ϕF) =
√

2 cos (2φF − 2α) , (2.80)

where α is the misalignment angle between the main crystal axis and a grain
boundary. For the pairing channel Γ the self-consistency equation for the order
parameter then reads

∆Γ(R)=NFλΓ

εc∫
−εc

dε

8πi
〈
trspin

[
iσ2ηΓ(pF)fK(pF,R, ε)

]〉
FS
, (2.81)

where λΓ is the pairing interaction strength in channel Γ and ηΓ is the respective
basis function. Note that the trace in Nambu space has already been taken in
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Eq. (2.81), only a trace over the spin degrees of freedom remains. The singlet
mean-field order parameter is thus (by assumption) spin-degenerate. Lastly, we
note that we eliminate high-energy cutoff εc in favour of the critical temperature
Tc by subtracting the linearised gap equation, see also[42].
The second term in Eq. (2.76), ȟs, describes scattering on scalar, non-magnetic

impurities. Assuming a dilute concentration of impurities ni we can write

ȟs = niť ≡ ni

(
t̂R t̂K

0 t̂A

)
. (2.82)

Generally, this leads to an integral equation for the three elements of the t-matrix
[55]. For a momentum-independent (s-wave) scattering strength u0 and in the
non-crossing approximation the t-matrix equation simplifies to

t̂R,A = u01̂ + u0NF
〈
ĝR,A

〉
FS
t̂R,A (2.83)

t̂K = NFt̂
R
〈
ĝK
〉

FS
t̂A. (2.84)

The solution is then found to be

t̂ R,A =
u01̂ + u2

0NF
〈
ĝR,A

〉
FS

1̂− [u0NF 〈ĝR,A〉FS]
2 , (2.85)

t̂K = NFt̂
R
〈
ĝK
〉

FS
t̂A. (2.86)

Note that the denominator in Eq. (2.85) is the inverse of a unit matrix. We can
rewrite these expressions by defining the scattering energy Γu and the scattering
phase shift δ0 as

Γu ≡
ni

πNF
, δ0 ≡ arctan(πu0NF). (2.87)

The combination

Γ ≡ Γu sin2 δ0, (2.88)

is called the pair-breaking energy and can be related to the normal-state mean
free path

` = ~vF

2Γ . (2.89)

In terms of the parameters in Eq. (2.87) the retarded and advanced self-energies
for scalar impurity scattering read

ĥR,A
s = nit̂

R,A = πΓu
(π cos δ0 sin δ0)1̂ + sin2 δ0

〈
ĝR,A

〉
FS

π2 cos2 δ0 − sin2 δ0 〈ĝR,A〉2FS

. (2.90)
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Combining Eq. (2.82) and (2.86), we can write ĥK as

ĥK
s = 1

πΓu
ĥR

〈
ĝK
〉

FS
ĥA, (2.91)

which can be written out by inserting Eq. (2.90).
In Papers I, III, and IV we restrict ourselves to two limiting cases of this general

expression. Firstly, the weak-scattering Born limit, obtained by letting δ0 → 0
and Γu →∞ such that Γ in Eq. (2.88) is constant. In this case we find

ĥR,A
s,Born = Γ

π

〈
ĝR,A

〉
FS
, ĥK

s,Born = Γ
π

〈
ĝK
〉

FS
. (2.92)

Secondly, we have the case of the strong-scattering unitary limit, meaning that
δ → π/2 or u0 →∞. The self-energies then become

ĥR,A
s,uni = −πΓ

〈
ĝR,A

〉
FS

〈ĝR,A〉2FS

, ĥK
s,uni = πΓ

〈
ĝR
〉

FS

〈
ĝK
〉

FS

〈
ĝA
〉

FS

〈ĝR〉2FS 〈ĝA〉2FS

. (2.93)

Eqs. (2.90) – (2.93) hold for arbitrary order-parameter symmetry.

2.5 Observables
Once the quasiclassical Green’s function ǧ(R, ε, ϕF) is obtained we can calculate
physical observables. Technically, expressions for physical observables are derived
by performing the quasiclassical approximation on the underlying expression in
terms of the full Green’s function[42].
Most observables that are of interest in non-equilibrium situations are defined

in terms of the Keldysh Green’s function ĝK. The main benefit of introducing
the non-equilibrium modes in Sec. 2.3.1 is then that we can express observables
entirely in terms of a momentum- and spin-resolved density of states and the
non-equilibrium modes, as we will outline below. In the following we assume that
there is at most a single spin polarization axis that we choose as the spin z axis.
The full spin structure of ĝR,A, as given in Eq. (2.28), then simplifies to

ĝR,A =
(
gR fR

f̃R g̃R

)
=
(

g0σ0 + gzσ3 (f0σ0 + fzσ3)iσ2
iσ2(f̃0σ0 − f̃zσ3) g̃0σ0 + g̃zσ3

)R,A

. (2.94)

Taking the top-left element as an example, we label the elements in spin space as

gR,A =
(
g+ 0
0 g−

)R,A
≡
(
g0 + gz 0

0 g0 − gz

)R,A
(2.95)

and analogously for g̃R.
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The momentum-resolved density of states for the a spin component σ = ↑, ↓ is
then

N↑(↓)(pF,R, ε) ≡ −
1
π

Im gR+(−)(pF,R, ε). (2.96)

Averaging over the Fermi surface and spin then gives ”full“ density of states

N (R, ε) = NF
∑
σ=↑,↓

〈Nσ(pF,R, ε)〉FS = 2NF

〈
−Im gR

0 (pF,R, ε)
〉

FS

π
. (2.97)

We can now combine Eq. (2.52) and Eq. (??) to express observables entirely in
terms of Nσ(pF,R, ε), Eq. (2.96), and the non-equilibrium modes in Eq. (2.52).
In the following, we do not write out the arguments on those two sets of functions.
Lastly, we note that in the spin-degenerate case, N↑ = N↓ and the expressions
below reduce to the those provided in Papers I-IV. The charge current density, in
terms of ĝK given by

j(R) = eNF

∞∫
−∞

dε
8πi

〈
Tr
[
vFτ̂3ĝ

K(pF,R, ε)
]〉

FS
, (2.98)

becomes

j(R) = −eNF

∞∫
−∞

dε
〈

vF

(
f1,0
N↑ +N↓

2 + f3,z
N↑ −N↓

2

)〉
FS

. (2.99)

An expression for the electro-chemical potential can be derived by requiring local
charge neutrality to first order in ∆/EF,[56] giving

eφ(R) = 1
2

∞∫
−∞

dε
8πi

〈
Tr ĝK(pF,R, ε)

〉
FS
. (2.100)

In terms of the non-equilibrium modes, it reads

eφ(R) = −1
2

∞∫
−∞

dε
〈
f3,0
N↑ +N↓

2 + f1,z
N↑ −N↓

2

〉
FS

. (2.101)

In Paper I and III, we use in addition to this Fermi-surface averaged potential, a
left-mover and right-mover potential, defined in analogy to the normal state for
the spin-degenerate case as

φ± := φ− 1
2e

∞∫
−∞

dε

2
(
〈X a〉± + 〈X̃ a〉∓

)
, (2.102)



23

While compiling this thesis, we noticed that a more natural definition is

eφ� := −1
2

∞∫
−∞

dε 〈h(ε,pF)N (ε,pF)〉± + 〈h̃(ε,pF)N (ε,pF)〉∓, (2.103)

which satisfies

φ(R) = φ→ + φ←
2 . (2.104)

also in the superconducting state. Similarly, we can rewrite the energy current

jth(R) = NF

∞∫
−∞

dε
8πi ε

〈
vFĝ

K(pF,R, ε)
〉

FS
, (2.105)

= −NF

∞∫
−∞

dε ε
〈

vF

(
f3,0
N↑ +N↓

2 + f1,z
N↑ −N↓

2

)〉
FS

, (2.106)

and the magnetization along the spin-polarization axis z,

Mz(pF,R, ε)−Mz,ext = −µBNF

∞∫
−∞

dε
8πi

〈
σzĝ

K(pF,R, ε)
〉

FS
(2.107)

= µBNF

∞∫
−∞

dε
〈
f1,0
N↑ −N↓

2 + f3,z
N↑ +N↓

2

〉
FS

. (2.108)

Here Mz,ext = 2µ2
BNFBz(R). The last identity shows that a spin polarization can

be created in two different ways. Either by a spin-split density of states, for ex-
ample by an applied magnetic field, this magnetization also exists in equilibrium.
Injection from a ferromagnet or through an spin-active interface with D↑ 6= D↓
creates a non-zero f3,z, resulting in a non-equilibrium magnetization.





Chapter

3 Solution strategies

This chapter outlines what a self-consistent solution means within the framework
of quasiclassical theory and reviews the solution methods that were used for the
work presented in this thesis.

3.1 Self-consistency of solutions

An central part of the work presented in this thesis was to not only solve the
Eilenberger equation, Eq. (2.22), but to find self-consistent solutions. This means
that the self-energy matrix ȟ has to be determined such that it is consistent with
the solution ǧ to the equation of motion.
The requirement of self-consistency is necessary to ensure that the obtained

solutions fulfil fundamental physical requirements such as conservation laws, as
we show for charge conservation in Appendix A. Nevertheless, self-consistency is
often neglected in the literature, especially in non-equilibrium situations. This
can be justifiable in cases, e.g, if the applied bias or external drive is small so that
self-consistency can be expected to give only small corrections.
Starting from an initial guess for all self-energies, the general recipe consists of

three steps:

1. For a given guess of ȟ solve the Eilenberger equation for ǧ.

2. Use ǧ to obtain a new guess ȟnew.

3. Unless both ǧ and ȟ did not change – at least up to a desired accuracy – go
back to step 1 and use ȟnew as the given guess for all self-energies.

Depending on the solution method, it it is essentially a one-step process to solve
for ǧ for a given set of self-energies. In contrast, finding a self-consistent guess for
the self-energies ȟ is typically an iterative procedure that can take many iterations
of the above three steps. The problem can be seen as a fix-point problem and
methods such as Anderson acceleration[57] can be used to speed to the process.

25
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3.2 1D: Stepping method
In Papers I-III we investigate systems that are either one-dimensional, such as
a nanowire, or quasi one-dimensional by translational invariance normal to the
transport direction. For a numerical solution, the spatial coordinate along the
transport direction then has to be discretised on a finite grid of points. Both
the self-energies and the solution are then only defined on the grid points. To
solve the equations of motion for the parametrizing functions, we use a method
of propagation functions discussed in Sec. 3.2.1. Using the obtained analytic
expression we can propagate the functions along trajectories “step-by-step” from
one point on the grid to the next, we refer to this as a stepping method. The
underlying assumption is that the self energies are constant between neighbouring
grid points as sketched in Fig. 3.1, and thus piecewise continuous. We note here
that some care has to be taken in choosing the correct profile in order to ensure
the proper behaviour of the self-consistency equations in this case[58]. One we
have found the set of parametrizing functions on all grid points, we can construct
ǧ and proceed with the self-consistency scheme outlined in Sec. 3.1.

Figure 3.1: Profile of piece-wise con-
stant self-energies, here the order param-
eter ∆(x).
Grid points are indicated in red. The self-
energies and solutions are assumed con-
stant between neighbouring points. When
plotting the final results, we might inter-
polate between neighbouring points to ob-
tain the smooth, red profile.

3.2.1 Propagating functions
In Ref. [45] formal solutions of Eqs. (2.32) and Eq. (2.36) in terms of three prop-
agation functions were derived. Here we use those formal expressions to derive a
solution to the equations of motion in a region of constant self-energies.
We start by defining EX = ε−ΣX, ẼX = −ε− Σ̃X, EK = −ΣK and ẼK = −Σ̃K,

and rewrite Eq. (2.32) as

i∂γX − γX∆̃XγX + EXγX − γXẼX + ∆X = 0, with γX(0) = γX
i , (3.1)

where, here and in the following, X = R,A marks retarded or advanced version
of the equation, ∂ ≡ ~vF ·∇, and ρ specifies the position along a given trajectory.
Given a solution γX(ρ) to the Eilenberger equation we can obtain three functions
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the UX(ρ), V X(ρ), and WX(ρ) through

i∂UX +
(
EX − γX∆̃X

)
UX = 0, UX(0) = 1, (3.2)

i∂V X − V X
(
ẼX + ∆̃XγX

)
= 0, V X(0) = 1, (3.3)

i∂WX + V X∆̃XUX = 0, WX(0) = 0. (3.4)

Let us assume that for our given solution γX(ρ) ≡ γX
0 (ρ) we have obtained the

three functions UX
0 , V

X
0 , and WX

0 . The benefit of these propagators is that for a
change of the initial condition γX(0) of differential equation,

γX(0) = γX
i → γX(0) = γX

i + δX (3.5)

we do not have to solve any differential equations. Instead, we obtain the new set
of functions for the new initial condition via

UX(ρ) = UX
0 (ρ)

[
1 + δXWX

0 (ρ)
]−1

, (3.6)

V X(ρ) =
[
1 +WX

0 (ρ)δX
]−1

V X
0 (ρ), (3.7)

WX(ρ) =
[
1 +WX

0 (ρ)δX
]−1

WX
0 (ρ) = WX

0 (ρ)
[
1 + δXWX

0 (ρ)
]−1

, (3.8)

and our new solution γX(ρ) via

γX(ρ) = γX0 (ρ) + UX
0 (ρ)δXV X(ρ) = γX0 (ρ) + UX(ρ)δXV X

0 (ρ). (3.9)

That the general solution can be constructed out of a particular solution is a well-
known property of Ricatti equations[59]. The three operator functions U, V , and
W can, however, also be used to construct a solution to the equation of motion
for the distribution function x. We start by rewriting Eq. (2.36) as

i∂x + (E − γ∆̃)R
x− x(E + ∆γ̃)A = γRẼKγ̃A + ∆Kγ̃A + γR∆̃K + EK, (3.10)

where the right-hand side defines

IK = γRẼKγ̃A + ∆Kγ̃A + γR∆̃K + EK. (3.11)

Formally, the solution can be written as

x(ρ) = SR
U (ρ, 0)x(0)S̃A

V (0, ρ)− i
ρ∫

0
SR
U (ρ, ρ′)IK(ρ′)S̃A

V (ρ′, ρ)dρ′, (3.12)

where

SXU (ρ, ρ′) ≡ UX(ρ)
(
UX(ρ′)

)−1
, SXV (ρ′, ρ) ≡

(
V X(ρ′)

)−1
V X(ρ). (3.13)
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We apply this method to propagation in a region of constant selfenergies, assuming
that γX, x, and all self-energies have only non-zero components along a single spin-
quantization axis that we can choose to be the spin z axis. In this case, we can
write

γX(ρ) = diag(γX
↑ , γ

X
↓ )iσ2, x(ρ) = diag(x↑, x↓) (3.14)

∆X(ρ) = diag(∆X
↑ ,∆X

↓ )iσ2, ΣX(ρ) = diag(ΣX
↑ ,ΣX

↓ ). (3.15)
Up to a factor of iσ2, all objects can thus be written as diagonal matrices in spin
space. In the following σ = ↑, ↓ denotes one of the two components and σ the
opposite-spin component, i.e., ↑ =↓. For γX with a spin structure as in Eq. (3.14)
the bulk solution γX

bulk for each component reads

γR
bulk,σ = − ∆0,σ

ε− (Σσ − Σ̃σ)/2 + i
√

∆0,σ∆̃0,σ − (ε− (Σσ − Σ̃σ)/2 )2
.

