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ABSTRACT
Testing of Cyber-Physical Systems (CPS) deals with the problem of

finding input traces to the systems such that given requirements do

not hold. Requirements can be formalized in many different ways;

in this work requirements are modeled using Signal Temporal Logic

(STL) for which a quantitative measure, or robustness value, can
be computed given a requirement together with input and output

traces. This value is a measure of how far away the requirement

is from not holding and is used to guide falsification procedures

for deciding on new input traces to simulate one after the other.

When the system under test has multiple requirements, standard

approaches are to falsify them one-by-one, or as a conjunction of all

requirements, but these approaches do not scale well for industrial-

sized problems. In this work we consider testing of systems with

multiple requirements by proposing focused multi-requirement

falsification. This is a multi-stage approach where the solver tries

to sequentially falsify the requirements one-by-one, but for every

simulation also evaluate the robustness value for all requirements.

After one requirement has been focused long enough, the next

requirement to focus is selected by considering the robustness

values and trajectory history calculated thus far. Each falsification

attempt makes use of a prior sensitivity analysis, which for each

requirement estimates the parameters that are unlikely to affect

the robustness value, in order to reduce the number of parameters

that are used by the optimization solver. The proposed approach

is evaluated on a public benchmark example containing a large

number of requirements, and includes a comparison of the proposed

algorithm against a new suggested baseline method.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Computing methodologies → Modeling
and simulation.
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1 INTRODUCTION
Requirement-based testing of Cyber-Physical Systems (CPSs) is

a testing method supported by monitoring of formally specified

requirements. In contrast to other formal methods such as reacha-

bility analysis of hybrid systems, which is notoriously undecidable

[14], such testing is always possible in practice for industrial-scale

systems, with the drawback that in general it cannot prove the

absence of faults. It can however find them efficiently through,

e.g., falsification which is the most common requirement-based

testing approach and consists of trying to find an input trace to

the system that falsifies a given requirement. Requirements are

typically written in temporal logic, and in this paper, specifically,

Signal Temporal Logic (STL) [18]. This leads to the possibility of

calculating the quantitative measure, or robustness value [9], of

the requirement for a given trace. The robustness value of an STL

requirement is a measure of the distance to falsify the requirement,

and it is used to guide the test case generation in the falsification

process. A positive robustness value means the requirement is not

falsified, while a negative robustness value means that it is falsified.

The magnitude of the robustness value indicates how far away the

requirement is from the point of falsification and can be used as an

objective function for some minimization algorithm to guide the

system toward a requirement violation.

A lot of work has been done in recent years to propose new algo-

rithms or improve on existing ones for falsification and an academic

informal friendly competition has been going on since 2019 [12]

to compare current approaches. This work is part of the same ef-

fort, but also aims at embedding it into a more general formulation

suitable for its application in an industrial context of complex CPS

design. We look more generally at multi-requirement testing, which

arises inevitably at a certain phase during the development of a

complex system, when parts of the design have been implemented

and already tested, while others are still missing or at a prototype

stage. At this point, testers are given not one but several require-

ments corresponding to these different parts, and while the primary

goal is still to detect faults as quickly as possible, a secondary goal

is to perform regression testing and ensure a good testing coverage

for the parts that are considered sufficiently mature. Since simula-

tion budget, or more generally the computational testing budget, is

always limited, these different goals have to be fulfilled as much

as possible in parallel. In this work we propose a novel approach

considering a multi-requirement falsification problem. We present

specific difficulties related to such a formulation, in particular, the

high dimensionality of the search space, and the “competition” be-

tween and within requirements leading to the so-called masking

https://doi.org/10.1145/3501710.3519521
https://doi.org/10.1145/3501710.3519521
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problem and a difficult multi-objective formulation.We propose sev-

eral improvements on falsification and a multistage approach based

on sequentially solving several simplified falsification problems.

1.1 Related work
The purpose of this paper is to further adapt the falsification pro-

cess to industrial-scale problems. Two tools commonly used for

falsification are S-TaLiRo [3] and Breach [8]. Recent works in the

area of falsification have explored falsification with constrained

signal spaces using Timed Automata [4], improved falsification

using multiple objective functions [22], and falsification of CPSs

using deep reinforcement learning [2]. For reviews on testing of

CPSs, see [1, 25].

A recent work [19] investigated a similar problem formulation

as the one presented in this paper, namely falsification of CPSs

with multiple conjunctive requirements. The work uses Bayesian

optimization by modeling each separate sub-requirement with a

Gaussian Process in order to avoid the masking problem commonly

present in robustness-based falsification. In this paper, we use addi-

tive semantics of STL [5] and local rescaling of predicate robustness

values to diminish the masking problem in all levels of the multiple

requirement structure, and we also use heuristics to reduce the

dimensionality of the falsification problem by focusing on different

sub-requirements at a time. Another recent paper [24] investigated

the scaling problem of falsification, where certain signals affect the

robustness of requirements more than others. A previous work [23]

tackled the scaling problem by using a Multi-Armed Bandit problem

formulation of the falsification problem. In another paper [7], the

authors perform a sequence of optimizations using stochastic local

search over increasing numbers of parameters, which is similar to

how we reduce the dimensionality of each falsification problem on

focused sub-requirements. In [4] a high level algorithm that can

switch between different optimization heuristics (or metaheuristics)

in order to balance exploitation and exploration is introduced. This

balance is even more important and delicate to achieve in our case

where multiple requirements are involved.

Evaluating falsification algorithms on benchmarks is an impor-

tant part in creating credible research. A benchmark used often

in the research community is the one used by the ARCH work-

shop friendly competition on falsification [12]. Other benchmark

models commonly used are a fuel-control system [17] and a ∆ − Σ
modulator [6]. In this paper, we use a variant on one of the ARCH

benchmark models, using a larger set of requirements [10]
1
. The

main reason for using a single benchmark model, as opposed to

many recent works which typically choose a set of benchmark

models to evaluate on, is because the model is the only available

falsification benchmark with a large enough set of requirements

in order to properly capture the multi-requirement behaviour of

industrial-scale systems. Even though there is only one model to

be simulated, we argue that the rich set of requirements makes it

an interesting use case to consider.

