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Abstract
For sequential decision-making problems with potentially catastrophic conse-
quences appropriate risk assessment may be required. In contrast to tradi-
tional techniques for decision-making under uncertainty that aim to maximise
performance in expectation, we chose to focus on other properties of the proba-
bility distribution. For instance, in an application such as autonomous driving,
the chance of causing an accident might be small but yet fatal. A decision-
maker focusing on performance in the worst outcomes may be able to obtain
a safer decision-making process by keeping this in mind. We propose frame-
works for quantifying uncertainty under the reinforcement learning framework
and develop algorithms that allow for risk-sensitive decision-making under un-
certainty.

Keywords: Reinforcement learning, autonomous driving, risk-sensitive learn-
ing, uncertainty estimation.
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CHAPTER 1

Introduction

Sequential decision-making processes involving uncertainties about transition
process and the objective may require some careful examination of the partic-
ular involved uncertainties. One application where this is of particular interest
is in the Autonomous Driving (AD) setting, which will be discussed further in
this chapter. Following that, the framework under which this decision-making
process is studied is introduced, which is Reinforcement Learning (RL). Fi-
nally, we discuss the contributions of our work and the outline of this thesis.

1.1 Autonomous Driving
Part of the AD pipeline includes a sequential decision-making process whereby
an autonomous agent is tasked with selecting appropriate actions to fulfil some
pre-specified goal. These actions could relate directly to physical inputs to the
vehicle, such as controlling the throttle or the steering of the vehicle, or they
could involve more abstract decisions such as follow the vehicle ahead,
overtake the vehicle ahead, etc. The notion of a goal, or objective, is
directly related to the task at hand, where for instance, the goal of an agent
tasked with driving through an intersection has the specified goal of ending
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Chapter 1 Introduction

up on the other side of the intersection. During the task, the agent might
also have a set of sub-goals, which could involve adhering to the traffic rules,
driving at a comfortable pace and being mindful of other traffic participants.

1.2 Uncertainty in Autonomous Driving
Typically, the agent does not have complete information of the task at hand,
notably the agent might only have access to some high level objective such as
arrive at some pre-specified location as quickly as possible, while adhering to
the traffic rules while outfitted with sensors such as cameras, radar, GPS, map
information, etc. The agent then, using the information available from these
sensors, has to interpret the world and estimate the current state of the world
from which it is supposed to act from. Part of the problem revolves around
the uncertainty about the evolution of the decision-making process where the
agent has to guess what will happen in the future in order to make the correct
decisions in the present.

1.3 Reinforcement Learning
One framework for handling decision-making under uncertainty is RL, which
has seen great success [1]–[3], and is something that has been studied exten-
sively for the field of AD as well [4], [5]. Part of the RL framework involves the
construction of a Markov Decision Process (MDP) [6] which describes how the
state of the world evolves, which actions the agent can take and the goodness,
or reward, associated with it. Typically, the true underlying MDP is unknown
and the agent has to estimate this MDP from available data. This introduces
a sort of uncertainty related to the knowledge available to the agent, hence-
forth to be called epistemic uncertainty [7]–[10] . This exists in contrast to
another kind of uncertainty, which is inherent to the MDP is termed aleatory
uncertainty [11]. Aleatory uncertainty is abundant in applications with high
stochasticity, such as games of chance. In applications such as for autonomous
driving, with mostly deterministic mechanics, this source of uncertainty might
not be so great, given that world dynamics are known. These two kinds of
uncertainties form the basis of this thesis and the differences, applications and
importance of them will be stressed throughout this thesis.
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1.4 Contributions

1.4 Contributions
In Eriksson and Dimitrakakis [9] we develop and introduce a risk-sensitive
Bayesian RL framework for decision-making under epistemic uncertainty for
discrete and continuous state space RL problems. In addition to that, we
propose two algorithms, one based on approximate dynamic programming
and one based on the Bayesian policy gradient.

In the work Jorge et al. [12] we introduce a novel framework for Bayesian
distributional RL by appropriately marginalising out the variables in such a
way that three new approaches can be formulated. We propose one of them,
Bayesian Backwards Induction and demonstrate its performance in the paper.