Denoting the bulk solution γX
0 ≡ diag(γX

0,↑, γ
X
0,↓)iσ2 we then find

UX
0 = exp

[
i
(
EX − γX

0 ∆̃X
)
ρ
]
, (3.16)

V X
0 = exp

[
−i

(
ẼX + ∆̃XγX

0
)
ρ
]

(3.17)

WX
0 = ∆̃X

(
wX

0
)−1 (exp

[
iwX

0 ρ
]
− 1

)
. (3.18)

Note that all thee functions are spin matrices, U0 and V0 are spin diagonal while
W0 = iσ2diag(W↑,W↓). The matrix wX0 ≡ diag(wX0,↑, wX0,↓) has the elements

wX
0,σ ≡

(
EX
σ − ẼX

σ + 2γX0,σ∆̃X
σ

)
. (3.19)

Using δX = γX(0)− γXbulk and the shorthand
DX
σ ≡ δX

σ ∆̃X
σ (wX

0,σ)−1, (3.20)
the combination of Eqs. (3.6)–(3.9) can be written per spin component as

γX
σ = γX

bulk,σ + δX
σ

(1 +DX
σ ) exp(−iwX

0,σρ)−DX
σ

. (3.21)

For a x with spin structure as in Eq. (3.14), evaluating the integral in Eq. (3.12)
then gives for the component σ the result

xσ(ρ) = UR
σ (ρ)

xσ(0)− 1− e−iβ1,σρ

β1,σ

(
1 +DR

σ

)
IK

0,σ

(
1 + D̃A

σ

)

− 1− e−iβ2,σρ

β2,σ

(
DR
σ I

K
0,σD̃

A
σ +DR

σ

(
γR

0,σẼ
K
σ +∆K

σ

)
δ̃A
σ +δR

σ

(
ẼK
σ γ̃

A
0,σ+∆̃K

σ

)
D̃A
σ −δR

σ Ẽ
K
σ δ̃

A
σ

)

+ 1− e−iβ3,σρ

β3,σ

(
1 +DR

σ

)(
γR

0,σẼ
K
σ δ̃

A
σ + ∆K

σ δ̃
A
σ + IK

0,σD̃
A
σ

)
(3.22)

+ 1− e−iβ4,σρ

β4,σ

(
δR
σ Ẽ

K
σ γ̃

A
0,σ + δR

σ ∆̃K
σ +DR

σ I
K
0,σ

)(
1 + D̃A

σ

)Ṽ A
σ (ρ),
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where DX
σ is defined in Eq. (3.20) and the βi,σ are given by

β1,σ ≡ ER
σ − EA

σ + γR
σ ∆̃R

σ + γ̃A
σ ∆A

σ = 2i Im
(
ER + γR

σ ∆̃R
σ

)
, (3.23)

β2,σ ≡ ẼR
σ − ẼA

σ − γR
σ ∆̃R

σ − γ̃A
σ ∆A

σ = 2i Im
(
ẼR
σ − γR

σ ∆̃R
σ

)
, (3.24)

β3,σ ≡ ER
σ − ẼA

σ + γR
σ ∆̃R

σ − γ̃A
σ ∆A

σ = ER
σ − ẼA

σ + 2 Re
(
γR
σ ∆̃R

σ

)
, (3.25)

β4,σ ≡ ẼR
σ − EA

σ − γR
σ ∆̃R

σ + γ̃A
σ ∆A

σ = −β∗3,σ. (3.26)

Additionally, we use Eq. (3.11) to define

IK
0,σ ≡ −γR

0,σẼ
K
σ γ̃

A
0,σ−∆K

σ γ̃
A
0,σ−γR

0,σ∆̃K
σ +EK

σ (3.27)

Lastly, we note that when solving for the anomalous function x
a as the replace-

ments given in Eqs. (2.58)–(2.64) have to be made in the formula provided above.

3.3 2D: Finite Element Method
A Finite Element Method, or FEM, is a general strategy for the numerical so-
lution of partial differential equations. Such methods are particular useful in
spatial dimensions larger than one. As the name suggest the core idea is to
split the domain where a solution is wanted into finite-sized elements. The origi-
nal differential equation is translated into an integral equation for each element.
These integral equations can be translated into algebraic equations using so-called
Galerkin methods which provide an approximate solution of the differential equa-
tion. The strength of the method is then that the original differential equation
has been translated into a linear-algebra problem that is often easy and fast to
solve. This chapter consists of two parts. Firstly, we give a brief introduction
to the key concepts of finite element methods, and we refer to one of the many
textbooks on FEMs[60] for a more detailed introduction. Secondly, we outline a
FEM for Eilenberger quasiclassical theory.

3.3.1 Key concepts in short examples
We start with a simple example to illustrate the key concepts of FEMs. We
consider a diffusion-type equation in one dimension,

f ′′(x) = −2 with boundary conditions f(0) = 0, f ′(0) = 2, (3.28)

for x ∈ [0, 2]. In this case the equation can be readily solved analytically, and we
find

f(x) = −x2 + 2x = −(x− 1)2 + 1. (3.29)
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We can multiply this with a, for now unspecified, test function φ(x) and integrate
over the domain to obtain

2∫
0
f ′′(x)φ(x)dx = −2

2∫
0
φ(x)dx. (3.30)

Integration by parts then gives

f ′(2)φ(2)− f ′(0)φ(0)−
2∫

0
f ′(x)φ′(x)dx = −2

2∫
0
φ(x)dx. (3.31)

This is the so-called weak form of the differential equation. A solution fw is
accordingly called a weak solution since it does not have to satisfy Eq. (3.28)
in every point x but only the integral equation Eq (3.31). An exact solution
f to the original differential equation is clearly always a weak solution as well.
Theoretically a weak solution can always be found in the space of infinite-order
polynomials by constructing a polynomial that agrees with a given solution f(x)
point-wise, for example by polynomial interpolation.
In practice we might not have a solution to the original differential equation at

hand, so we need a solution strategy for the weak form. Unfortunately no general
solution strategy for integral equations such as the weak form exists. However,
strategies to obtain approximate solutions fh exist in the form of Galerkin meth-
ods. We will discuss here the simpler case of a continuous Galerkin (CG) method.
First, we chose N + 1 node points such that x0 = 0, x1, x2, . . . , xN , xN+1 = 2.
This gives a natural splitting of our domain into N + 1 segments of length
hj+1 = xj+1 − xj, the finite elements in our one-dimensional example. The
Galerkin method then assumes that the approximate solution can be written as
sum of piecewise-continuous polynomials up to a finite order k,

fw(x) ≈
N∑
i=1

ci φi(x). (3.32)

It is advantageous to choose functions that satisfy

φi(xj) =
{

1 if i = j
0 if i 6= j

. (3.33)

One common choice of basis functions with this property are Lagrange polynomi-
als. For the simplest case of k = 1, they read

φi(x) =


(x− xj−1)/hj if xj−1 < x < xj
(xj+1 − x)/(hj+1) if xj < x < xj+1
0 otherwise

. (3.34)

An example for N = 4 nodes with ∆h = const. is shown in Fig. 3.2. Each function
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Figure 3.2: The four basis functions φi for N = 4 in the domain x ∈ [0, 2]. Here we
have five elements Ωi = (xi−1, xi), coloured in different shades of grey.

φi(x) is only non-zero in the two segments connected to xi, and all of them vanish
on the boundary (x = 0 and x = 2), so the two boundary terms in Eq. (3.31)
vanish. Inserting Eq. (3.32) into Eq. (3.31), and choosing φ(x) = φi(x) gives an
equation

N∑
j=1

2∫
0
cjφ
′
j(x)φ′i(x)dx =

2∫
0

2φi(x)dx . (3.35)

The first term is only non-zero if φi(x) and φj(x) are both non-zero in the same
segment, hence each choice of φi(x) gives only contributions for some of the coef-
ficients cj. Varying the different φi(x) gives then a set of equations that can be
written in matrix form

Ac = b,

where the elements of A and b are determined by

Aij =
2∫

0
φ′i(x)φ′j(x)dx, bi =

2∫
0

2φi(x) dx. (3.36)

In our example with N = 4 and hi = h = const. we get the equation system
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2



c1
c2
c3
c4

 = 2h2


1
1
1
1

 .

The equation system has a unique solution since A is invertible. We note further
A is banded, meaning Aij = 0 if |i−j| > p for a certain p, and hence sparse. Finite-
element matrices are often sparse which is advantageous for a numerical solution



32 3 Solution strategies

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

N=1
f(x)
fw(x)
|f fw|

0.0 0.5 1.0 1.5 2.0
x

N=4
f(x)
fw(x)
|f fw|

0.0 0.5 1.0 1.5 2.0
x

N=8
f(x)
fw(x)
|f fw|

Figure 3.3: Comparison of the analytic solution f(x) (dashed blue) to the approx-
imate solution fw(x) (solid orange) and the difference between the two functions
|f − fw|(x) (dotted green) for different values of N .

of the equation systems. Explicitly, one finds c1 = c4 = 16/25, c2 = c3 = 24/25,
the resulting solution is shown in the central panel of Fig. 3.3. Comparison to the
other panels in the same figure shows that the difference between the approximate
solution fw(x) and the true solution f(x) gets smaller with increasing number of
nodes N . Note that the weak solution agrees with the analytic solution exactly
at the nodes xi. Intuitively, we expect that as N → ∞, the weak solution will
(for “well-behaved” problems) converge to the analytic solution of the differential
equation. It is possible to use higher-order polynomials as the basis functions.
This typically leads to better convergence of fw to the solution f of the original
differential equation but comes at a higher numerical cost through additional
nodes and larger equation systems. Looking at this one-dimensional case it might
seem like we have not gained much compared to using a finite difference method
that can also be translated into a matrix equation. The strength of a FEM is,
however, that the translation of the underlying differential equation into a weak
form can be done independently of the dimension. The translation into a matrix
equation via a Galerkin method then follows a standard recipe that is independent
of the specific equation.

3.3.2 Discontinuous Galerkin method for Eilenberger
quasiclassical theory

As discussed in Sect. 2.3, the equations of motion of the parametrizing functions
for the quasiclassical Green’s function ǧ are transport equations. It is well known
that for such equations a FEM with continuous basis functions, as the one used
in the above example, can lead to unphysical solutions that require special treat-
ment [60–62]. As a result, a discontinuous Galerkin (DG) method was developed,
originally in the context of the neutron transport equation[63, 64]. The main dif-
ference is that the nodes, or degrees of freedom, of the approximating function are
not shared between neighbouring cells but rather defined cell-wise, as indicated



33

in Fig. 3.4.

1 2 1 2

Figure 3.4: Left: In a CG method the function is continuous across cell edges through
the shared red nodes. Right: In a DG method, the function nodes are not shared and
the function can be discontinuous across the cell edge. The displacement of the two
cells is purely illustrative.

The functions can be discontinuous between cells since jumps at element edges
are allowed, which gives the method its name. This means that the weak solution
is not globally continuous, in contrast to a CG method. Technically the solutions
obtained in the stepping method, discussed in Sec. 3.2, are also only piecewise
and not globally continuous. Additionally, transport equations get mapped into
weak forms that penalize large discontinuities across element edges[62].

Figure 3.5:
Triangulation of a domain Ω (light
grey) into triangles Tj, with the in-
flow and outflow boundaries ∂Ω−
(red) and ∂Ω+ (green) for one di-
rection of vF, and the collection of
internal edges τ (orange).