1.2 Contributions
The contributions of this work are

1
https://github.com/decyphir/ARCH20_ATwSS

• a problem formulation of multi-requirement testing moti-

vated by real-world industrial systems,

• an addition to the falsification procedure to reduce the mask-

ing problem by using local predicate normalization,

• a method, using sensitivity analysis, for selecting influen-

tial parameters in order to reduce the dimensionality of the

falsification optimization problem,

• an algorithm (referred to as the MRF algorithm) using the

above techniques for solving multi-requirement falsification

problems by sequentially selecting and focusing on some

requirements while still doing random exploration for the

other parameters and requirements,

• an evaluation on a public benchmark example containing a

large number of requirements obtained by extensively com-

paring the proposed algorithm against a proposed baseline

approach using corners and uniform random sampling, and

• finally, the observation that even though our method overall

performs better, the corners and random-based technique

also proved to be surprisingly efficient for multi-requirement

testing.

2 PRELIMINARIES
In this section we describe the formalism chosen to describe the

contribution of this work. We introduce a system, its inputs and

outputs signals, the parametrization of its inputs, and what we call

a trace. We define requirements, the multi-requirement problem

we consider, signal temporal logic, the quantitative semantics we

use and the new local predicate normalization.

2.1 Signal Traces
We use discrete time signals of the form y : k → y[k] mapping

an integer k to some real value y[k]. Bold font symbols repre-

sent multidimensional signals, e.g., y[k] = (y1[k],y2[k], . . . ,ys [k]).
Throughout this paper we assume we are given a deterministic

system S mapping input signals u = (u1, . . . ,ur ) to output signals
y = (y1,y2, . . . ,ys ). Furthermore we assume we are given a param-

eterization of inputs, which maps a finite real parameter vector

p = (p1, . . . ,pm ) to a signal u(p). This parameterization can be

partitioned into r independent parameterizations p = (p
1
, . . . ,pr )

where pi = (pi,1, . . . ,pi,mi ) for each input signal ui , i = 1, . . . , r .
We have

∑
mi =m andmi ≥ 1 for all i . The mapping from param-

eters to output signals is summarized in Equation (1).

©«
p1,1, . . . ,p1,m1

→ u1[k]
...

...

pr,1, . . . ,pr,mr → ur [k]

ª®®¬ = u[k] → y[k] =
©«
y1[k]
...

ys [k]

ª®®¬ (1)

To illustrate this notation, we provide the actual parameterization

used in our experimental evaluation. The system we consider is an

automatic transmission system where inputs are the two signals

brake and throttle, and output signals are RPM, speed and gear. In-
puts signals are interpolated using the pchip option in MATLAB

with three regular intervals for brake and seven for throttle. Instan-
tiating Equation (1) and using default parameter names from our

https://github.com/decyphir/ARCH20_ATwSS
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tool in that case gives(
throttle_u0, . . . , throttle_u6 → throttle[k]
brake_u0, . . . , brake_u2 → brake[k]

)
= u[k]

→ y[k] = ©«
gear [k]
RPM[k]
speed[k]

ª®¬ (2)

A trace tr is a 3-tuple tr = (p,u,y), where u = u(p) and y = S(u).
A requirement φ for system S maps traces to Boolean values. We

denote tr |= φ if φ(tr ) = ⊤ and tr ⊭ φ if φ(tr ) = ⊥. In this work we

consider requirements expressed as Signal Temporal Logic (STL)

formulas, which will be described in the next sections.

2.2 Signal Temporal Logic
The grammar of STL formulas is defined as

φ ::= π µ | ¬π µ | φ ∧ψ | □[a,b]ψ | φ U[a,b]ψ .

Here, π µ is a predicate R→ B whose truth value is determined

by the sign of a function µ : Rn → R, and φ andψ are STL formu-

las. ∧ denotes logical and, □[a,b] is the timed globally (or always)
operator, andU[a,b] is the timed until operator. We define logical

or φ ∨ψ as ¬(¬φ ∧ ¬ψ ), and the timed eventually operator ♢[a,b]φ
as ¬(□[a,b]¬φ). Note that we define future operators for STL, but
it can also be extended to past operators as in [10]. Like in [21], we

define the validity of a formula φ with respect to the discrete-time

signal x, that in this work consists of elements from u and y, at
time instant k as

(x,k) |= µ ⇔ µ(x[k]) > 0

(x,k) |= ¬µ ⇔ ¬((x,k) |= µ)
(x,k) |= φ ∧ψ ⇔ (x,k) |= φ ∧ (x,k) |= ψ
(x,k) |= φ ∨ψ ⇔ (x,k) |= φ ∨ (x,k) |= ψ

(x,k) |= □[a,b]φ ⇔ ∀k ′ ∈ [k + a,k + b], (x,k ′) |= φ
(x,k) |= ♢[a,b]φ ⇔ ∃k ′ ∈ [k + a,k + b], (x,k ′) |= φ
(x,k) |= φ U[a,b]ψ ⇔ ∃k ′ ∈ [k + a,k + b] (x,k ′) |= ψ

∧ ∀k ′′ ∈ [k,k ′), (x,k ′′) |= φ

2.3 Falsification
Falsification of CPSs refers to the process of finding counterexam-

ples to models of CPSs given a temporal logic requirement. With the

use of quantitative semantics for the temporal logic requirement,

the problem of generating test cases for the system is transformed

into an optimization problem, where the quantitative measure aims

to be minimized as a negative quantitative measure means that

the requirement has been falsified. Figure 1 illustrates the common

falsification procedure as performed by falsification tools.

The Generator takes as input the finite set of parameters p that

parameterize the input to the simulation model. The System simu-

lates the model with the generated input to give an output trace

y[k]. The Quantitative evaluation is used to calculate an objective

function value, which is fed to a Parameter optimizer that tries to
generate new parameter values that will falsify the requirement in

subsequent simulations of the system.

