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ABSTRACT

The Hasegawa–Wakatani system, commonly used as a toy model of dissipative drift waves in fusion devices, is revisited with considerations
of phase and amplitude dynamics of its triadic interactions. It is observed that a single resonant triad can saturate via three way phase
locking, where the phase differences between dominant modes converge to constant values as individual phases increase in time. This allows
the system to have approximately constant amplitude solutions. Non-resonant triads show similar behavior only when one of its legs is a
zonal wave number. However, when an additional triad, which is a reflection of the original one with respect to the y axis is included, the
behavior of the resulting triad pair is shown to be more complex. In particular, it is found that triads involving small radial wave numbers
(large scale zonal flows) end up transferring their energy to the subdominant mode which keeps growing exponentially, while those involving
larger radial wave numbers (small scale zonal flows) tend to find steady chaotic or limit cycle states (or decay to zero). In order to study the
dynamics in a connected network of triads, a network formulation is considered, including a pump mode, and a number of zonal and non-
zonal subdominant modes as a dynamical system. It was observed that the zonal modes become clearly dominant only when a large number
of triads are connected. When the zonal flow becomes dominant as a “collective mean field,” individual interactions between modes become
less important, which is consistent with the inhomogeneous wave-kinetic picture. Finally, the results of direct numerical simulation are dis-
cussed for the same parameters, and various forms of the order parameter are computed. It is observed that nonlinear phase dynamics results
in a flattening of the large scale phase velocity as a function of scale in direct numerical simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089073

I. INTRODUCTION

The Hasegawa–Wakatani model1 was initially devised as a simple,
nonlinear model of dissipative drift wave turbulence in tokamak
plasmas. It has the same nonlinear structure as the passive scalar
turbulence2—with vorticity evolving according to 2D Navier–Stokes
equations—or more complex problems such as rotating convection.3,4

From a plasma physics perspective, it can be considered as the mini-
mum non-trivial model for plasma turbulence since it has (i) linear
instability (e.g., Hasegawa–Mima model does not5), (ii) finite frequency

(so that resonant interactions are possible6), and (iii) a proper treatment
of zonal flows.7 The model is well known to generate high levels of large
scale zonal flows, especially for C � 1,8–10 where C is the adiabaticity
parameter. It has been studied in detail for many problems in fusion
plasmas including dissipative drift waves in tokamak edge,11,12 subcriti-
cal turbulence,13 trapped ion modes,14 intermittency,15,16 closures,17–19

feedback control,20 information geometry,21 and machine learning.22

Variations of the Hasegawa–Wakatani model are regularly used for
describing turbulence in basic plasma devices.23–25
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Two dimensional Hasegawa–Wakatani equations1 with proper
zonal response consist of an equation of plasma vorticity,

@

@t
r2Uþ ẑ �rU � rr2U ¼ C ~U � ~nð Þ þ DU r2Uð Þ; (1)

and an equation of continuity,

@

@t
nþ ẑ �rU � rnþ j@yU ¼ C ~U � ~nð Þ þ Dn nð Þ; (2)

with the E�B velocity defined as vE ¼ ẑ �rU in normalized form
and ~U ¼ U� hUi, where hUi denotes averaging in y (i.e., poloidal)
direction. Here, n is the fluctuating particle density normalized to a
background density n0, U is the electrostatic potential normalized to
T/e, j is the diamagnetic velocity normalized to speed of sound, C is
the so-called adiabaticity parameter, which is a measure of the electron
mobility, and DU and Dn are dissipation functions for vorticity and
particle density, respectively. For fluctuations, we have DUðr2 ~UÞ
¼ �r4 ~U from kinematic viscosity, whereas for the zonal flows,
DUðr2 �UÞ ¼ ��ZFr2 �U from large scale friction. Unless the system
represents a renormalized formulation, Dn should actually be zero;
however, here we include it for completeness and numerical conve-
nience and take it to have the same form as the vorticity dissipation
with diffusion Dnð~nÞ ¼ Dr2~n and particle loss Dð�nÞ ¼ �DZF�n.

Formation of large scale structures, in particular, zonal flows in
drift wave turbulence, is one of the key issues in the study of turbu-
lence in fusion plasmas, which can be formulated in terms of modula-
tional instability of either a gas of drift wave turbulence using the wave
kinetic formulation26 or a small number of drift modes,27 resulting in
various forms of complex amplitude equations such as the celebrated
nonlinear Schr€odinger equation (NLS).28 It is also common to talk
about zonal flows as resulting from a process of inverse cascade29,30

and their back reaction on turbulence31,32 resulting in predator-prey
dynamics, possibly leading up to the low to high confinement transi-
tion in tokamaks.33,34 While the role of the complex phases in nonlin-
ear evolution of the amplitudes, especially in the context of structure
formation, for example, as in the case of soliton formation in NLS, was
always well known, its particular importance for zonal flow formation
in toroidal geometry has only been underlined recently.35

Here, we revisit the Hasegawa–Wakatani system, with proper
zonal response, as a minimum system that allows a description of
zonal flow formation in drift wave turbulence, and study interactions
between various number of modes from three wave interactions to the
full spectrum of modes described by direct numerical simulations,
focusing, in particular, on phase dynamics and the possibility of phase
locking and synchronization. The detailed dynamics of three wave
interactions36 or the transition from a single interacting triad to a
“network” of interacting triads37,38 has been studied in the past in sim-
ilar reduced models. It was also shown that synchronization of phase
dynamics can lead to interesting phenomenon, such as formation of
coherent structures in simple Vlasov–Poisson system.39 In contrast, in
the Hasegawa–Wakatani case, it turns out that while resonant three
wave interactions involving unstable and damped modes favor phase
locking (i.e., a state where the differences between individual phases
remain roughly constant as they increase together), interactions
involving zonal flows (i.e., four wave interactions including the triad
reflected with respect to the y axis) seem to have a complicated set of
possible outcomes depending on whether the zonal flow wave number

is larger or smaller than the pump wave-number. It therefore becomes
critical to study a network of connected triads in order to see the col-
lective effects of a number of triads on the evolution of zonal flows and
of the relative phases between modes. Two different network configu-
rations are considered: that with a single ky and multiple q’s, and that
with a single q and multiple ky’s. Note that the algorithm that we use
computes all possible interactions between the modes in a given collec-
tion of triads and then computes the interaction coefficients and
evolves the system nonlinearly according to those.

Finally, we consider the results from direct numerical simulations
(DNS) using a pseudo-spectral 2D Hasegawa–Wakatani solver. The
DNS and the network models correspond exactly in the sense that if
we consider an Nx � Ny grid and consider all the possible triads in
such a grid and solve this problem using our network solver, we obtain
exactly the same problem (including the boundary conditions that are
periodic) as the DNS. The results of the DNS show qualitatively simi-
lar behavior to the two network models that we considered. However,
looking at the evolution of phases, we observe a nonlinear flattening of
the phase velocity for large scales computed as a function of x, sugges-
ting nonlinear structure formation in the classical sense of nonlinearity
balancing dispersion resulting in a constant velocity propagation at
least for large scale structures. These vortex-like structures that move
at a constant velocity are also clearly visible in the time evolution of
density and vorticity fields.

Another interesting observation is that when we consider a net-
work with a range of radial wave-numbers, such that some of the
modes within that range are linearly unstable, it only saturates if the
range also includes some wavenumbers for which the linear growth
rate of the primary mode (i.e., not the damped mode) actually
becomes negative. This suggests that drift wave turbulence (at least as
described by the Hasegawa–Wakatani system) does not saturate
“locally” by coupling to the damped modes, but transfers energy to
scales where the damping of the primary mode is significant.
However, since the linear growth of the primary mode for large kx
modes does not come directly from dissipation, but from the form of
the dispersion relation, including the effects of dissipation, this is still
different from the Kolmogorov picture where the injection and dissi-
pation scales are well separated. Therefore, it is important to note that
plasma turbulence as well as other similar systems generates and dissi-
pate energy anisotropically in scales that are much closer to one
another even though they may display power law scalings.6,40

The rest of the paper is organized as follows. In the remainder of
the Introduction, the Hasegawa–Wakatani system is reformulated in
terms of its linear eigenmodes and the amplitude and phase equations
for these eigenmodes, writing out explicitly the nonlinear terms that
appear in this formulation. In Sec. II, different types of interactions
among dissipative drift waves are considered using these linear
eigenmodes, starting with the basic three wave interaction. After show-
ing that there is no qualitative difference between a near resonant and
an exactly resonant (within numerical accuracy) triad, the details of
the phase dynamics of such a single triad are discussed. In Sec. III, the
interaction with zonal flows is considered. It is noted that when we
consider a triad and its reflection with respect to its pump wave-
number together as a pair, the behavior of the system is qualitatively
different from the single triad case. After a discussion of order parame-
ters for this system, a network formulation is considered, and the
results from such a network model are presented. Finally, the results
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from direct numerical simulations of the Hasegawa–Wakatani system
are discussed and compared with those earlier results based on
reduced number of triads. Section IV details the conclusion.