T6

T7
T1 T2

T3

T4T5

In two dimensions, the equivalent of splitting the domain into different seg-
ments in Sect. 3.3.1 is a triangulation T of the domain Ω into triangles. For
transport equations, the domain boundary ∂Ω is further split into the so-called
inflow boundary (∂Ω−) and outflow boundary (∂Ω+),

∂Ω− ≡ {R ∈ ∂Ω | vF · n(R) < 0} , ∂Ω+ ≡ {R ∈ ∂Ω | vF · n(R) ≥ 0} , (3.37)

which depends on the transport direction vF. Each edge of a triangle is then
either part of the inflow boundary, outflow boundary, or it is an internal edge.
The collection of all internal edges is labelled as τ . The concepts are visualized
in Fig. 3.5.
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3.3.3 Coherence function
For ease of notation we will restrict ourselves to the spin-degenerate case here, and
comment on the generalization to several spin components in Sec. 3.3.6. In this
case Eq. (2.32) can be rewritten as a scalar equation for scalar retarded function
γR

i~vF · ∇γR + 2εγR + γR∆̃RγR − ΣRγR + γRΣ̃R = −∆R. (3.38)

Note that the only difference to the general case is the change of sign in the
quadratic term.
To obtain the weak form, we multiply Eq. (3.38) with a test function φ and

integrate over our domain to find

i~
∫
Ω

φ vF · ∇γ dΩ +
∫
Ω

φ
(
2εγ + γ∆̃γ − Σγ + γΣ̃

)
dΩ = −

∫
Ω

φ∆ dΩ. (3.39)

Only the first term on the left-hand side needs further rearrangements while the
other terms can be treated analogously to our example in Sect. 3.3.1. To proceed,
the integration over Ω is split up into a sum of integrals over each triangle Tj in
the triangulation T . For each triangle, we then perform a partial integration over
the first term on the left-hand side containing the directional derivative vF · ∇.
This results in

∑
Tj∈T

i~
∫
∂Ωj

φ (γvF) · nj dsj − i~
∫
Tj

γvF · (∇φ)dΩj

+
∫
Tj

φ
(
2εγ + γ∆̃γ − Σγ + γΣ̃

)
dΩj = −

∑
Tj∈T

∫
Tj

φ∆ dΩj. (3.40)

Here, the first term on the left-hand side is an integral over the boundary ∂Ωj of
a triangle Tj, consisting of three edges. The remaining terms are integrations of
the entire area Ωj. How exactly the boundary term gets treated depends if we
solve for the retarded function γR, the advanced function γA, or the associated
tilde functions γ̃R,A. In following, we assume that we want to find the retarded
function γR.
Each internal edge τj ∈ τ is shared by two cells and thus integrated over twice

in the sum over all the boundary integrals. Following[65] summing this double
integration over each edge allows to rewrite the first term on the left-hand side in
Eq. (3.40) as

∑
Tj∈T

∫
∂Ωj

φ (γvF) · nj dsj =
∑
τj

∫
τj

{γvF} · [φ] dτj

+
∑

∂Ωj∈∂Ω+

∫
sj

(nj · vF) γφ dsj +
∑

∂Ωj∈∂Ω−

∫
sj

(nj · vF) γφ dsj, (3.41)
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where the first summation on the right-hand side is over individual edges rather
than closed boundaries of each triangle, the remaining two terms are either on
the inflow or outflow boundary. For edges on the inflow boundary (∂Ω−), we need
to specify a boundary value γR

B . The function value is unknown on the outflow
boundary (∂Ω+) and determined in the solution step. Internal edges (τj) are
integrated over twice in the sum over all triangles. Thus the difference of function
values, in this case of φ, in the two cells sharing the edge enter the weak form. In
Eq. (3.45), the jump operator [. . . ] is defined as

[a] ≡ a1 · n1 + a2 · n2, [φ] ≡ φ1n1 + φ2n2, (3.42)

where n1 and n2 are the outward-pointing normals to the edge between the two
cells, and the index on a or φ refers to the function values in one of the two
cells. As the name suggests, the jump operator is a measure for the difference of
the respective function in two neighbouring cells. Following Ref. [66], we use the
so-called upwind value {. . . }u, given by

{
γRvF

}
u
≡


γR1 vF if vF · n1 > 0
γR2 vF if vF · n1 < 0{
γR
}

vF if vF · n1 = 0
, (3.43)

where {. . . } is the average operator,

{a} ≡ 1
2 (a1 + a2) , {φ} ≡ 1

2 (φ1 + φ2) . (3.44)

The upwind value propagates function values over cell edges from one cell into the
other in along with the transport direction. In total, the derivative vF · ∇γ has
thus been transformed into edge integrals that enforce flow of the ”vector field“
γvF in the direction of the respective momentum from the inflow boundary to the
outflow boundary. This enforced flow direction is the equivalent of the propagation
along trajectories along vF in the stepping method. The tilde function γ̃R, and
the advanced function γA, propagate in the opposite direction of vF. In the weak
form, this translates into a swapping of the inflow and outflow boundaries, as well
as a replacement of the upwind value in Eq. (3.43) with a corresponding downwind
value, for these two functions. The final weak form becomes

i~
∑
τj

∫
τj

{
γRvF

}
u

[φ] dτj + i~
∑

∂Ωj∈∂Ω+

∫
∂Ωj

(γRnj · vF)φ dsj

− i~
∑
j

∫
Tj

(γRvF) · ∇φ dΩj +
∑
j

∫
Tj

(
2εγR + γR∆̃γR − ΣγR + γRΣ̃

)
φ dΩj

!= −
∑
j

∫
Tj

∆φ dΩ− i~
∑

∂Ωj∈∂Ω−

∫
∂Ωj

(nj · vF)φ γR
B dsj. (3.45)
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The weak form in Eq. (3.45) then gets translated into a matrix equation in a
similar way as done in the example in Sec. 3.3.1. One complication that arises for
the coherence function is the non-linear term γ∆̃γ which results in a non-linear
matrix equation. The system can thus not be solved by matrix inversion. Instead,
we iteratively find an (approximate) zero to the so-called residual, defined via

R(γ, φ) ≡ L(γ, φ)− a(φ). (3.46)

In order to speed up this iterative solution we can use Newton iterations, this
requires knowledge of the multi-dimensional Jacobian of the the weak form. As a
weak form, it can be obtained via the Gateaux derivative

J(δγ, γ, φ) ≡ lim
h→0

R(γ + h δγ, φ)−R(γ, φ)
h

. (3.47)

Explicitly, we find for the retarded function

i~
∑
τj

∫
τj

{
δγRvF

}
u

[φ] dτj − i~
∑
j

∫
Tj

(δγRvF) · ∇φ dΩj + i~
∑

∂Ωj∈∂Ω+

∫
∂Ωj

(δγRnj · vF)φ dsj

+
∑
j

∫
Tj

(
2εδγR + 2δγR∆̃γR − ΣRδγR + δγRΣ̃

)
φ dΩj (3.48)

Notice that the resulting weak form is linear in the variation δγR. The expression
can be translated into a matrix along similar lines as the weak form. Starting
from guess of γR, this can be used iterate γR by using Newton-Raphson iterations
as outlined in Paper IV.

3.3.4 Distribution function
In the spin-degenerate case the differential equation for the distribution function
x, Eq. (2.36), can be simplified to

i~vF · ∇x−
(
Σ− γ∆̃

)R
x+x (Σ + ∆γ̃)A

= γRΣ̃Kγ̃A −∆Kγ̃A − γR∆̃K − ΣK ≡ IK
s (3.49)

Note that the right-hand side is independent of x and defines the IK as given in
Eq. (3.11). The reformulation as a weak form proceeds largely along the same
lines as that of the coherence function γR. Again, we multiply by a test function
φ, integrate over the domain, and split the integration into a sum of integrals
over each triangle Tj. After a partial integration, the derivative term vF · ∇x gets
transformed in edge integrals on the inflow boundary, the outflow boundary, or
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an interior edge. The resulting weak form can then be written as

i~
∑
τj

∫
τj

{xvF}u [φ] dτj + i~
∑

∂Ωj∈∂Ω+

∫
∂Ωj

(x nj · vF)φ dsj

− i~
∑
j

∫
Tj

(xvF) · ∇φ dΩj −
∑
Tj∈T

∫
Tj

[(
Σ− γ∆̃

)R
x− x (∆γ̃ + Σ)A

]
φ dΩj

=
∑
Tj∈T

∫
Tj

IK
s φ dΩj − i~

∑
∂Ωj∈∂Ω−

∫
∂Ωj

(nj · vF)φ xB dsj, (3.50)

where IK
s is defined in Eq. (3.49). The jump and average operators, as well as

the upwind value, are defined analogously to those for the coherence function, see
Eqs. (3.42)–(3.44). Just as for the coherence function, boundary values for x have
to be provided on the inflow boundary ∂Ω−, while the upwind value propagates
function values in the direction of the momentum orientation vF through cells
toward to the outflow boundary. For the “tilde” distribution function x̃ the role
of inflow and outflow boundaries are swapped and a downwind value has to be
used in the first term on the left-hand side. This is again analogous to the case
of γ̃R. The weak form in Eq. (3.50) is linear in x. As a result, the weak solution
xw can be found by matrix inversion and does not require an iterative solution
procedure, in contrast to the coherence function γ. In that sense it is numerically
easier to solve for the distribution function.

3.3.5 Boundary conditions and coupling to reservoirs
As outline in Sect. 3.3.2, boundary values γX

B or xB have to be specified on the
(momentum-dependent) inflow boundary ∂Ω−. In two dimensions, the domain
boundary ∂Ω is approximated as a collection of straight-line segments, each with
a fixed normal n. Each boundary is then treated using the boundary conditions
outlined in Sec. 2.3.3. If the normal has an angle αn to the x̂ axis, then specular
relates an incoming trajectory with momentum angle ϕF to the outgoing trajectory

ϕ′F = π − ϕF + 2αn. (3.51)

Each boundary segment is one edge of a cell, depending on the order of approx-
imating polynomials there are Nedge nodes on the given edge. It is then enough
to apply the boundary conditions at the nodes. To simulate an open boundary,
we associate a virtual “reservoir” node to each edge node. In the case of a super-
conducting reservoir, the order parameter in this reservoir point is then update
using an incoming bulk function and the outgoing function from the boundary
condition. A normal-metal reservoir with a fixed chemical potential or tempera-
ture that is different from the simulated system need no such updating procedure.
For further details, we refer to Paper IV.
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3.3.6 Generalization to the spin-dependent problems
The above concepts can be straightforwardly generalized to the case of more
than one spin component or other internal degrees of freedom such as multiple
bands. As an example, we take the case of a general two-by-two spin structure
of the coherence function γ = (γ0 + ~γ · ~σ) iσ2, where ~γ = (γx, γy, γz)T and σ =
(σx, σy, σz)T. This can be rewritten in terms of four coupled scalar equations as

i~vF · ∇


γ0
γx
γy
γz

 =


f0
fx
fy
fz

 , (3.52)

where the different fi will generally introduce a coupling between the equations.
The derivation of a weak form for each component is now analogous to the one for
a scalar function if the scalar test function φ(R) gets replace with a corresponding
four-component vector of four independent test function ~φ(R) = (φ0, φx, φy, φz),
and the four functions are solved simultaneously.
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4 Superconductors in equilibrium

This chapter gives an overview of the main equilibrium properties of superconduc-
tors. Especially important for our purposes is the different influence of impurities
on s-wave and d-wave superconductors in equilibrium since this gives a degree
of intuition on the expected non-equilibrium behaviour, as well as the surface
properties of d-wave superconductors.

4.1 Influence of impurities
4.1.1 Impurity scattering in a s-wave superconductor
The s-wave order parameter is isotropic

∆(ϕF) = ∆0, (4.1)

meaning the magnitude and sign of the order parameter are independent of the
position on the Fermi surface. For a homogeneous bulk system, in equilibrium
and in the absence of superflow, all possible momentum orientations are then
equivalent which implies

ĝR,A,K =
〈
ĝR,A,K

〉
FS
. (4.2)

We thus find 〈
ĝR,A

〉2
FS

= (ĝR,A)2 = −π2, (4.3)〈
ĝR
〉

FS

〈
ĝK
〉

FS

〈
ĝA
〉

FS
= ĝRĝKĝA = −ĝKĝAĝA = π2ĝK (4.4)

where we used the normalization condition of ǧ, Eq. (2.25). As a consequence,
Eq. (2.90) and Eq. (2.91) simplify to

ĥR,A
s = Γu

(
cos δ sin δ1̂ + sin2 δ0

π
ĝR,A

)
, (4.5)

The first term is an energy-independent constant that can be absorbed into the
chemical potential, the second term is proportional to ĝR,A itself. For the Keldysh
component we then obtain

ĥK
s = Γu

π
sin2 δ0 ĝ

K = Γ
π
ĝK. (4.6)

39
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(a) Density of states N (ε) for a homogeneous
s-wave superconductor in the absence of cur-
rent flow for η = 1e− 3.
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(b) Induced electron-hole asymmetry in
Im ΣR for intermediate phase shifts close to
a surface. Here are D = 1, δ0 = (π/10),
` = 10ξ0. The normal-state value is shown
as a red, dotted line.

Figure 4.1: Bulk density of states and effects of impurities close to interfaces in an
s-wave SC, in both cases T = 0.1Tc.

For scalar impurities, the self-energy matrix ȟs is thus either proportional to the
Nambu-space unit matrix or the respective element of ǧ. Then, ȟs and ǧ com-
mute and the respective term drops out of the steady-state Eilenberger equation,
Eq. (2.22). In equilibrium the bulk Green’s function ǧ is thus unaltered by scalar
impurities, as is any quantity derived from it. This is the case for the mean-field
order parameter ∆0, the critical temperature Tc, and even the density of states
N (ε). The latter is shown in Fig. 4.1a. That s-wave pairing is, for a spatially ho-
mogeneous system, not affected by elastic scattering on non-magnetic impurities
is the content of Anderson’s theorem[68]. The latter, however, assumes time-
reversal invariance and will thus not hold in the presence of current flow. The
transport behaviour of an s-wave superconductor, especially in non-equilibrium, is
thus affected by scalar impurities. Eq. (4.2) and the arguments outlined above for
the bulk do not hold for spatially inhomogeneous systems either. As an example,
scattering with an intermediate phase shift δ0 ∈ (0, π/2) induces an electron-hole
asymmetry in ΣR in the vicinity of the surface between a normal-metal and a
superconductor, seen in Fig. 4.1b. The oscillations visible for energies larger than
∆ are so-called Tomasch oscillations[69, 70], that appear around spatial inhomo-
geneities in the order parameter. We will return to the asymmetry in the impurity
self-energy in Sec. 5.3.2.
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4.1.2 Impurity scattering in a d-wave superconductor
For a d-wave SC the order parameter can be written as

∆(ϕF) = ∆0
√

2 cos 2 (ϕF − α) , (4.7)

where α is the misalignment angle between the crystal a axis and a grain boundary.
There are two main differences to the uniform s-wave case. Firstly, the order
parameter magnitude changes over the Fermi surface and includes four nodes
where the order parameter is zero. Secondly, if we are not at a node, changing the
momentum angle by 90◦ means that ∆ changes sign, corresponding to a phase
shift of π. This leads to new physics in d-wave SCs, both in the bulk and at
surfaces.
The bulk, momentum-resolved density of states NF(ε, ϕF) is shown for ϕF ∈

(0, π/4) in Fig. 4.2a, and the Fermi-surface average NF in Fig. 4.2b.
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(a) Momentum-resolved NF(ε, ϕF).
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(b) Fermi-surface averaged NF(ε).