2.4 Quantitative semantics for STL
We present different variations of quantitative semantics for STL,

which indicate not just whether a requirement is fulfilled or not, but

how robustly it is fulfilled. This is the reasonwhywe also refer to the
quantitative measure as the robustness value. For STL robustness,

a positive value indicates that the requirement is fulfilled, and a

negative value indicates that the requirement is not fulfilled. The

quantitative semantics are presented as in previous works [21] as

a real-valued function ρφ of a signal x and time index k such that

(x,k) |= φ ≡ ρφ (x,k) > 0.

We refer to the standard semantics defined in earlier works

[9, 13] as the max semantics (similar to the definition of Valued

Booleans [5]). Apart from this, we also present additive quantitative

semantics.

2.4.1 Max semantics. The max semantics are defined as

ρµ (x,k) = µ(x[k])

ρ¬µ (x,k) = − µ(x[k])

ρφ∧ψ (x,k) = min(ρφ (x,k), ρψ (x,k))

ρ□[a,b]φ (x,k) = mink ′∈[k+a,k+b](ρ
φ (x,k ′))

ρφU[a,b]ψ (x,k) = maxk ′∈[k+a,k+b](min(ρφ (x,k ′),

mink ′′∈[k,k ′]ρ
φ (x,k ′′))

2.4.2 Additive semantics. The additive semantics are originally

defined for Valued Booleans [5]. Note that while a Valued Boolean

contains both a Boolean value and a non-negative robustness value,

and STL robustness is just a real-valued number, the two are in

practice equivalent and their only difference is technical.

For the additive semantics, we only redefine robustness for ∧, □

andU. For clarity, we denote ρφ (x,k) as ρφ and ρψ (x,k) as ρψ in

the following definitions.

ρ
φ∧ψ
+ (x,k) =



1

1

ρφ +
1

ρψ
if ρφ , ρψ > 0

0 if ρφ = 0 or ρψ = 0

ρφ + ρψ if ρφ , ρψ < 0

min(ρφ , ρψ ) otherwise

ρ□φ (x,k) follows by considering the always operator as conjunc-
tion over the time axis and then applying the additive semantics

for ∧.

(x,k) |= □[a,b]φ ⇔
k+b∧

k ′=k+a

(x,k ′) |= φ.

ρφU[a,b]ψ (x,k) follows in similar fashion by defining the until

operator according to

(x,k) |= φU[a,b]ψ ⇔
k+b∨

k ′=k+a

(
(x,k ′) |= ψ ∧

( k ′∧
k ′′=k

(x,k ′′) |= φ

))
which is equivalent to the previous definition for discrete time.
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Generator System S

Quantitative
evaluation

ρ < 0? Stop

Parameter
optimizer

Output y[k]

No

Input signal
parameters p

Parameter initial
guess p Input u[k]

Objective function
value ρ

Requirement φ

Yes

Figure 1: A flowchart depicting the typical optimization-based falsification procedure.

2.4.3 Local predicate normalization. The additive semantics de-

fined above can act as a measure against the masking and scaling

problems of temporal logic robustness. For example, the robustness

of a conjunction of two negative robustness values will add both

values and therefore change as soon as one of the sub-robustnesses

change, while the standard max semantics only changes when the

sub-robustness with the lowest value changes.

Another measure to prevent the masking and scaling problems

is the local predicate normalization which we introduce here. Recall

that while earlier works have discussed scaling on a global level,

i.e., rescaling signals based on expert system knowledge [24], here

we scale each predicate without any system knowledge or even

information about other potential predicates in the requirement.

Each predicate π µ has its truth value determined by the sign of

the function µ(x[k]) for a signal x at time instant k . However, as
the execution of the system S under test yields signals defined for

a set of time instants, predicates will typically also be defined for a

set of time instants. Assume we wish to calculate the robustness

values of a predicate for time instants k1, . . . ,kkmax . If we define

the standard robustness as µ = (µ(x[k1]), . . . , µ(x[kkmax ])), we

propose rescaling µ into µ̄ according to

µ̄ =
µ

max

(���� min

k1, ...,kkmax
µ

���� , ���� max

k1, ...,kkmax
µ

����) (3)

The effect of this rescaling is that the values of µ̄ are bounded in

[−1, 1]. As an example, consider the predicate π µ := x1[k] > 0, with

time instants (k1,k2,k3) = (0, 1, 2) and (x1[k1],x1[k2],x1[k3]) =

(5,−15, 20). This would give µ(x1[k]) = x1[k] with resulting values

µ = (5,−15, 20) and µ̄ = (0.25,−0.75, 1).

3 MULTI-REQUIREMENT TESTING
In the previous section, we recalled the basics of falsification, where

we consider a system with one given requirement and try to falsify

it. In this work we extend the scope of this problem to a situation

where multiple requirements are defined for some complex design.

This typically happens after several stages of development, when

some new part of the system is implemented, along with their

corresponding requirements, while the requirements for earlier im-

plementations still have to hold and be tested. It is often inefficient

to handle the testing of each requirement individually - if only

because simulation is likely very costly and it would be an obvious

waste of resources to not reuse traces to evaluate the satisfaction

of several requirements at the same time - thus we are concerned

with the problem of what is the most efficient strategy to falsify

or certify to some extent a given set of requirements, which we

formalize as follows.

Definition 3.1 (Multi-Requirement Set). A requirement set R is a

triplet (Rs ,Ra ,act) where

• Rs is a finite set of safety requirements,

• Ra is a finite (possibly empty) set of activation requirements,

• act is a mapping from Rs to 2
Ra

, i.e., act maps each safety

requirement φ to a finite subset of activation requirements.

This captures an industrial practice observed by the authors for

testing with iterative design steps. Safety requirements must not

be violated while activation requirements should be satisfied by at

least one trace in order to meet a certain confidence level in the

testing. In other words, the satisfaction of activation requirements

provides a measure of coverage of a testing set. Next we define test

runs.