A. Linear eigenmodes

We can write the Hasegawa–Wakatani system in Fourier space
for non-zonal modes (i.e., ky 6¼ 0) using the notation Uk ! Uk for
the Fourier coefficients as follows:

@tUk þ Ak � Bkð ÞUk ¼
C
k2

nk þ NUk; (3)

@tnk þ Ak þ Bkð Þnk ¼ C � ijky
� �

Uk þ Nnk; (4)

where

Ak ¼
1
2

Dk2 þ Cð Þ þ C
k2
þ �k2

� �� �
(5)

and

Bk ¼
1
2

Dk2 þ Cð Þ � C
k2
þ �k2

� �� �
; (6)

and defining

Nnk ¼
1
2

X
�

ẑ � p � q U�pn
�
q � U�qn

�
p

� 	
(7)

and

NUk ¼
1
2

X
�

ẑ � p � q q2 � p2
� �

U�pU
�
q

k2
; (8)

where superscript � denotes complex conjugation and k2 ¼ k2x þ k2y as
usual and the sum over triangle notation indicates a sum over the
wave-vectors p and q satisfying the triad interaction condition
k þ pþ q ¼ 0. Note that since the initial fields in x, y space are real,
we have U�k ¼ U�k .

Diagonalizing the linear terms, we can write

@tn
6
k þ ix6

k n6
k ¼ N6

nk (9)

for the two eigenmodes n6
k with the corresponding complex eigen-

frequencies x6
k ¼ x6

rk þ ic6
k that can be written as

x6
k ¼ X6

k � iAk;

with

X6
k ¼ 6 rk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hk � Gk

2

r
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hk þ Gk

2

r !
; (10)

where rk ¼ signðjkyÞ,

Hk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
k þ C2j2k2y=k

4
q

; (11)

and

Gk � B2
k þ

C2

k2

� �
: (12)

This allows us to write the two linear eigenmodes as

nskk ¼ nk þ
k2

C
Bk � iXsk

k

� �
Uk ; (13)

where sk ¼ 6. The nonlinear terms on the right hand side of Eq. (9)
are thus

Nsk
nk ¼ Nnk þ

k2

C
Bk � iXsk

k

� �
NUk ; (14)

and the inverse transforms can be written as

Uk ¼
i
2
C
k2
X
sk

nskk
Xsk

k

; (15)

nk ¼ �
i
2

X
sk

1
Xsk

k

Bk þ iXsk
k

� �
nskk : (16)

Considering the inviscid limit, D; �f g ! 0 and ky ! Oð�Þ, where � is
a smallness parameter, and keeping terms only up toOð�Þ, we obtain

nþk � nk þ k2 � i
jky
2A2

k

 !
Uk; (17)

n�k � nk � 1þ i
jky
2A2

k

 !
Uk ; (18)

which means that one could loosely refer to these two eigenmodes as
the potential vorticity mode (i.e., nþk � nk þ k2Uk) and the non-
adiabatic electron density mode (i.e., n�k � nk � Uk), somewhat simi-
lar to the real space decomposition used in Ref. 41. Since the equations
are already diagonal for ky¼ 0 modes, we can use nþk ¼ k2Uk and
n�k ¼ nk for those (or �Uk and �nk explicitly as we will do below).

Notice that the two eigenmodes in Eq. (13) are not orthogonal.
They have the same frequencies (in opposite directions) but different
growth rates with cþk > c�k (with c�k < 0, while cþk can be positive or
negative depending on the wave-number). The full nonlinear initial
value problem can be solved as follows: We first compute nskk ð0Þ (i.e.,
nskk ðtÞ at t¼ 0) from Eq. (13) using the initial fields nkð0Þ and Ukð0Þ.
Then we advance those to nskk ðtÞ using Eq. (9), where the linear matrix
is now diagonal (but the nonlinear coupling terms are rather compli-
cated). Finally, we go back to compute UkðtÞ and nkðtÞ using Eqs. (15)
and (16). Obviously, this approach does not involve any kind of
approximation or assumption about the initial conditions.

B. Amplitude and phase equations

Substituting n6
k ¼ v6

k e
i/6

k into Eq. (9), where v6
k and /6

k are the
amplitude and the phase of the eigenmode, respectively, we get

@t v6
k e

i/6
k

� 	
þ ix6

k v6
k e

i/6
k ¼ jN6

nkjei/
Nn6

k ; (19)

where jN6
nkjei/

Nn6

k are the nonlinear terms given in Eq. (14), written in
terms of their amplitudes and phases. Note that in order to obtain an
explicit expression for N6

nk in terms of n6
k , one would need to substi-

tute Eqs. (15) and (16) into Eqs. (7) and (8), the result of which is then
to be substituted into Eq. (14). See Sec. I C for the explicit calculation.

Taking the real part of Eq. (19), we obtain the amplitude
equations
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@t � c6
k

� �
v6
k ¼ jN6

nkj cos /Nn6

k � /6
k

� 	
; (20)

and taking the imaginary part and dividing by v6
k , we get the phase

equations

@t/
6
k ¼ �x6

kr þ
jN6

nkj
v6
k

sin /Nn6

k � /6
k

� 	
: (21)

The form of the amplitude equation, i.e. Eq. (20), means that the fixed
point for the amplitude evolution is determined by the phase differ-
ence between Nsk

nk and nskk for each sk. However, such a fixed point
keeps evolving since the phases themselves increase linearly with the
linear frequency while being deformed by the nonlinear terms. Note
that if the nonlinear phase is dominated by a slowly evolving mean
phase (could be the case if the nonlinear interactions are dominated by
the interactions with a zonal flow), the individual phases will be
attracted to this nonlinear mean phase since if the individual phase is
behind the nonlinear phase, the sin ð/Nn6

k � /6
k Þ will be positive,

causing the individual phase to accelerate, whereas if the individual
phase is ahead of the nonlinear phase, it will be slowed down.
However, since we have linear frequencies, it is impossible for individ-
ual phases to become phase locked directly with the slow nonlinear
phase. Instead the nonlinear term plays a role akin to that of the pon-
deromotive force in parametric instability.

C. Nonlinear terms

In order to compute N6
nk in terms of n6

k , we need to go back to
Uk and nk using Eqs. (15) and (16), compute the nonlinear terms (7)
and (8) using those, and combine them as in Eq. (14). They can then
be written in the form

Nsk
nk ¼

1
2

X
�

X
sp;sq

M
skspsq
nkpq n

sp�
p nsp�q (22)

in terms of the linear eigenmodes, where the sum over triangle nota-
tion indicates a sum over the wave-vectors p and q satisfying the triad
interaction condition, and the sum over the signs sp and sq is over
sp; sq ¼ ðþ;þÞ; ðþ;�Þ; ð�;þÞ; ð�;�Þ

 �
for sk ¼ ðþ;�Þ, and the

nonlinear interaction coefficientsM
skspsq
nkpq in Eq. (22) can be written for

interactions among non-zonal modes as

M
skspsq
nkpq ¼ m

skspsq
kpq q2 Bq � iXsq�

q

� 	
� p2 Bp � iX

sp�
p

� 	�

� q2 � p2
� �

Bk � iXsk
k

� ��
; (23)

where

m
skspsq
kpq �

Cẑ � p � q
4X

sp�
p Xsq�

q q2p2
;

and X6
k are defined in Eq. (10).
Note that these coefficients are complex and have different

phases in general. In other words, the explicit forms of Eq. (21) can be
written as

@t/
sk
k ¼ �xsk

kr þ
X

�

X
sp;sq

jMskspsq
nkpq jjn

sp
p jjnsqq j

jnskk j

� sin h
skspsq
Mnkpq
� /

sp
p � /sq

q � /sk
k

� 	
; (24)

where h
skspsq
Mnkpq

is the phase of the nonlinear interaction coefficient
M

skspsq
nkpq .