Lastly, in Eriksson et al. [10] we propose a novel risk measure, termed com-
posite risk, which takes into account both aleatory and epistemic uncertainty
and appropriately weights them together. We prove superiority over previous
methods of joining the risk measures theoretically and propose an ensemble-
based algorithm that can quantify this new risk measure.

1.5 Thesis Outline
The thesis is initiated with a chapter covering the main ingredients the in-
cluded publications are based upon, in Chapter 2. These include the basics of
RL and the constructions which allow for risk-averse decision-making in RL.
In the next chapter, Chapter 3, the value function representations studied
in papers [B, C] are elaborated upon. In Chapter 4, the papers [A, C] are
discussed, and the topic introduced in Chapter 3 is used to aide risk-sensitive
decision-making by constructing robust value function distributions. Finally,
in Chapter 5 the thesis is wrapped up and future works are discussed.
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CHAPTER 2

Background

In this chapter we will cover the necessary background information. Much of
the work concern estimating or constructing a belief over MDPs. In Section 2.1
we cover the basics of MDPs and the optimisation over known MDPs. In the
following Section 2.2, we elaborate on the case when the MDP is not known.

2.1 Dynamic Programming
In this section, we go over the fundamentals of using Dynamic Programming
(DP) to solve MDPs.

Definition 1 (Markov Decision Process): A Markov Decision Process µ is
a tuple µ = (S,A,R, T , γ), where S = Rd is a d-dimensional representation
of the state, A, the permissible action set of size M , R = S × A → R is a
reward function associating the goodness of taking an action a for a particular
state s, T = S × A → S a transition kernel, describing the evolution of the
Markov process depending on the current state and selected action and finally
γ, a discount factor which determines the effective horizon of the problem.

In addition to the formalism surrounding the MDP, we introduce a couple
of important concepts such as the policy π ∈ Π, which describes the strat-
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Chapter 2 Background

egy of the agent. The policy for a particular state s describes a probability
distribution over actions π = P(at | st). Furthermore, the transition kernel
T = Pµ(st+1 | st, at) as previously mentioned, describes how the stochastic
process evolves over time. The reward function R = Pµ(rt+1 | st, at) describes
instead the goodness of selecting action a in state s. These concepts together
allow us to define another important concept in RL, namely value functions.

Definition 2 (Value function): The value function V π
µ (s) describes the

expected utility of being in state s, for MDP µ, following policy π.

V π
µ (s) = Eπ

µ

[ ∞∑
t=0

γtrt | s0 = s
]
, (2.1)

where γ ∈ (0, 1] is a discount factor, determining the effective horizon of the
problem.

This is the most common definition of value function, that is the expected
sum of discounted future rewards. Other alternative definitions could involve
the infinite horizon average reward or one that takes risk into account.

One goal in RL is to find the optimal value function V ∗
µ ≜ max

π
V π

µ , and the
associated optimal policy π∗ ≜ arg max

π
V π

µ .
We can now define a function operator, termed the Bellman operator, Pπ :

V → V as,
PπV (s) ≜ Eπ

µ[R(s, a)] + Eπ
µ

[
T (s, a)V (s′)

]
. (2.2)

Iteratively applying P for all states s ∈ S for a particular MDP µ can
be used to obtain the value function associated with the policy π, MDP µ

and state s. Another operator of interest is the Bellman optimality operator,
P : V → V , which can be defined as,

PV (s) ≜ max
a∈A

Eπ
µ[R(s, a)] + Eπ

µ

[
T (s, a)V (s′)

]
. (2.3)

These operators has been shown in Bertsekas and Tsitsiklis [13] to be contrac-
tion mappings and thus, repeated applications of them will result in conver-
gence to its corresponding value function, i.e., limt→∞ Pπ(. . . (PπV ))

t times
= V π

µ

and limt→∞ P(. . . (PV ))
t times

= V ∗
µ .
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2.2 Reinforcement Learning

2.2 Reinforcement Learning
In the previous section we have assumed the reward function R and the tran-
sition kernel T to be known. In the case where they are known, we have
efficient ways to compute the optimal value function. However, for the vast
majority of interesting decision-making problems, the MDP is not known.
Much of the theory of RL revolves around estimating a MDP from exist-
ing observations and using DP to compute the optimal value function given
the current data. This introduces an important problem in RL known as the
exploration-exploitation dilemma, where an agent must choose to either gather
more information about the true underlying MDP by exploring, or acting op-
timally using its current knowledge. This dilemma will be further discussed
later on in Chapter 3.

