
An overview of machine learning and other data-based methods for spatial
audio capture, processing, and reproduction

Downloaded from: https://research.chalmers.se, 2024-07-02 14:58 UTC

Citation for the original published paper (version of record):
Cobos, M., Ahrens, J., Kowalczyk, K. et al (2022). An overview of machine learning and other
data-based methods for spatial audio capture,
processing, and reproduction. Eurasip Journal on Audio, Speech, and Music Processing, 2022(10).
http://dx.doi.org/10.1186/s13636-022-00242-x

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Cobos et al. EURASIP Journal on Audio, Speech, andMusic
Processing         (2022) 2022:10 
https://doi.org/10.1186/s13636-022-00242-x

REVIEW Open Access

An overview of machine learning and
other data-based methods for spatial audio
capture, processing, and reproduction
Maximo Cobos1*†, Jens Ahrens2*† , Konrad Kowalczyk3*† and Archontis Politis4*†

Abstract
The domain of spatial audio comprises methods for capturing, processing, and reproducing audio content that
contains spatial information. Data-based methods are those that operate directly on the spatial information carried by
audio signals. This is in contrast to model-based methods, which impose spatial information from, for example,
metadata like the intended position of a source onto signals that are otherwise free of spatial information. Signal
processing has traditionally been at the core of spatial audio systems, and it continues to play a very important role.
The irruption of deep learning in many closely related fields has put the focus on the potential of learning-based
approaches for the development of data-based spatial audio applications. This article reviews the most important
application domains of data-based spatial audio including well-established methods that employ conventional signal
processing while paying special attention to the most recent achievements that make use of machine learning. Our
review is organized based on the topology of the spatial audio pipeline that consist in capture,
processing/manipulation, and reproduction. The literature on the three stages of the pipeline is discussed, as well as
on the spatial audio representations that are used to transmit the content between them, highlighting the key
references and elaborating on the underlying concepts. We reflect on the literature based on a juxtaposition of the
prerequisites that made machine learning successful in domains other than spatial audio with those that are found in
the domain of spatial audio as of today. Based on this, we identify routes that may facilitate future advancement.

Keywords: Spatial audio, Machine learning, Deep learning, Array processing, Ambisonics, Virtual reality, Binaural
audio, Audio coding, Scene analysis

1 Introduction
Interest in immersive communication technologies has
been growing over the last two decades due to the emer-
gence of today’s multimedia applications. Gaming, virtual
and augmented reality (VR andAR), teleconferencing, and
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entertainment applications have taken a big step forward
due to the spread of mobile multimedia and ubiquitous
computing [1]. Spatial audio research is at the center of
the new developments in 3D immersive user experiences,
providing the core technologies for spatial sound capture,
processing, and reproduction [2].
Spatial audio is an interdisciplinary field of research that

brings together experts from audio engineering, acous-
tics, computer science, applied psychoacoustics, and other
domains. The aim of spatial audio is to recreate an acous-
tic environment or synthesize a new one by using a proper
combination of sound recording, processing, and repro-
duction techniques. Within such an objective, it is not
only important to preserve the fidelity of the audio content
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but also the spatial attributes of the sound scene result-
ing from the actual locations of the sound sources and the
properties of the acoustic environment [3–5].
In general, spatial audio methods and techniques may

be broadly described as illustrated in Fig. 1. A complete
spatial audio pipeline generally comprises a capture stage,
a processing stage in which the spatial information in the
captured sound scene is modified or in which given infor-
mation is extracted from the sound scene that cannot
be measured directly, and finally a reproduction stage in
which the (potentially manipulated) sound scene is aural-
ized. A more detailed overview of these stages, which are
central to the organization of this overview, is provided in
Section 1.1.
While a hard classification of spatial audio methods can

be difficult to establish, many of them can be broadly cat-
egorized as model-based or data-based [6]. Traditionally,
model-based methods1 compose sound scenes from indi-
vidual virtual sound sources that are described analytically
by mathematical or physical models and driven by a set
of audio input signals. Wave field synthesis (WFS) [8],
stereophonic amplitude panning, and vector base ampli-
tude panning (VBAP) [9] are all model-based methods.
In contrast, data-based spatial audio methods2 employ

sound scene representations in which the spatial informa-
tion is encoded in the audio signals. The spatial informa-
tion can originate from array recordings, acoustic mea-
surements, or from simulations. Section 1.2 elaborates
more on the fundamental differences existing between
model-based and data-based spatial audio.
We also mention the concept of object-based audio

representation here [12]. This concept is very similar
to model-based representation in that a spatial scene
is represented by its components. Audio objects can
be more abstract than the objects in a model-based
representation. Data-based reverberation, for example,
can be an audio object in an otherwise model-based
scene.
Acoustics and signal processing have been traditionally

highly intertwined in the development of spatial audio
techniques [13]. Signal processing algorithms for ambi-
ence extraction, personalization of head-related transfer
functions (HRTFs), audio up-mixing, and sound field ren-
dering have been available for several decades and are still
finding application in current multimedia systems. Most
traditional methods in spatial audio have been designed
from a pure signal processing perspective. The irruption
of deep learning (DL) [14] in the recent years is starting to

1These are not to be confused with model-based signal processing [7].
2The term data-based in this context was originally introduced in [10, 11] for
audio reproduction based on databases of room impulse responses (that
encoded the spatial information). It has been subsequently used for all types of
sound scene representations in which the audio signals encode the spatial
information [12].

