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Abstract 

Predicting the impact of changes in a design can be challenging, especially for complex designs. Margins 

are often built into the designs which can absorb the knock-on effect of such changes, erroneously allocating 

which can however, lead to propagation. A method for localising and sizing margins in an incremental 

design context is the Margin Value Method. This paper adapts MVM in the context of uncertainty in input 

specifications. It discusses possible ways to allocate them in a design such that undesirable effects of 

margins are minimised while preventing change propagation. 

Keywords: design margin, robust design, engineering change, design optimisation 

1. Introduction 
Design processes in industry often experience engineering changes (ECs) throughout the lifecycle of a 

product, some of which may have high-cost implications (Clarkson et al., 2004). The need for such 

changes arises from various avenues. Some changes are initiated due to the components not meeting 

specifications, while some others may be the result of incremental improvements in the design itself 

(Eckert et al., 2004). Surveys and studies deem the effects of such changes to be as high as 30-50% of 

the total engineering capacity, costs and schedules (Fricke et al., 2000; Maier & Langer, 2011). 

Although changes are inevitable (Ahmad et al., 2013; Eckert et al., 2004), the undesirable effects can be 

mitigated by making designs more robust, i.e., making them less sensitive to the factors which cause 

variability (Park et al., 2006). 

A strategy to make designs more robust to variations is to have large tolerances in parameters and 

process variables while maintaining functionality (Suh, 2001). These tolerances, also known as 

margins (Eckert et al., 2019), in effect are expected to act as shock absorbers, thereby preventing a 

change from propagating (Chua and Hossain, 2012). Margins may, however, also be generated (excess 

in the terminology of Eckert et al., 2004) when using off-the-shelf (non-custom, ready-made parts 

bought from original equipment manufacturers), platform, or parts inherited from previous generations 

and therefore, in certain cases, may not require to be incorporated additionally or to the extent 

otherwise necessary. It is therefore important, especially in an incremental design context, to first 

locate and size existing margins and then weigh them according to their relative desirable and 

undesirable impacts. Additional margins may then be allocated in designs at appropriate locations as 

per requirements, while other excesses causing a deterioration in performance may be reduced or 

eliminated. An approach developed to achieve this is the Margin Value Method (MVM). MVM is 

aimed at routine designs and proposes the use of a parametric network-based approach to locate 

margins and an analytical method to size them in a design, where parametric relations are already 

known (Brahma and Wynn, 2020a). The analytical method results in a visual depiction that guides the 

designer towards margins that should be maintained and those that should be eliminated in future 
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iterations of a design.  While margins allocated in existing designs are fixed, variation can occur in 

design specifications (requirements) arising from a range of uncertainties. Uncertainty in both 

specifications and the performance of off-the-shelf components may manifest as changes which may 

be triggered in the future or while in operation. This makes comparing the desirable and undesirable 

effects of margins for a trade-off during redesign a difficult task. This article addresses this by 

adapting the MVM approach (Brahma and Wynn, 2020a) to consider variations in the input 

specifications and in the specification of off-the-shelf components of a design when computing the 

desirability of margins. The adapted approach combines both the deterministic aspects of parametric 

design and the probabilistic nature of change, and aims to analyse designs that experience variation in 

input specifications which can potentially manifest as propagation in the design. 

2. Role of Margins in Change and Uncertainty Propagation 
Change propagation (CP) is a well-known problem in the industry and has attracted a wide variety of 

research in the recent past. Change Prediction Method (CPM), one of the more well-known approaches 

by Clarkson et al., 2004, addressed the problem of CP by considering the risk of changes which may 

propagate between components or subsystems in a design. Since its publication, much work has been 

done on developing the CPM further by various researchers. Hamraz et al., 2013, for example, proposed 

a variation on the CPM, in which they consider the interface between two subsystems and relate the 

propagation probabilities with them. Hamraz et al., 2013 explain this by considering a subsystem which 

accepts a wide range of voltages. How narrow or wide the range is, determines how robust the design is 

to a change, i.e., whether any change in voltage is propagated or gets absorbed. While the range of 

acceptable values specified by the interface, in this case, can be interpreted as margins, Hamraz et al., 

2013,  view this mainly as an approach to generate the input data required by the CPM, and do not 

elaborate on the implications for managing the margins themselves. 