Bayesian Reinforcement Learning
One framework for engaging with decision-making problems with unknown
MDP is through the Bayesian Reinforcement Learning (BRL) framework. Un-
der this framework, we study distributions over MDPs in a probability space
(M,F , ξ), where µ ∈ M is the set of admissible MDPs, F an appropriate
σ−algebra and ξ a probability function over subsets of M. The works [9],
[12] rely on this framework. In [9] a Dirichlet product-prior is admitted over
transition functions P(st+1 | st, at) in the discrete case and independent Gaus-
sian processes for the continuous case. The reward functions P(rt | st, at) are
Normal-Gamma and Gaussian process distributed for the discrete and contin-
uous case, respectively. After constructing the appropriate beliefs over reward
function R and transition kernel T , a MDP µ ∼ ξ can be sampled, and the
approach described in Section 2.1 can be used to arrive at an optimal policy
π∗ given µ. The uncertainty about µ given by ξ(µ) is crucial, and its purpose
is detailed further in Section 2.3.

Distributional Reinforcement Learning
Under the Distributional Reinforcement Learning (DRL) framework intro-
duced by Bellemare et al. [14], with some similarities to earlier works on
Bayesian Reinforcement Learning, such as [15], [16], involves representing ei-
ther the return or value function as a random variable. This construction
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Chapter 2 Background

allows for learning a robust representation of the return or value function dis-
tribution. At the time of publication, DRL agents such as Bellemare et al.
[14] and later works such as Hessel et al. [17] displayed state-of-the-art per-
formance on Deep RL tasks. In addition to the general performance benefit
shown, this framework allows for a novel way of representing the uncertainty
about the return or value function. This is crucial for research fields such as
Risk-Sensitive Reinforcement Learning (RSRL), which is further elaborated
on in Section 2.3.

2.3 Risk-Sensitive Reinforcement Learning
For general reinforcement learning problems, the objective is commonly max-
imisation of the expected return. For various applications, such as autonomous
driving, where real-life accidents can have catastrophic consequences, it might
be of value to consider other properties of the return distribution. For in-
stance, in Eriksson and Dimitrakakis [9] an exponential utility function is
used. This allows for a change of objective from the traditional risk-neutral
one to the following,

Uβ(ξ, π) ≜ 1
β

log
∫

M
exp

(
βEπ

µ[R]
)

dξ(µ). (2.4)

This formulation is based upon the objective stated by Mihatsch and Neuneier
[11], which has some interesting properties. In general, the choice of β <

0 admits risk-averse decision-making and risk-seeking for β > 0. Another
approach is studied in [10], where the maximisation is over a conditional value-
at-risk (CVaR) objective, based upon work by Rockafellar, Uryasev, et al. [18].
In this case, the risk-sensitive objective for the aleatory case could be in the
form,

CV aRα[R |µ, π] ≜ Eπ
µ

[
R |R ≤ να ∧ P(R ≥ να) = 1− α

]
. (2.5)

The usage of CVaR adds the possibility of optimising the objective in the
left-most or right-most tail of the distribution. The choice of α ∈ (0, 1] controls
for up to which quantile the distribution should be considered.

A general discussion about the pertinence of utility functions and risk mea-
sures is discussed in Chapter 3.
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CHAPTER 3

Value Function Representations under Uncertainty

Traditional RL techniques rely on accurate estimates of the value-function
V π

µ (s) in order to make decisions. For uncertainty aware applications such as
risk-sensitive decision-making, where other properties of the return distribu-
tion is the main focus, it is important to have an accurate representation of
the full distribution.

3.1 Value Function Representations using
Bootstrapping

In the work Eriksson et al. [10] we adopt an approach whereby the uncer-
tainty representations is made over an ensemble of CDQN agents [14]. A
visualisation of using the proposed algorithm SENTINEL-K to learn a small
toy problem can be seen in Figure 3.1. The dashed line indicates the actual
return observed taking the chosen action a in the state x0. The thick line is
the estimated return distribution, marginalised over the 4 individual CDQN
estimators. As can be seen, as more data is obtained (n ≫ 0) the estimated
return converges to the oracle return. The thin lines are each of the individual
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Chapter 3 Value Function Representations under Uncertainty

estimators.
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Figure 3.1: Return distributions of a0 and a1 for 0, 1000, 5000 and 10000 data
points (n) respectively. The blue dashed line is the categorical approx-
imation of Z(s0, a0) and Z(s0, a1) respectively. The thick orange line
is the marginal posterior P(Ẑ) with SENTINEL-4. The thin lines are
the posteriors of the individual estimators.