Figure 4.2: Density of states for the bulk of a clean d-wave superconductor.

For a given orientation of ϕF, NF(ε, ϕF) is similar to an s-wave spectrum with a
varying width of the energy gap ∆. The FS average then is profoundly different
from the s-wave case. Around zero energy it is a roughly linear function of energy,
indicating the presence of low-lying excitations, in contrast to the fully gapped
s-wave spectrum.
The arguments presented in Sec. 4.1.1 do not hold for the d-wave case. Since the

order parameter varies with momentum orientation and impurity scattering mixes
different momenta, a d-wave superconductor is not insensitive to scalar impurities.
Scattering on scalar impurities is said to be pair-breaking[71], and the the pair-
breaking parameter Γ suppresses the bulk order parameter ∆0, shown in Fig. 4.3,
as well as the critical temperature Tc[67]. There is a critical Γc ≈ 0.28πkBTc0
where the order parameter vanishes. By Eqs. (2.20) and (2.89), this corresponds
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to a minimum mean free path `c ≈ 3.57ξ0 below which a d-wave order parameter
is fully suppressed. Importantly, `c is always larger than the superconducting
coherence length ξ0.
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Figure 4.3: Dependence of the bulk d-
wave order parameter on impurity con-
centration for the Born and unitary lim-
its, here for T = 0.1Tc0.
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(a) The imaginary part ΣR for a scattering
phase shift δ0 = π/10. It is not electron-hole
symmetric since Im ΣR(ε) 6= Im ΣR(−ε).

3 2 1 0 1 2 3
[kBTc]

0.0

0.5

1.0

1.5

2.0

FS
[2

F]

1 0 1
0.0

0.2

0.4

(b) Creation of an impurity band in the
DOS for unitary-limit scattering (blue solid
line) compared to the Born limit (dashed or-
ange line), both for ` = 100ξ0 at T = 0.1Tc.

Figure 4.4: Effects of impurity scattering on the bulk properties of a d-wave SC.

For a phase shift δ0 in between the Born and unitary limits, meaning δ0 ∈
(0, π/2), the diagonal elements ΣR and Σ̃R of ĥR in Eq. (2.90), are not electron-
hole symmetric. An example of this asymmetry for one value of δ0 can be seen in
Fig. 4.4a. This electron-hole asymmetry has been argued to lead to a large ther-
moelectric effect even in the bulk of a d-wave superconductor[72]. Additionally,
such scattering for intermediate phase shifts leads to the creation of an impurity
band in the density of states that appears at finite energy and moves toward ε = 0
in the unitary limit [73], shown in Fig. 4.4b.
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4.2 Surface physics in a d-wave superconductor

Figure 4.5: The angle α measures the mis-
alignment of the crystal â axis and the normal
of a crystal surface.

In addition to the differences in the
bulk properties, new physics can ap-
pear in d-wave superconductors at sur-
faces with a normal n̂ that is mis-
aligned with the crystal axis, seen in
Fig. 4.5.
For a finite misalignment angle α

the d-wave order parameter “rotates”
in momentum-space. If α is an odd
multiple of π/4 the nodes are par-
allel to the kx and ky axes. The
bulk properties of a d-wave SC, dis-
cussed above, are not affected by
this.

Specular scattering at surfaces, however, connects different momenta on the Fermi
surface and hence different values of ∆.
At an interface that is parallel to the ky-direction in Fig. 4.5, the momentum

shifts as ϕF → π − ϕF, see Sec. 2.3.3. For incoming trajectories that satisfy

π

4 − α < ϕF <
π

4 + α, (4.8)

this means that the order parameter changes sign, or acquires a phase shift of
π, between the incoming and outgoing trajectory[74]. At α = π/4, this is then
the case for all incoming trajectories. The sign change ∆ → −∆ upon reflection
results in a bound state at zero energy, the so-called midgap state[75]. The name
reflects the fact that it is located at the Fermi energy, and thus in the middle of
the energy gap for each momentum orientation.
To see this within quasiclassical theory, let us assume an interface with finite

transparency D and neglect the suppression of the (real) order parameter in a
clean system with spin degeneracy. For any angle ϕF 6= 0, the incoming bulk
coherence functions γ(ϕF) and γ̃(π − ϕF) on the outgoing trajectory read

γRin(ϕF) ≡ ∆
ε+ iΩ , γ̃R(π − ϕF) ≡ ∆

ε+ iΩ , (4.9)

where Ω =
√

∆2(ϕF)− (ε+ iη)2, and we assumed that the incoming trajectory
has a negative sign of ∆. In the following, we will not write out the angle ϕF
explicitly. Note that ε implicitly contains a small imaginary part for the retarded
function. Through the boundary conditions, we find the outgoing function at the
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interface, and can then use Eq. (3.9) to obtain the spatial dependence

ΓR(x) = −γRin
ε(R + 1) + iΩD − e−x′(R + 1)(ε+ iΩ)
ε(R + 1) + iΩD − e−x′(R + 1)(ε− iΩ) , (4.10)

where x′ = 2Ωx/(~vF cosϕF). We then find the retarded Green’s function

gR = −iπ2
1− ΓRγ̃R

1 + ΓRγ̃R (4.11)

= −iπ2

[
ε

Ω

(
1− e−x

′ (R + 1)ε
ε(R + 1) + iDΩ

)
− e−x

′ (R + 1)Ω
ε(R + 1) + iΩD

]
. (4.12)

From this, we can obtain the momentum-resolved density of states per spin via
Eq. (2.96). For subgap energies we find the midgap state,

Nσ(|ε| < |∆(ϕF)|, ϕF , x) = π∆(R + 1)
2
√
R

1
π

Γ
ε2 + Γ2e

−2x′, (4.13)

where x′ = x/(cosϕFξAndreev). This is a Lorentzian around zero energy with a
width given by

Γ = D∆
2
√
R
. (4.14)

Interface transparency thus broadens the bound states. The midgap state de-
cays away from the surface on the length scale of Andreev reflection, ξAndreev =
~vF/

√
∆2 − ε2. In the limit D → 0 (R → 1), the Lorentzian narrows to a δ-

distribution, integration then gives the spectral weight π∆ of the bound state.
The bound state will be additionally broadened by impurities. Noting that the

off-diagonal impurity renormalization vanishes for a d-wave order parameter since〈
fR
〉

FS
∝ 〈∆(ϕF)〉FS = 0, one finds by insertion into Eqs. (2.92)–(2.93) that

ΣBorn(ε) = Γs
π

〈
gR(ε)

〉
FS
,Σunitary = πΓs

1
〈gR(ε)〉FS

. (4.15)

Here Γs is the scattering energy due to scalar impurities. By Eq. (2.97), the
imaginary part of Σ is thus proportional to the density of states. Since the bound
state is peaked around ε = 0, we thus expect a large broadening of the bound state
in the Born limit and less broadening in the unitary limit. A detailed analysis
shows that the impurity broadening is Im ΣBorn ∝ Γs and Im Σuni ∝

√
Γs[76],

while the broadening in the bulk is larger in the unitary limit .
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Figure 4.6:
Left: Comparison of the density of states NF(ε) at an interface with a tunnel cone
according to Eq. (2.75) with D0 = 0.2 and β = 1. Right: Suppression of the order
parameter close to the surface. In both cases, α = 0 (orange) and α = π/4(blue).
Results for the Born limit with ` = 100ξ0 at T = 0.1Tc.

One example for the resulting difference in the density of states between α = 0
and α = π/4 is shown in the left panel of Fig. 4.6. The presence of such ABS
leads to strong suppression of the order parameter near the surface, shown in the
right panel of the same figure. These midgap states are a fingerprint of d-wave
superconductors. They do not occur at boundaries of s-wave superconductors
to normal metals or the vacuum. The MGS have been extensively studied in
literature, for example the influence of surface roughness[77]. They also comes at
a high cost in free energy that gets reduced in the presence of additional, sub-
dominant order parameter components[78]. As we will see Ch. 5 the difference in
the surface spectrum for different misalignment angles also changes the transport
behaviour.

4.3 mixed d + is order parameter
As the name suggests, a d+ is SC has an order parameter of the combination

∆(ϕF) = ∆d
√

2 cos 2 (ϕF − α) + i∆s, (4.16)

where ∆d and ∆s give the magnitude of the respective component. In equilibrium,
the two components are thus shifted in phase by π/2. It is implicitly assumed that
the d-wave component is dominant ∆d � ∆s, and the two gaps have two different
critical temperatures that satisfy Tc,s � Tc,d. For temperatures T . Tc,s � Tc,d,
the s-wave component is very small in the bulk and does not affect the bulk
properties which are dominated by the larger d-wave component. Scattering on
pair-breaking interfaces, meaning for α 6= 0, lead to an increase of ∆s close to such
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an interface[22]. A self-consistent profile of the spatial dependence ∆d(x) and
∆s(x) in equilibrium is shown in Fig. 4.7a. This suggests that the sub-dominant
component mostly affects the surface physics. Indeed, an observable consequence
is that the midgap states get split away from zero energy to, for a clean system,
ε = ±∆s, as seen in Fig. 4.7b. The influence on the transport behaviour will be
studied in Chap. 5.
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(a) Spatial dependencies of ∆d and ∆s.
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Figure 4.7: Enhancement of a sub-dominant order parameter ∆s close to a partially
reflective pair-breaking surface where the dominant d-wave pairing is suppressed. The
interfaces is characterized by D0 = 0.5 and β = 1, see Eq. (2.75), and a misalignment
angle of α = π/4. The temperature T = 0.1Tc,d ≈ 0.5Tc,s and we have Γ = 0.01πkBTc
in the Born limit.



Chapter

5 Transport in superconductors

This section will provide background and additional information for the results
of the appended papers. The general type of system we considered is sketched in
Fig. 5.1.
It consists of a central superconducting region, denoted S of width w and length

L, coupled to the left and right to normal-metal reservoirs, denoted N. By assump-
tion, the reservoirs are large compared to the central superconducting system so
that the left (L) and right(R) reservoir remain at their respective equilibrium
distributions, characterized by their separate electrochemical potentials µL/R and
temperatures TL/R. At the contact between the central region and the reservoirs
there can be insulating barriers, denoted I, which we model as interfaces of finite
transparency. Using the abbreviations of the different components we call such
systems a NISIN structure. We discuss deviations from this general structure if
required.

Figure 5.1:
General structure of the setups
we consider. A superconductor
(S), of length L and width w, is
contacted via insulating barriers
(I) to a normal-metal reservoir
(N) to the left and right.
Transport occurs between the
reservoirs in the x direction.

SN N

I

w

x
0 L

5.1 Nonequilibrium in the normal state
As a simple example for the introduced concepts, such as the modes of the non-
equilibrium distribution, we briefly review their behaviour in the normal state.
To this end, we consider the central region in Fig. 5.1 to be replaced by a spin-
degenerate normal metal, so we only have the energy-like mode f1,0 = f1 and
charge-like mode f3,0 = f3 to consider.

47
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Each normal-metal reservoir is described by a Fermi distribution at an elec-
trochemical potential µL(R) = eφL(R) and temperature TL(R) so that h reads as
defined in Eq. (2.47). Taking the left reservoir as an example, the energy-like and
charge-like modes incoming from the reservoir are then simply

f left res.
1 (ε, vxF > 0) = 1

2

(
tanh ε− eφL

2kBTL
+ tanh ε+ eφL

2kBTL

)
, (5.1)

f left res.
3 (ε, vxF > 0) = 1

2

(
tanh ε− eφL

2kBTL
− tanh ε+ eφL

2kBTL

)
. (5.2)

Note that the charge mode is only non-zero for finite values of φL and cannot be
created by a temperature alone. Fig. 5.2 shows the two modes for a finite and
zero voltage at different temperatures. A finite φL creates step-like structures of
width 2eφL in both modes, while higher temperatures broaden the steps.
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Figure 5.2: Energy-like (left column) and charge-like (right column) modes in a
reservoir with eφL = 0.5kBTc (solid orange), and their shape for eφL = 0 at the same
temperature (dashed blue). In the top row T = 0.01Tc, in the bottom row T = 0.1Tc.

For simplicity we assume φL > φR = 0 and a constant temperature T every-
where. The starting guess for the incoming function from the right reservoir and
in the central region is then an equilibrium distribution. The distribution entering
the central region at the left insulating barrier, see Fig. 5.1, will then depend on
the interface transparency D,

f1(3)(ε,vxF, x > 0) = D f left res.
1(3) (ε,vxF) + (1−D) f1(3)(ε,vxF < 0, x > 0), (5.3)
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so that the function entering the normal region from the left is a weighted mixture
of the blue and orange curves in Fig. 5.2.
The spatial variation of the distribution is found by solving the equation of

motion for x as outlined in Sec. 3.2. Once the impurity self-energies are self-
consistently determined the charge current is conserved everywhere. For left-
movers, right-movers, and the FS average show the Fig. 5.3 shows the energy mode
and Fig. 5.4 the charge mode, both for left-movers, right-movers, and FS-averaged,
as defined in Sec. 2.3.1. Comparison to Fig. 5.2 shows that the left-mover (right-
mover) modes agree with the reservoir modes at the right (left) system edge at
x = L = 20ξ0 (x = 0), this is only the case for fully transparent interfaces with
D = 1.
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Figure 5.3: The energy-like mode for (a) left-movers, (b) right-movers, and (c) FS-
averaged. Here we have D = 1, ` = L/2 and T = 0.1kBTc.
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Figure 5.4: The charge mode for (a) left-movers, (b) right-movers, and (c) FS-
averaged. Note that we show −〈f3〉→/←/FS is shown and the x and ε axes are flipped
compared to Fig. 5.3.