create a turning point in many areas of digital signal pro-
cessing, and consequently, spatial audio is also starting to
feel the impact of machine learning (ML) in general, and
deep neural networks (DNNs) in particular.
ML comprises a learning process that enables ML mod-

els to recognize patterns of interest in the data on which
the systems are trained and to apply that knowledge to
detect or generate similar patterns on new, unseen data.
We highlight at this point that the term data when used
in an ML context can refer to any type of data, be it audio
signals, digital images, financial transactions, or others.
The data in data-based spatial audio, on the other hand,
are always spatial information that is encoded in the sig-
nals. Throughout this article, the term will primarily refer
to multichannel audio data with spatial cues encoded as
inter-channel dependencies. As will be shown by numer-
ous examples of audio applications, such data are suitable
for ML.
Undoubtedly, the popularity of DL in image process-

ing, computer vision, and natural language processing has
led to significant impact in fields closely related to spatial
audio, including speech enhancement or music informa-
tion retrieval [15, 16]. While ML algorithms have already
positioned themselves at the top of the state of the art
within the aforementioned fields, their use in immersive
spatial audio is only emerging, as it will be illustrated
throughout this review.
This article provides an overview of data-based spatial

audio methods and establishes a topology of the concepts
that have been employed. The scope in which data-based
methods have been utilized in spatial audio capture, pro-
cessing, and reproduction is broad, and the potential of
DL has been in the focus particularly in the recent cou-
ple of years. We complement our review with the relevant
works on signal-processing-based (i.e., non-ML-based)
methods that are sometimes alternatives to the ML-based
methods and complementary at other times.
With the aim of elaborating better on the role of data-

based methods within the general spatial audio pipeline,
the remaining sections of this introduction are devoted to
introducing these two important aspects, and it wraps up
with formalizing the article scope.

1.1 The spatial audio pipeline
This overview is organized based on the topography of the
spatial audio pipeline. The spatial audio pipeline (Fig. 1)
starts with a given representation of a sound field includ-
ing spatial information. Usually, spatial sound scenes are
captured using an array of microphones with a given
geometry (cf. Fig. 2 for examples). The microphone out-
put signals together with the microphones’ positions and
their directivity already constitute a representation of the
sound scene. In some setups, the microphone signals are
combined by suitable mathematical operations to obtain
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Fig. 1 A general conceptualization of the spatial audio pipeline

an abstract representation of the physical structure of the
captured sound field. Examples for this are the plane wave
decomposition or the spherical harmonic decomposition.
The coefficients of the decomposition serve as the out-
put format of the capture stage. The output of the capture
stage may be piped directly to the reproduction stage, or,
it may be processed.
The processing stage uses a suitable representation of

the sound scene as input to, for example, extract infor-
mation on the sound scene such as the number of sound
sources and their locations or the instantaneous directions
of incidence of the wave fronts. The processing stage may
also manipulate the sound scene, for example, by separat-
ing direct sound components from diffuse reverberation
and recombining them such that this results in a change
of the characteristics of the reverberation or in a change of
the apparent location of a source. The ultimate goal could
be to decompose a sound scene into all its independent
conceptual components, i.e., the individual source signals
and all components of the reverberation that each source
produces. This would allow for unrestrictedmanipulation.
This goal still lies in a considerably distant future so that
the available methods rather target different subsets of the
sound scene components.
The reproduction stage renders the sound scene and

produces the input signals to the loudspeakers that are

available. These loudspeakers can either be mounted
in a pair of headphones—one speaks of head-related
reproduction—or mounted in the space around the
listener(s)—one speaks of room-related reproduction
[17]. Figure 3 presents some examples. A plethora of
methods have been proposed for room-related reproduc-
tion depending on the number of loudspeakers that are
available, the size of the listening area, and the number
of simultaneous listeners [18]. Head-related reproduction
injects the signals directly into the listener’s ear canals and
uses an acoustical model of the human head to convey the
spatial information [19]. This acoustical model is repre-
sented by the user’s HRTFs. As HRTFs are individual to a
person, HRTF individualization also by means of ML has
become a topic of considerable activity and is covered by
this article.
Ideally, one would like to have available a universal

representation of the sound scene based on which all con-
ceivable methods of the processing stage can operate and
that can serve as the input to the reproduction stage.
As of now, such universal representation does not exist.
Rather, a set of representations have become popular that
are partly compatible and partly incompatible with each
other so that many times; the employment of a given
method in the processing stage poses certain require-
ments on the capture and/or the reproduction stage. Some
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Fig. 2 a Dummy head recording systems Cortex Instruments MK1 (left) and GRAS Kemar (right), for binaural recording and psychoacoustical studies.
b A consumer human-computer interaction device (Microsoft Kinect) equipped with a 4-channel linear microphone array. c Example on-board
circular arrays employing MEMS microphones, the 6-channel ReSpeaker Circular Array (left) and the 7-channel MOJO Microphone shield (right). d
Example tetrahedral arrays, the Rode Soundfield SPS200 (left) and Coresound Tetramic (right) for capturing first-order Ambisonics. e A
high-resolution spherical microphone array, the 32-channel mh Acoustics Eigenmike

methods were formulated for processing exclusively spa-
tial room impulse responses (SRIRs), i.e., room impulse
responses (RIRs) that retain spatial information such as
an array room impulse response, whereas other methods
are formulated for running signals. We will not explic-
itly differentiate those as the underlying concepts are
identical.

1.2 Data-based andmodel-based methods
As already introduced, the use of the term “data” can rela-
tively easily lead to confusion within a conceptual frame-
work merging traditional spatial audio concepts with ML.
Note thatML-based algorithms are usually said to be data-
driven approaches to emphasize the fact that they are
designed to perform a given task by learning from data. In
contrast, the term “data” in data-based spatial audio has
been traditionally used to describe approaches that pro-
cess signals in which the spatial information is encoded in
the audio signals, even if the algorithms are not necessarily

“data-driven.” We illustrate the difference between data-
based and model-based methods in spatial audio with a
few examples in the following.
Stereophony uses differences between the two chan-

nels of a loudspeaker pair to encode spatial information
[20, 21]. Typically, this is done using level or timing dif-
ferences and also differences in the amount of signal cor-
relation. Traditionally, the interchannel differences were
produced by capturing a given scene with two micro-
phones that are either located coincident and exhibit a
suitable directivity or that are spaced to exploit differ-
ences in the arrival times of a given wave front. This may
be considered a data-based representation as the spatial
information of the sound scene is captured.
It is equally possible to create such interchannel dif-

ferences manually by means of analog or digital signal
processing so that spatial information can be imposed
onto an otherwise non-spatial single-channel signal [21].
This may then be considered a model-based method.