II. INTERACTIONS AMONG DRIFT WAVES
A. Three wave interactions

Consider three separate modes k, p, and q that satisfy the triadic
interaction condition k þ pþ q ¼ 0, possibly in the presence of other
modes. The nonlinear term for the wave number k can then be divided
into the interaction with the pair p and q, and the interaction with the
rest of the modes (if they exist). If the three wave interaction that we
consider is resonant, slightly off resonance, or completely non-
resonant, its evolution is likely to be different, which can be considered
as different scenarios. It may also be possible to model the effects of
rest of the modes as background forcing, modification of the linear
terms (�a la eddy damping), or simply as stochastic noise. Thus, sepa-
rating the nonlinear term into the interaction with the pair p and q
(i.e.,N6

nkpq) and the interaction with the rest of the modes (i.e., dN6
nkpq),

we can write

@tn
6
k þ ix6

k n6
k ¼ N6

nkpq þ dN6
nkpq; (25)

where

N6
nkpq ¼ M6þþ

nkpq nþ�p nþ�q þM6þ�
nkpq nþ�p n��q

þM6�þ
nkpq n��p nþ�q þM6��

nkpq n��p n��q ;

withM666
nkpq being (complex) nonlinear interaction coefficients, and

dN6
nkpq ¼ N6

nk � N6
nkpq:

The p and qmodes evolve similarly,

@tn
6
p þ ix6

p n6
p ¼ N6

npqk þ dN6
npqk; (26)

@tn
6
q þ ix6

q n6
q ¼ N6

nqkp þ dN6
nqkp: (27)

Notice that, since there are two eigenmodes, Eqs. (25)–(27) represent
six equations. One can therefore consider resonances between three
growing modes, two growing modes and a damped mode, or a grow-
ing mode and two damped modes, etc. However, since the frequencies
are the same with opposing signs, and due to the condition that the
flow field is real, we have both ky and �ky components, whenever we
have a resonance, for example, of the form xþk þ xþp þ xþq ¼ 0 (with
k þ pþ q ¼ 0), we also have x�k þ x�p þ x�q ¼ 0, xþk � x��p
�x��q ¼ 0 or x��k � xþp � xþq ¼ 0, etc. In other words, whenever
we have a resonance for three þ modes, we also have all the other
combinations. The form of the resonance manifold can be seen in
Figs. 1 and 2, for C¼ 1, j ¼ 0:2, and � ¼ D ¼ 10�3, which we will
refer to as the “C¼ 1 case.”

The three wave interaction system (25)–(27) can be implemented
numerically without much difficulty by dropping the dNn terms above.
One can also formulate the same three wave interaction problem in
the original variables Uk; Up, Uq, nk, np, and nq using the form (3)
and (4) before the transformation and then transform the result using
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Eq. (13). Obviously, those two approaches are numerically equivalent
and naturally they give exactly the same results. We used this to verify
that the eigenmode computation was correct. While in general it is
unclear if the eigenmode formulation provides any concrete advantage
apart from diagonalizing the linear system, the advantage becomes
self-evident if the resulting fluctuations have nþk 	 n�k , and we can
drop the n�k mode for example.

1. Is there a difference between exact and near
resonances?

We first pick a primary wave-number k ¼ ð0; 1:125Þ which is
the linearly most unstable mode on a grid with dkx ¼ dky ¼ 0:125 for
the C¼ 1.0 case and consider the resonance manifold as shown in
Fig. 2(a) in order to pick a second wave-number p ¼ ð�0:5;�1:0Þ as
the point on the k-space grid that is closest to the resonance manifold.
The third wave-number q is computed from k þ pþ q ¼ 0. While a
direct numerical simulation only has the wave-numbers on grid
points, a three wave equation solver is not constrained to such a grid.
We can instead compute p to be exactly on the resonance manifold—
at least within some numerical precision—for example, by choosing
p ¼ ð�0:5;�1:063 232 526 549 2Þ. Solving the three wave equations
numerically, using these slightly different sets of wave-numbers,
we find that having exact resonance or near resonance (i.e.,
Dx � 2� 10�15 vs Dx � 0:01) does not make much difference in
terms of time evolution (see Fig. 3), while picking something like
p ¼ ð�0:5;�1:5Þ, which gives Dx � 0:07 (with xk � 0:1 for com-
parison), gives a completely different time evolution, where one of the
modes keeps growing linearly without being able to couple to the
other two. We verified this for a bunch of different sets of wave
numbers, and while there are some differences in detail, generally
both exactly resonant or near resonant triads lead to saturation but
non-resonant triads cannot saturate, possibly due to lack of efficient
interactions. The boundary between what can be considered a near
resonant vs non-resonant interaction can actually be defined using
this criterion. In particular, it seems that the triads with one of the
frequencies much smaller than the other two (i.e., xq 
 xp � xk)
tend to support larger overall Dx and nonetheless reach saturation.
However, it is not clear whether these observations from a single
triad continue to hold when many triads are interacting with each
other.

FIG. 1. The resonance manifold Dx ¼ xþkr þ xþpr þ xþqr ¼ 0 of the Hasegawa–
Wakatani system for the case C¼ 1.0, j ¼ 0:2, � ¼ D ¼ 10�3 is shown corre-
sponding to the wave vector k ¼ ð5; 5Þ that is shown explicitly. Any p that falls
onto the region inside the resonance manifold (shown here with a finite width of
60.04 with Dx > 0 in red and Dx < 0 in blue if in color) gives Dx � 0 (with
q ¼ �k � p). As discussed in the text, because of the fact that the ðþÞ and ð�Þ
modes have the same frequency (but opposite direction of propagation in y direc-
tion), all possible combinations of ðþÞ and ð�Þ modes resonate on the same
manifold.

FIG. 2. The resonance manifold, shown on
top of the growth rate where red corre-
sponds to cþk > 0 and blue to cþk < 0 for
(a) the most unstable model on the grid
k ¼ ð0; 1:125Þ, (b) a nearby mode with a
small kx component k ¼ ð0:250; 1:125Þ,
(c) a mode with kx¼ ky that is
k ¼ ð1:125; 1:125Þ, and finally, (d) a mode
that has kx 	 ky with
k ¼ ð1:125; 0:125Þ.
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B. Phase evolution

Considering the (unwrapped) phase evolution of each of the
modes of the near resonant triad with k ¼ ð0; 1:125Þ and
p ¼ ð�0:5;�1:0Þ, we observe that while some amplitude evolution
continues, the phases converge toward straight lines, implying more or
less constant frequencies in the final stage. These nonlinear frequencies
are substantially shifted with respect to the initial linear frequencies

due to the effect of nonlinear terms. However, it appears that the sys-
tem remains in resonance as the sum of the final nonlinear frequencies
remains very close to zero. In fact, it appears that the “near resonant”
system evolves toward resonance as a result of these nonlinear correc-
tions since Dx decreases from the beginning toward the end.

Using Eqs. (20) and (21) with the assumption that @tv6
k � 0 and

@t/
6
k ¼ �x6

k;nl is a constant, we obtain the nonlinear frequency shift,
i.e., dx6

kr ¼ x6
k;nl � x6

kr as

dx6
kr ¼ sign xkrð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN6

nkj
2

jn6
k j

2 � c62
k

vuut ; (28)

which can be computed given the final amplitudes and the nonlinear
interaction coefficients (23). For example, for the case in Fig. 4, the
smoothed saturated amplitudes are shown in Table I.

In order to elucidate dynamics of the phases in a triad, we define
the sums of phases as a separate variable following Ref. 42,

FIG. 3. Comparison between exact or near resonances, with real parts of each
eigenmode shown for each wave number as labeled on the left side of the figure.
The solid line is the exact (i.e., Dx � 2� 10�15) resonance of k ¼ ð0; 1:125Þ
with p ¼ ð�0:5;�1:063 232 526 549 2Þ, whereas the dashed line is the near reso-
nance with p ¼ ð�0:5;�1:0Þ and Dx � 0:01. While some details change, the
overall behavior and saturation levels are actually very similar.