Other concepts that are used to manage uncertainty in design include flexibility, adaptability and 

robustness. While flexibility and adaptability are often used interchangeably, defined as the ability to 

respond to requirement changes (Lebjioui, 2018), authors widely regard the concepts to be effective in 

managing uncertainty in design (McManus et al., 2004; Saleh et al., 2009). However, researchers also 

point out the lack of scholarly maturity of the concepts both in terms of definitions and usage (Saleh et 

al., 2009). Robust design, first developed by Taguchi & Clausing, 1990, on the other hand, has a solid 

track record of application in uncertainty management and is clearly defined in terms of a fixed 

behaviour for an uncertain range of external influences (Banerjee and de Weck, 2004). Initially 

proposed to make designs insensitive to noises from manufacturing processes (Park et al., 2006), the 

concept of robust design has since been extended to other uncertainties, both in design and process 

domains (Chen et al., 1996; Floricel and Miller, 2001). For instance, Chang et al., 1994 present a 

method based on Taguchi & Clausing, 1990's parameter design concepts to make designs more robust 

to changes. Specifically, they focus on changes potentially arising due to the collaborative nature of 

design in a concurrent engineering setting. Chang et al., 1994, argue that variations may arise from 

decisions being taken simultaneously by separate teams working on various parts of the design. Chang 

et al., 1994 treat possible variations as "conceptual noise" which they use in conjunction with 

optimisation techniques to robustify a design. While Chang et al., 1994's method, like the MVM, also 

accounts for performance loss, its application is focused on conceptual stages of design in contrast to 

the MVM, which was developed in the incremental design context. 

Unlike the original method developed by Taguchi, which was based on experiments (Phadke, 1989), 

researchers have developed approaches which use computational simulation for achieving robust 

designs, recently also using digital experiments. Another relevant topic in this field, which has received 

significant attention in the research literature is Global Sensitivity Analysis (GSA). Multiple GSA 

techniques can be found based on approaches such as Monte Carlo Simulation (Sobol, 2001), Gaussian 

Quadrature (DeVuyst and Preckel, 1997) and so on. GSA techniques have been critiqued for being 

difficult to implement in an engineering design context due to their computational complexity (Chen et 

al., 2006). Another closely related topic in robust design is Uncertainty Propagation (UP), in which 

metrics related to the mean and variance of design performance is studied against input uncertainty in a 

simulation setting. Multiple methods of UP have been proposed over the years. Comparative analyses of 
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which can be found in Lee & Chen, 2009. Methods involving GSA and UP are usually applied in the 

design phase of a product and therefore are not suitable for the incremental design context, where the 

relationships among parameters are already well known. Furthermore, while UP approaches provide 

extensive ways to identify potential failure due to uncertainty propagation, they do not account for 

localised margins. UP methods also do not account for redesign choices, especially where off-the-shelf 

components are involved. In such situations, excesses in the system may change discretely depending on 

the redesign choices made, thereby altering the sensitivities of the system. 

The review reveals that while there is a significant amount of literature on robust design, most are not 

aimed at the incremental design context. Similarly, in the field of change propagation, much work has 

been done in the past couple of decades, however, methods which accurately localise margins and 

utilise them to create designs robust against propagation have not been studied rigorously (Eckert et 

al., 2019). This paper, therefore, aims to fill this gap by adapting an existing method called the MVM 

(Brahma and Wynn, 2020a) by utilising its margin sizing and localising capability to suggest designs 

which are more likely to absorb variations in input specifications without deteriorating performance. A 

summary of the key principles of MVM is presented in the following section before discussing the 

expanded approach. 

3. Margin Value Method (MVM) 
MVM (Brahma and Wynn, 2020a) is an analytical method that uses parametric dependencies in a 

design to first analyse it, then to localise the excess margin and finally quantify them considering the 

change absorption potential and the deteriorating effect margins have on the performance of the 

system. The method is based on the idea that excess margins are created when decisions are made in a 

design process (Brahma and Wynn, 2020a), for example, selection of an off-the-shelf component 

(Cansler et al., 2016). The method therefore provides guidance towards identifying those decisions, 

leading to the identification of all the margins in a design. The method was specifically developed for 

an incremental design context, where a design already exists, the parameters are known, and 

improvements are supposed to be made by making minor adjustments to the design. The method also 

focuses extensively on off-the-shelf components, the use of which is a common practice in routine 

design situations. The method requires the construction of a Margin Analysis Network according to 

the systematic method specified in Brahma and Wynn, 2020a, followed by the application of the 

Margin Value Analysis. The margin value analysis consists of calculating three metrics: 

Local excess margin: The first metric quantifies the local excess at each margin node in the 

margin analysis network. In other words, it quantifies by how much a decided value exceeds 

the required value at each margin node (The term excess is borrowed from Eckert et al., 

2004). 