Interestingly, as can be observed in both Figure 3.1 and earlier works such
as Osband et al. [19], we can see that creating an ensemble of estimators can
boost performance, as also indicated in [10]. The addition of multiple estima-
tors not only allows us to consider the aleatory uncertainty (as represented
by the distribution for each estimator), but we can also observe epistemic
uncertainty by looking at the distribution over estimators. This is similar
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3.2 Bayesian Value Function Distributions

to the works of [7], [8], [20] who all consider both the intra- and inter-model
uncertainty, in various ways.

3.2 Bayesian Value Function Distributions
The main motivation in Jorge et al. [12] is the ability to represent a value
function distribution Pπ

β(Vt, . . . , VT |D) from time step t to T given some data
D, a policy π and a belief β. By starting from T and going backwards to t,
we can inductively compute the value function distribution Pπ

β(Vi |D) in the
following way,

Pπ
β(Vi |D) =

∫
V
Pπ

β(Vi |Vi+1, D) dPπ
β(Vi+1 |D). (3.1)

The crucial difference between this approach and earlier approaches is that
the distribution over MDPs Pπ

β(µ |Vi+1, D) includes information about the
value function Vi+1. Using this framework, we devise a Monte Carlo method
for estimating 3.1. This yields us a way of evaluating policies under this
framework. The next step is to identify an approximately optimal policy,
which is done using the algorithm Bayesian Backwards Induction. The full
algorithmic details and results are available in Jorge et al. [12].
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CHAPTER 4

Risk-Sensitive Reinforcement Learning under Parametric
Uncertainty

In this chapter, we will discuss two approaches to doing risk-sensitive reinforce-
ment learning. In the first approach, seen in Section 4.1, based upon Eriksson
and Dimitrakakis [9], an exponential utility function is used to obtain risk-
adjusted utilities. In the section, the two algorithms presented in the work
are introduced. In the latter section given in Section 4.2, an approach based
on coherent risk measures is discussed. In that section, we will go through
the differences between that approach and the earlier approach, demonstrate
why coherent risk measures are of interest and finally, propose an algorithm
that effectively uses the proposed composite risk measure for decision-making
under uncertainty.

4.1 Risk-Sensitive Reinforcement Learning with
Exponential Utilities

In the work Eriksson and Dimitrakakis [9] an exponential utility function is
used to allow for risk-adjusted utilities. In particular, the chosen form is based
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Chapter 4 Risk-Sensitive Reinforcement Learning under Parametric
Uncertainty

upon the work by Mihatsch and Neuneier [11] which has the property that for
maximisation of it leads to the following objective,

1
β

log E[exp(βZ)] = E[Z] + β

2 Var[Z] +O(β2), (4.1)

where it is clear that varying β leads to weighting the higher moments
differently. For β → 0, the risk-neutral objective is obtained, while for β < 0,
higher variance and other moments are penalised. For risk-seeking behavior at
β > 0 instead, then, e.g. higher variability will be premiered. An illustration
of this phenomenon can be seen in Figure 4.1 where data sampled from 5
different normal distributions with the same mean is transformed using the
proposed utility function. We can see that when, Uβ→0 = 0, which would
correspond to risk-neutral behavior. Further, a risk-averse agent (β < 0),
is maximised for the normal distribution with the lowest standard deviation,
assuming all the means are equal. In contrast to this, the risk-seeking agent
strictly prefers the normal distributions with higher standard deviation if the
mean is kept intact.