FIG. 4. Time evolution of the amplitudes
of the eigenmodes for C¼ 1 case with
k ¼ ð0; 1:125Þ and p ¼ ð�0:5;�1:0Þ.
We have a “saturated” state with oscillat-
ing amplitudes. It seems that as k and p
(the two unstable modes and the two
larger legs of the triads) exchange energy,
q plays the role of the mediator.

TABLE I. Saturated amplitudes, linear frequencies, linear growth rates, the final non-
linear frequencies, and the dx’s that are computed from Eq. (28), rounded to two
significant figures for the C¼ 1 case with k ¼ ð0; 1:125Þ and p ¼ ð�0:5;�1:0Þ.
Note that the basic assumption of Eq. (28) works only for linearly unstable modes,
and for those, dx is not far from xnl � xr .

k;þ p;þ q;þ k;� p;� q;�

jnj 0.89 0.93 0.52 0.041 0.040 0.0017
xr 0.099 �0.088 �0.020 �0.099 0.088 0.020
c 4:2� 10�3 3:1� 10�3 �1:8� 10�4 �1.8 �1.8 �4.8
xnl 0.20 �0.19 �0.016 0.20 �0.19 �0.016
dx 0.11 �0.11 � � � � � � � � � � � �
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w
skspsq
kpq � usk

k þ u
sp
p þ u

sq
q : (29)

We observe that while the phases keep increasing in time (see the
top plot of Fig. 5 where the phases keep increasing linearly), for a
steady state, the phase differences remain bounded (i.e., the bottom
plot of Fig. 5, where the phase difference between three þ modes
oscillate between say, 4 and 5.5). Similarly, the frequencies, as com-
puted by finite difference time derivatives of the phases, shown in
Fig. 6, display bounded behavior, especially for those modes whose

amplitudes are significant. We can write the equations for the ampli-
tudes as

@tv
sk
k � cskk vskk ¼

X
rp;rq

m
skrprq

kpq cos d
skrprq

kpq � w
skrprq

kpq

� 	
v

rp
p v

rp
q ; (30)

which contain the phases only through their sums (i.e., w variables).
We can also write an equation for the w

skspsq
kpq explicitly as

FIG. 5. Time evolution of the phases u6
k

and their sums wspsqsk
kpq for C¼ 1 case with

k ¼ ð0; 1:125Þ and p ¼ ð�0:5;�1:0Þ.
Saturation of the amplitudes as seen in
Fig. 4 is accompanied by a nonlinear fre-
quency shift as shown in the top plot and
the saturation of the w

spsqsk
kpq ’s as shown

in the bottom plot. Note that wspsqsk
kpq

¼ const: would correspond to phase
locking.

FIG. 6. Time derivatives of the phases
u6
k for C¼ 1 case with k ¼ ð0; 1:125Þ

and p ¼ ð�0:5;�1:0Þ, corresponding to
nonlinear frequencies. Notice that while
du�q =dt appears to oscillate wildly, since
its amplitude v�q is vanishingly small, as
can be seen in Fig. 4, these oscillations
are not important for the rest of the
dynamics.
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@tw
skspsq
kpq þ xsk

k þx
sp
p þx

sq
p

� 	

¼
X
rp;rq

m
skrprq

kpq sin d
skrprq

kpq � w
skrprq

kpq

� 	 v
rp
p v

rq
q

vskk

þ
X
rq;rk

m
sprqrk

pqk sin d
sprqrk

pqk � w
sprqrk

pqk

� 	 v
rq
q vrk

k

v
sp
p

þ
X
rk;rp

m
sqrkrp

qkp sin d
sqrkrp

qkp � w
sqrkrp

qkp

� 	 vrk
k v

rp
p

v
sq
q

: (31)

While the form of Eq. (31) looks terribly complicated (e.g., when
we expand the sums, we have eight equations, each of which has 12
terms on their right hand side), it is useful for getting an insight into
phase locking. For example, by setting @tw

skspsq
kpq ¼ 0 in Eq. (31), and

@tv
sk
k ¼ 0 in Eq. (30), we can obtain constant amplitude, phase locked

solutions if such solutions exist. Unfortunately, even the computation
of this “fixed point” requires numerical analysis. We can also integrate
Eqs. (30) and (31) numerically, which gives exactly the same result as
the system in terms of n6

k .

III. INTERACTIONS WITH ZONAL FLOWS

When two non-zonal modes interact with a zonal one, the evolu-
tion equations and the nonlinear interaction coefficients are different
from non-zonal three wave interactions discussed in Sec. II. Using the
original variables Uk and nk as in Eqs. (3) and (4), zonal and non-
zonal modes interact with the same nonlinear interaction coefficients
but different linear propagators. However, when we diagonalize the
linear propagator, the nonlinear interaction coefficients for zonal and
non-zonal modes differentiate.

In particular, we have

M
/spsq
kpq ¼ �

ẑ � p � q q2 � p2
� �

C2

4X
sp�
p Xsq�

q k2p2q2
; (32)

M
nspsq
kpq ¼

ẑ � p � qC
4X

sp�
p Xsq�

q p2q2
Bq � iXsq�

q

� 	
q2� Bp � iX

sp�
p

� 	
p2

� �
; (33)

M
sk/sq
kpq ¼ i

ẑ� p � q
2Xsq�

q q2
Bq � iXsq�

q

� 	
q2� Bk � iXsk

k

� �
q2 � p2
� �h i

; (34)

M
sknsq
kpq ¼ i

ẑ � p � qC
2Xsq�

q q2
; (35)

so that for three waves k, p, and q with qy¼ 0, we can write

@t �Uq þ �ZF �Uq ¼
X
sk;sp

M
/sksp
qkp nsk�k n

sp�
p ; (36)

@t�nq þ DZF�nq ¼
X
sk;sp

M
nsksp
qkp nsk�k n

sp�
p ; (37)

@tn
sk
k þ ixsk

k nskk ¼
X
sp

M
sksp/
kpq n

sp�
p U�q þM

skspn
kpq n

sp�
p n�q; (38)

@tn
sp
p þ ix

sp
p n

sp
p ¼

X
sp

M
sp/sk
pqk U�qn

sk�
k þM

spnsk
pqk n�qn

sk�
k : (39)

We can write these in the form (25)–(27) by letting nþq ¼ Uq and
n�q ¼ nq and paying attention to the form of the interaction coefficient
M

skspsq
nkpq when one of the legs is zonal.

In order to study the interactions between two modes with a
zonal flow in the Hasegawa–Wakatani system numerically, we pick a
primary wave-number k ¼ ð0; 1:125Þ which is the linearly most
unstable mode on a grid with dkx ¼ dky ¼ 0:125 for the C¼ 1.0 case.
We choose p ¼ ð�0:5;�1:125Þ so that q ¼ ð0:5; 0Þ is a zonal wave
number. The 6 field variables are now n6

k , n
6
p ; Uq, and nq whose evo-

lutions are shown in Fig. 7 for the case C¼ 1, �Z ¼ DZ ¼ 0, and
ck � cp > 0. In the final state, the system finds a fixed point character-
ized by constant nonlinear frequency shifts, constant amplitudes, and
constant wkpq’s. However, this kind of steady state solution seems to be
exclusive to the single triad case.