Fig. 3 a Head-tracked dynamic binaural rendering with a head-mounted display (Oculus Quest). b Linear array of loudspeakers at Chalmers
University of Technology. c Circular loudspeaker array suitable for 2D spatial audio rendering at University of Valencia. d Spherical loudspeaker array
suitable for 3D spatial audio rendering at Aalto University
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The underlying physical source model is not very explicit
in stereophony. More recent spatial audio presentation
methods like WFS or the ambisonics family can employ
explicit physical source field models like spherical and
plane waves [22]. Acoustic environments can, of course,
also be represented using models [23].
Examples for modern purely data-based methods are

the rendering of signals obtained from spherical micro-
phone arrays (SMAs), which can be binaural [24] or using
a method from the ambisonics family [22, 25]. Rendering
of SMA signals has also been achieved in WFS [26].
Data-based and model-based rendering can, of course,

also be combined, for example, by augmenting a data-
based scene representation with additional model-based
objects. Stereophonic recordings of large orchestras are
simple examples where the spatial information from the
mainmicrophone is augmented with the signals from sup-
portmicrophones that are distributed across the orchestra
and whose signals are pannedmanually to the desired spa-
tial location. A more modern example are virtual panning
spots that constitute virtual stereo loudspeakers that are
embedded in a model-based scene and that contribute
data-based information [27].
The named data-based methods all aim at maintain-

ing the spatial information the way it was captured. The
present article focuses on methods that go one step fur-
ther in that they employ an enhancement of the orig-
inal spatial information such as sharpening, up-mixing,
or manipulation of the spatial information. This is per-
formed in some cases in tangible representations of the
data such as a plane wave expansion. In other cases, the
data representations are abstract.

1.3 Article scope
Spatial audio covers a broad range of techniques and
applications that encompasses a very large area or
research. This overview intends to provide the reader with
a comprehensive compilation of representative data-based
methods having specific applications in spatial audio.
While this is by no means an exhaustive description of all
the existing approaches, the intention is to picture the cur-
rent state of this field, elaborating on the impact that ML
algorithms are having on different aspects of spatial audio
research in the DL era.
Section 2 of the article focuses at the first stage of

the pipeline, the spatial audio capture. The two major
sound field representations (as opposed to array-specific
representations) that are most commonly encountered
in research, plane wave and spherical harmonic basis
decompositions, are discussed in Sections 2.1 and 2.2,
respectively. Some additional less common transform-
based representations for the whole scene are discussed
in Section 2.3, while Section 2.4 introduces the emergent
topic of abstract acoustic and audio representations learnt

directly from sound data with DL methods trained with a
suitable task objective.
An overview of data-based spatial audio processing is

provided in Section 3. The research topics involved herein
span a very wide range of concepts, approaches, and appli-
cations, and the more mature methods that deliver spatial
audio for reproduction are covered more extensively in
Sections 3.2.2–3.2.5. Otherwise, advances in DL and other
data-based methods that have strong potential in spatial
audio applications are mentioned on the topics of acous-
tical analysis and parameter estimation in Section 3.1, sig-
nal decompositions or semantic descriptions of the spatial
scene in Section 3.2.1, and joint audiovisual processing in
Section 3.3.
In the subsequent Section 4, the final stage of the

pipeline is briefly discussed. Tools for reproduction on
loudspeakers or headphones of transform-based scene
representations, spatial objects, or decomposed spatial
components are technologically mature and are cov-
ered mainly by linear rendering techniques. Those are
mentioned only briefly in Section 4.1 since they have
been covered extensively in past literature. Recent DL-
driven developments on personalization of spatial audio
for headphone playback are reviewed more extensively in
Section 4.2. Finally, in Section 5, we discuss the associ-
ations between the two major paradigms under review,
signal-processing techniques, and the emerging DLmeth-
ods, with regard to their potential in spatial audio, and
we identify some open questions and possibilities for the
future.

2 Spatial audio capture
Most methods for spatial audio processing, be it ML-
based or not, use a scene representation as input that is
either composed of “raw” microphone signals or origi-
nates from conventional linear processing applied to the
signals from a microphone array. The goal of the cap-
ture stage is providing a representation that facilitates
the application of a perceptual or physical model in the
subsequent spatial audio processing stage.
There exist a number of general representations of

SRIRs and measurement procedures for obtaining them
that were proposed independent of a spatial audio con-
text. General requirements for representations of room
responses are identified in [28]. Measurement and extrap-
olation procedures based on sparse representations were
proposed in [29–34] and based on non-sparse representa-
tions in [35]. The use of above methods in spatial audio is
conceivable but has not happened on a large scale yet.
The main difference between these methods and those

used in spatial audio applications is that the latter usu-
ally require information on the local propagation direction
of a given sound field, which the referenced works do
not comprise in a explicit manner. The remainder of the
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section presents capture methods and the resulting scene
representations that have been used explicitly in the field
of spatial audio.

2.1 Plane wave decomposition
The plane wave decomposition (PWD) is primarily a fun-
damental mathematical representation of a general wave
field. The circumstance that the basis functions are intu-
itive and even constitute useful conceptual elementary
components of a sound scene made them popular [36].
An inconvenience in practice is that the PWD comprises
parameters that are continuous with respect to space so
that only a sampled (i.e., discretized) version can be stored
and transmitted.
An early example for its use in spatial audio is [37],

which converts a SRIR that was measured with a circular
microphone array into a two-dimensional (2D) PWD for
being able to auralise the space using WFS. The authors
exploit the fact that it is known that the data represent a
room impulse response by interpreting strong plane wave
components as room reflections and rendering them in a
dedicated manner per frequency band.
The microphone arrays employed in [37] are relative

large in size with a radius in the order of 1 m. In [38], a
similar method is proposed that employs compact micro-
phone arrays that have a lower physical accuracy. The
authors compensate for this limitation by using a higher
degree of parameterization of the room response.
In [39], a method is proposed for manual manipulation

of SRIRs that are parameterized in a manner similar to
above described methods.
A variant of the classical PWD is the spatial decompo-

sition method (SDM), which parameterises an SRIR into
a single-channel pressure signal that encodes all temporal
and spectral information as well as a direction-of-arrival
(DOA) for each individual digital sample of the pressure
signal. SDM was originally proposed for visualization of
spatial room impulse responses [40]. An auralization of
SDM-data both for binaural and for loudspeaker-based
playback was proposed in [41]. Improvements of the
loudspeaker-based variant were presented in [42] and in
[43, 44] of the binaural variant.