Even for D = 1, the FS-average of both modes has jumps compared to the reser-
voir distributions since it is the local average of left- and right-mover distributions.
Additionally, we see that 〈fi〉→ 6= 〈fi〉← 6= 〈fi〉FS for both modes, indicating that
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Figure 5.5: Left-mover and right-mover
potentials in the normal state for the results
shown in Figs. 5.3–5.4.

the transport is not fully diffusive.
Studying the non-equilibrium modes gives insight into the physics on an energy-

and momentum-resolved level. As a complimentary approach, we can use the
left-mover and right-mover potentials, see Eq. (2.103), that are shown in Fig. 5.5.
The right-mover (left-mover) potential φ→ (φ←) connects to the potential of the
left (right) reservoir at the left (right) system edge. The average potential φ,
however, has jumps even for the fully transparent interface considered here. We
can interpret those jumps as a contact resistance between the reservoir and the
system[33].
In both viewpoints of the problem, we see mixing between left-movers and right-

movers in the central region. The “strength” of this mixing is determined by the
ratio of the mean free path to the system length, `/L. The smaller the ratio the
more diffusive transport becomes . Noting that in the normal state, x = h, the
equation of motion for h obtained from Eq. (2.36) is simply

i~vF · ∇h− ΣRh+ hΣA = −ΣK. (5.4)

In the Born limit the self-energies for the normal state are ΣR = −iΓ, ΣA = iΓ,
and ΣK = −2iΓ 〈h〉FS. A solution step of length x in a region of constant self-
energies is then found to be

h(ε, x, vxF > 0) = e−x/` cosϕFh(ε, 0, vxF > 0) + (1− e−x/` cosϕF) 〈h〉FS (ε, x). (5.5)

For propagation in the x direction the momentum-dependent effective path length
becomes x/ cosϕF. Hence, the information about the initial occupation is lost on
a scale of `, and instead the occupation is driven towards the Fermi-surface av-
erage of the occupation for the given energy, 〈h〉FS (ε). This is what we would
expect since we include only elastic scattering processes but not inelastic ones.
The occupation for a given energy can then only be redistributed over the avail-
able momentum orientations on the Fermi surface but not scattered to different
energies.
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5.2 Voltage bias in the superconducting state
If a potential difference µL 6= µR is applied between the reservoirs at equal tem-
perature TL = TR then the structure is under a pure voltage bias. The supercon-
ductor is assumed to be grounded so that we have µS = 0 in the central region.
In the attached papers we compare our results to a non-self-consistent scattering
approach, so we briefly review it here within quasiclassical theory.

5.2.1 Interface conductance

Figure 5.6:
A pinhole contact between a
normal metal reservoir at po-
tential µ and a grounded su-
perconductor. The voltage
drop occurs exactly at the in-
terface and ∆(x) = ∆0 in the
SC, ∆(x) = 0 in the normal
metal. SCN

x

Let us assume a symmetric system, meaning that the left and right insulating
barrier have equal transparencies D. Then the potential difference should be
applied symmetrically around µS, for example µL = −µR. The problem can then
be reduced to studying an individual normal-metal reservoir (N) at connected
via an insulating barrier (I) to a grounded superconductor (S), or NIS system,
with a potential difference V = |µ| applied. The question of interest is then
in the current-voltage relation I(V ), or alternatively the differential conductance
G(V ) = dI/dV of such an interface.
In a simple, non self-consistent model the order parameter can be assumed

constant up to the interface while the voltage drop from µN to 0 exactly at the
interface. Implicitly, this means that we have either interface with very low trans-
parency or a Sharvin-type pinhole contact[79]. We will assume the latter case
here and sketch this simplified model in Fig. 5.6.
For simplicity, we consider the current on the normal side of the interface and

assume the spin degenerate case. As in Sec. 2.3.3, we adopt the convention that
capital letters denote functions outgoing from the interface and small letters de-
note incoming ones nd do not write out vxF explicitly. From the definition of the
charge current, Eq. (2.98), we find the current in the x direction to be

jx = −eNF

∞∫
−∞

dε
2

〈
vF(xN−X̃N+Γ̃R

NxNΓA
N)
〉

+
+
〈
vF(XN−ΓR

Nx̃NΓ̃A−x̃N)
〉
−

2 . (5.6)
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The incoming functions on the normal-metal side (N) and superconducting side
(S) for vF pointing toward the interface are

γN(vxF > 0) = 0, xN(ε, vxF > 0) = tanh ε− eV2T , (5.7)

γR
S (ε, vxF < 0) = γR

bulk(∆0, ϕF), xS(ε, vxF < 0) = tanh ε

2T
(
1− |γR

S |2
)
. (5.8)

The outgoing functions on each side are then obtained by using the boundary
conditions outlined in Sec. 2.3.3. The coherence function on the normal side is
simply

ΓR
N = DGR

S γ
R
s , (5.9)

where GR
S =

(
1 +RγR

S γ̃
R
S
)
, with the interface reflectivity R = 1−D, is the value

at the interface on the superconducting side. The outgoing distributions can be
written in terms of physical probabilities[80] as

XN = ReexN + T eexS − T ehx̃S, (5.10)
X̃N = Rhhx̃N + T hhx̃S − T hexS. (5.11)

The different prefactors in Eqs. (5.10)–(5.11) designate for different transport
processes across the interface. Specifically, Ree denotes reflection of an electron
incoming from the normal side and T ee denotes transmission of an electron incom-
ing from the superconducting side. Lastly, T eh = T e←h is the so called branch-
conversion transmission, meaning a hole incoming from the superconductor gets
transmitted as an electron in the normal metal. For each of these processes there
is a electron-hole conjugated counterpart where the indices h and e are exchanged.
The probabilities can be expressed in terms of the amplitudes rR

1l, t
R
1l and aR

1l,
see Sec. 2.3.3, and ΓR. In the normal side they evaluate to

Ree = |rR
1l|2 = |

√
R(1 +DγR

S GR
S γ̃

R
S )|2, T ee = |tR1l|2 = |

√
DGR

S |2, (5.12)
T eh = |aR

1l|2 = |
√
R
√
DGR

S γ
R
S |2, Reh = |ΓR

N|2 = |DGR
S γ

R
S |2. (5.13)

One can also obtain the probabilities from a diagrammatic summation[81]. The
electron-hole conjugated terms can be combined by symmetries, and by combining
trajectories that are related through specular scattering, see Eq. (2.73), we can
also combine the two Fermi surface averages. The final result for the current
becomes

jx = −eNFvF

∞∫
−∞

dε
π/2∫
−π/2

dϕF

2π cosϕF
[
xN (1−Ree +Rhe) + xS

(
T he − T ee

)]
.

(5.14)
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Note that all probabilities and xS can still depend on the momentum orientation.
The current is then given by Ix = Ajx where A is the contact area. For xN as
specified in Eq. (5.7) we find the conductance G(V ) = dI/dV , normalized to the
normal-state value, to be

G(V )
GN

=
∞∫
−∞

dε
π/2∫
−π/2

dϕF

2π
1

2T
(1−Ree +Rhe) cosϕF

cosh2[(ε− eV )/2T ]
(5.15)

where the normal-state conductance is GN = 2e2NFvFA〈cosϕFD(ϕF)〉+. Implic-
itly, we have assumed that the transport probabilities and xs are not voltage-
dependent which is consistent with the model of an unperturbed superconductor.
For T → 0, the voltage-dependent part becomes a delta distribution so that the
conductance at a voltage V measure the amplitudes at the corresponding energy
eV , for a finite temperature T the energy integral averages on the scale of 2T .
Examples for the resulting conductances for an s-wave superconductor are shown
in Fig. 5.7. In the low-transparency limit D � 1 the conductance resembles the
bulk density of states, so it can be used as a probe of the spectrum in tunnelling
spectroscopy[82, 83].

Figure 5.7:
Conductance for the in-
terface between a normal
metal and an s-wave su-
perconductor as predicted by
Eq. (5.15).
Here a non-selfconsistent
result for a clean supercon-
ductor at T = 0.1.
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For a clean s-wave superconductor with momentum-independent interface trans-
parency D, the interface conductance agrees with that obtained by Blonder, Klap-
wijk, and Tinkham, in the so-called BTK approach[84]. Further evaluation shows
that in this case transport probabilities in Eq. (5.12) – (5.13) can be expressed
in terms of experimentally accessible parameters such as the energy gap ∆ and
the interface transparency D, and the model is used to analyse experimental re-
sults[85]. It will also serve as a means of comparison for our results. Eq. (5.15)
extends the original BTK approach by averaging all transport probabilities over
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the Fermi surface average. Additionally, using self-consistently determined values
of the transport amplitudes captures corrections due to deviations from the simple
model of an unperturbed bulk superconductor.

5.2.2 Beyond the interface
Having obtained an expression for the interface conductance, the natural question
is: What happens now with the current that gets injected through the interface?
To get some intuition, we can take the equation of motion for xa for a clean s-
wave superconductor so that there are is no impurity self-energy. The Keldysh
components of ȟMF are also zero, see Sec. 2.4. Let us additionally assume that the
coherence function is unperturbed by the low-transparency contact with D � 1
and the coherence functions for the outgoing trajectory just have their bulk values.
In this case Eq. (2.36) can, in the spin degenerate case, be written as

i~vF · ∇xa = −γR∆̃R
x

a −∆Aγ̃Axa = −2i Im
(
γR∆̃R

)
x

a. (5.16)

The solution along the x direction is then of them form

x
a(x) = x

a(0) exp
(
− 2x
~vF cosϕF

Im(γR∆̃)
)
. (5.17)

We find

Im(γR∆̃) =
{ √

∆2 − ε2 if |ε| < ∆
O(η) if |ε| > ∆ , (5.18)

where η is the small imaginary part of energy for retarded functions. Particles
injected at an energy eV below the gap will thus decay on a length scale of
Andreev reflection ξAndreev(eV ) = ~vF/

√
∆2 − (eV )2, while those above propagate

unperturbed as quasiparticles since they cannot scatter. If the change of γ at the
interface is actually taken into account, the oscillations in γ and γ̃ for voltages
above the gap also affect the population. In the presence of impurities, the decay
becomes additionally dependent on the mean free path, similar to the normal-
metal case.
In general, the equation of motion for x

a will contain driving terms on the
right-hand side. Similar to the normal-state case, the injected population will be
driven to a value that is determined by the combination of those driving terms, see
Eq. (2.36). For injection voltages below the energy gap, we would still expect the
quasiparticle current to decay inside the superconductor if there no quasiparticle
states at the given energy. Since the total current has to be conserved, a compen-
sating current carried by the condensate should build up in the superconductor.
To capture this transition correctly we need to perform a fully self-consistent
calculation that cannot be done analytically.
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5.2.3 s-swave order parameter
The aim of paper I was to calculate the charge transport inside an s-wave su-
perconductor self-consistently for different impurity concentrations and interface
transparency. In the literature, similar work has been done mostly in the fully dif-
fusive limit[27, 28, 86], or without self-consistency in the clean case[84]. The work
that is the most closely related is a series of publications, referenced in its entirety
in Paper I, by Sols and Sánchez-Cañizares. Starting from scattering theory with
an “asymptotic“ self-consistency in the bulk[87], their work culminated in a fully
self-consistent quasiclassical theory but only for very small systems (L . 3ξ0)[88].
Our interest was in somewhat larger systems in the intermediate regime of impu-
rity concentrations between the clean and dirty limits where transport is not fully
ballistic or fully diffusive.
Here we will review the results for the setup in Fig. 5.1, a superconductor con-

nected on each end to a reservoir. Additionally, the superconductor has negligible
width w � L so it essentially a superconducting nanowire. We assume then that
there are only two momentum orientations, vxF = ±1, allowed in the wire. While
inclusion of additional momenta leads to a certain averaging and reduces the in-
fluence of ps, we have checked that the general results are not strongly affected by
this assumption. The setup is shown in Fig. 5.8. Here, we will assume DL = DR
so that the bias is symmetric, µL = −µR. We can then focus on one side of the
system to discuss the physics.

x
0

Figure 5.8:
One of the setups in paper I, referred to as ISI system. A superconducting nanowire
is coupled to a normal-metal reservoir on the left (L) and right (R) via an insulating
barriers of transparency DL (DR).

Once a self-consistent solution is found the injected charge current j is con-
served, j(x) = const.. However, the injected quasiparticle current, ja, is con-
verted into current carried by the condensate, jle, see Fig. 5.9. This identification
is possible since the charge current, in the form of Eq. (5.19), reads for the spin
degenerate case

j(R) = −eNF

∞∫
−∞

dε 〈vFf1(ε,pF,R)N (ε,pF,R)〉FS , (5.19)
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Figure 5.9:
Conversion of quasiparticle current
into supercurrent in an s-wave super-
conductor. Shown are the anomalous
current ja, the local-equilibrium cur-
rent jle, and total current j. Here
D = 1, eV = 0.5kBTc, T = 0.1Tc, for
a superconductor with ` = 20ξ0.

where we suppress the spin index on f1 ≡ f1,0. Using the splitting of f1, Eq. (2.61),
we arrive at j(R) = jle(R) + ja(R), where

jle(R) = −eNF

∞∫
−∞

dε f le
1 (ε,R) 〈vFN (ε,pF,R)〉FS =

∞∫
−∞

dε jle(ε,R), (5.20)

ja(R) = −eNF

∞∫
−∞

dε 〈vFf
a
1 (ε,pF,R)N (ε,pF,R)〉FS =

∞∫
−∞

dε ja(ε,R). (5.21)

On the right-hand side of both equations we have defined the spectral current
densities for both quantities. Note that f le

1 does, by definition, not depend on
the momentum orientation pF. This shows that jle can only be non-zero if the
momentum-resolved DOS, N (ε,pF,R), varies over the Fermi surface.
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Figure 5.10:
Spatial dependence of the superfluid mo-
mentum ps(x). Parameters are the same
in Fig. 5.9.