A. Triad pairs

Because of the symmetry of the system, if we consider two wave-
numbers p1 ¼ �k � q and p2 ¼ �k þ q with k in ŷ and q in x̂
directions, we get two triads that are reflections of one another with
respect to the axis defined by k. Such a system involves four different
wave-numbers connected with two different triads. Including the
p ! q transformation, we have four triads as shown in Fig. 8.
However, as long as we use symmetric forms for the interaction coeffi-
cients, we can drop the two triads we obtain from the p ! q transfor-
mation and count only two triads. Since the two triads of such a pair
are reflections of one another, the nonlinear interaction coefficients
differ only in sign while the complex frequencies are the same, and as
there are two eigenmodes for each wave-number, we have eight equa-
tions. The equations for zonal modes can be written from Eqs. (36)
and (37) as

@tUq þ �ZUq ¼
X
sk;sp

M
/sksp
qkp1

nsk�k n
sp1 �
p1 � nskk n

sp2
p2

� 	
; (40)

@tnq þ DZnq ¼
X
sk;sp

M
nsksp
qkp nsk�k n

sp�
p1 � nskk n

sp
p2

� 	
; (41)

which is possible since M
sksp n;/f g
nkp2q

¼ �Msksp n;/f g
nkp1q

because p22 ¼ p21 and
p2y ¼ p1y while p2x ¼ �p2x . The equation for the primary mode can
be written as

@tn
sk
k þ ixsk

k nskk ¼
X
sp

M
sksp/
nkpq U�qn

sp�
p1 þ Uqn

sp�
p2

� 	h

þM
skspn
nkpq n�qn

sp�
p1 þ nqn

sp�
p2

� 	i
; (42)

and the remaining two equations are the same as (39) but with differ-
ent signs and conjugations,

@tn
sp
p1 þ ix

sp
p1n

sp
p1 ¼

X
sk

M
spsk/
np1kq

U�q þM
spskn
np1kq

n�q

� 	
nsk�k ; (43)

@tn
sp
p2 þ ix

sp
p2n

sp
p2 ¼ �

X
sk

M
spsk/
np1kq

Uq þM
spskn
np1kq

nq
� 	

nsk�k ; (44)

where x
sp
p2 ¼ x

sp
p1 . Notice that this is also equivalent to one of the

radial Fourier modes of a quasi-linear (e.g., zonostrophic) interaction,
where for each field one would consider a single py but the full spatial
dependence in x.

The results of the system (40) and (44) are shown in Fig. 9 for
the C¼ 1 case with ky¼ 1.125 [i.e., k ¼ ð0; kyÞ; p1 ¼ ð�q;�kyÞ,
p2 ¼ ðq;�kyÞ, and q ¼ ðq; 0Þ] for q ¼ ð1:0; 1:5; 2:0; 4:0Þ from top to
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bottom, respectively. For q � ky , we have instability and p keeps grow-
ing exponentially whereas for q > ky , we get some sort of steady or
limit cycle state. Performing a scan of ky and q for this two triad system
(keeping in mind that for ky> 2 we have no instability and therefore
the pump mode decays), we observe that we can define a four wave
interaction condition of the form xsk

kr þ x
sp1
p1r þ x

sp2
p2r þ x

sq
qr ¼ 0,

which turns into Xsk
k þ 2X

sp
p ¼ 0 since xqr ¼ 0 and xp1r ¼ xp2r

¼ xpr . During our studies, we have observed three distinct regions: for
q< 1, the nþp modes grow exponentially as in the top plot of Fig. 9, for
q � 1, we have saturation and then somewhat chaotic evolution as in
the second plot of Fig. 9, and finally for q	 1, we observe limit cycle
oscillations between nþk and nþp modes, mediated by zonal flows as in
the bottom plot of Fig. 9.

One is tempted to argue that since the p with px< py wins the
competition to attract more energy, the cascade will proceed in this
direction, and in the next step, we can consider the interaction of
this nþp as the pump mode for the next triad, etc. However, since
each mode interacts with many triads simultaneously, the fact that
nþp wins the competition in the single triad (or one triad and its
reflection) configuration does not really mean the energy will indeed
go this way.

FIG. 7. Time evolution of the three wave
equations involving a zonal mode q, for
the case C¼ 1, �Z ¼ DZ ¼ 0, and ck
� cp > 0 with ky¼ 1.125 and q¼ 0.5
[i.e., k ¼ ð0; kyÞ, p ¼ ð�q;�kyÞ and
q ¼ ðq; 0Þ]. The system reaches a steady
state by introducing nonlinear frequencies
in order to arrive at a state where the
sums of phases wkpq’s are constant. Note
that it is p which becomes the dominant
mode in the final state and the existence
of zonal flows does not lead to a complete
suppression of turbulence. Instead the
zonal flow acquires a constant nonlinear
frequency.

FIG. 8. All the four triads involved in the interaction between the most unstable
mode with k ¼ ky ŷ with ky¼ 1.125 and a given zonal mode with q¼ 1.0, obtained
by reflection with respect to k and the exchange of p and q of the primary triad,
which is shaded. The existence of the reflected triad is indeed important as it
changes the qualitative behavior with respect to the single triad case.
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B. Triad networks

In order to study the fate of the cascade, we need to consider
multiple triads that are connected to one another. However, as we add
more zonal and non-zonal modes, it becomes quite complicated to
keep track of all the interaction coefficients, conjugations, etc. In order
to simplify this task, we can divide the problem into two steps: (i) con-
struction of a network of three body interactions and (ii) computation
of the evolution of the field variables on this network. For example, for
the above problem, we need to consider a network of Nk¼ 4 wave
number nodes, coupled to Nt¼ 2 triads, with Nf ¼ 2 fields in each
node, with an interaction coefficient of the size Nf � Nf � Nf for each
connection. Since a network in Fourier space is made up of three body
interactions, for each node, we can compute a list of interacting pairs
and the interaction coefficients, so that we can write

@tn
i
‘ þ Lij‘n

j
‘ ¼

1
2N

X
‘0;‘00¼i‘

Mijk
‘‘0‘00

nj
‘0

� 	c‘0
nk‘00
� 	c‘00

; (45)

where i‘ is the list of precomputed interaction pairs for the node ‘.
The indices i, j, and k correspond to different fields (eigenmodes or Uk

and nk), the matrix Lij‘ is the linear matrix in k space (i.e., diagonal
with the elements ix6

‘ for the eigenmodes), the Mijk
‘‘0‘00

is the interac-
tion coefficient for each interaction, and N is the number of indepen-
dent wave number nodes so that when we reach the full grid, we have

exactly the same interaction coefficients as the system formulated
using discrete fast Fourier transforms (i.e., divided by Nx � Ny).
Finally, if we write the triad interaction condition in the form
k‘ þ r‘0k‘0 þ r‘00k‘00 ¼ 0, where r are 61, the ðnj

‘0
Þc‘0 are defined as

nj
‘0

� 	c‘0
¼

nj
‘0

r‘0 ¼ �1;

nj
�

‘0
r‘0 ¼ þ1:

8<
:

This is necessary unless we have the negative of each wave number
vector as a separate node in the network.

Notice that when computing the nonlinear interaction coeffi-
cients for the eigenmodes, we would use (23) if all the nodes have non-
zero ky. In contrast, we would use Eqs. (32) and (33) if the receiving
node (i.e., node ‘) is zonal or Eqs. (34) and (35) if one of the interact-
ing pairs (i.e., ‘0 or ‘00) is zonal. Two or more zonal modes do not
interact because of the geometric factor ẑ � p � q, which appears in
front of all the interaction coefficients.

Finally, if it makes sense to zero out some of the fields at a given
wave-number (e.g., in eigenmode formulation, we may decide to
throw away some damped modes), one may switch to a formulation
where each node corresponds to a wave-number/field variable combi-
nation via kx; ky; sk

 �
! ‘. In this case, assuming that the linear

matrix Lij‘ in Eq. (45) diagonal takes the form

FIG. 9. Evolution of a triad pair with the
same parameters as Fig. 7, no zonal flow
damping �Z ¼ DZ ¼ 0 and ky¼ 1.125
[i.e., k ¼ ð0; kyÞ; p1 ¼ ð�q;�kyÞ, p1
¼ ðq;�kyÞ, p2 ¼ ðq;�kyÞ and q
¼ ðq; 0Þ] for four different values of
q ¼ ð1:0; 1:5; 2:0; and 4:0Þ from top to
bottom for which the growth rates of the
subdominant modes are cp ¼ ð0:00099;
�0:0016;�0:0042; and �0:017Þ, respec-
tively. Note that apart from the second plot,
which displays some chaotic behavior, the
curves for nþp1 and nþp2 overlap almost
exactly.
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@tn‘ þ ix‘n‘ ¼
1
N

X
‘0;‘00¼i‘

M‘‘0‘00n
c‘0
‘0

nc‘00
‘00
: (46)

C. Order parameters

The phases of wave-number nodes in Hasegawa–Wakatani tur-
bulence evolve according to Eq. (21) or written explicitly as Eq. (24).
This suggests that one can possibly define some kind of order parame-
ter for this system. The usual definition of the Kuramoto order param-
eter can be written for the network formulation of Eq. (46) as

z ¼ reiw ¼ 1
N

X
‘

eiu‘ ; (47)

without explicitly distinguishing þ or � modes. However, this order
parameter based on an unweighted sum is probably relevant only if all
the oscillators were identical with all-to-all, unweighted couplings of
the Kuramoto type. Instead we can use an amplitude filtered
Kuramoto order parameter (i.e., the sum is computed only over the
oscillators with an amplitude larger than a threshold) or define a
weighted version of Eq. (47) as

z ¼ reiw ¼

X
‘

v‘e
iu‘

X
‘

v‘
; (48)

whose absolute value would tends toward 1 if the relevant phases (i.e.,
those that have large amplitude) are the same. However, note that the
weighted order parameter tends toward 1 also when one of the modes
dominates over the others, while w as defined in Eq. (48) can still be
used as a mean phase.