2.2 Spherical harmonics-based representations
Another popular sound field representation is the spheri-
cal harmonic (SH) decomposition [45]. SHs are the angu-
lar solutions to the wave equation in spherical coordinates
and are used in many fields of mathematics and physi-
cal science. Acoustic fields can theoretically be perfectly
represented by superposition of an infinite set of SHs. In
practice, a finite set has to be used, which limits the accu-
racy of the representation in different respects that are
often abstract and intangible. Contrary to plane waves,
SHs are a discrete representation, which means that a

finite set of audio channels represents continuous spatial
information. This aspect has contributed significantly to
their popularity.
SHs found their way into the field of spatial audio

through the visionary works of Michael Gerzon [46] and
are often referred to as the ambisonics representation
of a sound field. Later works particularly on spherical
microphone arrays, much of which was performed by
researchers from outside of the ambisonics community,
highlighted the convenient properties of SH represen-
tations without necessarily referring to the concept of
ambisonics [47, 48]. Even nowadays, the terminology is
inconsistent in that many researchers do not necessar-
ily employ the term ambisonics when dealing with SH
representations of sound fields in a spatial audio context.
Particularly, the methods that will be discussed in

Section 3.2.2 often employ an SH representation. In fact,
while both PWD and SH representations may also be
understood as acoustic analysis methods by themselves,
this overview treats them as initial features that enable
other spatial audio processing tasks.

2.3 Other transformation-based representations
Other representations based on linear spatial filtering
techniques have also been proposed for a variety of spatial
audio applications using space-time processing. Examples
of particular interest are those that do not rely strongly on
far field assumptions, but which approximate fields pro-
duced by nearby sources with far-field components. In this
context, the ray space transform (RST) was proposed in
[49] as a framework to formalize the plenacoustic anal-
ysis of [50, 51], through the adoption of Gabor frames.
For its computation, the RST considers the output of a
uniform linear array of microphones and applies a spa-
tial sliding window to perform a “local” PWD of the
recorded sound field. As a result, the RST is able to map
the directional components of the sound field onto a “ray
space” that provides some benefits in terms of invertibility
and parameterization. For example, point-like sources are
mapped onto linear patterns in the RST domain and spa-
tial audio processing tasks such as source localization [52]
or separation [53] can be directly performed over such
representation. The projective form of the RST allows as
well to process the signals captured by a set of compact
microphone arrays, allowing applications such as sound
field reconstruction [54].

2.4 Feature-based representations
The audio representations described above are all derived
from mathematical manipulations that are both data-
independent and motivated by already well-understood
physical processes. Such representations have the advan-
tage of being “general” and applicable to a wide range of
problems, providing as well some valuable intuition on
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the underlying acoustic phenomena. However, one of the
most celebrated advantages of DL-based approaches is
their capability to learn hierarchical representations of the
input data automatically during training. Feature learn-
ing or representation learning is understood as a set of
techniques that allow DL algorithms to discover auto-
matically good representations from the input data that
are able to encode efficiently the information needed for
performing a given task. The feature learning process
may be supervised (when labeled data is used) or unsu-
pervised (when no labeled data is needed). In DL-based
approaches, convolutional neural networks (CNNs) are
typically applied to extract such abstract representations,
which in the case of spatial audio should jointly capture
spatial and spectro-temporal information about the sound
scene. Since the majority of spatial audio processing tech-
niques operate in the time-frequency domain, the most
straightforward approach is to feed the network with the
magnitude and phase of the available audio signals at the
desired time-frequency resolution, and let CNNs extract
the relevant information needed for accomplishing the
task, as identified by their internal activations. Classical
representations such as SHs can also conveniently be used
as input features.
Another approach is to provide “hand-crafted” features

that already represent meaningful information for the
intended task. For instance, spatial information can be
conveniently represented by sines and cosines of inter-
channel phase differences [55, 56] or generalized cross-
correlations between the audio signals [57–59], which
helps to avoid phase wrapping problems and thereby eases
the network training. Sound intensity computed from the
SH representation, which has been successfully applied
in DL-based sound localization in 3D [60], is another
example of such a “hand-crafted” feature obtained in a
pre-processing step. Another recent example is that of
[61], where a rotation-invariant DNN architecture that
performs sound event localization and detection was pro-
posed for SH signals.
Spatial audio methods and systems rely on well-known

perceptual mechanisms used by the auditory system [19].
Spatial hearing cues result from the acoustical interaction
of an impinging sound and a listener’s anthropometric
features, which leads to filtering effects caused by the
head, shoulders, torso, and pinnae. Interaural differences
also have a strong influence. The above cues are typi-
cally encoded into HRTFs in the frequency domain or,
equivalently, into head-related impulse responses (HRIRs)
in the time domain. Datasets of HRIRs measured over
a grid of spatial locations are important not only for
realistic reproduction purposes but also for extracting
general or universal patterns useful for understanding the
relative influence of certain spectral features in the per-
ceived sound. Traditionally, studies aimed at analyzing

spatial audio perception have relied on listening exper-
iments, which usually require a carefully designed and
time-consuming experimental setup.
The data extracted from HRIR measurements has been

computationally analyzed in the past by ML algorithms
to gain insight into the auditory localization process. One
of the earlier attempts was [62, 63], where a biologically
inspired model of the source localization process was con-
ceived by combining a cochlear model and a time-delay
neural network. Similar ideas have been more recently
exploited with the advent of DNNs. In [64], a spiking
neural network is used to extract features from binaural
recordings and training a three-hidden-layer feedforward
network on such features to perform both single-source
and multi-source localization over a range of noise condi-
tions.
The learning capabilities of CNNs were recently

exploited in [65] to identify primary elevation cues
encoded in HRTFs shared across a population of subjects.
A CNN was trained on multiple HRTF datasets to esti-
mate the elevation angle of a virtual sound source, and
salient audio features were extracted by using layer-wise
relevance propagation. The results indicated that the dis-
covered features were in line with those obtained from the
psychoacoustic literature.
The spatial information comprised by binaural sig-

nals has also been exploited by DNN-based approaches
to understand the spatial arrangement of musical
acoustic scenes. In [66], a CNN was trained to
classify binaural music recordings into foreground-
background, background-foreground, and foreground-
foreground scenes, indicating the relative position of the
listener with respect to ensembles of musical sources
(foreground) and room reflections (background). The
authors compared the performance of automatic algo-
rithms to that of human listeners in this task [67], with
results suggesting that ML algorithms can significantly
outperform human listeners under matching binaural
room impulse reponse (BRIR) conditions (test scenes ren-
dered by using the same set of BRIRs as training scenes)
and exhibiting similar performance in the mismatched
case. Despite the task addressed is not particularly aimed
at feature discovery, meaningful internal representations
might be obtained as a byproduct.
Techniques such as the ones described above and oth-

ers that also exploit visual information (cf. Section 3.3)
may open the door to learning-based methods capable
of leading to alternative signal representations for spatial
audio.