As an example, consider the use case where the system under

test is a car, and the specification for the car is that its speed v
should never exceed 120 miles per hour. For this example, given

a test simulation time of T we could have the safety requirement

φ := □[0,T ]v ≤ 120 and the corresponding activation requirement

φact := ♢[0,T ]v > 100. To elaborate, we consider the specification

φ “activated” when the speed at some point exceeds 100 miles per

hour.

Definition 3.2 (Multi-requirement Test Run). Amulti-requirement

test set is a pair (T ,R) where T is a finite set of traces and R is a

multi-requirement set.

We need to characterize a “good” test run against a “bad” one.

With classic falsification in mind, an obvious quality measure is the

number of safety requirements that the test run manages to falsify.

In the following, we note with card(E) the cardinality of any finite

set E. Also we write T ⊭ φ iff ∃tr ∈ T , tr ⊭ φ. Then we define

False(T ,R) =
card({φ ∈ Rs ,T ⊭ φ})

card(Rs )
(4)

This however does not take into account activation requirements,

for which, in our context, the goal is that they be satisfied by at

least one trace. We can measure how well this goal is satisfied by a

test run using the following measure.

Cover (T ,R) =
card ({φa ∈Ra,∃tr ∈T ,tr |=φa }∪{φa ∈act (φ),T ⊭φ })

card(Ra )
(5)
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In words, False(T ,R)measure the ratio of falsified safety require-

ments, and Cover (T ,R) measures the ratio of satisfied activation

requirements. Note that we count activation requirements as au-

tomatically satisfied if the safety requirement they are associated

with is falsified. A good test run should catch as many errors as

possible and ensure a perfect coverage, so Cover (T ,R) should be 1

or close to 1 and False(T ,R) should be as high as possible. In the rest
of this paper, we fix a given test budget N and multi-requirement R
and evaluate methods to create test sets T of cardinality ntotal that
maximize False and Cover .

To cast this into a multi-requirement falsification problem, we

introduce Rā = {φā = ¬φa ,φa ∈ Ra }, i.e., the set of negations of
formulas in Ra . We can then finally compare tests run by count-

ing the number of falsified requirements and negated activation

requirements:

HitRate(T ,R) =
card({φ ∈ Rs ,T ⊭ φ} ∪ {φā ∈ Rā ,T ⊭ φā })

card(Rā ∪ Rs )
(6)

We now focus on solving the multi-requirement falsification

problem. We first present a baseline approach, then move to our

main algorithm which improves on the baseline.

3.1 Baseline Algorithm: Corners and Random
Search

Our baseline approach presented in Algorithm 1 consists of two

phases: in the first phase, we sample ncorners corner values, i.e.,
values for which each parameter pi is at either its minimum pi or

maximum pi value. Indeed, it is well known [22] that this strategy

makes it possible to quickly falsify many requirements. After the

corners phase, the algorithm removes the falsified requirements and

samples the remaining of the ntotal new traces from a uniform ran-

dom distribution. In this work, ncorners typically comprises around

10% of ntotal .

Algorithm 1 Corners and random search, CornersRandom

Require: S,R,ncorners,ntotal
1: curR ← {Rs ∪ Rā } # Current requirements

2: curR ← cornerFalsification(S, curR,ncorners)
3: curR ← randomFalsification(S, curR,ntotal − ncorners)
4: return curR

The algorithm is rather straightforward except for the choice of

the corner samples. The numberm of parameters that we consider

is typically too large for us to consider all 2
m

possible combinations

of minimum and maximum values (i.e., 2
m ≫ ncorners). We thus

have to use some heuristic to rank which corner to test first. The

main trick we use here is to take advantage of the partitioning of

parameters with respect to signals. Recall that p = (p
1
, . . . ,pr )

where r is the number of input signals. We note p = (p1, . . . ,pm )
and p = (p1, . . . ,pm ), and similarly for pi . We define signal corners
to be the corners for which for all i ≤ r , pi = pi or pi = pi . Signal
corners are in general in much smaller number, so they can often

be tested exhaustively. Also, decoupling signals make it possible to

detect opposite monotonicities. For example, in the automatic trans-

mission example, some requirements are typically increasingly true

with throttle increasing, and with brake decreasing, thus violations

can often be found at maximum throttle and minimum braking.

Thus we pick the corners in the following order: first we test p and

p. Then, as long as the number of samples is lower than ncorners ,
we pick a random signal corner. If signal corners are depleted, we

pick random corners until reaching ncorners .

3.2 Focused Multi-requirement Falsification
It turns out that the Corners-Random approach performs very well

in a multi-requirement setting, particularly when compared to other

naïve approaches that would, e.g., try to falsify each requirement

individually in a sequence. Indeed, such an algorithm has an in-

herent risk – if one requirement turns out to be difficult to falsify

or not falsifiable, the simulations used to attack it are wasted, in

a sense. Corners-Random, on the other hand, is agnostic to the

requirements under test, and does not need more customization by

the tester other than setting a reasonable input parameterization

for the system under test. To find an approach that performs reli-

ably better than the baseline approach requires efficient heuristics

targeting the right requirement(s) and reusing each trace as much

as possible.

Themulti-requirement falsification can be cast as amulti-objective

optimization problem, where one tries to minimize the robustness

ρφ of all requirements in {Rs ∪ Rā } together and check the sign of

their minimum indicating a violation. In general, one can define

a function F ({Rs ∪ Rā }) and minimize F over (p1, . . . ,pm ), hence
resorting to a standard optimization problem. Typical choice for F
include the minimum function (mini ρ

φi
) or some weighted sum

of ρφi . However, sincem is large, using a standard optimization

algorithm might not be for the best – in particular if for each φ,
there is a set of parameters of which ρφ is independent.