It would also make sense to look at the net effect on the nonlinear
term on the phases instead. As discussed in Sec. I B, since we can write

@tu‘ ¼ �x‘ þ
1

Nv‘
Im

X
‘0 ;‘00¼i‘

M‘‘0‘00n
c‘0
‘0

nc‘00
‘00
e�iu‘

� �
; (49)

for the evolution of the phase, we can define

Z‘ ¼ R‘e
iw‘ ¼ 1

Nv‘

X
‘0 ;‘00¼i‘

M‘‘0‘00n
c‘0
‘0

nc‘00
‘00

� �
; (50)

with d‘ being the number of interactions for the node ‘ (i.e., length of
i‘), as some kind of local order parameter for the node ‘, allowing us
to write the phase equation as

@tu‘ ¼ �x‘ þ R‘ sin w‘ � u‘ð Þ ; (51)

which attracts the system towardu‘ ¼ w‘ þ 2np.

D. Specific network configurations

In this section, we implement the solver for Eq. (45) in a generic
network formulation and report the results in a number of specific
network configurations. The ode solver is written in python and uses a
standard adaptive time step Runge–Kutta 4/5 algorithm. While we did
not perform extensive numerical tests, the results that we report below
are consistently robust from a numerical point of view.

1. Network with a single ky

We consider a network of triad pairs as discussed in Sec. IIIA
with a single value of ky and multiple q values that go from 0.125 to
4.0 in steps of 0.125. Notice that such a network has many different
types of interactions as shown in Fig. 10, but all of those involve one of
the zonal modes, which means that if we compute the inverse Fourier
transform in the x direction, the network can be seen to be equivalent
to the single ky, full-x, quasi-linear model43,44 since in both cases we
have full spatial evolution in x direction but the only nonlinear cou-
pling is with the zonal flow.

For the case C¼ 1, without zonal flow damping (not shown), we
observe that the zonal flows dominate, and all the other modes decay
to zero. This may well be what happens also in direct numerical simu-
lations (DNS) eventually: what we observe in numerical simulations
without zonal flow damping is a continual increase in zonal flows even
for very long simulations.

In contrast, when we introduce zonal flow damping by letting
�ZF ¼ DZF ¼ 10�3, we get dynamics and k-spectra which look more
like fully developed Hasegawa-Wakatani turbulence, as shown in
Figure 11, with high levels of zonal flows at large scales.

The order parameters, as defined in Eq. (47) or (48), are shown
for this case in Fig. 12, which do not display a clear sign of
synchronization.

2. Network with a single q

Here, we consider a network of triad pairs with a single q and a
grid of values of ky going from 0.125 to 4.0 in steps of 0.125. A reduced
version of such a network is shown in Figure 13. Physically this net-
work corresponds to the opposite case where we consider a single q

FIG. 10. The structure of the network with a single ky with ky¼ 1.125 shown as a
filled (red if in color) node. Here, each circle represents a node (i.e., a wave-
number with the same ky but different kx ¼ 6q), and each triangle represents a
triad (i.e., three body) interaction among the nodes to which it is connected. Since
the wave-numbers only interact through triad interactions, each-node is connected
to a triad, and each triad is connected to three nodes (denoting the interacting
wavenumbers). A reduced version with q values that only go up to 0.5 is shown for
clarity. Notice that in this network while all of the 26 triads involve one of the zonal
modes, only 8 of them involve the q¼ 0 mode.
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with the whole y dynamics if we compute the inverse Fourier trans-
form in y. Since it involves bunch of oscillators with different frequen-
cies (as x is mostly a function of ky) that are coupled to each other
and to a zonal mode that may play the role of a dominant mean field,
it has the basic ingredients that may lead to synchronization.

Nonetheless numerical observations suggest that there is no obvi-
ous route to global synchronization in the three body network of inter-
acting triads consisting of a zonal mode and drift waves of different ky
either. The weighted order parameter shows a brief increase during
the nonlinear saturation phase as the energy is transferred to the zonal
flow, but otherwise it remains close to zero, while the Kuramoto order
parameter simply remains close to zero the whole time as can be seen
in Fig. 14. Since we observed no qualitative difference between the
runs with or without zonal flow damping for this case, we only show
those with �ZF ¼ DZF ¼ 10�3.

E. Direct numerical simulations

One can think of direct numerical simulation (DNS) on a regular
rectangular grid as a “network” in Fourier space, in the sense that it
consists of a collection of wave number nodes connected to each other
through triadic interactions. In contrast to the networks that we con-
sidered that contain a single zonal mode, or a single q¼ 0 mode, a reg-
ular rectangular grid has all the possible wave-numbers in a particular
range, and it allows using more efficient methods for computing the
convolution sums. In practice, the high resolution direct numerical
simulations that we discuss here were performed with a standard
pseudo-spectral solver (i.e., with periodic boundary conditions in both
directions) using 2/3 rule for dealiasing and adaptive time stepping.

FIG. 11. Time evolution for a number of
triad pairs (as defined in Sec. III A) for a
single ky but with different values of q in
the network of interacting triads for C¼ 1
case with �ZF ¼ DZF ¼ 10�3. Note that
the different plots show different q values
in a single run. Here we observe a steady
state turbulence level, with zonal flows
(i.e., j�Uqj) dominating at large scales
(e.g., q¼ 0.25 and q¼ 0.5).

FIG. 12. The top plot shows the order parameter r defined in Eqs. (47) or (48) as a
function of time for a network with single ky and multiple q, while the bottom plot is
the same as the q¼ 0.5 plot of Fig. 11, shown here for reference only up to
t¼ 5000. The two definitions of the order parameter seem to be in reasonable
agreement, maybe apart from the initial linear growth phase.

FIG. 13. The structure of the network with a single q¼ 0.5 zonal mode, shown as
a filled (red if in color) node (also see Fig. 10). Here, each circle represents a node
(i.e., a wave-number with the same kx¼ q but different ky), and each triangle repre-
sents a triad (i.e., three body) interaction among the nodes to which it is connected.
Since the wave-numbers only interact through triad interactions, each-node is con-
nected to a triad, and each triad is connected to three nodes (denoting the interact-
ing wavenumbers). A reduced version with ky values that only go up to 0.5 is
shown for clarity. Note that only 8 of the full 26 triads that are shown involve the
zonal flow.
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As with all the previous examples of single or multiple triads, or
networks with a particular selection of nodes and triads, we use C¼ 1,
j ¼ 0:2. Since we have a larger range of wave-numbers, we choose
� ¼ D ¼ 10�4, with a box size of Lx ¼ Ly ¼ 16p and a padded resolu-
tion of 1024� 1024. The results show (see Figs. 15 and 16) the following:

(i) Initial linear growth followed by nonlinear saturation.
(ii) Formation and finally suppression of nonlinear convective

cells that transfer vorticity radially.
(iii) Consequent stratification of vorticity leading to a state dom-

inated by zonal flows (as in Fig. 16).
(iv) Coherent nonlinear structures (e.g., vortices) that are

advected by the zonal flows in regions of weak zonal shear

get sheared apart if they fall into a region of strong zonal
shear.

