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1. Introduction

The uniform word problem for an equational theory T is to determine, given a finite set E of relations between generators, 
whether a given relation is provable from E in T . The theory of join-semilattices with a finite set of endomorphisms was 
shown to have an EXPTIME-complete uniform word problem by Baader et al. [1] and Hofmann [5].

Here we show that the special case of one inflationary endomorphism, denoted by _+ , has a uniform word problem that 
can be solved in PTIME.

A loop is a term t such that t+ � t . We show that loop-checking, i.e., testing whether or not a loop exists, is also decidable 
in PTIME.

In our special case, both the uniform word problem and loop-checking are relevant for dependent type theory with 
universes. Our decision procedure can be seen as forward reasoning with loop-detection on the fly.

We start from the equational definition of semilattices in which the join, denoted by ∨, is an associative, commutative, 
and idempotent binary operation. The endomorphism satisfies the following two equational axioms:

x ∨ x+ = x+ (x ∨ y)+ = x+ ∨ y+

The logic is ordinary equational logic. We denote the resulting theory by L. For example, we can prove (t+)+ ∨ t = (t+)+
in L, for any term t . Also, we can infer s+ = (t+)+ from s = t+ , but not conversely. As is customary, we let s � t abbreviate 
s ∨ t = s. Throughout this note we call a join-semilattice with an inflationary endomorphism simply a semilattice. We call t+
the successor of t .
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2. Semilattice presentations and Horn clauses

A semilattice presentation consists of a set V of generators and a set C of relations. We will colloquially call the generators 
also variables, and the relations constraints. For any semilattice term t and natural number k, let t + k denote the k-
fold successor of t . Thus t + 0 = t , and we may use t + 1 and t+ interchangeably. A term over V is a term of the form 
x1 + k1 ∨ · · · ∨ xm + km , with all xi ∈ V and ki ∈ N.

Since the endomorphism commutes with the join operation, every semilattice term t is equal to a term of the form 
x1 + k1 ∨ · · · ∨ xm + km , with all variables xi occurring in t and all ki ∈ N.

A relation is an equation s = t with s, t terms over V . A constraint like x = y+ with x, y ∈ V expresses a relation between 
the generators x and y and should not be read as an implicitly universally quantified axiom in which the x and y can be 
instantiated.

The semilattice presented by (V , C) consists of terms over V modulo provable equality from C . The latter will be denoted 
by C �L s = t . In the next sections we will prove that C �L s = t is decidable in polynomial time for finite semilattice 
presentations (V , C). The results in this section hold for arbitrary semilattice presentations.

We follow Lorenzen [7, Section 2] for an equivalent characterisation of C �L s = t using Horn clauses. Let (V , C) be a 
semilattice presentation. Let s := x1 + k1 ∨ · · ·∨ xm + km and t := y1 + l1 ∨ · · ·∨ yn + ln be terms over V . From the constraint 
s = t we can prove m + n inequalities which we write as Horn clauses by replacing join by conjunction (written as “,”) and 
� by implication. In this note all clauses are propositional Horn clauses A → b with a non-empty body A and conclusion 
b. The atoms are of the form x + k with x ∈ V and k ∈ N, and we will often call such Horn clauses simply clauses. We will 
express by A ⊆ B that all atoms in A also occur in B .

Thus we get the set Ss=t consisting of the following Horn clauses:

x1 + k1, . . . , xm + km → y1 + l1

. . .

x1 + k1, . . . , xm + km → yn + ln

and

y1 + l1, . . . , yn + ln → x1 + k1

. . .

y1 + l1, . . . , yn + ln → xm + km

Let SC be the union of all Ss=t with s = t a constraint in C .
We reflect for a moment on which other clauses we need. Consider the axiom x ∨ x+ = x+ . This would lead to three 

clauses: x, x+ → x+ , x+ → x+ , and x+ → x. Only the last is non-trivial, we call it a predecessor clause. The next question is: 
for which x do we need a predecessor clause? Since the axiom x ∨ x+ = x+ is implicitly universally quantified, we would 
need all instances with x a term over V . For this it suffices to have all predecessor clauses x + k + 1 → x + k with x ∈ V and 
all k ∈ N.