As an alternative, we propose a multistage approach: we solve

sequentially smaller falsification problems of the form

min

pk
1
, ...,pk

mk

ρφ
k
,

where {pki }mk is a subset of {pi }m withmk ≪ m. The rationale

is that each individual φk is likely sensitive to only a subset of

the parameters, hence the optimization algorithm needs only con-

sider those as optimization variables, resulting in a search space

of reduced dimensions. The problem can then be solved using an

efficient falsification engine. Two questions remain to make this

a suitable approach: For each φ, which parameters should be in-

cluded in its optimization problem? For each stage, which φ is the

most likely to be easy to falsify? To answer the first question, we

make use of an efficient global sensitivity analysis which we briefly

summarize in the next section. For the second question, we col-

lect robustness values for all requirements at every step and use

some decision rule to pick the most likely candidate, helped by the

fact that normalization of robustness values makes it possible to

compare robustness values between different requirements. The

overall approach is depicted in Figure 2, and our algorithm is further

detailed in the next sections.

3.3 Sensitive Parameters Selection
A set of parameters to which a requirement is likely insensitive

can be obtained efficiently by using a one-factor global sensitivity
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Figure 2: An overview of the baseline Corners-Random al-
gorithm and the proposed MRF algorithm. The Corners-
Random algorithm always uses ncorners simulations for cor-
ner samples and the rest of the ntotal simulations for ran-
dom samples. MRF uses up to ncorners samples, but may exit
the adaptive corners phase early. The sensitivity analysis
lasts for approximately nsens samples, rounded down to the
nearest number to finish a whole number of paths. The last
phase, focused falsification, uses all remaining simulations
in the total budget of ntotal .

analysis, more specifically the elementary effects screening method

[20]. With the given mapping from input parameters to robustness

values, we try to quantify how much each input parameter affects

the robustness of each safety and activation requirement inR. We do

so by executing a number of paths, each consisting ofm+1 samples.

A path starts with a randomly sampled point in the parameter space.

Each subsequent sample in the path varies exactly one parameter

while holding all other parameters fixed. The elementary effect di,k
of parameter pi to requirement Rk is then defined as

di,k =
ρφ (p1, . . . ,pi−1,pi + ∆,pi+1, . . . ,pm ) − ρ

φ (p)
∆

, (7)

where ∆ is the change in the parameter pi , and all changes in

all parameter during the path ensures that the chosen parameter

values are always within their respective domains. Note that ∆ is ar-

bitrarily chosen so that it covers a significant enough portion of the

input parameter range. By calculating the mean µd and variance σ 2

d
of the distribution of the elementary effects for each parameter, we

approximate how much each parameter affects each requirements’

robustness value. One natural way of selecting parameters to in-

clude when solving the focused falsification problem is to discard

all parameters with |µd | below some threshold.

3.4 MRF algorithm
The MRF algorithm we propose is given in Algorithm 2.

The algorithm consists of several different parts – for an illustra-

tion, see Figure 2. First is the adaptive corners phase, then the sensi-
tivity analysis, followed by the focused falsification phases which
consist of two functions. The different parts of the algorithm are

detailed in the following subsections.

3.4.1 Adaptive corners phase. During the entire algorithm, we keep

track of the requirements still to be falsified in a variable curR,
which is initialized to the entire requirement set R. For each part

Algorithm 2 Multi-Requirement Falsification, MRF

Require: S,R,ncorners,nsens,ntotal
1: curR ← {Rs ∪ Rā } # Current requirements

2: h ← ∅ # Variable to store robustness and trace history

3: [curR,h] ← adaptiveCorners(S, curR,ncorners,h)
4: [M, curR,h] ← sensAnalysis(S, curR,nsens,h)
5: tbL← ∅ # Tabu list

6: while curR , ∅ and budget ntotal not exhausted do
7: reqFoc ← selectReqToFocus(curR \ tbL,h)
8: tbL.append(reqFoc)
9: [curR,h] ← focFalsification(M, curR,R, reqFoc,h)
10: end while

of the algorithm (adaptive corners phase, sensitivity analysis, and

focused falsification phases) we always store the robustness and

trace history in h of all current requirements in curR, which is

necessary to have in each focused falsification phase. Note that

adaptiveCorners and sensAnalysis do not need h; it is rather
included so that the functions can update the variable h with new

robustness values and traces.

The adaptive corners phase is similar to the corners falsification

in the baseline (Algorithm 1), with the addition that it can exit early

if there are no new falsified samples for a set number of trajectories

in a row. Specifically, we set a threshold parameter ηadapt , such that

0 < ηadapt < 1 and if ηadaptncorners samples pass without any falsi-

fications of the current requirements, adaptiveCorners returns

without exhausting its entire budget of ncorners simulations. The

updated curR variable which is returned from curR contains all the

requirements that have not been falsified by the adaptive corners

phase.

Note that the main purpose of starting the MRF algorithm with

the adaptive corners phase is to reduce the number of require-

ments to monitor for the sensitivity analysis. Based on previously

published results on benchmarks [12], there are typically a set of

requirements that can be easily falsified by corners, so taking ad-

vantage of this fact can reduce the total computation time needed

for monitoring requirements during sensitivity analysis.

3.4.2 Sensitivity analysis. This step of the algorithm performs one-

factor global sensitivity analysis, the elementary effects screening

method, for a maximum of nsens simulations. We approximate the

sensitivity of each requirement in {Rs∪Ra } to each input parameter

pi ∈ p = (p1, . . . ,pm ) by evaluating a certain number of paths,
where each path containsm + 1 simulations.

Them×NRc matrixM returned from sensAnalysis is the collec-

tion of means of the distribution of elementary effects of each input

parameter, i.e., µd in the elementary effects screening method. Here,

NRc is the number of requirements in curR when sensAnalysis is

invoked. The returned curR is the collection of requirements that

were not falsified so far during the adaptive corners or sensitivity

analysis phase.