Optimisation of Agents with Risk-Sensitive Utilities

In the work Eriksson and Dimitrakakis [9] as mentioned in Section 2.2, we use
Dirichlet product-priors for the transition probabilities, and NormalGamma
product-priors for the reward function,

ξ(µ) ≜ P(µ) =
∏
s,a

Dir(θa
s )×NG(ϑa

s) (4.2)

More details on the parameters and the posterior update of the Normal-
Gamma prior are given by Murphy [21]. From Eq. 4.2 it is clear that the
addition of a belief over MDPs µ ∈ M allows for the consideration of uncer-
tainty about the MDP parameters. As explained in Section 2.1, if the MDP µ

and policy π is fixed, we can obtain the value-function V π
µ (s) for each state s.

Since there is one corresponding value-function for each MDP µ if the policy
is kept fixed, then if the belief over MDPs ξ(µ) is considered then naturally
we obtain the value-function distribution Vπ

ξ given by,

Vπ
ξ ≜ P(V π

µ |µ ∼ ξ, π, s0 = s) (4.3)
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4.1 Risk-Sensitive Reinforcement Learning with Exponential Utilities
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Figure 4.1: A small experiment demonstrating how the utility function proposed
in Eq. 4.1 is impacted by changes in the risk-sensitive parameter β and
by modifying the data distribution.
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Uncertainty

Algorithm 1 Epistemic Risk Sensitive Backwards Induction (ERSBI)
Input: M (set of MDPs), ξ (current posterior)
repeat

for µ ∈M s ∈ S, a ∈ A do
Qµ(s, a) = Rµ(s, a) + γ

∑
s′ T ss′

µ Vµ(s′)
end for
for s ∈ S, a ∈ A do
Qξ(s, a) =

∑
µ ξ(µ)U [(Qµ(s, a)]

end for
π(s) = arg maxaQξ(s, a).
for µ ∈M do

Vµ(s) = Qµ(s, π(s)).
end for

until convergence
return π

In the following sections, the uncertainty about the expected return Eπ
µ[R], V π

µ

as µ ∼ ξ and Vπ
ξ are all considering the same thing, namely the uncertainty

about the value function due to a probability distribution over MDPs.
A risk-averse decision-maker might seek to obtain a behavioural policy πE

that maximises performance for the risk-adjusted utilities as per Eq. 4.1. Such
an agent would prefer policies that result in lower variability of values (keep-
ing the expectation the same) to a risk-neutral agent. In Eriksson and Dimi-
trakakis [9] we first propose an algorithm for computing risk-sensitive policies
using approximate dynamic programming, following the work of Dimitrakakis
[22]. The proposed algorithm, ERSBI is an epistemically risk-sensitive back-
ward induction approach using multiple models. The algorithm can be seen
in Algorithm 1

Note that the proposed approach in Algorithm 1 is designed for discrete
domains. For continuous domains we propose another algorithm based upon
policy gradients, see work by Sutton et al. [23], where instead optimisation is
done over the parameters of a stochastic policy. Deriving the policy gradient

18



4.1 Risk-Sensitive Reinforcement Learning with Exponential Utilities

Algorithm 2 Epistemic Risk Sensitive Policy Gradient (ERSPG)
Input: Policy parametrisation θt, βt (current posterior).
repeat

Simulate to get θt+1
for i = 1 to N do

µ(1), µ(2) ∼ (Mt,Rt)
for j = 1 to M do

τ
(1)
µ(1) , τ

(2)
µ(1) ∼ πθ, µ(1)

τ
(3)
µ(2) ∼ πθ, µ(2)

end for
end for
θt+1 ← θt−[

∑N
i=0 exp

(
βτµi

(1)
)

τµi
(2)∇θ log πθ(a|s)]/[

∑N
i=0 exp

(
βτµi

(3)
)

]

Deploy πθt+1 and obtain τ ∼ µ, πθt+1

ξt+1 ← ξt, τ
until convergence

update for the utility function in Eq. 4.1 leads to,

∇θ
1
β

log
∫

M
exp

(
βEπθ

µ [R]
)

dξ(µ) =

∫
M exp

(
βEπθ

µ [R]
)
∇θEπθ

µ [R]dξ(µ)∫
M exp

(
βEπθ

µ [R]
)

dξ(µ)
.

(4.4)
Using the derived gradient update in Eq. 4.4 we propose an epistemically

risk-sensitive policy gradient algorithm (ERSPG) which can be seen in Algo-
rithm 2. The procedure uses utility rollouts using the sampled MDPs and
reweights them appropriately using the exponential utility function before
updating the parameters of the policy.