Impact: The second metric is calculated based on the performance parameters - considering 

the actual design versus the performance parameters - if it is assumed that the margin is 

eliminated at each node. This metric indicates the deteriorating effect of each margin node has 

on the performance parameters. 

Absorption: The third metric is calculated by first calculating the variance in the specification 

possible which do not lead to any changes in the design and then quantifying the effect of that 

on the margin node. In other words, how much of the margin at each margin node can actually 

be absorbed without causing a propagation of changes. 

For details regarding these metrics, the reader is referred to  (Brahma & Wynn, 2020a). 

Finally, the method suggests that the metrics calculated for undesirable impact and change absorption 

potential be aggregated based on the relative importance of the performance parameters and the 

prioritisation of change in the specification. The two metrics can then be used to show the relative 

importance of each of the margin nodes in terms of their absorption potential and the undesirable 

impact on the performance of the system. Previous developments of MVM focused on its theoretical 

development and application to a machine design case (Brahma and Wynn, 2020a) and its use in a 

CAE-driven design context (Brahma and Wynn, 2020b). However, as discussed in the introduction 

section, while MVM addresses the requirements of identifying, localising and quantifying excess 
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margin in a design, it does not explicitly address the issue of robustness, especially against varying 

specifications. It can, however, be adapted to address this problem, as explained in the next section. 

4. Adapting MVM for Variation in Specifications 
MVM being analytical uses precise numerical values for its specification parameters. For example, in 

the conveyor case presented in Brahma & Wynn, 2020a, five specification inputs of interest were 

highlighted; desired conveyor capacity C in T/h, velocity of the belt V in m/s, bulk density of the 

material conveyed ρ in T/m3, coefficient of friction between belt and pulley μ and the nominal carcass 

weight of the belt BCT in kg/m2. For all five of these parameters, fixed values were used in the design. 

In reality, these parameters may experience variations in them depending on various external factors, 

especially during operation. For instance, the quality of material being conveyed may vary 

significantly, causing a change in the bulk density (ρ) of the material. Similarly, there may be an 

increase or decrease in the conveying capacity due to the feed coming in from another system, of 

which the designed conveyor forms a part. By accounting for such potential variations, it should be 

possible to achieve a more robust design than if they are considered to be discrete. Moreover, this 

enables an appreciation of the trade-off between robustness and performance considering the 

undesirable effects of excesses. An approach to handle this is presented in this paper. 

4.1. Conceptual Approach 

To adapt the MVM to this problem, instead of using a single data point for each specification 

parameter, a range of possible values is considered. Ideally, it is expected that historical data is 

collected, and a suitable probability density function is fitted. Using a probability distribution function 

(PDF) to model each specification parameter in the MVM leads to the generation of two sets of data. 

The first set is the data corresponding to the impact metrics, and the second is the data corresponding 

to the absorption metrics (see Section 3). The number of datasets in each metric corresponds to the 

number of margin nodes in the margin analysis network (MAN), i.e., if there are n margin nodes in the 

MAN, there would be n datasets of absorption and n datasets of impact; each corresponding to an 

individual margin node. If these datasets are plotted as probability distributions, they can be compared 

with each other showing the increase and decrease in the absorption potential of a margin node and the 

adverse impact they have on performance. Conceptually, because the specification parameters may 

vary, the value that eventuates determines the amount of margin remaining available for absorption. 

For instance, if the specification parameter were at the lower (or least challenging to meet) end of the 

range captured in the PDF, this would result in more excess margin in the design. In this case, the 

design would be more overspecified relative to the minimum required, meaning a loss of performance 

(weight, cost etc.). In summary, therefore, variation in the specification parameters creates variation in 

the impact metric of the MVM. 