The axiom stating that endomorphism and join commute is built-in in the notion of term over V and does not require 
extra clauses. However, we should not forget the congruence axioms from equational logic. Congruence of the endomor-
phism means that s = t implies s + 1 = t + 1. This requires that we close the set of clauses under shifting upwards: if A → b
is in the clause set, then so is A + 1 → b + 1, where A + 1 is the set of atoms of the form a + 1 with a ∈ A. Congruence of 
join means that s = t implies r ∨ s = r ∨ t . It is easy to see that this does not require extra clauses.

In summary: given a semilattice presentation (V , C), let SC be the smallest set of clauses that is closed under shifting 
upwards and contains the set SC coming from the constraints in C , as well as all predecessor clauses for each v ∈ V .

Given a set S of Horn clauses, let S �H A → b denote provability from S . One convenient way to define this is by two 
inference rules:

S �H A → b
b ∈ A

S �H A, c → b

S �H A → b
there exists A′ → c in S with A′ ⊆ A

This is the inductive way of defining forward reasoning, that is, using the Horn clauses in S to generate atoms from A. 
We can also use this definition if A is infinite. Then it is more customary to write S, A �H b.

For X a set of atoms, define X+ := {x+ | x ∈ X} and X + k := {x + k | x ∈ X} for all k ∈ N. For S a set of clauses, define 
S+ := {X+ → y+ | X → y in S}. The following lemma will be used later on.

Lemma 2.1. Let V be a finite set of variables, and A → b a Horn clause. Let S and T be sets of Horn clauses, where all clauses in T have 
conclusion in V . Then the following three are equivalent: (1) S �H A → b; (2) S+ �H A+ → b+; (3) S+ ∪ T �H V , A+ → b+ .

Proof. Immediate by induction on the definition of �H . �
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We have the following theorem generalizing [7, Theorem 3].

Theorem 2.2. For all terms x1 + k1, . . . , xm + km, y + l over V we have:

C �L x1 + k1 ∨ · · · ∨ xm + km � y + l iff SC �H x1 + k1, . . . , xm + km → y + l.

Proof. The if-part is a straightforward structural induction on the definition of �H: all steps can easily be mimicked in 
semilattice theory. The converse implication is more interesting. For any set of Horn clauses X, Y , let X �H Y mean that 
X �H A → b for all clauses A → b in Y . For any two terms s, t over V , define s ≡ t by SC �H Ss=t . We have s+ ≡ t+ if s ≡ t , 
as SC is closed under shifting upwards. We also have s ∨ r ≡ t ∨ r and r ∨ s ≡ r ∨ t if s ≡ t .

Now we can define s ∨ t on terms over V in the obvious way, and (x1 + k1 ∨ · · · ∨ xm + km)+ := x1 + k1 + 1 ∨ · · · ∨ xm +
km + 1. Both are well-defined operations modulo the congruence ≡.

Then one can show that all axioms and rules are satisfied modulo ≡. For example, all semilattice axioms are satisfied, 
for example, the predecessor clauses prove s ∨ s+ ≡ s+ . Moreover, for each constraint s = t in C we have s ≡ t , as Ss=t is 
included in SC .

By soundness, if C �L s = t , then s ≡ t . In particular we have the only-if part of the theorem. �
3. Decidability

In this section we first prove the decidability of SC �H A → b. In the next section we show that our decision procedure 
is in PTIME. By Theorem 2.2 this is sufficient for the decidability of C �L s = t . We recall a basic fact about Horn clauses: 
the models (as satisfying sets of atoms) are closed under intersection. Moreover, every set X of atoms can be extended to 
a unique minimal model; this minimal model consists of all atoms that can be inferred from X using the Horn clauses as 
generating rules, as defined just before Lemma 2.1.

We proceed by defining an auxiliary notion that we call ‘gain’. The gain of a clause x1 + k1, . . . , xm + km → y + l is l
minus the minimum of {k1, ..., km}. For example, predecessor clauses have gain −1. The gain of a clause is invariant under 
shifting.