Since the wave-like dynamics seems to be primarily in y direction
and reasonably localized in x, we can compute the Fourier transform in
y and plot phase of n6

ky ¼ v6
ky
ei/

6
ky at each x and compute @t/

6
ky ðx; tÞ in

order to compute the phase speeds (see Fig. 17). We can also compute
an order parameter as a function of x and t from these data.

While it is clear from Fig. 15 that there is no global synchroniza-
tion in direct numerical simulations, the plateau form of the phase
velocity as a function of ky at the radii where it is positive for large
scales suggests that a process of phase locking similar to soliton forma-
tion in nonlinear Schr€odinger equation, where nonlinearity would bal-
ance dispersion, is at play for a range of ky values around the linearly
unstable mode, while x=ky being the same across a range of x and ky
values is obviously very different from x being the same. However, if
we note that the nonlinear dispersion relation takes the form
xðx; kyÞ ¼ �v/ðxÞky , at the lowest order we can see that the frequency
in the frame moving with the zonal flow velocity becomes zero. This is

FIG. 14. The top plot shows the order parameter r defined in Eqs. (47) or (48) as a
function of time for a network with single q and multiple ky, while the bottom plot
shows the amplitudes of a triad pair with q¼ 0.5 and ky¼ 1.125, within such a net-
work. The two definitions of the order parameter are in reasonable agreement apart
from the peak around t¼ 2500 for the weighted order parameter, which corre-
sponds to the linear growth phase, where only a few modes around the most unsta-
ble mode dominate. This can be seen at the bottom plot where the blue curve
clearly dominates around t¼ 2500.

FIG. 15. The top plot shows the order parameter r defined in Eqs. (47) or (48) as a
function of time for a DNS. The bottom plot shows the amplitudes of a triad pair
with q¼ 0.5 and ky¼ 1.125 in order to compare with the earlier plots. The satura-
tion levels for the amplitudes are different because of the normalization factor
N�1x N�1y in front of the nonlinear term implied in discrete Fourier transforms.

FIG. 16. Snapshots of vorticity and density
at t¼ 5000 from DNS. The blue curve in
both plots shows the zonal velocity whose
values are given on the right hand axes.
An example is coherent vortex. The one
that was moving upwards is encircled.
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roughly consistent with what we see in time evolution, where coherent
structures like rotating vortices are advected by zonal flows. In order
for such a detailed structure to keep its coherence, the different
Fourier components that make up such a structure must move at the
same speed even under the action of the zonal shear.

IV. CONCLUSION

A detailed analysis of triadic interactions formulated in terms
natural frequencies reveals the complex nature of the dynamics of the
phases and amplitudes in the Hasegawa–Wakatani system. In particu-
lar, it is observed that a single resonant (or near resonant) triad,
including a pump mode and two other modes, can saturate by adjust-
ing the sums of phases of its legs (w

skspsq
kpq ¼ /sk

k þ /
sp
p þ /sq

q ) to be
asymptotically constant, resulting in a set of nonlinearly shifted fre-
quencies and constant amplitudes. When the interactions with zonal
flows are considered, a similar saturation is possible for a single triad
even without the condition of resonance. However, this solution
breaks down when we add the triad, which is the reflection of the orig-
inal one with respect to the y axis (or the wave-vector k). Instead we
observe three different behaviors for these triad pairs as a function of
the radial wave number.

(i) For smaller radial wave numbers, we find that the subdomi-
nant mode becomes the dominant one and grows exponen-
tially. We call those unstable triads. They are associated
with unstable subdominant modes.

(ii) For medium radial wave numbers, after an initial growth
phase, the system saturates with a more or less chaotic evo-
lution, where the energy goes back and forth between the
modes. We call these saturated triads. They are associated
with weakly unstable or weakly damped subdominant
modes.

(iii) For large radial wave numbers, the system decays to a
steady state solution after a number of limit cycle oscilla-
tions. In some cases, these limit cycle oscillations can con-
tinue until the end of the simulation time. We call these
decaying triads (even though they do not decay to zero but
to a constant). They are associated with strongly damped
subdominant modes.

In order to study the dynamics when those triads are connected
to one another, we considered a network formulation where the wave
numbers (or wave number eigenmode combinations) are considered

FIG. 17. Profiles of phase velocity as a
function of ky at three different values of x
(i.e., 14.74, 29.48, and 40.54) averaged
over t ¼ ½4500; 5000� shown at the top
plot. The three plots that follow show the
detailed time evolution (on the left y axes)
of phase velocity as a function of x for
three different values of ky (i.e., 1, 3, and
5), together with the mean velocity profile
shown for reference (on the right y axes).
The phase velocity is computed using
v/ ¼ �@t/þky ðx; tÞ=ky . The ky’s for which
the time evolution are given and the x’s
for which the phase velocities are shown
are marked with horizontal lines in the cor-
responding figures.
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as nodes, and each triad represents a three body interaction. It is shown
that while the zonal flow is almost never dominant in a single triad
when the whole triad network with a large number of triads is consid-
ered, the zonal modes become dominant almost in each triad. Thus, the
system can reach a steady state where the zonal flow dominates as the
other modes decay. One interesting future perspective that is closely
related is the study and the detailed understanding of the conditions for
the dominance of the zonal flow as a function of the number of triads,
the initial energies, their ratios, and the total energy of the network.

In terms of triadic interactions, as the zonal flow becomes domi-
nant, it plays the role of a collective mean field; in the sense that for each
mode, individual interactions with non-zonal modes start to become less
important compared to the interaction with the zonal flow. This hap-
pens only when the number of triads is large enough so that the collec-
tive wins over the individual. However, this seems to happen gradually
as we add triads since the contribution to the zonal flow increases with
each added triad. It is interesting to note that this picture where the
interaction with the zonal flow dominates over the interactions among
drift waves is qualitatively consistent with that of inhomogeneous wave-
kinetic formulation, where the zonal flow is treated as a collective mean
field, and the direct interaction between the modes is either dropped or
modeled with a diffusion operator. This actually suggests that the wave-
kinetic formulation may hold beyond its strict range of validity.

Playing with the range of radial wave-numbers of the network
model, we observe that when the range includes only unstable triads
[i.e., (i) above] or unstable and saturated triads [i.e., (i) and (ii) above],
the network system remains unstable. It saturates only when we
include a sufficient range of decaying triads, with subdominant modes
with cþp < 0. This means that “local coupling to damped modes” (i.e.,
c�p modes even though cþp > 0) is not a real mechanism for turbulent
saturation. However, since the fact that cþp < 0 for those modes do
not come directly from dissipation but rather the detailed form of the
linear growth/damping whose form is determined by various parame-
ters including dissipation, it is correct to argue that in contrast to the
Kolmogorov picture where there is an injection scale, a dissipation
scale, and the inertial range in between, plasma turbulence can gener-
ate and dissipate energy in much closer scales, even though one may
observe clear power law scalings.

One of the goals of the current paper was to study the effect of
nonlinear synchronization of drift waves45 on the turbulent cascade
using a framework similar to the Kuramoto model,46 which has
already been attempted using simple models in fusion plasmas.47,48

We hoped by considering a network of connected triads interacting
with zonal flows, we could set up a system that would tend toward
synchronization through slight nonlinear modifications of the fre-
quencies through their interactions with the zonal flow, playing the
role of the control parameter. However due to particular form of the
systematic dependency of the frequencies to the wave-numbers
through the dispersion relation, such a system does not seem to tend
toward synchronization. It should be checked whether or not the dis-
cretization resulting from boundary conditions, for example, in cylin-
drical geometry, changes this picture drastically by impeding resonant
interactions49,50 especially among large scale modes.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1A. Hasegawa and M. Wakatani, Phys. Rev. Lett 50, 682 (1983).
2M. Lesieur and J. Herring, J. Fluid Mech. 161, 77 (1985).
3F. H. Busse and K. E. Heikes, Science 208, 173 (1980).
4L. K. Currie and S. M. Tobias, Phys. Fluids 28, 017101 (2016).
5A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978).
6C. Connaughton, S. Nazarenko, and B. Quinn, Phys. Rep. 604, 1–71 (2015).
7P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Controlled
Fusion 47, R35 (2005).

8C. Holland, G. R. Tynan, J. H. Y. A. James, D. Nishijima, M. Shimada, and N.
Taheri, Plasma Phys. Controlled Fusion 49, A109 (2007).