To further illustrate, consider Figure 1, which is conceptual in nature. On the vertical axis the 

absorption potential of a margin node m, considering all specification parameters, is shown. For a 

particular margin node, point Aminm represents a point where the absorption is at the minimum 

possible value. As a specification parameter value varies in the negative direction (the specification 

becoming easier to meet), there is an increase in the absorption potential of margin node m.  Am
opt 

represents the point where the specification parameter is at its nominal value, i.e., the nominal design 

point. If the specification value were to change in the 'more difficult' direction, this would cause the 

margin to be partially consumed to absorb this change depicted as the absorption zone in Figure 1. The 

underutilisation and the absorption zone is where changes do not propagate and is shown in blue. 

When all the margin is consumed, for the design to meet its specification a new (larger) component 

needs to be selected, which will regenerate available margin, this is shown in red. This can be viewed 

as change propagation, since a change in the specification has propagated to require a change to the 

design itself, with possible knock-on effects.  

Similarly, the horizontal axis of Figure 1 shows the conceptual curve showing how as a change in 

specification is progressively absorbed, the adverse impact of the excess margin on the system 

performance reduces (since the design is less overspecified relative to the minimum required to meet 

the specification value). As the margins get consumed, the adverse impact reduces until the margin is 
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entirely consumed (shown in blue), at which point a new component must be selected if the design is 

to satisfy the specification. As with absorption, a new component brings new margin and hence an 

increase in adverse impact, this is depicted in red.  

 
Figure 1. The trade-off between change absorption potential of a margin node vs undesirable 

impact the margin causes on the performance parameter for varying input specifications 

Therefore, the ideal sizing of a particular margin, from the viewpoint of the undesirable adverse 

impact of the margin on design performance, would be in the range where there is a moderately high 

probability of low impact, up to where there is a very low probability of moderately high impact. The 

key point is that for a particular design, this range can be understood from the probability distribution 

of the specification parameter by transforming it through the MVM calculations to generate the 

corresponding distribution for each margin node's adverse impact metric. Similarly, when considering 

the absorption potential, the ideal design situation would be where there is high absorption potential, 

specifically preferable if the absorption potential is restricted to one component, i.e., no local minima 

in the plot.  Figure 1 combines these inferences and shows a conceptual analysis of absorption vs 

impact for a design. An intersection of the ideal design zones based on both undesirable impact and 

absorption potential is therefore suggested to find a suitable value for the margin and hence, to size the 

related component.  

4.2. Application to a Belt Conveyor Design 

In the paper by Brahma and Wynn, 2020a, where the MVM was first introduced, a case study of a 

conveyor belt for bulk material handling was presented. The margin analysis network is reproduced in 

Figure 2. The case has five input specifications of interest which were expected to be affected in a 

change propagation scenario, namely; a) C - the desired conveyor capacity in T/h b) Velocity of the 

belt V in m/s, c) bulk density of the material conveyed ρ in T/m3 d) coefficient of friction between belt 

and pulley μ and e) the nominal carcass weight of the belt BCT in kg/m2. All these specification 

parameters are marked in Orange in Figure 2.  The conveyor case has nine decision nodes relating to 

the selection of the motor, gearbox, brake, three shafts and pulleys. These nodes are shown as large 

diamonds in the MAN. This produces nine margin nodes marked E1-E9, shown in hexagons. Further, 

the design has four performance parameters; a) TCS - total cost of shafts, pulleys, motor, gearbox, and 

brake; b) TWS - total weight of shafts, pulleys, motor, gearbox, and brake; c) IS - combined moment of 

inertia or GD2 values of motor and gearbox, and d) ηm - full load output efficiency of the motor.  

As mentioned earlier, the paper aims to adapt the MVM for varying input specifications. In practical 

terms, all the five input specifications may be expected to be varying in reality. For example, it is 

common practice to measure the bulk density of coal at definite intervals, mainly for quality assurance 

purposes in various plants (Kleizen and van Brakel, 1984). Data from which can be collated and used 

to generate a distribution for such a parameter. For this paper, it is assumed that the specification 

parameters can be modelled as a normal distribution curve.   