Experimental Results using Exponential Utilities

We leave the experimental results section to the paper in Eriksson and Dimi-
trakakis [9].
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4.2 Decision-Making under Composite Risk
Measures

A risk measure U : X → R is a function from a probability distribution to a
scalar. This construction allows for decision-makers to compare risks under
different distributions and choose what best adheres to their risk profile. One
class of risk measures that has garnered a lot of interest recently is the coherent
risk measures, given by Artzner et al. [24]. According to the definition, a
coherent risk measure U : X → R has to satisfy four axioms:

Axiom 1 (Monotonicity): If X ≤ Y almost surely, U(X) ≤ U(Y ).
Axiom 2 (Positive homogeneity): For any c ≥ 0, U(cX) = cU(X).
Axiom 3 (Translation invariance): For any constant a ∈ R, U(X + a) =

U(X) + a.
Axiom 4 (Subadditivity): For X, Y ∈ X , U(X + Y ) ≤ U(X) + U(Y ).
In the work Eriksson et al. [10] our focus is on risk measures of this kind.

One well-known coherent risk measure is CVaR and how it is impacted by
varying the risk-sensitive parameter α for a few select distributions can be
seen in Figure 4.2. The figure illustrates the decision-maker will significantly
penalise behaviour that leads to high variability in the objective.

Quantifying Composite Risk Measures
Following Eriksson et al. [10] we define the risk measures of interest. To start
with, we define the risk of the random variable Z under the distorted utility
function Uα in three different ways for clarity.

RiskUα
(Z) ≜

∫
Z

Z d(Uα ◦ P )

=
∫

Z
Uα(1− FZ(z)) dz =

∫ 1

0
Uα(t) dq(1− t). (4.5)

Moving on with the risk measure associated with aleatory uncertainty, that
is the uncertainty that arises due to the inherent stochasticity of the MDP µ

and policy π, we chose the following definition.
Aleatory Risk. Given a coherent risk measure with distorted utility func-

tion UA
α , the aleatory risk is quantified as the deviation of the total risk of
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Figure 4.2: A small experiment demonstrating how the CVaR risk measure is im-
pacted by changes in the risk-sensitive parameter α and by modifying
the data distribution. Note that in this experiment only the left-tailed
part of the distribution is considered and what is shown is −CVaRα.
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individual models from the risk of the average model.

A(UA
α , β) ≜

∫
Θ

∫
Z

Z d(UA
α ◦ P)(Z|θ) dβ(θ)

−
∫

Θ

∫
Z

Ẑ d(UA
α ◦ P)(Ẑ)

Epistemic Risk. Given a coherent risk measure with distorted utility
function UE

α , the epistemic risk quantifies the uncertainty invoked by not
knowing the true model. Thus, the risk can be computed over any statistics
of the models, such as expectation.

E(UE
α , β) ≜

∫
Θ

∫
Z

Z dP(Z|θ) d(UE
α ◦ β)(θ)

Composite Risk under Model and Inherent Uncertainty. Finally,
in [10] a joint risk measure termed composite risk is defined that takes into
account both the uncertainty that arises due to the true MDP µ being un-
known, as well as the MDPs are inherently stochastic. The total uncertainty
is then a combination of both these sources of uncertainty and in order to
quantify the total uncertainty, we proposed composite risk.

Definition 3 (Composite Risk): For two coherent risk measures with dis-
torted utility functions UA

α1
and UE

α2
, belief distribution β on model parameters

θ ∈ Θ, and a random variable Z ∈ Z, the composite risk of epistemic and
aleatory uncertainties is defined as

F C(UA
α1

, UE
α2

, β) ≜ RiskUE
α2

(RiskUA
α1

(Z|θ)|β)

=
∫

Θ

∫
Z

Z d(UA
α1
◦ P)(Z|θ) d(UE

α2
◦ β)(θ)

=
∫ 1

0

∫ 1

0
UE

α2
(v)UA

α1
(u) dqZ|θ(1− u) dqβ(1− v) (4.6)

The inclusion of a composite risk measure allows for a more accurate rep-
resentation of the total uncertainty compared to existing works optimising
jointly over both risks, such as in [7], [20].