3.4.3 Focused falsification. This phase repeatedly uses an opti-

mization solver, SNOBFIT [16] in our experiments, to try to falsify

specific requirements, one at a time. Each iteration of focused falsi-

fication consists of two functions. The first function, selectReqTo-

Focus, takes the list of current requirements and the history of all
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previous simulations (from adaptiveCorners, sensAnalysis, and

potentially earlier iterations of focFalsification). Based on the

robustness and trajectory history, a requirement is selected to be

focused in this iteration. Selection criteria can be for example

• minimum robustness, i.e., select Ri ∈ curR \ tbL such that

min(ρRi ) ≤ min(ρRj ) for all other Rj ∈ curR \ tbL,
• maximum robustness gap, i.e., select Ri ∈ curR \ tbL such

that (max(ρRi ) −min(ρRi )) ≥ (max(ρRi ) −min(ρRi )) for all
other Rj ∈ curR \ tbL, or
• minimum number of sensitive input parameters, i.e., select

Ri ∈ curR \ tbL such that the total number of occurrences

where µd has a value below a given selection threshold is

higher than or equal to all other Rj ∈ curR \ tbL.

The tabu list tbL is used to ensure that no requirement is fo-

cused more than once (at least until other requirements have been

focused). A separate falsification problem is then created for the

focFalsification function, which also takes into account the sensi-

tivity information in the matrixM . The focFalsification function

is detailed in Algorithm 3.

Algorithm 3 Focused falsification, focFalsification

Require: M, curR,R, reqFoc,h
1: ps ← selectSensitiveParams(M, reqFoc)
2: pr ← p \ pr # Set of random parameters

3: hr ← h.reqFoc # Robustness corresponding to reqFoc
4: T ← falsification(hr ,ps ,pr ) # Set of traces

5: h ← monitorAllReqs(curR) # Store history

6: curR.remove({φ ∈ curR,T ⊭ φ} ∪ {φā ∈ act(φs ),T ⊭ φs })
7: return [curR,h]

First, we select only the input parameters ps ⊆ p that show sensi-

tivity for reqFoc in the matrixM from the sensitivity analysis phase.

These are the parameters that will be given as the optimization vari-

ables in the falsification problem formulation. The parameters that

are not selected as optimization variables, i.e., all the parameters in

p that show no sensitivity towards the robustness of reqFoc , are
selected as random parameters pr for the optimization problem. The

random parameters will have random values inside their respective

domains for each new trace generated by the falsification, but the

optimization solver does not include it in the optimization problem.

As such, if ps is a proper subset of p, we reduce the dimension of the

optimization problem, while still varying the random parameters

randomly so that we can “get lucky” and happen to falsify another

requirement in curR while focusing on reqFoc . Another motivation

for varying the values of pr is that the sensitivity analysis step is

only an approximation of the true sensitivity from input parame-

ters to robustness values of requirements, so a parameter that was

found to be non-sensitive to a requirement could still affect the

robustness value of that requirement in some cases.

We select the robustness history hr , i.e., the robustness history
corresponding to reqFoc , from the complete robustness and trace

history h of all requirements in curR. From the optimization solver,

we require that we can include previous objective function values

to potentially increase the performance of the solver. We also use a

method for generating random values of all random parameters in

pr even though they are not included as optimization variables.

After the focused falsification concludes, either by falsifying

reqFoc or by running out of its simulation budget, we monitor all

requirements in curR over the set of traces T generated by the op-

timization solver. We store the robustness and trace history in h,
remove any requirements found to be falsified by the trace, and

return the current set of requirements together with the complete

history h. Note that for each violated safety requirement, we also

remove all its corresponding activation requirements, as the activa-

tion criteria are no longer deemed important in relation to falsifying

the safety part of the requirement.

4 RESULTS
In this section, we first define our experimental setup, with choices

of hyper-parameters that affect how the presented algorithms work

in practice. We also present a set of tables with results and discuss

the contents of these tables. Note that additional detailed tables,

along with the code to generate all the results in the paper, are

uploaded to a public Github repository
2
.

4.1 Experimental setup
We run our proposed Algorithm 2 on a benchmark of industrially-

inspired requirements [10] for a model of the automatic transmis-

sion system of a vehicle (see [15] for further details on the model).

The benchmark has two different variations of the requirements;

one easier configuration called base, and one harder configuration

called hard. The structure of the requirements are the same for

both base and hard configuration, but certain parameter values in

the requirements differ. There are also two different versions of

the model that can be simulated, one standard (or non-artificial)
model and one artificial model including artificial signals. In both

versions of the model, there is one input for the throttle and one

input for the brake of the vehicle, which will make the vehicle

accelerate and decelerate, respectively. There are 11 artificial sig-

nals, which is a large number of input signals compared to usual

falsification benchmarks. These signals are meant to increase the

complexity of the falsification problem, but they are only part of

the requirements and not the system dynamics. The corresponding

artificial requirements were designed in particular to be resilient

to corner falsification, i.e., they can be falsified only if the artificial

signals stay in some middle range for some duration. In total, the

standard model has 35 requirements, and the artificial model has 70

requirements. Out of these 70 requirements, 35 are the same as in

the standard model, and 35 contain additional logic each including

a subset of the artificial signals in the artificial model.

The test cases are generated as follows. Each simulation lasts for

30 seconds. The throttle and brake inputs are generated as described

in Section 2.1. The artificial signals are generated in the same way

as the brake signal, i.e., by interpolating with the pchip setting in
MATLAB between three regular intervals. The throttle input and

each artificial signal have parameters in the range [0, 100], while

the brake input has parameters in the range [0, 325].

We choose to use additive semantics with normalized predicates,

both of these choices are made in order to avoid the masking prob-

lem of robustness for STL requirements. Additive semantics and

normalization are presented in Section 2.2.

2
https://github.com/JohanEddeland/Focused_Falsification_REP

https://github.com/JohanEddeland/Focused_Falsification_REP
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For the requirement selection during the focused falsification

phase, i.e., the function selectReqToFocus in Algorithm 2, we se-

lect the requirement in the history with the lowest robustness value

(excluding all requirements in the tabu list tbL). In our earlier exper-

iments, choosing lowest robustness as the selection criterion gave

better performance than, e.g., choosing the requirement with the

minimum number of sensitive input parameters. The total simula-

tion budget isntotal = 3000, which for the baseline Corners-Random

algorithm is split between the corners phase and the random phase.