3 Spatial audio processing
The processing stage typically either extracts desired
information from the output of the capture stage or
manipulates the spatial information. Indeed, most meth-
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ods for spatial audio processing are data-based in nature,
as their ultimate goal is usually aimed at analyzing or
modifying the spatial information present in their input
signals or, alternatively, to the exploitation of such spa-
tial information to extract meaningful constituent signals
of the sound scene. Signal enhancement by modifying the
statistical relation between signal channels may also be
considered part of the processing [68]. Some of the meth-
ods presented in this section can be used sequentially
in a processing pipeline. Many reference and commercial
methods for spatial audio processing today are still based
on classical signal processing, as in the case of the fam-
ily of parametric spatial audio techniques (Section 3.2.2)
or the methods employed within spatial audio coding
standardization frameworks (Section 3.2.3). This is also
the case for the vast majority of viewpoint translation
methods (Section 3.2.5). On the other hand, many DL-
driven approaches have recently appeared in the context
of acoustic analysis (Section 3.1.1), sound scene decom-
position (Section 3.2.1) and audio-oriented audiovisual
processing (Section 3.3), which are rapidly displacing tra-
ditional methods. For example, DL approaches are now
a reference in fields like source separation and enhance-
ment. In a middle-point, while classical methods are a ref-
erence for audio up-mixing due to their inherent relation
to parametric spatial audio approaches (Section 3.2.4),
there is a clear trend in the use of DL for such task. As a
result, we will cover all the above spatial audio processing
systems by emphasizing such diversity and coexistence of
traditional and ML-based techniques.
Spatial audio processing techniques can be of a very

different nature and oriented towards significantly dif-
ferent objectives. For the sake of clarity in the presenta-
tion, we broadly divide processing techniques into three
blocks (cf. Fig. 1). The first one covers techniques aimed
at analyzing and describing acoustically the sound field
(Section 3.1). The second block describes techniques for
sound scene processing with a special emphasis on meth-
ods oriented towards the analysis and modification of
the spatial information in the recorded scene for subse-
quent re-synthesis (Section 3.2). Finally, we discuss recent
approaches making use of audiovisual data to address
several tasks related to spatial audio in the third block
(Section 3.3).

3.1 Acoustic analysis
This section covers data-based spatial audio methods for
acoustic analysis. We discuss separately methods aimed
at estimating acoustic parameters for sound field ren-
dering and those for acoustic imaging and sound field
reconstruction. While a large body of literature exists on
these topics, we limit our discussion to the most recent
approaches that make use of DL. Note, however, that in
order to provide a comprehensive overview of such recent

approaches, we cover as well works where visual data is
considered as input, even though the final objective is on
the acoustics side.

3.1.1 DL-driven acoustical parameter estimation for spatial
audio rendering

The capability of DL to model complex relationships
between different representations and their effects in a
certain domain has found recent use in acoustical mod-
eling problems. An interesting such application is on
acoustical parameter estimation for virtual acoustics and
spatial auralization. More specifically, a DNN is trained in
[69] to map a rectangular plate geometry that occludes a
source from a receiver to filter parameters modeling the
perceived effect of the diffracted sound at the listener.
Going even further, fast computation of the 2D scattered
field around an acoustically hard 2D object is approached
in [70] as an image-to-image learning task for a CNN,
trained on images generated with wave-based acoustical
simulations. The principle is inverted in a further work
to estimate the 2D shape of the object from its scattered
field in [71]. Finally, a similar training strategy is followed
in [72] while instead of 2D objects and field images, they
map 3D geometries to far-field spherical harmonic coef-
ficients of the scattered field. Note that training NNs to
model acoustical scattering [73] or infer geometry from
scattering measurements [74] has been attempted much
earlier than those works. However, their considerations
are different.
Acoustical parameter estimation using DL has also been

used to extract room acoustic parameters from geometry
or image data for fast spatial rendering in audio VR. In
[75], energy decay relief curves are estimated directly from
images of acoustical spaces using CNNs. Training pairs
of features of room geometrical configurations and spa-
tial impulse responses captured for those configurations
are used in [76]. Alternatively, simplified room geometries
are reconstructed from 360 camera images in [77, 78],
which are used to drive virtual acoustic simulators for
AR/VR applications. In the same spirit, [79] uses a DNN
to classify materials from textures in a 3D room geom-
etry, to deduce and optimize absorption coefficients to
be used in conjunction with the geometry for interactive
geometrical acoustics simulations. Finally, [80] combines
measurements with geometric generation of reverbera-
tion by estimating a simplified geometry from a moving
360 camera recording with structure-from-motion and
used to synthesize early reflections at any position. Addi-
tionally, a single monophonic RIR is captured in the room
and used as a guide for obtaining absorption filters for the
inferred geometry, low-frequency modal filters, and also
the late reverberation tail to append to the generated early
part in a position-independent manner. The method is
used to synthesize ambisonic SRIRs. The work is extended
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in [81] by replacing the RIR measurement signal with a
general audio signal such as speech and using commodity
hardware (i.e. a mobile phone). Since the RIR parameters
are not readily available in this case, they are estimated
from the source recording using DNNs.