Theorem 5 (Coherence): If UA
α1

and UE
α2

are distorted utilities for two
coherent risk measures, the composite risk measure F C(UA

α1
, UE

α2
, β) is also

coherent.
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4.2 Decision-Making under Composite Risk Measures

The theorem Theorem 5 is important so as to retain coherency after com-
posing the risk measures.

Theorem 6: We are given two sources of aleatory and epistemic uncer-
tainties ξ1 and ξ2. If UA

α1
and UE

α2
are distortion measures for two coher-

ent risk measures quantifying aleatory and epistemic risks respectively, then,
i) F A(UA

α1
, β) = F C(UA

α1
, I, β), where I is the identity function, and ii)

F C(UA
α1

, UE
α2

, β) ≥ F A(UA
α1

, β), if α2 ̸= 1.
This theorem is used in the work Eriksson et al. [10] to demonstrate the su-

periority of the composed risk measure approach to an additive risk approach
to jointly optimising for both risks. The proofs of the theorems Theorem 5
and Theorem 6 are left for the interested reader in the paper Eriksson et al.
[10].

Optimising for Coherent Risk Measures
In our work, we propose an algorithm for optimising composite risk measures
as defined in Eq. 4.6. The full algorithm is available in Algorithm 3.

Experimental Results using Coherent Risk Measures
The experimental results can be seen in the paper Eriksson et al. [10].
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Algorithm 3 SENTINEL-K with Composite Risk
1: Input: Initial state s0, action set A, distortion measures UA

α1
, UE

α2
, hy-

perparameter λ, target networks [θ−
1 , ..., θ−

K ], value networks [θ1, ..., θK ],
update schedule Γ1, Γ2.

2: for t = 1, 2, . . . do
3: //* Update K-value and target networks for estimating return distri-

butions *//
4: for t′ ∈ Γ1 ∪ Γ2 do
5: Generate {D1, ..., DK} ← DataMask(Dt′)
6: for i = 1, . . . , K do
7: Sample mini batch τ ∼ Di

8: F C(Z(st, a)|UA
α1

, UE
α2

, β) using τ and K-target networks {θ−
i }K

i=1.
9: Get a∗ = arg maxa F C(Z(st, a)|UA

α1
, UE

α2
, β)

10: Update value network θi using τ, a∗

11: Update target network θ−
i using τ, a∗ if t′ ∈ Γ1

12: end for
13: end for
14: //* Estimate the composite risk of each action using the estimated

return distributions *//
15: for a ∈ A do
16: Compute weights w = w1, ..., wK .
17: for i in K do
18: Compute aleatory risks QA

i (st, a) from
∫

Z Z d(UA
α1
◦ P)(Z|θi)

19: end for
20: Compute composite risk over weighted aleatory estimates QC(st, a) =

RiskUE
α2

({wiQ
A
i (st, a)}K

i=1)
21: end for
22: //* Action selection *//
23: Take action at = arg maxa QC(st, a)
24: Observe st and update the dataset Dt ← Dt−1 ∪ {st, at−1, st−1, rt−1}
25: end for
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CHAPTER 5

Concluding Remarks and Future Work

In this chapter we conclude and tie together the discussions in Chapter 3, and
Chapter 4. We also discuss future and ongoing work relating to this thesis.

5.1 Conclusion
In Chapter 3 we have presented a few ways of representing uncertainties in RL
that we have worked on, namely work in Eriksson et al. [10] and Jorge et al.
[12]. Construction of rich value-function representations allows then for risk-
sensitive decision-making following the works in Eriksson and Dimitrakakis
[9] and Eriksson et al. [10] discussed in Chapter 4.

5.2 Future Work
In a recent work in Eriksson et al. [25] we have extended the formulation
in Eriksson and Dimitrakakis [9] to the Bayesian games setting. This setting
involves multiple agents interacting simultaneously in the same environment.
The uncertainty that arises due to the uncertainty in a Bayesian games is
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similar to epistemic uncertainty in RL. The work proposes a joint optimisa-
tion routine for all agents, taking their individual utility functions and risk
appetites into account. We also see a clear possibility of making a continua-
tion of the work in Jorge et al. [12], adopting a risk-sensitive framework and
extending the formulation from a backward induction one to one based upon
optimisation using gradients.
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