For the non-artificial model, ncorners = 150, while for the artificial

model ncorners = 260 – these number are explicitly dependent on

the number of input parameters in the models. The number of ran-

dom samples take the rest of the total budget. For MRF, ncorners
is the same as in Corners-Random (though recall that the adap-

tive corners phase can exit early), and nsens is around 1000 but set

so that a whole number of paths are taken. For the non-artificial

model, this means nsens = 990 (90 paths with 10 input parameters),

and for the artificial model, nsens = 968 (22 paths with 43 input

parameters). We note that using approximately a third of the total

simulations for sensitivity analysis is an arbitrary choice, but one

that has shown good performance in our earlier experiments. The

focused falsification phase takes the rest of the total budget. We

use the solver SNOBFIT [16] during this phase, a solver that has

provided good results in similar applications before [11].

4.2 Results and discussion of MRF
For each of the requirement variations and each of the models, we

run the baseline algorithm (corners and random search) and our

proposed MRF algorithm for 3000 simulations each. This procedure

is repeated for 10 different random seeds to produce Table 1 (noting

that one seed takes approximately 48 hours to complete on a recent

computer). In this table, the average number of simulations include

simulations used for sensitivity analysis as well. We have previously

tried a version of MRF without the sensitivity analysis phase, but

this resulted in worse performance than the current version.

The columns are for the different combinations of non-artificial

or artificial model, base or hard configuration, and Corners-Random

(Algorithm 1) or MRF (Algorithm 2). The rows show for different

performance measures, including False,Cover , and HitRate de-

fined in Section 3. The combination of non-artificial model and base

scenario is considered the easiest of all four combinations, and the

combination of artificial model and hard scenario is considered the

most difficult.

The first row shows the average of the False measure, i.e., the

proportion of safety requirements that were falsified. Overall, MRF

performs slightly better than the baseline algorithm in most cases,

but not with a big margin.

On the second row, we report the average of theCover measure,

which is the proportion of activation requirements that either were

activated or had their corresponding safety requirement falsified.

The results here are closer than for the False measure: there is

similar performance for the easiest combination, MRF is slightly

better for the hardest combination, and Corners-Random is slightly

better for the remaining two combinations.

The third row presents the average of the HitRate measure,

which takes both activation and safety requirements into account.

We see that MRF is slightly better than Corners-Random for all

combinations except for the artificial model and base scenario.

The fourth row shows the average of the number of simulations

used for each requirement. Recall that a requirement is removed

from the active set of requirements as soon as it is falsified, so not fal-

sifying any requirements would result in 3000 average simulations

in total. We can see that the baseline algorithm of Corners-Random

has on average fewer simulations than MRF. This is largely due

to MRF spending many simulations (around 1000) on sensitivity

analysis, where only one input parameter is varied at a time. As a

result, it takes longer for MRF to find cases of requirements to falsify

that the baseline algorithm finds during the first 1000 simulations,

which substantially increases the average number of simulations

needed.

The fifth row shows the average number of simulations needed,

but only for the requirements that are ever falsified. It is once again

clear that Corners-Random uses less simulations on average to

falsify requirements, and the most important factor is the sensitivity

analysis phase of MRF.

To summarize the results in the table, MRF is overall better at fal-

sifying the more difficult requirements, but slower at falsifying the

requirements which are easier to falsify. The combination where

Corners-Random performs better than MRF for all measures is for

the artificial model and base scenario. This scenario is characterized

by many input parameters (the artificial model has many artificial

inputs), but requirements that are easier to falsify than in the hard

scenario. One explanation for why MRF does not perform as well

for this scenario is that the method for selecting which requirement

to focus chooses sub-optimal requirements, i.e., requirements that

are too difficult or impossible to falsify. As mentioned earlier, se-

lecting the “wrong” requirement in a focused falsification results

in many potentially wasted simulations, especially if this results in

the algorithm not having enough simulations to focus on another

requirement that was possible to falsify if given the chance.

Another perspective of the results are shown in Table 2. In this

table, we compare falsification capabilities of Corners-Random and

MRF by counting cases when one falsifies a requirement and the

other does not, etc. This is done for all scenarios reported in Table 1.

We can once again see that Corners-Random is overall faster,

since there are more cases where, when both algorithms falsify

the requirement, Corners-Random has an earlier falsification index

than MRF. We also see that it occurs more times that MRF falsifies

when Corners-Random does not, compared to the other way around.

This also fits the results in Table 1. An interesting point is that we

also see that for the non-falsified requirements, MRF typically has

lower minimum robustness values compared to Corners-Random.

While lower robustness value does not necessarily mean that we

are closer to finding a falsifying trace, it should be a good thing for

analysis more often than not (otherwise one would likely want to

revise the quantitative semantics used).

During all 40 runs, a total of 243 requirements were focused in

the focused falsification phase of Algorithm 2 (meaning that on

average, around 6 requirements were focused in each run). Out of

these 243 focused requirements, 75 were falsified, with 51 out of

these 75 being falsified during their “focus period”, i.e., during the

falsification problem where the requirements robustness value was

used as objective function.
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Table 1: Table comparing the baseline Corners-Random algorithm with our proposed MRF algorithm using the measures
False,Cover , and HitRate defined in Section 3. There are four combinations of models and requirements on which we compare
the algorithms; each of non-artificial and artificial model, as well as each of the base and hard settings for the requirements.
The numbers presented are the averages taken over 10 runs with different random seeds, each run having a maximum simu-
lation budget of 3000.