We will see below how this variation
appears in a self-consistent calculation. If
φ is determined self-consistently, ja is en-
tirely due to differences in the occupation
of quasiparticles for different momen-
tum orientations, since f le

1 subtracts ex-
actly the momentum-independent part.
The variation in N (ε,pF,R) that carries
the condensate current is self-consistently
generated from the phase gradient of the
superconducting order parameter,

∆(x) = |∆(x)|eiχ(x). (5.22)
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By a local gauge transform, this is equivalent to a real order parameter ∆ and
the presence of the so-called superfluid momentum

ps ≡
~
2∇χ(x), (5.23)

which is shown in Fig. 5.10. In presence of this superfluid momentum, all quasi-
particle energies obtain a Doppler shift

ε→ ε− vF · ps. (5.24)

This Doppler shift alters the density of states for different momentum orientations
as seen in Fig. 5.11. The density of states gets shifted upward (downward) for
positive (negative) momenta, and the Fermi-surface average has a reduced spectral
gap compared to the equilibrium shape. Additionally, the original coherence peaks
at ε = ±∆ each split into two separate peaks at ε = ±(∆± vFpS).
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Figure 5.11:
Effect of superflow on the density of states in the center of the superconductor at
x = L/2. (a) Averaged over positive vxF (〈N〉+) and over negative vxF, (〈N〉−). (b)
Averaged over the entire Fermi surface (〈N〉FS) in comparison the bulk equilibrium
value Nbulk. Parameters are the same as in Fig. 5.9

The identification of ja as the quasiparticle current and jle as current by the
condensate is also apparent in the spectral current densities that we have defined
in Eq. (5.20)–(5.21). As can be seen in Fig. 5.12 the anomalous part is only non-
zero in the bias-window |ε| ≤ eV and decays away from the interface. In contrast,
the condensate current is carried in between ±(∆± vFpS).
Lastly, we show the right-mover, left-mover, and FS-averaged potential, in

Fig. 5.13. They indicate that the right-moving particles are predominantly electron-
like while the left-moving ones are predominantly hole-like, reflecting the relax-
ation of the injected imbalance through Andreev reflection for an injection voltage
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Figure 5.12:
Spectral current densities. The left plot shows ja(ε,R), and the horizontal red dashed
line indicates the bias window. The right plot shows jle(ε,R), and the dashed lines
indicate the ±(∆± vFpS). Parameters are the same as in Fig. 5.9
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Figure 5.13:
(b) The spatial dependence of the
potentials for left-movers φ←, right-
movers φ→, and FS-average φ. Note
that the latter is enlarged by a factor
of 10 for better visibility. Parameters
are the same as in Fig. 5.9

|V | < ∆/e. In a perfectly clean system the resulting charge imbalance in the
steady would then be zero since each incoming electron gets Andreev reflected,
creating a counter-moving hole. The non-zero quasiparticle potential φ(x) near
the interface thus appears as a result of impurity scattering that mixes the left-
mover and right-mover branches. For quasiparticle excitations in the supercon-
ductor, meaning energies above the gap, φ(x) is usually referred to as charge
imbalance. That there can be difference in the quasiparticle potential compared
to the condensate was first measured by Clarke[89], and subsequently a theory
of the relaxation was developed for injection voltages above the gap[90, 91]. In
the above example, the quasiparticles are only entering the superconductor as
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evanescent states, so that the φ(x) is an evanescent charge imbalance.
For a fully transparent interface, impurity scattering then leads to an increase

(decrease) of the current in the case of Andreev reflection (impurity scattering).
For finite interface transparency, a back-scattered quasiparticle might not nec-
essarily transfer back into the reservoir so that the opposite effect of a current
increase can occur for low-transparency interfaces where Andreev reflection is
suppressed. The dependence on the injected current on interface transparency
and mean free path is investigated in more detail in paper I.
This decay of injected quasiparticle current with a compensating build-up of

a condensate current remains largely unchanged with increasing voltage until
we reach voltages that are comparable to ∆/e. At this point, the only stable
self-consistent solution we found was that of a vanishing order parameter in the
superconductor. This happens at a critical voltage Vc, and part of paper I is
an investigation of the underlying mechanism, as well as of the dependence of
Vc on interface transparency and impurity concentration. A similar result was
reported for a fully diffusive superconducting wire[92] and we found that for in-
creasing impurity concentrations Vc approaches the value in the diffusive limit.
Later publications, again for a diffusive wire, report self-consistent solutions with
a “bimodal” superconducting state that disappears everywhere but close to the
interfaces and relates this to experimentally observed hysteresis in the current-
voltage characteristics[93].

5.2.4 d-wave order parameter
Compared to the case of an s-wave superconductor, the theory on transport d-
wave superconductors is less well studied. Due to the importance of the surface
physics in d-wave superconductors, the main focus of available work is on tun-
nelling spectroscopy, which can be used to probe such surface effects. Experiments
on tunnelling into cuprate superconductors lead to observations of a peak in the
conductance at zero bias, or zero-bias conductance peak (ZBCP)[94–96]. Using a
generalization of the BTK approach, see Sec. 5.2.1, to d-wave SCs the observed
ZBCP were linked to the surface Andreev bound states at pair-breaking inter-
faces[97, 98]. Non-equilibrium current flow in a d-wave superconductor has not
been investigated self-consistently, which drove our interest.
To study a voltage-biased d-wave superconducting film, we use a setup as de-

picted in Fig. 5.1. In contrast to paper I, the d-wave order parameter inherently
requires the inclusion of many trajectories distributed over the Fermi surface. The
contacts are tunnel barriers which we describe through a a momentum-dependent
transparency according to Eq. (2.75). We model the film as quasi one-dimensional
by assuming translational invariance normal to the transport direction x̂. Depend-
ing on the orientation of the interfaces to the crystal axis, we can tunnel into a
so-called [100] surface, meaning we have a misalignment α = 0, or into a [110]
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surface, meaning α = π/4. We will discuss both cases separately, and start with
the former. We see the results of a self-consistent calculation for one bias voltage
in Fig. 5.14 in the Born limit, and in Fig. 5.15 for the unitary limit.
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Figure 5.14: olz(a) The anomalous current ja, the local-equilibrium current jle, and
total current j. (b) The superflow ps(x). (c) The quasiparticle potential eφ(x). In this
case, we have D = 1, β = 1, ` = 100ξ in the Born limit, and µL = −µR = 0.5kBTc
so that the total bias is eV = kBTc.
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Figure 5.15: (a) The anomalous current ja, the local-equilibrium current jle, and
total current j. (b) The superflow ps(x). (c) The quasiparticle potential eφ(x). In this
case, we have D = 1, β = 1, ` = 100ξ in the unitary limit, and µL = −µR = 0.5kBTc
so that the total bias is eV = kBTc.

Just as in the s-wave case, the injected quasiparticle current ja gets converted
into condensate current jle inside the superconductor. The condensate is carried
by a non-zero superfluid momentum pS. In contrast to the s-wave case, even for
moderate injection voltages there is a counter-flowing quasiparticle current ja in
the center of the superconductor. It is accompanied by a non-zero quasiparticle
potential φ(x) throughout the entire structure, both in the Born and unitary
limits and even for a relatively clean system, here ` = 100ξ0 = 2L. In the unitary
limit φ(x) is an order of magnitude larger, indicating the influence of the impurity
band, see Sec. 4.1.2. In the Born limit no such impurity band exist, yet there is
non-zero quasiparticle potential φ(x). In this case the Doppler shift in the bulk
creates a finite density of states in an energy range of |2vFpS| around zero energy,
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seen in Fig. 5.16(b). Additionally, the superflow results in an opposite shift of the
DoS for positive and negative vxF, seen Fig. 5.16(a). In the injection window, this
creates an excess of left-moving quasiparticle states for electrons and right-moving
ones for holes so that the resulting quasiparticle current is counter-flowing.
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Figure 5.16: Density of states in the center of the SC in the Born limit. (a) Density
of states for vxF > 0 and vxF < 0. Shaded in light grey is the energy window of injection
voltage ±|eV |. (b) Fermi-surface average compared the bulk equilibrium value, shaded
in light the energy window ±vFps.

Figure 5.17:
Non-selfconsistent interface conductance,
here in the Born limit with ` = 100ξ0 at
T = 0.1Tc. The interface has a momentum-
dependent transmission given by Eq. (2.75)
with β = 0 and D0 as given in the legend.
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For injection into [110] surfaces, the presence of the surface Andreev bound
states leads to a substantial change in the interface conductance. Evaluation the
conductance formula, Eq. (5.15), gives a prediction as shown in Fig. 5.17. The
behaviour in the center of the system, with a counterflowing quasiparticle current
accompanied by a finite quasiparticle potential φ(x), is largely identical. As we
discussed above, the ABS gets shifted to finite energy in the presence of screening
currents parallel the surface. In our case, we inject current in the direction of the



62 5 Transport in superconductors

surface normal, and find no such shift with increasing current but rather a slight
suppression of the bound state with increasing current, seen in Fig. 5.18.
Neglecting the effects of broadening and order parameter suppression, we show

in the paper that the effect of superflow along the surface normal only leads to a
suppression of the spectral weight

π|∆(ϕF)| → π
√

∆2(ϕF)− (vxFpxS)2. (5.25)

implicitly assuming that |vxFpxS| < |∆(ϕF)|, for a small range of momenta around
the nodes a non-linear Meissner effect appears[99]. The surface states are thus
only weakly affected by the superfluid momentum. As a result, the transport
amplitudes that enter the formula for the current at the interface, Eq. (5.14), are
not altered as the bias is increased. Our fully self-consistent result for the resulting
conductance, discussed in paper III, is in good agreement with the prediction of
a scattering approach with self-consistently determined equilibrium values for the
amplitudes. This stability in the presence of current flow is not the case for a
d-wave order parameter with a sub-dominant s-wave component.
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Figure 5.18: With increasing bias voltage and current, the superflow ps reduces the
height and spectral weight of the ABS, but does not shift it in energy. Parameters are
D0 = 0.5, β = 1 and ` = 100ξ0 in the Born limit at T = 0.1Tc.

5.2.5 mixed d + is order parameter
Experimentally, the ZBCP discussed in the last section will split if a magnetic
field is applied perpendicular to the ab-plane,[100] corresponding to shift of the
Andreev states in response to screening currents at the surface[77]. A similar
splitting of this ZBCP in the absence of external magnetic fields is observed in
some experiments but not in others[100–102]. The possibility of a such a splitting
implies that time-reversal symmetry is broken locally at the surface. This could
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be due to the presence of a subdominant order parameter of different symmetry
such s or dxy that appears only close to pair-breaking interfaces[22, 77].

As part of paper III, we investigate the influence of current injection on such a
sub-dominant s-wave order parameter ∆s that only appears near the surface since
Tc,d � Tc,s. As we had discussed in Sec. 4.3, this leads to a splitting of the surface
states to ±∆s. Based on a scattering approach, we would expect this splitting to
be reflected in the tunnelling conductance when using low-transparency contacts.
However, the bound states get broadened through interface transparency and
impurities, as we had seen in Sec. 4.2. Additionally, the conductance formula
in Eq. (5.15) does not measure the spectrum directly but introduces additional
broadening due to temperature. The conductance we obtained in a fully self-
consistent calculation, however, disagrees markedly with the prediction of the
interface-conductance model, even for low impurity concentrations corresponding
to ` = 100ξ0, as seen in Fig. 5.19.

Figure 5.19:
Interface conductance accord-
ing to Eq. (5.15) compared
to the fully self-consistent
result with subdominant order
(blue) and without (orange).
Self-consistent equilibrium
transport amplitudes are used
for Born and unitary limits
for the interface conductance
(here abbreviated LB). In all
cases, we have ` = 100ξ0 at
T = 0.1Tc. The interface is a
tunnel cone as in Eq. (2.75)
with D0 = 0.5 and β = 1. 0.4 0.2 0.0 0.2 0.4
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The fully self-consistent result thus predicts an initial steep increase of the con-
ductance, in contrast to a Born- or unitary limit tunnel conductance at the same
temperature, where the splitting of the peak is masked due to the temperature
broadening of the normal-side distribution. This increase, and the subsequence
transition to the conductance of a SC without a sub-dominant component, is the
result of the suppression of the sub-dominant component with increasing bias,
analysed in paper III. To understand the difference in behaviour, we revisit the



64 5 Transport in superconductors

current formula in the non-selfconsistent scattering approach, Eq. (5.14). It read

jx = −eNF

∞∫
−∞

dε
π/2∫
−π/2

dϕF

2π vF cosϕF
[
xN (1−Ree +Rhe) + xS

(
T he − T ee

)]
.