Let N∞ be N extended with ∞, totally ordered by n < ∞ for all n ∈ N. Given a finite semilattice presentation (V , C), 
we view a function f : V → N∞ as specifying the downward closed set of atoms {v + k | v ∈ V , k ∈ N, k � f (v)}. Note 
that this set contains all atoms v + k if f (v) = ∞. We are interested in such sets as models of SC . A clause A → b with 
A = x1 + k1, . . . , xm + km and b = y + l, all xi, y ∈ V , is satisfied by f if l � f (y) when all ki � f (xi). Predecessor clauses are 
of course satisfied by downward closure.

Lemma 3.1. Given f : V → N∞ and a clause A → b, let P be the problem whether or not A + k → b + k is satisfied by f for all k ∈ N. 
Then P is decidable.

Proof. Assume A = x1 + k1, . . . , xm + km and b = y + l with xi, y ∈ V . Let W consist of all variables xi in A that satisfy 
f (xi) < ∞. If W is empty, then P is equivalent to f (y) = ∞. Otherwise, let k0 = min{i|xi∈W }( f (xi) − ki). If k0 < 0, then P
holds. If k0 � 0, then P is equivalent to l + k0 � f (y). �

Given a finite semilattice presentation (V , C) and a subset W of V , we denote by SC |W the set of clauses in SC

mentioning only variables in W , and by SC ↓W the set of clauses in SC with conclusion over W .

Theorem 3.2. Let (V , C) be a finite semilattice presentation. For any f : V → N∞ we can compute the least g � f that is a model of 
SC .

We prepare the proof of this theorem with a lemma.

Lemma 3.3. Let (V , C) be a finite semilattice presentation. Let W be a strict subset of V such that for any f : W → N∞ we can 
compute the least g � f that is a model of SC |W . Then for any f : V → N∞ with f (V − W ) ⊆ N we can compute the least h � f
that is a model of SC↓W .

Proof. Let conditions be as stated in the lemma. Since (V , C) is finite we can compute the smallest number Maxgain � 0
such that each clause in SC has gain at most Maxgain. Let f : V → N∞ with f (V − W ) ⊆ N be given and denote its 
restriction to W by f W . By the definition of SC ↓W , any minimal h � f that is a model of SC ↓W coincides with f on 
V − W , so we focus on its values on W . By assumption we can compute the least g f � f W that is a model of SC |W . Now 
we look at clauses in SC ↓W − SC |W . Such clauses are of the form X, Y → w + k with X a non-empty set of atoms over 
V − W , and possibly empty Y over W . If X = . . . , xi + ki, . . . is satisfied by f , then by the definition of Maxgain, using 
f (V − W ) ⊆ N, we have:
3
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k ≤ min
i

( f (xi)) + Maxgain � max( f (V − W )) + Maxgain ∈ N. (1)

Inequality (1) gives an upper bound on values that clauses in SC ↓W − SC |W can generate. Define:

M(g f ) :=
∑

w∈W

max(0,max( f (V − W )) + Maxgain − g f (w)).

After these preparations we are ready to prove the lemma by induction on M(g f ). More precisely, we prove for all n ∈ N

and f : V → N∞ with f (V − W ) ⊆ N, if M(g f ) = n, then we can compute the least h � f that is a model of SC ↓W .
In the base case M(g f ) = 0 we have k � g f (w) for all w ∈ W and all clauses in SC ↓W are satisfied by g f . In this case 

we take h = g f on W and h = f on V − W and we are done.
For the induction step, let M(g f ) > 0 and assume the result has been proved for smaller values of M(_). We now make 

a case distinction that is decidable by Lemma 3.1 since SC is finite (even though SC is not). Thus we only have to check 
finitely many clauses. If all clauses in SC ↓W − SC |W are satisfied by g f we are again done, like in the base case. Otherwise, 
one such clause gives value g f (w) + k + 1 for some w ∈ W and k ∈ N, using values of f on V − W and values of g f on W . 
Then we know by (1) that the term with g f (w) in the sum defining M(g f ) is positive. Define f ′ : V → N∞ by

f ′(x) = f (x) for x in V − W ,

f ′(y) = g f (y) for y in W − {w}, and

f ′(w) = g f (w) + k + 1.

We have g f ′ (w) � f ′(w) > g f (w), so M(g f ′ ) < M(g f ) and we can apply the induction hypothesis to f ′ . The resulting h for 
f ′ also works for f , since every step in the sequence h � f ′ > g f � f is by adding atoms that can be inferred from f . �

We now return to the proof of Theorem 3.2.