Non-artificial Artificial

Base Hard Base Hard

Corners-R MRF Corners-R MRF Corners-R MRF Corners-R MRF

Avg. False(T ,R) 14.9 / 16 15.5 / 16 12.8 / 16 13.1 / 16 23.9 / 32 23.9 / 32 18.3 / 32 19.3 / 32
Avg. Cover (T ,R) 19.0 / 19 19.0 / 19 16.9 / 19 16.8 / 19 32.7 / 38 32.4 / 38 26.5 / 38 27.1 / 38
Avg. HitRate(T ,R) 29.9 / 35 30.4 / 35 26.8 / 35 27.0 / 35 52.2 / 70 50.7 / 70 41.7 / 70 42.2 / 70

Avg. #sim 546.0 575.2 829.9 891.9 1091.1 1199.9 1426.6 1510.0

Avg. #sim (successful) 137.0 262.3 186.9 267.3 478.9 622.6 377.6 732.7

Table 2: Table summarizing comparison between Corners-
Random and MRF. For each requirement in all of the falsifi-
cation runs presented in Table 1, we count which algorithm
falsified the requirement faster, or if no algorithm falsified
it, which algorithm yielded the lowest robustness value for
that requirement.

Description Occurrences
Both falsify, Corners-Random faster 385

Both falsify, same first falsification index 670

Both falsify, MRF faster 355

Corners-Random falsifies, MRF does not 62

MRF falsifies, Corners-Random does not 93

Neither falsifies, Corners-Random lower rob 129

Neither falsifies, same lowest rob 40

Neither falsifies, MRF lower rob 211

MRF removes act (φs ) because φs is falsified,

Corners-Random falsifies either φs or act (φs )
154

MRF removes act (φs ) because φs is falsified,

1

Corners-Random does not falsify either φs or act (φs )

4.3 Sensitivity analysis
One of the big inspirations for this work is the fact that large

systems in industrial settings can have “groups” of inputs that

affect different requirements. Using sensitivity analysis is one way

explored in this paper to reduce the number of dimensions in the

falsification problem for a specific requirement, given that there is a

set of input parameters that does not affect its robustness value. We

note that the actual calculation of the sensitivity between inputs

and requirements, including calculating the elementary effects,

takes negligible time in comparison to simulation of the system

and monitoring of the requirements.

To provide an insight into how useful sensitivity analysis actu-

ally can be for such a system as the one used for the experiments

in the paper, Figure 3 shows an overview of the sensitivity informa-

tion calculated for one run of the MRF algorithm. The sensitivity

analysis shows that a majority of the input/requirement pairs have

no correlation, which is actually by construction in this case due

to artificial signals. Nevertheless, this clearly shows that one can

substantially reduce the number of optimization variables used

in the falsification problem, which is necessary to make an algo-

rithm that outperforms the baseline Corners-Random algorithm

for systems with a large number of inputs. We can also see that

one requirement is sensitive to no inputs at all, since the entire

column is red. This can happen if, for example, the requirement

is Boolean in nature and can only change robustness value if it is

actually falsified. Since we know nothing about which parameters

could potentially influence the robustness value of the requirement,

an intuitive way to work around its insensitive nature is to add it

to the tabu list directly after the sensitivity analysis, ensuring that

we never focus on the requirement (in practice this means only

random exploration will be used to falsify this requirement).

Another use case of sensitivity analysis is to give an overview of

the system under test or under development. Industrial systems can

take a long time for an expert to get an overview of, so in the case

of new developers or testers, an illustration of the sensitivity matrix

for the system, such as in Figure 3, can provide a valuable reference

sheet for how clusters of inputs affect clusters of requirements. We

have seen this be the case for a large-scale model at Volvo Car

Corporation.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a problem formulation ofmulti-requirement

testing, as well as a focused falsification algorithm that solves the

problem better than a baseline falsification algorithm using a com-

bination of corners and random samples. In a multi-requirement

setting, we found that the Corners-Random algorithm actually

performs very well and is difficult to beat performance-wise. In par-

ticular it is usually faster in falsifying requirements, especially the

ones considered “easy”, i.e., the ones that are falsified in each exper-

iment. Nevertheless, our multi-requirement falsification algorithm

has equal or better performance compared to Corners-Random for

most cases of our experiments evaluated on a benchmark of an auto-

matic transmission system with a large set of industrially-inspired

requirements.

Our proposed algorithm uses one-factor global sensitivity analy-

sis to approximate the effect each input parameter of the system

has on each requirement. This allows for two novel additions to the
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Figure 3: Illustration of approximated sensitivities between input parameters (rows) and requirements (columns) for one
instance ofMRF, where artificial requirements and the artificialmodel was used. A cell is red if the requirement is not sensitive
to the input parameter (µd = 0), and green otherwise. Note that this snapshot is taken from the sensitivity analysis phase of
Algorithm 2, meaning that requirements that were falsified in the adaptive corners phase are excluded from this figure.

falsification procedure; firstly, we can remove non-sensitive input

parameters when focusing on a specific requirement, which reduces

the number of dimensions in the optimization problem. Secondly,

we still vary the removed input parameters as random parameters,

since we afterwards also monitor all non-focused requirements on

the simulation traces resulting from the optimization solver in the

focused falsification. In addition to this, the results of the sensitiv-

ity analysis results provide an overview of the system behaviour,

something which can be very useful when dealing with large-scale

industrial systems.

Future work includes further evaluating the effect of different

hyper-parameters in our proposed algorithm, such as the method

for choosing which requirement to focus on, and maybe more im-

portantly the optimizer to choose during focused falsification (other

than SNOBFIT that we used) and how much budget it should be al-

located as compared to the total budget. Also, related to the focused

requirement choice, there are potential extensions where one could

target specific test quality measures to maximize for, for example

test coverage (focusing on activation requirements) or falsifica-

tion (focusing on safety requirements). It would also be of interest

to evaluate our algorithm against other potential solvers in the

multi-requirement setting, not just the baseline Corners-Random

algorithm. We have made the choice to use additive quantitative

semantics for STL, and this choice affects the sensitivity analysis

as well as the focused falsification part of our algorithm. Future

work could include investigating exactly how max and additive

quantitative semantics affect sensitivity analysis, as well as if there

are other reasonable choices to make for the functions to use in a

sensitivity analysis setting.
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