A Matlab simulation was set up, running the computations of the MVM for different combinations of 

specification parameter values picked from distributions. A Latin hypercube-based sampling method 
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was used to assess the combined impact of all the input specifications on the MVM metrics 

(absorption potential and undesirable impact). The decisions, shown as large diamonds in Figure 2 

representing component selections required to complete the design, are made by the Matlab code 

based on a defined selection criterion. Design options for off-the-shelf components are predefined as 

lookup tables extracted from manufacturer catalogues. The simulation selects an appropriate 

component based on the selection criteria such as power for the motor and failure mode for the shafts. 

This means that on each iteration of the Monte-Carlo simulation, the code automatically chooses the 

appropriate parts that are the minimum available to meet the particular specifications chosen for that 

simulation run. The simulation calculates nine sets of metrics relating to the absorption potential and 

the undesirable impact on performance, one for each of the nine margin nodes. The resulting data 

points relating to the absorption potential and undesirable impact metrics are plotted against the 

probability density, as presented in Figure 3 and Figure 4 respectively. Note that the vertical axis 

showing the probability density is clipped at 0.06 and 0.08 for clarity. Since a one-to-one comparison 

of the impact and absorption metrics are unnecessary, they have not been put on the same scale.  For 

each margin node E1 - E9, separate absorption and impact plots are generated.  

 
Figure 2. Margin Analysis Network of the conveyor case. For a full-size version, readers are 

referred to Brahma and Wynn, 2020a. 

As can be observed from Figure 3 and Figure 4, the absorption potential and undesirable impact 

probability densities are distributed differently between various margin nodes. While some margin 

nodes such as E1, E2, E3 have absorption potential spread over a larger range of values and therefore 

low probability density, other margin nodes such as E9 have high probability density spread over a 

smaller range of low absorption potential values. Similar patterns can be observed in the impact plot as 

well. The interpretation and analysis of these curves is presented in the next section. 
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Figure 3. Probability density of absorption potential at each margin node 

 

Figure 4. Probability density of undesirable impact due to excess at each margin node 

4.3. Analysis and Optimisation of Design for Change Propagation 

Consider margin node E1 and its absorption and impact plots in Figure 3 and Figure 4 respectively. 

The margin node E1 corresponds to the motor selection in the conveyor case. We will specifically 

consider variation in input specification corresponding to the conveying capacity C. As a reference 

point, the nominal value of C used in the conveyor case is 1270 T/h, which corresponds to an 

absorption potential value of 0.3922 in the plot. Plots specific to E1 is produced in Figure 5 in a 

different form, which also shows the covariation. 

 
Figure 5. Scatter plot showing the relative distribution of data points related to the absorption 

potential and the undesirable impact metrics of margin node E1. 

Figure 5, which is analogous to Figure 1 with an additional scatter plot, shows the relative 

absorption potential and the undesirable impact at margin node E1. The scatter plot shows four 

distinct population concentrations. These population concentrations show four component selection 

(propagated changes) points as the input specifications vary. Note that for the nominal value, the 

selected motor is 30 kW against a requirement of 28.60 kW. In Figure 3, which shows the 

absorption potential of the margin nodes, for E1, the peak (where the absorption potential value is 

approximately 0.4) shows the distribution around the nominal C of 1270 T/h. Above this point , in 

the increasing direction of absorption potential (until the point where the probability drops to 

almost 0) lies the underutilisation zone. In this zone, C is lesser than the nominal value, which 

results in an even lower motor power requirement (less than 28.60 kW), thereby increasing the 

margin and therefore the absorption potential, which remains underutilised. On the other hand, as C 

increases, the margin (difference between 30 kW and 28.60 kW) gets consumed, thereby absorbing 

the change. This is reflected by the dropping absorption potential probability and the 

simultaneously reducing absorption potential towards the bottom direction of the absorption 

potential histogram starting from the peak at 0.40. Another important point to consider is where the 

absorption potential value is approximately 0.456. At this point, all the margin is consumed, and 

there is hardly any absorption probable. If the input specification C is increased further , the 

(Curves nearly identical) 
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required value crosses the motor specification of 30 kW. The motor then must be replaced with a 

motor of a higher specification which in this case would be rated at 40 kW. On the other hand, as 

the margin increases, there is a slight increase in the undesirable impact, the probability of which 

dramatically reduces as the margins get consumed. The designer, therefore, has two options, as 

discussed in the next two subsections. 