Proof. Let (V , C) be a finite semilattice presentation and Maxgain � 0 the smallest number such that each clause in SC has 
gain at most Maxgain. By induction on |V | we compute, for any f : V → N∞ , the least g � f that is a model of SC .

In the base case |V | = 0 there is nothing to prove.
For the induction step, let |V | > 0 and assume the theorem has been proved for smaller values of |V |. Let f : V → N∞ . 

If f (v) = ∞ for some v ∈ V , then we can eliminate v from SC . Recall that f (v) = ∞ means that all atoms of the form 
v + k are true. This means that all clauses of the form . . . → v + k can be left out from SC . Also, in each clause A → b in 
SC we can leave out all atoms of the form v + k from A. If we get a (forbidden) clause ∅ → v ′ + l, we can infer f (v ′) = ∞
and continue. We end up with a strict subset V ′ of V and a (restricted) f : V ′ → N.

Alternatively, we can do the simplification of the semilattice presentation and end up with (V ′, C ′). Here C ′ is obtained 
from C by removing all v +k from the joins, taking care to continue if a join becomes empty, and so on.1 Both methods lead 
to the same set of clauses SC ′ , and this set satisfies all requirements, in particular each clause has gain at most Maxgain.

In such a case we can directly apply the induction hypothesis to the simplified semilattice presentation, and extend the 
function with values ∞ for all v ∈ V − V ′ . Otherwise we have f : V → N. Since SC is finite, using Lemma 3.1, we can decide 
whether f is a model of SC . If so, we are done. If not, we proceed as follows. For every x ∈ V and A → x + l in SC , consider 
the integer k0 as in the proof of Lemma 3.1. If k0 < 0, then A and all its upward shifts are false in f . If k0 � 0, then we can 
infer the atom x + l + k0. If moreover l + k0 > f (x), then this atom is new. Let W be the (non-empty) subset of variables 
x ∈ V for which there is a clause in SC that yields a new atom, and let g(x) be the maximum of f (x) and the possible 
values l + k0 for x obtained in this way. Since SC is finite, g � f is a function from V to N.

We distinguish the cases W = V and W ⊂ V . If W = V we are done since then h(x) = ∞ for all x ∈ V is the least h � f
that is a model of SC . Proof: if W = V , then g(x) > f (x) and we can infer x + g(x) from f , for all x ∈ V . By using the 
predecessor clauses we hence also infer x + f (x) + 1 from f for every x ∈ V . Since SC is closed under shifting upwards, we 
can infer x + f (x) + k, and hence x + k, for every k ∈ N and x ∈ V .

The last case is that W is a non-empty strict subset of V , and we can apply the induction hypothesis to W to satisfy 
the condition of Lemma 3.3. We apply the conclusion of the lemma to g , noting that g(V − W ) = f (V − W ) is a subset of 
N. Hence we can compute the least h � g that is a model of SC ↓W . This function h coincides with g and f on V − W .

If h(w) = ∞ for some w ∈ W , then we simplify and apply the induction and are done as described in the first paragraphs 
of the step case. Otherwise we have h : V → N. We now make a case distinction that is decidable by Lemma 3.1, since SC
is finite. If all clauses in SC are satisfied by h then we are done. Otherwise, we can infer in one step a value h(y) + k + 1
for some variable(s) y. Such y must be in V − W since h is a model of SC ↓W . For every y ∈ V , let j(y) be the maximum 
of h(y) and the values h(y) + k + 1 that can possibly be inferred in one step. We extend W to W ′ with all y such that 
j(y) > h(y) and proceed with W ′ and j (to keep all work done) in the same way as with W and g above. This terminates 
since we exhaust V . �

1 One can take f (v) = ∞ to mean ⊥ = v = v + 1, which yields ⊥ = v + k for all k ∈ N.
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From Theorem 3.2 we get the decidability of SC �H A → b when A can be represented by a function f : V → N. If every 
variable v in V occurs in A, then f (v) is simply the maximal k such that v +k ∈ A. We can then simply check SC �H A → b
by computing the least g � f that is a model of SC and check whether atom b is satisfied by g .