(5.26)

In our fully self-consistent approach all terms on the right-hand side depend on
voltage:

djx
dV = −eNF (A1 + A2 + A3 + A4) , (5.27)

where the different Ai are given by

A1 =
εc∫
−εc

dε〈vxF
dxN

dV (1−Ree(V ) +Rhe(V ))〉+, (5.28)

A2 =
εc∫
−εc

dε〈vxF xN(V )d (1− Ree(V) + Rhe(V))
dV 〉+, (5.29)

A3 =
εc∫
−εc

dε〈vxF
dxS

dV
(
T̄he(V )− T̄ee(V )

)
〉+, (5.30)

A4 =
εc∫
−εc

dε〈vxF xS(V )
d
(
T̄he(V )− T̄ee(V )

)
dV 〉+, (5.31)

with vxF = vF cosϕF. Fig. 5.20 shows that the spectral rearrangements, due to the
reduction of ∆s with increasing voltage, give substantial corrections.
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Figure 5.20:
Contributions of the terms A1–
A4 to the self-consistent conduc-
tance.
All results are both in the Born
limit for ` = 100ξ0 at T = 0.1Tc.
The interface is a tunnel cone as
in Eq. (2.75) with D0 = 0.5 and
β = 1.
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5.3 Temperature bias
Let us next consider a different setup with a temperature bias. Application of
a fixed temperature difference between the two reservoirs leads to a temperature
bias in the central region in Fig. 5.1. We assume the SC to be in a cryostat at
temperature T , and the left reservoir to be heated to a slightly higher temper-
ature TL = T + ∆T . This can in principle lead to a thermoelectric effect and
heat flow. Andreev found the heat conductivity of quasiparticles in an s-wave
superconductor is exponentially suppressed, Gth ∝ exp(−∆/T ), as a result of
Andreev reflection of injected quasiparticles[103]. The existence of thermoelectric
effects in superconductors were somewhat of an elusive question for a long time.
Initial results, attributed to Meissner[104, 105] seemed to indicate that there is no
thermoelectric effect at all in superconductors. Later Ginzburg argued in terms
of a two-fluid model that there is a thermoelectric effect but the induced charge
current carried by the ”normal fluid“, meaning the quasiparticles, is cancelled
by a counter-flowing condensate current[106, 107]. The total current thus can-
cels in the bulk which makes thermoelectric currents difficult to measure. At the
contact to a normal metal in an open-circuit setup, however, the quasiparticle
current was suggested to fall off close to the contact through the creation of a
charge imbalance [108, 109]. This effect was also observed experimentally[110].
Thermoelectric effects in conventional superconductors are thus relatively well-
studied[111]. They are also used in superconducting hybrid structures[112]. Our
study was motivated by the, in comparison, limited knowledge of thermoelectric
effects in unconventional superconductors.

5.3.1 d-wave order parameter
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Figure 5.21:
(a) Quasiparticle and condensate current, ja and jle. (b) Spatial profile of φ(x). (c)
The thermophase χ(x). Here, D = 1, TR = 0.25Tc, TL = TR + ∆T = 0.35Tc. The
mean free path is ` = 10ξ0 and the scattering phase shift δ0 = 0.9.
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In Paper II we examine the thermoelectric effect in a d-wave superconducting
film as a result of an impurity-induced asymmetry between electrons and holes.
Recall from Sec. 2.2 that the quasiclassical approximation removes any electron-
hole asymmetry due to the band structure. The asymmetry in ΣR for intermediate
phase shifts, see Sec. 4.1.2, introduces an asymmetry in the effective mean free
path for electrons and holes throughout the film.
A self-consistently determined non-equilibrium steady state shows the expected

behaviour for the thermoelectric effect as outlined above. A quasiparticle flow
is driven in the direction of the thermal gradient. This flow is dominated by
electrons (holes) for positive (negative) values of the phase shift, and determines
the charge pileup and resulting gradient of the quasiparticle potential throughout
the superconductor. A condensate flow is counter-flowing, driven by a gradient in
the thermally induced phase. An example is shown in Fig. 5.21.
A useful concept to understand the results of a thermal bias is, in analogy to

the left-mover and right-mover potentials defined in Eq. (2.103), a left-mover and
right-mover effective temperature Teff,�(R). Following[113], we use Eq. (2.50) to
define it in analogy to a Sommerfeld expansion as

k2
BT

2
eff,�(R)≡ 6

π2

∞∫
0

dε ε [ f eq
1 (R, ε, T = 0)− 〈f1(pF,R, ε)〉�], (5.32)

and similarly a local Fermi-surface average 〈Teff〉FS. They are, in many aspects,
like to the left- and right-mover potentials φ� and φ in the voltage-bias case.
For example, at a fully transparent interfaces the partial average connect to the
respective reservoir value, while the average has jumps. An example for the
spatial dependencies is shown in Fig. 5.22, and shows the deviation of the energy
distribution from a simple linear gradient in the temperature.
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Figure 5.22:
Spatial dependence of the effective temperatures Teff,(�) in a system with D = 1,
TR = 0.25Tc, TL = TR + ∆T = 0.35Tc. The mean free path is ` = 10ξ0 and the
scattering phase shift δ0 = 0.9, roughly halfway between the Born and unitary limits.
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We proceed in paper II to study the non-linear thermopower of the film,

S(T,∆T ) = − µL − µR

∆T

∣∣∣∣
I=0

, (5.33)

as a measure of the voltage build-up as function of applied temperature bias
and base temperature. We study the dependence as functions of phase shift,
impurity concentration, and interface parameters. An exemplary result for the
thermopower is shown in Fig. 5.23.

Figure 5.23:
Example results for the thermopower in a d-
wave superconductor as function of base tem-
perature T for different phase shifts. The
film has a length L = 20ξ0 with mean free
path of ` = ξ0, we have a good contact with
D = 1.0, and the bias is ∆ = 0.1Tc0. Here,
δ0 = δ0/(π/2).
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5.3.2 s-wave order parameter
The same thermoelectric effect due to impurities also occurs in the case of an
s-wave SC, although the the effect is smaller since the electron-hole asymmetry
exists in equilibrium only close to the interface, see Sec. 4.1.1. The thermopower
S is shown for an applied temperature bias of ∆T = 0.25Tc in Fig. 5.24 for
an ideal contact (D = 1). It is two orders of magnitude smaller than in the
d-wave case despite the larger thermal bias. The resulting thermovoltage for
lead, a conventional superconductor with Tc ≈ 7.2 K, is predicted to be on the
order of 50− 100 nV. This is comparable to experimental results on conventional
superconductors on the order of pico- to nanovolt[109, 110].

Figure 5.24:
Thermopower for an s-wave super-
conductor due to impurity scattering
with intermediate phase shift. Here,
∆T = 0.25Tc, D = 1, and δ0 speci-
fies the scattering phase shift relative
to δunitary

0 = π/2, i.e., δ0 = δ0/(π/2).
Note that the bulk Tc is not affected
by the impurities for an s-wave SC.
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5.4 Transport in two dimensions
Systems in two (or higher) dimensions can show a variety of new effects that
are not taken into account in quasi one-dimensional approach considered above.
This is due to the additional geometric degrees of freedom. Steady-state current-
conservation

∇ · j = 0, (5.34)
just implies jx(x) = const. in one dimension. In higher dimensions injected cur-
rent, and the accompanying non-equilibrium distribution, from a small contact
can spread out. This should reduce the detrimental impact of the non-equilibrium
that we observe in our one-dimensional model system. On the other hand, current
can also become focused due to geometric constraints.
Solutions of the quasiclassical theory of superconductivity in higher dimension

have been reported in the diffusive limit[114–116], where the Usadel theory can
be used[117]. Solution strategies in the non-diffusive case exist[56, 118, 119] but
are more rare and often limited to equilibrium transport. An extension to the
non-equilibrium case would allow for studies of non-equilibrium phenomena in
realistic device geometries, paving the way for closer collaboration with experi-
mental efforts.
In Paper IV we develop a FEM, presented in Sect. 3.3, as a solution technique

for transport in dimensions D ≥ 2 and apply it to two exemplary problems. We
will briefly give some background to those problems here.

5.4.1 Effect of impurities on phase crystals

0 5 10 15 20
x [ 0]

0

5

10

15

20

y
[

0]

0.00

0.36

0.72

1.08

1.44

1.80

2.16

2.52

2.88

3.24

|j(
x,

y)
|[

10
1 j

0]

Figure 5.25:
Example for a phase crystal at a temperature
of T = 0.07Tc and Γ = 5.5 · 10−3πkBTc, cor-
responding to l ≈ 180ξ0.

A numerical investigation of a clean,
two-dimensional d-wave film found
that time-reversal symmetry and trans-
lational invariance can be sponta-
neously broken near pair-breaking in-
terfaces at temperatures below T ∗ ≈
0.18Tc[118].
In this case, the mechanism is not

related to sub-dominant pairing but
rather the result of an additional phase
transition at T ∗. The new phase is a
so-called phase crystal[120, 121], with
spontaneous current flow along the
pair-breaking surfaces in peculiar loop
patterns. An example of the sponta-
neous current flow in a small system is
shown in Fig. 5.25.
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Later studies also found the phase in a microscopic tight-binding approach[122].
While randomly-distributed Anderson disorder has been found to suppress the
phase crystal, strong correlations stabilize it even in the presence of disorder[123].
The effect of impurities has not been studied within quasiclassical theory, where
impurities are included in a homogeneous scattering model rather than with lo-
calized disorder. This motivated our investigation in Paper IV.

5.4.2 Current flow in a Dayem bridge
The second part of the project was driven by an interest in a recent experimental
effort on superconducting Dayem bridges. At low temperatures, they act as nano
scale Josephson junctions in a low-noise SQUID[124, 125]. A rough sketch of the
weak link bridge is shown in Fig. 5.26a. To the left and right, it is connected
to bulk YBCO film, which we model as superconducting reservoirs. To simulate
transport in such a structure, we use a mesh shown in Fig. 5.26b, and solve the
underlying transport equation using the FEM method. In Paper IV, we model
the groove as a position-dependent mean free path and investigate its influence
on the current flow and the order parameter. The geometric constriction into a
narrow channel leads to current focussing with an increase in the phase gradient.
In the groove, the reduced mean free path suppresses the order parameter even
in equilibrium. A further suppression is found in the presence of current flow due
to the locally increased momentum pS.

LLG

w

(a) Rough sketch of the setup, the groove in the
center of the narrow channel is indicated by the
grey region. (b) Mesh example.

Figure 5.26: Grooved Dayem bridge: Sketch and mesh.
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6 Paper overview

The basis of this thesis is the work presented in Papers I-IV which are appended
at the end of the thesis. Here we give a brief description and a summary of the
main results of these papers.

6.1 Paper I

In this paper we investigate the response of an s-wave superconducting nanowire,
connected on one or both ends to a normal-metal reservoir, to an external voltage
bias. While the general setup is relatively well-studied, most available literature
neglects the requirement of self-consistency of the order parameter which implies
non-conservation of charge current. Our main goal was then to perform such a
fully self-consistent calculation of the order parameter and self-energies for elastic
impurity scattering in non-equilibrium. A substantial part of this publication was
the introduction of concepts that can be used to describe the non-equilibrium state
in a non-diffusive superconductor, and description of the difference to diffusive
transport.
The main finding of the paper is that in the time-independent steady-state, a

self-consistent solution can only be found up to a critical voltage |Vc| . ∆0/e after
which superconductivity breaks down. We explain the breakdown as a result of
two factors. Firstly, the injection of quasiparticles from the reservoirs leads to an
occupation of subgap states over a finite lengthscale inside the superconductor.
Secondly, a finite phase gradient is required in the superconductor in order to
carry the current, this leads to a reduced spectral gap. The two effects combine
to suppress the order parameter on the coherence length before superconductivity
disappears. We also investigate how Vc depends on the interface transparency and
impurity concentration. For high-transparency interfaces and a mean free path `
that is short compared to the superconducting coherence length ξ0 we find that
Vc approaches values that have been reported in literature for the diffusive limit.
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6.2 Paper II
The second paper is devoted to thermoelectric effects in a d-wave superconduct-
ing film connected to normal reservoirs under thermal bias. Earlier results on the
bulk linear response had predicted a large thermoelectric effect induced by elastic
impurity scattering between the weak-scattering Born and the strong-scattering
unitary limit. Our goal was to go beyond the linear response of the bulk and
self-consistently calculate the steady-state non-linear response of an experimental
setup. At the contacts to the reservoirs, the cancellation between quasiparticle
current and condensate current will not be perfect. This leads to a charge pileup
in the reservoirs and thus create a thermovoltage V that can be measured. The
main result of the paper is an investigation of the thermopower S = −V/∆T
for different impurity concentrations and scattering strengths. We find that for a
good contact and a scattering phase shift halfway between the weak- and strong-
scattering limits, this voltage is on the order of a few µV/K and thus experi-
mentally accessible. We further investigate the dependence of the thermopower
on the interface transparency and the presence of surface Andreev bound states.
The latter suppress the electron-hole asymmetry in the vicinity of the surface
which reduces the thermoelectric response.

6.3 Paper III
Publication number three is focused on charge transport in a d-wave film con-
nected to normal-metal reservoirs under voltage bias. Similar to the s-wave case
in Paper I, self-consistency is usually neglected in the existing literature, so our
aim was to perform such a self-consistent analysis of the transport behaviour. A
main point of the investigation in the paper was the influence of surface Andreev
bound states on the charge transport. Those have been predicted to give rise a
large zero-bias conductance peak (ZBCP). While some experiments are in agree-
ment with this prediction, others observe a splitting of the peak to finite energies.
One mechanism suggested in the literature is is a phase-shifted, sub-dominant
s-wave order parameter ∆s that results in a d+ is order parameter.
The paper has two main results. For a pure d-wave order parameter, we find

that even at voltages far below the gap a counter-flowing quasiparticle current is
created, accompanied by a non-vanishing charge imbalance throughout the super-
conductor. Similar to the s-wave case we find a breakdown of superconductivity
for voltages below the gap. Despite the more complicated non-equilibrium state,
the conductance of the pure d-wave order parameter is in good agreement with
the results in a non-self-consistent scattering model up to the voltages were sta-
ble solutions could be obtained. This is markedly different in the case of d + is
order parameter. We find that the subdominant pairing gets suppressed quickly
as |eV | → ∆s. This suppression results in spectral rearrangements than enhance
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the signature of a split ZBCP compared to a non self-consistent approach.