3.1.2 DL-driven sound field reconstruction
Recently, DL techniques have also been exploited for
sound field reconstruction from a small number of irreg-
ularly distributed microphones in a room. The work in
[82] proposed the use of a U-net neural network [83] with
partial convolutions trained on simulated data for sound
field reconstruction in rectangular rooms. The proposed
data-driven method allows to reconstruct the magnitude
of the sound pressure on a plane, performing jointly
inpainting and superresolution from irregular discrete
measurements in the frequency range 30–300 Hz. The
same method was recently extended to reconstruct both
magnitude and phase with testing over real-world sound
fields in [84] using a publicly available dataset, showing
as well the potential application of DL-driven sound field
reconstruction in sound zone control. Other interesting
and novel architectures are appearing in the context of
sound field analysis for acoustic imaging. In [85], a recur-
rent neural network with a fully customized architecture is
proposed, taking into account relevant aspects of acoustic
imaging problems and inputs from a spherical micro-
phone array. In this context, other DL-driven approaches
for high-accuracy acoustic camera solutions have recently
appeared, which also make use of additional modalities
such as stereo vision technology [86].

3.2 Sound scene processing
We refer to sound scene processing techniques as those
that analyze and manipulate audio signals with the aim
of extracting and modifying the spatial information in the
captured scene by decomposing the scene into perceptu-
ally meaningful elements. These elements may be either in
the form of spatially relevant components (e.g., directional
vs. diffuse sound) or related to the sources making up the
scene. Despite its proximity to the term “auditory scene
analysis" [87, 88], coined by psychologist Albert Bregman
and usually linked to the field of source separation, we use
the term sound scene processing in a more general way
that encompasses not only the extraction and decomposi-
tion of sound into source objects, but also the analysis and
manipulation of spatial features.

3.2.1 Sound scene decomposition
With the term scene decomposition, we refer to the wide
variety of methods that aim to break down the sound
scene into its constituent components. A prominent such
example is decomposing the scene into constituent sig-
nals based on their spatial properties, such as foreground-
background, primary-ambience, or directional and non-

directional separation. More elaborate spatial decompo-
sitions can detect and separate distinct localized sources
from different directions. Such decompositions rely heav-
ily on source detection, source localization, and spatial
filtering techniques. These research topics constitute core
problems in microphone array processing with an accu-
mulated intensive research history of decades and appli-
cations spanning a much wider range than the scope
of this article. Of course, such techniques are employed
by, e.g., the parametric spatial audio processing methods
reviewed in the next section, but they are not analyzed
separately. For a comprehensive overview of them the
reader is referred to [89, 90]. Recently, there is also inten-
sive research on DL variants of source localization, e.g.,
[91–93], and spatial filtering [94].
Another family of methods aiming to decompose the

spatial scene into its constituent signals is termed mul-
tichannel source separation. Many examples are closely
related to adaptive and informed spatial filtering, as
reviewed in [90]. However, while localization and spatial
filtering are used extensively in spatial audio methods,
the source separation research has generally focused on
maximum separation of source signals, and not on re-
rendering or modifying spatially the scene. However, a
stronger separation component has obvious applications
in spatial audio, such as spatial remixing of the scene and
other source-dependent modifications. Works that follow
a source separation perspective for spatial audio can fall
into two categories. The first aims to recover a demixing
matrix or separation masks using mainly spatial features
and a mixing model in the time-frequency domain, such
as the works in [95–97]. The second category attempts an
even higher-level decomposition of the scene, integrating
apart from spatial mixture models, also spectrotemporal
models that distinguish one source from another. Sep-
aration in this case can be performed blindly or in a
supervised manner, using some prior information on the
spectral templates of the sources in the scene. Only a
few works have attempted applications of those models to
spatial audio rendering [98, 99]. In general, multichannel
source separation is transitioning very quickly to DL-
driven solutions, which, however, are currently focused
onmulti-speaker separation and enhancement rather than
scene audio modification, or resynthesis [55, 100, 101].
Apart from signal decompositions, higher level audio

scene analysis with semantic information is an extremely
active field of research that is completely dominated by
data-based DL approaches [102]. Examples include acous-
tic scene classification (ASC) [103, 104] and simultaneous
temporal detection and sound-type classification of mul-
tiple concurrent sound events in the scene (commonly
known as sound event detection (SED) [105, 106]). A
large part of this research community participates in the
DCASE Workshop and the associated DCASE Challenge
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[103, 105, 107]. Interestingly, this research community had
not involved spatial information until recently, with a few
exceptions such as [104] in ASC or [106] in SED. How-
ever, currently there is increased interest on advanced
spatiotemporal semantic descriptions of the sound scene,
with the common task of jointly performing sound event
localization and detection (SELD) using multichannel
signals [91, 107]. Semantic descriptions and decomposi-
tions of sound scenes are of course of interest also in
spatial audio analysis and synthesis, and stronger cross-
pollination between those research directions and spatial
audio is expected to take place in the coming years.

3.2.2 Sound field parameterization for analysis,
modification, and resynthesis

In this section, we present an overview of parametric
spatial audio techniques that analyze the captured sound
scene to obtain a compact yet perceptually relevant para-
metric representation and subsequently re-synthesize it
for spatial reproduction. In these techniques, the esti-
mated signals together with supplementary parametric
information serve as a basis for modifications (process-
ing) as desired by the target application. A description
of many state-of-the-art approaches to parametric spatial
audio processing can be found in [108].
The stepping stone in development of these methods

was the proposal of spatial impulse response rendering
(SIRR) [109, 110], which processes SRIRs in ambisonics
B-format (i.e., a 1st-order SH representation) to decom-
pose them into one direct-sound component and a dif-
fuse residual for each time-frequency bin. The underlying
assumption is that source signals tend to be sparse in the
time-frequency domain (for example, the energy of a peri-
odic signal concentrates at the harmonic oscillations) so
that a single wave front sufficiently represents the direct-
sound component at a given frequency bin [111]. This
concept was extended in [112] to running signals and was
termed directional audio coding (DirAC). In DirAC, a
zeroth-order (omnidirectional) signal is supplemented by
two parameters, namely the diffuseness and the DOA of
the direct signal. The former is estimated from the tem-
poral variation of the intensity vector [112, 113], and it is
used to extract the direct and diffuse signal components
from a mono signal using a single-channel filter [112]. In
later work [114], the parametric approach was extended
to arrays of any type whereby the extraction of the direct
and diffuse signals is typically performed using signal-
dependent spatial filters, many of which are well-known
from speech enhancement [89, 90, 115]. The extracted
signals are supplemented by parametric information on
the DOAs or the positions from which the direct sound
components originate.
Examples of parametric modifications include rotations