The decision method above for SC �H A → b only works if every variable in V occurs in A. However, it is not difficult to 
extend Theorem 3.2 so that we get decidability of SC �H A → b in general. Let T = {v+ → v | v ∈ V }. By Lemma 2.1 we see 
that SC �H A → b is equivalent to SC

+ ∪ T �H V , A+ → b+ , and SC
+ ∪ T is in fact SC+ , where C+ is the set of constraints 

s+ = t+ with s = t in C . Thus we get:

Corollary 3.4. For all A, b, s, t, SC �H A → b and C �L s = t are decidable.

Another application of Theorem 3.2 is loop checking. Given a finite semilattice presentation (V , C), a loop is a term t
over V such that C �L t+ = t . Let L be the semilattice presented by (V , C). Let N be the semilattice with carrier N and 
with the usual max and successor function.

Corollary 3.5. Exactly one of the following two decidable cases holds: (1) There is a loop; (2) There is a homomorphism h : L → N.

Proof. Let m be maximal such that x +m occurs in the body of a clause in SC . Take f : V → N to be the constant m function 
and compute g according to Theorem 3.2. Let W be the subset of V such that g(w) = ∞ for all w ∈ W . Claim: if W is not 
empty, then we have a loop, case (1), because there exists an n ∈ N such that SC �H W + n → w + n + 1 for all w ∈ W .

Proof of claim. if W = V , then n = m and we are done, otherwise take n = max(g(V − W )) + Maxgain. The idea of this 
choice of n is that variables in V − W cannot play a role above n. In order to see this, define f ′ : V → N by f ′(x) = g(x) if 
x ∈ V − W and f ′(w) = n if w ∈ W . Then g � f ′ � f , so g is also the minimal model when starting from f ′ . Since f ′ and 
g coincide on V − W we have that all clauses in SC ↓(V − W ) are satisfied by f ′ . By the particular choice of n, using same 
reasoning as in the proof of Lemma 3.3, albeit with f ′ instead of f , also SC ↓W − SC |W is satisfied by f ′ . Hence the only 
clauses that play a role in computing g are clauses from SC |W , so we must have SC �H W + n → w + n + 1 for all w ∈ W . 
It follows that ∨w∈W w + n is a loop.

If W is empty we can construct a homomorphism h : L → N , case (2). Define h(x) = max(g(V )) − g(x) for all x ∈ V . 
Extend h to terms over V by h(t+) = h(t) + 1 and h(s ∨ t) = max(h(s), h(t)). We have to make sure that definition of h
respects equality in L, that is, if C �L s = t , then h(s) = h(t). For this it suffices to show h(s) = h(t) for all s = t in C . 
This can in turn be simplified to: h(x1 + k1 ∨ · · · ∨ xm + km) � h(y) + l for every x1 + k1, . . . , xm + km → y + l in SC . Easy 
calculations show that we must prove min(g(x1) − k1, . . . , g(xm) − km) � g(y) − l. Wlog we assume that g(x1) − k1 is the 
minimum on the left. Since x1 + k1, . . . , xm + km → y + l in SC we know that g(x1) � f (x1) � k1. Shifting the clause upwards 
by g(x1) − k1 we get the clause x1 + g(x1), . . . , xm + km + g(x1) − k1 → y + l + g(x1) − k1 in S+

C . Due to the assumption that 
g(x1) − k1 is minimal, the body of this clause is satisfied by g . Since g is a model of S+

C by Theorem 3.2, the conclusion is 
also satisfied by g , that is, g(y) � l + g(x1) − k1, so g(y) − l � g(x1) − k1. This completes the proof that h respects equality 
in L.

It should be clear that (1) and (2) exclude each other. �
4. Complexity analysis

All proofs in this note are constructive, so that they in fact contain algorithms. In this section we shall show that these 
algorithms are polynomial. The small-model property in Corollary 4.2 below, a refinement of the small-model property in 
[2], will be instrumental.

Let’s define the input size. The size |E| of logical expression E is the number of logical symbols in E . The size | f | of 
a function f : V → N∞ is taken to be the maximum of all its values < ∞. This choice for the size of f implies that the 
complexity of some algorithms depending on f is weakly polynomial. However, for the important Corollary 3.4 and 3.5 the 
algorithms are strongly polynomial, that is, in PTIME.