6.4 Paper IV
The last paper that is part of this thesis addresses the question of how to go
beyond the one-dimensional models that were studied in papers I-III. To this end,
the paper proposes a finite element method for the underlying transport equations
of Eilenberger quasiclassical theory. The strength of the method is that the self-
energies and the solution to the underlying differential equation can be determined
on the same grid. This avoids the frequent interpolation that is necessary in a
stepping method in two or three dimensions where the grid of solutions and self-
energies cannot be chosen commensurate.
The main results of the paper are the development of the method itself and its

applications to two example problems. Firstly, we studied the influence of scalar
impurities in phase crystals, meaning the appearance of structured, spontaneous
current flow in d-wave superconductors below a temperature T ∗ ≈ 0.17Tc. We find
that impurities suppress the amount of flow and suppress T ∗ even if the normal-
state mean free path still exceeds size of the flow patterns. Additionally, high
impurity concentration can make it energetically favourable for the loop pattern
to change the number of loops with increasing temperature. The suppression
is quicker in the Born than in the unitary limit which we attribute to reduced
surface state broadening in the latter case. Secondly, we investigate the flow of
supercurrent in a grooved Dayem bridge based on recent experimental designs.
We find that the reduction of the order parameter in the groove leads to a non-
linear behaviour in the current-phase relation of the structure. This can lead to
a strong suppression of the order parameter in the groove even though the flow is
non-dissipative.
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7 Conclusion & Outlook

In this thesis we investigated the stationary non-equilibrium in mesoscopic su-
perconductors coupled to normal-metal reservoirs. Specifically, we have studied
conventional s-wave and unconventional d-wave superconductors under a voltage
or temperature bias between the reservoirs. To this end, we calculated the sta-
tionary non-linear response using the quasiclassical theory of superconductivity in
the general formulation by Eilenberger, Larkin-Ovchinnikov, and Eliashberg. The
vast majority of previous work on non-equilibrium superconductivity has been on
conventional superconductors, often in the limit of fully diffusive transport. Part
of the work in this thesis was then a generalization of the concepts used in the
diffusive regime to the case of “intermediately” dirty systems where transport is
neither fully ballistic nor fully diffusive. An additional challenge that had to be
overcome was that we aimed at a fully self-consistent solution of the underlying
transport equations in non-equilibrium. This is essential for fundamental physical
reasons and numerically effective solution strategies for this had to be found.
As a starting point we used those tools and strategies to study an s-wave su-

perconducting nanowire connected to voltage-biased reservoirs. In this case a
comparison to earlier work, either in the fully ballistic and fully diffusive regime,
could serve as a benchmark for our results. Our more general approach can be
used to go beyond the two limiting cases and explore the intermediate regime that
is of interest for mesoscopic systems. At the same time, this study showed that
a steady-state self-consistency solution is only possible in a limited voltage range
in one-dimensional systems. The main goal of this work, however, was to study
mesoscopic unconventional superconductors out of equilibrium. Firstly, we inves-
tigated an impurity-induced thermoelectric effect in a d-superconducting film and
found it to be orders of magnitude larger than in conventional superconductors
and experimentally accessible. Secondly, we studied the effects of a voltage-driven
injection of quasiparticle current in a d-wave superconductor. Our findings indi-
cate that corrections due to self-consistency can give substantial corrections to
a simple interface-conductance model that neglects the spectral rearrangements
due to current flow. The last question that this thesis addressed was how to go
beyond one-dimensional models. As a step toward that goal the underlying trans-
port equations of the quasiclassical theory of superconductivity were reformulated
as a finite element method and used to study equilibrium transport.
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A possible extension of the research presented in this thesis is non-equilibrium
spin transport in non-diffusive superconductors. This is a field of ongoing research
activity in diffusive conventional superconductors connected to superconducting
spintronics[51, 126, 127]. The non-equilibrium modes used in this thesis can
be generalized beyond a single spin polarization axis also in the non-diffusive
case. Efficient numerical solution strategies for the case of general spin struc-
ture would allow further theoretical progress in this direction, as well as on the
effects spin-orbit coupling in non-diffusive conventional and unconventional su-
perconductors[128]. A self-consistent description of non-equilibrium situations in
two-dimensional systems, either in the steady state or in (at least linear) response
to a time-dependent drive is a substantial numerical challenge but would move
theoretical models closer to experimental efforts on unconventional superconduc-
tors. The additional degree of freedom in higher dimensions might, similarly to
the case of self-consistent equilibrium studies[118], reveal unexpected new physics
in unconventional superconductors.
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A
Self-consistency & charge conservation

Charge conservation can be expressed as

∂ρ(R, t)
∂t

+∇ · j(R, t) = 0, (A.1)

where ρ(R, t) is the local charge density and j(R, t) the local charge current
density. In the time-independent stationary state, this reduces to

∇ · j(R) = 0, (A.2)

meaning we have local conservation of the charge current density. In the following,
we will adopt the convention that the trace operation (Tr) acts on everything to
right side of it, i.e., Tr Â(B̂ + Ĉ) = Tr

[
Â(B̂ + Ĉ)

]
unless explicit brackets are

written out. In the following, we also assume spin degeneracy for simplicity, the
generalization is straightforward. The definition of the charge current density,
Eq. (2.98), reads

j(R) = eNF

∞∫
−∞

dε
8πi

〈
Tr vFτ̂3ĝ

K(pF,R, ε)
〉

FS
. (A.3)

Only ĝK depends on spatial coordinates, so after taking the divergence of both
sides and small rearrangements we obtain

∇ · j(R) = −eNF

~

∞∫
−∞

dε
8π

〈
Tr τ̂3 i~∇ · vFĝ

K(pF,R, ε)
〉

FS
. (A.4)

The Eilenberger equation, Eq. (2.22), for ĝK can be written as

i~∇ · vFĝ
K(pF,R, ε) = −

[
ετ̂3, ĝ

K
]

+ ĥRĝK − ĝKĥA + ĥKĝA − ĝRĥK. (A.5)

In order for Eq. (A.2) to hold, we thus need to show that
∞∫
−∞

dε
〈
Tr τ̂3

(
−
[
ετ̂3, ĝ

K
]

+ ĥRĝK − ĝKĥA + ĥKĝA − ĝRĥK
)〉

FS = 0. (A.6)
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The first term vanishes trivially since the trace is cyclic under permutations, so
that we find

Tr
(
τ̂3[ετ̂3, ĝ

K]
)

= ε Tr
(
(τ̂3)2ĝK − τ̂3ĝ

Kτ̂3
)

= ε Tr
(
(τ̂3)2ĝK − ĝK(τ̂3)2

)
= 0. (A.7)

Thus we only have to show that
∞∫
−∞

dε〈 Tr τ̂3
(
ĥRĝK − ĝKĥA + ĥKĝA − ĝRĥK

)
〉FS = 0. (A.8)

In this thesis we consider two contributions to the self-energy,

ȟ = ȟMF + ȟs, (A.9)

namely the mean-field order self-energy ȟMF and scalar impurity scattering ȟs,
and we will show that Eq. (A.8) holds for each of the two separately upon self-
consistency.
As discussed in Sec. 2.4, for the mean-field term we have ĥK

MF = 0 so the two
terms that include ĥK vanish in Eq. (A.8). The retarded and advanced components
are identical and given by

ĥR,A
MF =

(
0 ∆

∆∗ 0

)
iσ2 =

(
∆ 0
0 ∆∗

)
τ̂1iσ2, (A.10)

where iσ2 signals a singlet order parameter and ∆ = ∆0ηΓ(pF) with the real basis
function ηΓ(ϕF). Using the notation of Eq. (2.35),

ĝK = −2πi
(
X Y
Ỹ X̃

)
, (A.11)

the cyclic properties of the trace, and relations between Pauli matrices gives

Tr τ̂3
(
ĥRĝK − ĝKĥA

)
= Tr τ̂3

[(
∆ 0
0 ∆∗

)
τ̂1ĝ

K − ĝK
(

∆ 0
0 ∆∗

)
τ̂1

]
iσ2

= Tr
[(

∆ 0
0 ∆∗

)
iτ̂2ĝ

K + iτ̂2ĝ
K
(

∆ 0
0 ∆∗

)]
iσ2

= 2 Trspin
[
∆ỸKiσ2 −∆∗YKiσ2

]
= 2 Trspin

[
∆0ηΓỸKiσ2 −∆∗0ηΓYKiσ2

]
. (A.12)

Note that ∆0 is a scalar quantity and can be removed from the trace. Inserting
Eq. (A.12) into Eq. (A.8) thus gives

∞∫
−∞

dε〈 Tr τ̂3
(
ĥRĝK − ĝKĥA

)
〉FS

= 2∆0

εc∫
−εc

dε
〈

Trspin
[
ηΓ(pF)iσ2ỸK

]〉
FS
− 2∆∗0

εc∫
−εc

dε
〈

Trspin
[
ηΓ(pF)iσ2YK

]〉
FS
. (A.13)
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We can rewrite the gap equation, Eq. (2.81), for the complex order parameter as

∆0,Γ(R)=−NFλΓ

εc∫
−εc

dε

4
〈
Trspin

[
iσ2ηΓ(pF)YK(pF,R, ε)

]〉
FS
. (A.14)

The right-hand and left-hand sides of this equation will only agree once the self-
energy ∆0 is determined self-consistently with the solution YK. By the tilde
symmetry, Eq. (2.29), ỸK(ε,pF,R) =

(
YK(−ε,−pF,R)

)∗. The minus sign in
the energy and momentum arguments can be removed in the energy integral and
FS average. Note that ηs,d(pF) = ηs,d(−pF). Comparison to Eq. (A.14) and the
complex-conjugate equation then shows that Eq. (A.13) becomes

 ∞∫
−∞

dεTr τ̂3
〈
ĥR

MFĝ
K − ĝKĥA

MF
〉

FS

 ∝ 1
NFλΓ

(∆∆∗ −∆∗∆) = 0. (A.15)

We now turn the to the impurity self-energy ȟs. Since it is elastic the scattering
is only between different momenta at the same energy, we can thus restrict our-
selves to a single energy. Since the FS average and the trace commute, we have
to show

Tr τ̂3〈ĥR
s ĝ

K − ĝKĥA
s + ĥK

s ĝ
A − ĝRĥK

s 〉FS = 0, (A.16)

is satisfied. In this thesis we solved the ť-matrix equation for impurity scattering
by using the non-crossing approximation. By combining Eq. (2.82) and Eq. (2.84),
this means that upon self-consistency the self-energies satisfy the Dyson equation

ĥR,A
s =

Γu1̂ +

〈
ĝR,A

〉
FS
ĥR,A

s

π

 tan δ0, (A.17)

ĥK
s = 1

πΓu
ĥR

s
〈
ĝK
〉

FS
ĥA

s . (A.18)

Recall from Eq. (2.85) that the solution to the first equation was

ĥR,A
s = πΓu

(π cos δ0 sin δ0)1̂ + sin2 δ0
〈
ĝR,A

〉
FS

π2 cos2 δ0 − sin2 δ0 〈ĝR,A〉2FS

. (A.19)

All three self-energies then do not depend on the position on the Fermi surface
since they are proportional only to Fermi-surface averages (or trivial unit terms).
Eq. (A.16) thus reduces to

Tr τ̂3
(
ĥR

s
〈
ĝK
〉

FS
−
〈
ĝK
〉

FS
ĥA

s + ĥK
s
〈
ĝA
〉

FS
−
〈
ĝR
〉

FS
ĥK

s
)

= 0. (A.20)
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In the Born limit, see Eq. (2.92), the self-energies are ĥR,A,K = (Γ/π)
〈
ĝR,A,K

〉
FS
,

so we obtain the desired identity even without the trace,〈
ĝR
〉

FS

〈
ĝK
〉

FS
−
〈
ĝK
〉

FS

〈
ĝA
〉

FS
+
〈
ĝK
〉

FS

〈
ĝA
〉

FS
−
〈
ĝR
〉

FS

〈
ĝK
〉

FS
= 0. (A.21)

The same holds in the unitary limit, where the self-energies read

ĥR,A
s,uni = −πΓ

〈
ĝR,A

〉
FS

〈ĝR,A〉2FS

, ĥK
s,uni = πΓ

〈
ĝR
〉

FS

〈
ĝK
〉

FS

〈
ĝA
〉

FS

〈ĝR〉2FS 〈ĝA〉2FS

. (A.22)

Omitting the factor of πΓ and the unnecessary trace, we then get by insertion
into Eq. (A.20)

−
〈
ĝR〉

FS

〈ĝR〉2FS

〈
ĝK
〉

FS
+
〈
ĝK
〉

FS

〈
ĝA〉

FS

〈ĝA〉2FS

+
〈
ĝR〉

FS

〈
ĝK〉

FS

〈
ĝA〉

FS

〈ĝR〉2FS 〈ĝA〉2FS

〈
ĝA
〉

FS
−
〈
ĝR
〉

FS

〈
ĝR〉

FS

〈
ĝK〉

FS

〈
ĝA〉

FS

〈ĝR〉2FS 〈ĝA〉2FS

= −
〈
ĝR〉

FS

〈ĝR〉2FS

〈
ĝK
〉

FS
+
〈
ĝK
〉

FS

〈
ĝA〉

FS

〈ĝA〉2FS

+
〈
ĝR〉

FS

〈ĝR〉2FS

〈
ĝK
〉

FS
−
〈
ĝK
〉

FS

〈
ĝA〉

FS

〈ĝA〉2FS

= 0, (A.23)

as wanted. Outside of the Born limit and the unitary limits, tan δ0 and Γu are
finite so we can rewrite Eq. (A.17) as

ĥR,A

Γu tan δ0
= 1̂ +

〈
ĝR,A

〉
FS
ĥR,A

πΓu
= 1̂ +

ĥR,A
〈
ĝR,A

〉
FS

πΓu
(A.24)

In the last identity, we have used the fact that Eq. (A.19) implies that ĥR,A and〈
ĝR,A

〉
FS

commute. By using the cyclic properties of the trace, we then get

Tr τ̂3

(
ĥR

s
〈
ĝK
〉

FS
−
〈
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ĥAτ̂3

ĥR
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 = 0. (A.25)

Similarly, one shows for example that the conservation of heat current requires
only self-consistency of the impurity self-energies[129].
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