of the entire recorded sound scene ormanipulations of the

locations of individual directional sounds [25, 116, 117].
For reproduction of musical recordings, the diffuse sig-
nal is usually subject to decorrelation before it is fed to
the loudspeakers in order to increase the feeling of spa-
ciousness and plausible listener envelopment [112, 118].
Another example is increasing quality by a reduction of
coloration while providing stable localization cues when
using recordings of spaced microphone arrays [119]. Fur-
thermore, when capturing the acoustic scene using dis-
tributed microphone arrays, the signals to be reproduced
can be synthesized for an arbitrary listening position in
space. This can be achieved by synthesizing the signals
of virtual microphones of arbitrary spatial patterns at
locations that are not populated with real microphones
[120, 121]. Similarly, binaural signals for different vir-
tual listening positions can be synthesized [114], which
we discuss in some detail in Section 3.2.5. In telecon-
ference applications, preservation of spatial cues com-
bined with flexible spatial selectivity offered by paramet-
ric approaches can help the auditory system to natu-
rally focus on a desired speaker [114, 122], which may
lead to better speech intelligibility. By adjusting the out-
put parametric gains for the direct and diffuse signal
components, it is also possible to align the visual and
acoustical images in digital camera recordings, includ-
ing the effects of an acoustical zoom that is consis-
tent with the visual cues and a blurred spatial audio
image for sources located off the focal plane [123, 124].
Another approach to generate binaural or multichannel
audio which follows the moving picture of a visual scene
is to perform adaptive equalization of the direct signals
[125].
Considerable research has also been carried out to

extend and improve the parametric representations. Early
attempts include the higher angular resolution plane wave
decomposition (HARPEX) [126], which decomposes B-
format signals into two plane waves per time-frequency
bin, and a method in [127] in which the higher-order
signals are decomposed into several plane waves, while
the diffuse residual is in both cases ignored. Higher SH
or microphone orders (HO) enable higher spatial res-
olution, which allows differentiation of more than one
simultaneously impinging wave front. SIRR was extended
to HO-SIRR in [128, 129]. DirAC was extended to HO-
DirAC in [130] whereby the standard parameterization
is performed separately for a set of angular sectors to
support several directional and diffuse sounds arriving
from spatially separated directions simultaneously. More
recently, coding and multidirectional parameterization
of ambisonic sound scenes (COMPASS) [131] extends
the parametric model to several overlapping directional
sounds and a diffuse residual per time-frequency bin, and
it also provides a convenient method to combine the para-
metric processing with standard ambisonic reproduction.
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3.2.3 Spatial aaudio coding
The delivery of spatial audio content to the masses and the
transfer of academic research to the consumer and media
industries involves making such delivery flexible and effi-
cient. The adoption of spatial audio formats and process-
ing schemes within standardization activities should not
be ignored in this overview, as they can have a very sig-
nificant impact on how spatial audio will be consumed
at scale and the momentum that spatial audio technol-
ogymay experience in the coming years. The development
of audio applications for consumer electronics and mul-
timedia streaming services brought about a demand for
representing spatial audio content in formats that support
efficient transmission at limited bandwidth and require
scarce storage capacity. Over the last 20 years, a number
of spatial audio coding techniques have emerged for 2D
and 3D reproduction that to a large degree maintain the
fidelity of the rendered spatial scene. Although ML has
not yet been incorporated into popular spatial audio cod-
ing formats, we can already observe an interest in applying
ML as part of the processing chain, especially for data
compression at low bitrates.
Early coding standards include Moving Picture Expert

Group (MPEG) parametric stereo [132, 133] and Dolby
Prologic, in which spatial information is encoded by
manipulating the phase differences between the stereo
channels. A notable successor has been MPEG Surround
[134], which exploits three major spatial cues attributed
to the perception of the 2D spatial sound image, namely
inter-aural level differences, inter-aural time differences,
and inter-aural coherence [135–137]. These perceptual
spatial cues have formerly been applied in binaural cue
coding [136, 137]. The encoder of MPEG Surround
extracts spatial information such as channel level differ-
ences and inter-channel correlations from pairs of input
audio channels using an complex-exponential modulated
quadrature mirror filter (QMF) filterbank. Together with
additionally estimated channel prediction coefficients and
prediction residual signals, this side information is trans-
mitted along with the down-mixed mono or stereo signals
to a decoder that uses it for up-mixing to multichannel
audio. A stepping stone in developing high-fidelity spatial
audio codecs has been the MPEG-H 3D Audio [138, 139]
standard, which supports spatial coding of multichan-
nel audio signals, sound objects, and HO ambisonic
signals. Similarly to the parametric methods discussed
in Section 3.2.2, the scene can be decomposed into
sound objects that are either static or their positions and
gains may vary over time, as in MPEG-D spatial audio
object coding (SAOC) [140]. The remaining ambience
sound field components can be conveniently coded in an
HO ambisonic representation. Until recently, attempts to
incorporate ML into spatial audio coding have concen-
trated predominantly on the inference and compression

of the associated parametric side information. In [141],
ML is employed in visual and audio-visual tracking of
sound objects in an end-to-end audio-video approach.
More recently, DL has been applied to spatial audio object
coding [142], in which amixture network of deep convolu-
tional architectures enable to effectively compress spatial
parameters of audio objects at low bitrates.
Note that apart from coding of spatial information, a sig-

nificant part of the discussed codecs concerns audio signal
compression. For instance, compression in MPEG-H 3D
audio is performed based onMPEG-D unified speech and
audio coding (USAC) [143], whileMPEG-4 high efficiency
advanced audio coding (HE-AAC) [144] is typically used
inMPEG Surround. The virtue of using ML in audio com-
pression has been demonstrated in [145] for extending
the frequency bandwidth and in [146] for reducing lossy
coding artifacts. However, a full end-to-end neural audio
codec has only very recently been proposed in [147]. The
DL-based SoundStream model, which is composed of a
fully convolutional encoder-decoder structure and a resid-
ual vector quantizer, has been designed to provide good
quality at extremely low bitrates. Extensions of ML-based
audio compression to ML-based spatial audio coding are
well expected, yet they are still to come.