Our algorithms are essentially performing just forward reasoning. However, since we have an infinite language, one has 
to take care to terminate, which is explained in the inductive proofs. Moreover, termination should happen in a polynomial 
number of reasoning steps, each taking at most polynomial time. We prepare by the following lemma.

Lemma 4.1. Let (V , C) be a finite semilattice presentation and Maxgain � 0 the smallest number such that each clause in SC has gain 
at most Maxgain. Let f : V → N∞ be a model of SC such that V can be partitioned as V = L ∪ H ∪ I with I = {v ∈ V | f (v) = ∞}
and f (x) − f (y) > Maxgain for all x ∈ H and y ∈ L. Then g : V → N∞ defined by g(x) = f (x) − 1 for all x ∈ H and g(y) = f (y) for 
all y ∈ L ∪ I is also a model of SC .

Proof. We only have to check clauses with conclusion over H . Let y1 + k1, . . . , ym + km → x + l be a clause in SC with 
yi ∈ V and x ∈ H . If the premiss is satisfied in g , and some yi ∈ L, then
5
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g(x) + 1 = f (x) > f (yi) + Maxgain = g(yi) + Maxgain � ki + Maxgain � l.

Hence g(x) � l, so also the conclusion holds in g . If no yi ∈ L, then we use that any clause A → b that only mentions 
variables in H ∪ I is satisfied in g when A+ → b+ is satisfied in f . �

We immediately get the following small-model property.

Corollary 4.2. For any f , the least g � f that is a model of SC satisfies |g| � | f | + |V | ∗ Maxgain.

We now analyse the complexity of various results point for point.

• The complexity of the test in Lemma 3.1 is clearly polynomial in |A → b| and | f |.
• In Theorem 3.2 our choice for the size of f becomes clear: with only one clause x, y → y + 1 in SC and f (y) = 0, 

forward reasoning takes f (x) + 1 steps to arrive at the model f (y) = f (x) + 1. This is polynomial in the value of f (x), 
but not in its binary representation.
The proof of Theorem 3.2 is intertwined with the proof of Lemma 3.2. In view of Corollary 4.2 it suffices that there is 
a polynomial bound on the work done for each forward inference and that there is steady progress in the global state 
encoded by functions f : V → N∞ , until the algorithm terminates. Both are easily verified by inspection of the proofs, 
using that the test in Lemma 3.1 is polynomial.

• In the statement of Corollary 3.4 and 3.4 there is no function f : V → N∞ . However, the proofs apply Theorem 3.2
with such a function, satisfying | f | � |A| and | f | � |SC |, respectively. Hence both corollaries yield algorithms that are 
polynomial in the input size.

One may wonder what is the role of the assumption that the endomorphism is inflationary, leading to the predeces-
sor clauses in SC . A first answer is that models of the predecessor clauses are downward closed, leading to an efficient 
representation of models by functions f : V → N∞ . Moreover we have the following example.

Let pi be the i-th prime number and consider clauses xi → xi + pi , and x1 + 1, . . . , xn + 1 → y + 1, and y + 1 → y as 
the only predecessor clause. Include all the upward shifts of these clauses. Then we can infer x1, . . . , xn → y, but forward 
reasoning takes exponentially many steps.

5. Discussion

5.1. Motivation

The motivation for this problem comes from dependent type theory, where the relevant operations on universe levels 
are to take the supremum of two levels, and to increment a level.

In order to avoid universe inconsistencies in type theory, it has been suggested in [6], [4], [8] to use constraints on 
universe levels. In [6], [4] these constraints are linear inequalities between universe levels. In [8] also the maximum of two 
universe levels is used. A typing would then only be valid if its constraints can be inferred from the set of constraints in 
the context. Moreover, the latter set should be consistent in the sense that there are no loops. As defined above, a loop is a 
semilattice term that is equal to its successor; a good intuition is that loops lead to universe inconsistencies comparable to 
the paradoxes in set theory.

In type theory it is important that typing checking is decidable. The results of this note show that having typings depend 
on a set of universe level constraints preserves the decidability of type checking.