9A. V. Pushkarev, W. J. T. Bos, and S. V. Nazarenko, Phys. Plasmas 20, 042304
(2013).

10Y. Zhang and S. I. Krasheninnikov, Phys. Plasmas 27, 122303 (2020).
11B. D. Scott, J. Comput. Phys. 78, 114 (1988).
12A. E. Koniges, J. A. Crotinger, and P. H. Diamond, Phys. Fluids B 4, 2785
(1992).

13B. Friedman and T. A. Carter, Phys. Plasmas 22, 012307 (2015).
14D. D. Sarto and A. Ghizzo, Fluids 2, 65 (2017).
15W. Bos, B. Kadoch, S. Neffaa, and K. Schneider, Physica D 239, 1269 (2010).
16J. Anderson and B. Hnat, Phys. Plasmas 24, 062301 (2017).
17F. Y. Gang, P. H. Diamond, J. A. Crotinger, and A. E. Koniges, Phys. Fluids B 3,
955 (1991).

18G. Hu, J. A. Krommes, and J. C. Bowman, Phys. Plasmas 4, 2116 (1997).
19R. Singh and P. H. Diamond, Plasma Phys. Controlled Fusion 63, 035015
(2021).

20I. R. Goumiri, C. W. Rowley, Z. Ma, D. A. Gates, J. A. Krommes, and J. B.
Parker, Phys. Plasmas 20, 042501 (2013).

21J. Anderson, E-j. Kim, B. Hnat, and T. Rafiq, Phys. Plasmas 27, 022307 (2020).
22R. A. Heinonen and P. H. Diamond, Phys. Rev. E 101, 061201 (2020).
23N. Kasuya, M. Yagi, M. Azumi, K. Itoh, and S.-I. Itoh, J. Phys. Soc. Jpn. 76,
044501 (2007).

24P. Vaezi, C. Holland, S. C. Thakur, and G. R. Tynan, Phys. Plasmas 24, 092310
(2017).

25P. Donnel, P. Morel, C. Honor�e, €O. G€urcan, V. Pisarev, C. Metzger, and P.
Hennequin, Phys. Plasmas 25, 062127 (2018).

26A. I. Smolyakov and P. H. Diamond, Phys. Plasmas 6, 4410 (1999).
27L. Chen, Z. Lin, and R. White, Phys. Plasmas 7, 3129 (2000).
28S. Champeaux and P. Diamond, Phys. Lett. A 288, 214 (2001).
29P. Manz, M. Ramisch, and U. Stroth, Phys. Rev. Lett. 103, 165004 (2009).
30U. Stroth, P. Manz, and M. Ramisch, Plasma Phys. Controlled Fusion 53,
024006 (2011).

31H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B 2, 1–4 (1990).
32P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).
33M. A. Malkov, P. H. Diamond, and M. N. Rosenbluth, Phys. Plasmas 8, 5073
(2001).

34E.-J. Kim and P. H. Diamond, Phys. Rev. Lett. 90, 185006 (2003).
35Z. B. Guo and P. H. Diamond, Phys. Rev. Lett. 117, 125002 (2016).
36J. Kim and P. W. Terry, Phys. Plasmas 18, 092308 (2011).
37J. Dominski and A. Diallo, Phys. Plasmas 28, 092306 (2021).
38P. Li and P. W. Terry, Phys. Plasmas 29, 042301 (2022).
39S. Xu, Z. B. Guo, and O. D. G€urcan, Phys. Rev. E 103, 023208 (2021).
40H. Xia, M. Shats, and H. Punzmann, Europhys. Lett. 91, 14002 (2010).
41T. Stoltzfus-Dueck, B. D. Scott, and J. A. Krommes, Phys. Plasmas 20, 082314
(2013).

42M. D. Bustamante and E. Kartashova, Europhys. Lett. 85, 34002 (2009).
43N. Bian, S. Benkadda, O. E. Garcia, J.-V. Paulsen, and X. Garbet, Phys. Plasmas
10, 1382 (2003).

44Y. Sarazin, G. Dif-Pradalier, X. Garbet, P. Ghendrih, A. Berger, C. Gillot, V.
Grandgirard, K. Obrejan, R. Varennes, L. Vermare, and T. Cartier-Michaud,
Plasma Phys. Controlled Fusion 63, 064007 (2021).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 052306 (2022); doi: 10.1063/5.0089073 29, 052306-15

Published under an exclusive license by AIP Publishing

https://doi.org/10.1103/PhysRevLett.50.682
https://doi.org/10.1017/S0022112085002828
https://doi.org/10.1126/science.208.4440.173
https://doi.org/10.1063/1.4939300
https://doi.org/10.1063/1.862083
https://doi.org/10.1016/j.physrep.2015.10.009
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1088/0741-3335/49/5A/S09
https://doi.org/10.1063/1.4802187
https://doi.org/10.1063/5.0025861
https://doi.org/10.1016/0021-9991(88)90040-X
https://doi.org/10.1063/1.860151
https://doi.org/10.1063/1.4905863
https://doi.org/10.3390/fluids2040065
https://doi.org/10.1016/j.physd.2009.12.008
https://doi.org/10.1063/1.4984985
https://doi.org/10.1063/1.859851
https://doi.org/10.1063/1.872377
https://doi.org/10.1088/1361-6587/abd618
https://doi.org/10.1063/1.4796190
https://doi.org/10.1063/1.5122865
https://doi.org/10.1103/PhysRevE.101.061201
https://doi.org/10.1143/JPSJ.76.044501
https://doi.org/10.1063/1.4995305
https://doi.org/10.1063/1.5025141
https://doi.org/10.1063/1.873725
https://doi.org/10.1063/1.874222
https://doi.org/10.1016/S0375-9601(01)00549-7
https://doi.org/10.1103/PhysRevLett.103.165004
https://doi.org/10.1088/0741-3335/53/2/024006
https://doi.org/10.1063/1.859529
https://doi.org/10.1103/RevModPhys.72.109
https://doi.org/10.1063/1.1415424
https://doi.org/10.1103/PhysRevLett.90.185006
https://doi.org/10.1103/PhysRevLett.117.125002
https://doi.org/10.1063/1.3640807
https://doi.org/10.1063/5.0050543
https://doi.org/10.1063/5.0080511
https://doi.org/10.1103/PhysRevE.103.023208
https://doi.org/10.1209/0295-5075/91/14002
https://doi.org/10.1063/1.4816807
https://doi.org/10.1209/0295-5075/85/34002
https://doi.org/10.1063/1.1566442
https://doi.org/10.1088/1361-6587/abf673
https://scitation.org/journal/php


45D. Block, A. Piel, C. Schr€oder, and T. Klinger, Phys. Rev. E 63, 056401 (2001).
46Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer–Verlag,
New York, 1984).

47S. Moradi, J. Anderson, and €O. D. G€urcan, Phys. Rev. E 92, 062930 (2015).

48S. Moradi, B. Teaca, and J. Anderson, AIP Adv. 7, 115213 (2017).
49E. A. Kartashova, Phys. Rev. Lett. 72, 2013 (1994).
50E. Kartashova, Nonlinear Resonance Analysis, by E. Kartashova (Cambridge
University Press, Cambridge, UK, 2010), Vol. 1.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 052306 (2022); doi: 10.1063/5.0089073 29, 052306-16

Published under an exclusive license by AIP Publishing

https://doi.org/10.1103/PhysRevE.63.056401
https://doi.org/10.1103/PhysRevE.92.062930
https://doi.org/10.1063/1.5003871
https://doi.org/10.1103/PhysRevLett.72.2013
https://scitation.org/journal/php

	s1
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	s1A
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	s1B
	d19
	d20
	d21
	d22
	d23
	s1C
	d24
	s2
	d25
	s2A
	d26
	d27
	s2A1
	f1
	s2B
	d28
	d29
	f3
	t1
	d30
	d31
	s3
	d32
	d33
	d34
	d35
	d36
	d37
	d38
	d39
	s3A
	d40
	d41
	d42
	d43
	d44
	f8
	d45
	s3B
	d46
	s3C
	d47
	d48
	d49
	d50
	d51
	s3D
	s3D1
	s3D2
	f10
	s3E
	f12
	f13
	f14
	f15
	s4
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50