4.3.1. Restrict the Variation of the Input Specification 

The first possible approach is to strictly restrict the input specification to the zone of robust design, as 

shown in Figure 1. For the example case, from the absorption perspective, the ideal design would be if 

C is restricted such that the probability density plot has only one local maximum. In the plot, this 

ranges from an absorption value corresponding to 0.347 to 0.456. The corresponding C can be 

recalculated to be 1170 T/h to 1339 T/h. If a 3σ variation is considered, the mean can be set at 1254.5 

with a sigma of 28.16 T/h. The scatter plot presented in Figure 6 (left) shows the values from a rerun 

simulation with the values stated above. Clearly, there is a significant reduction in undesirable impact, 

while the probability of change absorption increases from 85% to 96%, as seen from the cumulative 

distribution function (CDF) on the right. 

              
Figure 6. Simulation results of reduced variations in input specifications 

4.3.2. Allocate a Larger Margin 

The second possible approach could be to increase the allocated margin. However, due to the limiting 

effects of some margin nodes, it may not be possible to increase the absorption potential by increasing 

margins locally, for example by increasing the specification of the motor in isolation. 

 
Figure 7. CDF of E1, E2 and E3 when extra margin is allocated compared to when no margin is 

allocated. Legend is common for all six plots 
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Brahma and Wynn, 2020a, explained the concept of limiting and non-limiting margins where the 

absorption potential of certain margin nodes is restricted by the others. In other words, no matter how 

much margin is allocated in a component, it does not increase its absorption potential. In the case 

discussed in this paper, specifically in the context of varying specification parameters, the 

phenomenon is observed in the plots shown in  Figure 7, where three situations are shown. First, when 

no extra margin is allocated, in this case, the absorption potential stands at 0.46 with an 85% 

probability. If an additional margin is allocated in E1 (in this example, by selecting the next higher 

specification component), no change in its absorption potential is observed. However, the undesirable 

impact increases from 0.08 with an 85% probability to 0.25 with a 100% probability. This reflects that 

the absorption potential is being limited by another component, which in this case was E3. In addition 

to the margin added to E1, a margin is also added to E3, resulting in a sharp increase in absorption 

potential to 0.61 (from 0.46), while the probability of change propagation reduces to 0%. The impact 

values and their corresponding probabilities remain the same as in the second case. 

5. Discussion and Conclusion 
The analysis approach discussed in this paper demonstrates that it is possible to apply the MVM to 

compute the probability that a change in input specification would propagate. Additionally, it is also 

possible to compare it with the undesirable impact a margin would have if used to absorb that change. 

Two strategies to handle this are presented in the previous section. On the one hand, the probability of 

propagation can be reduced by strictly restricting the input specification; on the other hand, additional 

margins can be used to have a similar effect. However, unlike the latter option, restricting variation of 

input specification does not cause any change in the undesirable impact on the performance parameters, 

which additional margins cause. Further, adding additional margins on one component may not be 

enough because of the limiting case, and multiple margin allocations may be necessary to extract any 

benefit out of the allocated margins. From the analyses of both the cases, it is demonstrated that if a ratio 

of absorption potential (i.e., probability of propagation) and undesirable impact is decided by a designer, 

it is, in theory, possible to design a product while maintaining the said ratio. This ratio would determine 

how much risk the designer is willing to take against the acceptable deterioration in the system due to the 

margins. In summary, it is important to know where and how much margin to allocate to effectively 

utilise them as change absorbers; otherwise, they may end up completely unutilised. The analysis 

approach also has certain limitations. Firstly, it does not account for variation in the specification of the 

off-the-shelf components, for example with time. As time progresses, the performance of components 

may decay due to wear and tear. Secondly, in this paper, the example compares only two margin nodes 

when allocating extra margins. There may be multiple limiting cases that need to be identified, and 

margins increased accordingly. Analysis of numerous margin nodes in such cases may be cumbersome 

and computationally intensive. Margins are also at times interdependent, the cumulative effect of which 

needs to be seen for a thorough analysis. In this paper, we have not discussed any such case. A limitation 

of MVM is also the complexity of constructing a typical MAN. A possible way of addressing this could 

be to adapt MVM to use pre-established methods such as Petri-Nets on readily available software 

platforms. In the future, we intend to continue this work and address all these limitations, including 

developing the analysis approach into a systematic method. 
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