Since dependent type theory is meant to be a foundation of mathematics, we want to make minimal mathematical 
assumptions about the universe levels. For example, we don’t say that they are natural numbers with a zero, successor and 
a maximum function (like Voevodsky in [8], referring to Presburger Arithmetic for decidability). Such assumptions would 
weaken, at least philosophically, the foundational claim of dependent type theory: natural numbers are introduced as an 
inductive type at some later point in the development. For similar reasons we don’t assume that universe levels are totally 
ordered, nor that the endomorphism is injective.

5.2. Example

Let SC consist of the clauses a, b → b +1; b → c+3; c+1 → d; b, d +2 → e. We shall show how the proof of Theorem 3.2
works to find the minimal model above the function that is constant 0. Sets of variables will be denoted by a string, e.g., 
V = abcde. We denote functions with domain V by a string of values, e.g., 00000. (Digits will suffice in this example.) We 
have Maxgain = 3.

First we compute the function g0 = 01300 with the maximal values that can be obtained in one step from 00000. We 
have W0 = bc. (We give indices to W , g in the third paragraph of the induction step in the proof of Theorem 3.2, since we 
need to iterate the induction step.) The proof of Theorem 3.2 now invokes Lemma 3.3 to compute the minimal model above 
6
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g0 of all clauses in S with conclusion over W0, a, b → b + 1 and b → c + 3. Also the proof of Lemma 3.3 is inductive, but 
we immediately get that this minimal model is h0 = 01400.

We now check whether h0 is a model of SC . It is not: (only) the clause c + 1 → d is not satisfied, and the maximal 
value for d is 3. So we continue with g1 = 01430 and W1 = bcd and compute the minimal model h1 of the clauses with 
conclusion over W1, which happens to be g1 itself.

One more, very similar round yields g2 = 01431 and W2 = bcde and h2 = g2, which satisfies all clauses of SC , and is the 
minimal model starting from the function that is constant 0.

An interesting variation would be to add the clause e → a and to see that the algorithm then detects the loop. This is 
indeed the case because e → a is not satisfied by h2 and so g3 = 11431 and W3 = abcde are computed. Now V = W3 and 
the loop has been detected, the minimal model is the function that is constant ∞.

5.3. Related work

Voevodsky remarked in [8] that universe level expressions are exactly ‘linear’ functions of universe level variables in the 
tropical (max-plus) semiring, even though he referred to Presburger Arithmetic for decidability. For tropical semirings, see 
the book [3].

Some problems in tropical semirings are formulated in the same language as in this note, but interpreted in the integer, 
rational, or real numbers. The latter are totally ordered, which makes these problems different. Consider, for example, the 
constraint x ∨ y = x+ . When the ordering is total, this constraint implies y = x+ . However, if x and y are incomparable, 
there are models of x ∨ y = x+ in which y = x+ is false. The simplest such countermodel has three elements. The model 
of x ∨ y = x+ as described in the proof of Theorem 2.2 is based on terms over V = {x, y}, modulo the congruence ≡. This 
congruence gives x + k ∨ y + l ≡ x + l + 1 if k � l (use x, y → x + 1), and x + k ∨ y + l ≡ x + k if k > l (use x + 1 → y). In this 
model y = x+ is false (y → x + 1 cannot be derived).

Another connection is with work on uniform word problems with endomorphisms. Both [1,5] show that this problem is 
decidable but EXPTIME-complete. We describe a PTIME algorithm in a special case: for only one endomorphism which is 
moreover inflationary. It seems to be an open problem whether there is a PTIME algorithm for one endomorphism without 
any extra assumption. A similar question can be asked in the case of finitely many endomorphisms that are all inflationary.

It is easy to describe Hofmann’s [5] algorithm with our notation. This is an EXPTIME algorithm for the case without the 
predecessor clauses a + 1 → a. The idea is to provide a complete cut-free derivation system. Given a set of clauses R , the 
derivations rules are the following.

1. A → a if a is in A
2. A, (B + 1) → b + 1 if B → b
3. A → a if there is a rule c1, . . . , cn → d in R such that A → c1, . . . , A → cn and A, d → a.

With the subformulas of an atom a + k being all a + i with i � k, one sees that the subformula property holds, since only 
rules c1, . . . , cn → d in R are allowed in 3. A general cut rule is admissible. Deciding whether A → a follows from R can 
then be done by a top-down search of (cut-free) proofs in this system.
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