3.2.4 Up-mixing
Up-mixing techniques are those aimed at generating a
higher number of audio signals from a smaller set of audio
channels while preserving important aspects such as the
locations of the main sound sources or the ambience com-
ponents contained in an original sound recording. This
comes usually with an apparent increase of the spatial res-
olution. As a result of the up-mixing process, recordings
coming from a down-mixing process can be automati-
cally extended to multi-channel arrangements with the
objective of conveying a more natural and enveloping
experience.
The sound field parameterization methods presented

in Section 3.2.2 exhibit such functionality inherently, for
instance, by reintroducing the extracted direct sound into
the scene representation with a higher SH order such as in
[42, 43]. Based on the compact parametric representation,
these methods can synthesize the loudspeaker channels of
arbitrarily high orders bymeans of panning the directional
signals and decorrelating the diffuse residual signals to
be played back over all loudspeakers. However, the most
popular application of up-mixing is in spatial audio cod-
ing covered in Section 3.2.3, where at the decoding stage,
multichannel loudspeaker signals are synthesized from
down-mixed representations. Several data-basedmethods
have been proposed for up-mixing from mono or two-
channel stereo to multichannel [148]. For up-mixing to
a 5.1 format in MPEG Surround, the powers and cross-
correlations of stereo signals are analyzed in perceptually
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motivated sub-bands to extract coherent signals to be
played back using a pair of front loudspeakers that enclose
the estimated direction (i.e., left and center or right and
center) as well as to extract the lateral ambience sig-
nals to be emitted from side or even all loudspeakers
for improved listener envelopment. In [149], ambience
components are identified and extracted based on inter-
channel coherence first. Then, they undergo decorrelation
using all-pass filters in order to avoid undesired phan-
tom images to the sides of the listener. The panning gains
of individual directional signals are found based on the
so-called inter-channel similarity measure, and a nonlin-
ear mapping is applied to re-pan the sources from 2 to 3
front channels for improved stability of the spatial image
for off-center sources. By introducing more than three
front loudspeakers, the width of the sound scene can be
further increased beyond the standard ±30◦, and the lis-
tening sweet spot region can be increased. In [68], an
adaptive mixing solution was proposed to reach the tar-
get covariance matrix by exploitation of the independent
components in the input channels, while minimizing the
usage of decorrelated ambient signals when the target
covariance cannot be reached without the application of
decorrelation.
Recently, also DNNs have found application in the

development of audio up-mixing and surround decod-
ing systems. One of the earlier attempts for ambient
extraction from mono signals using neural networks was
proposed in [150], where a shallow architecture with one
hidden layer was used to estimate spectral weights relating
the ratio between the ambience and direct signal compo-
nents in the time-frequency domain. The input to the net-
work were well-known hand-crafted audio features such
as spectral centroid, spectral flatness, or spectral flux.
More recently, a DNN-based method to process stereo
tracks was proposed in [151] that is aimed at classifying
and separating the primary (direct) and ambient (diffuse)
components in each time-frequency bin of the input mix-
ture. In this case, a feedforward network with three hid-
den layers and a sigmoid-activated output layer was used
for classification, building a time-frequency mask for the
subsequent separation. Another work exploiting DNNs
for stereo to 5.1 up-mixing was proposed in [152] con-
sidering the MPEG-H 3D framework. In this approach,
DNN models for the center and surround channels are
trained by using log-spectral magnitudes of QMF sub-
bands. The input stereo signals are converted into rear
and center channels using the trained models, where the
generated subband signals are transformed back to audio
signals using QMF synthesis. Following a similar subband
approach, the authors proposed in [153] amethod for con-
verting mono signals to stereo training multiple DNNs
for each sub-band with the objective of modeling the
band-wise nonlinearity between the mid and side signals.

The system proposed in [154] uses two networks for
two-to-five channel up-mixing, where one of the net-
works is used for primary and ambient signal separation
and the other for ambience rendering. The networks are
jointly trained by minimizing the mean-squared error
between the magnitude spectra of the original and the
decoded five-channel signals as well as the interchannel
level differences of the target signals. The obtained spec-
tral weights are multiplied for each frequency bin of the
input stereo signal, allowing for the separation of primary
and ambience signals and the generation of diffuse sound,
respectively.

3.2.5 Viewpoint translation
The advent of VR and AR goggles has boosted the interest
in both academia and industry in binaural rendering tech-
nologies. The two most dominating fields of activity in
this regard are HRTF personalization (cf. Section 4.2) and
6-degree-of-freedom (6-DoF) binaural rendering. This
section focuses on the latter. The 6 DoF in this case are
3 angles of head orientation as well as head translations
in the 3 Cartesian dimensions. 6-DoF binaural rendering
obviously requires tracking of the user’s orientation and
position in realtime on the rendering side. The require-
ments for the performance of the head tracking that VR
and AR goggles perform for the visual rendering, par-
ticularly signal-to-noise ratio and low latency, are much
stricter than what is required for the audio rendering so
that tracking is readily available.
Most methods employ a SH representation of the sound

field that is to be rendered. Rotation of this representa-
tion relative to the HRTFs that are used for the rendering
is straightforward. 6-DoF rendering is achieved in [155]
via the application of blind source separation to the cap-
tured sound field. A method based on DirAC is presented
in [156, 157]. Translatory head movements based on a
plane wave expansion of the sound field to be rendered
was presented in [158, 159], which demonstrated funda-
mental limitations of this framework. As a consequence,
6-DoF binaural rendering methods typically use a more
application-oriented sound field representation and come
in four flavors: (1) methods that perform a mathematical
translation of the orthogonal sound field decomposition
or a re-expansion around a different center [160–163],
(2) parameterization and adaptation of a single-viewpoint
recording (or RIR measurement) with a microphone array
[116, 117, 164–166], (3) interpolation between micro-
phone array recordings performed at different locations
[167–170], and (4) interpolation between parameteri-
zations of recordings performed at different locations
[171–175].

3.3 Audio-visual processing
Some of the methods described in Section 3.1 make use
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of visual data to gather supplementary environmental or
geometric information, which assists the estimation of
acoustic-related parameters. Combined audio and video
analysis has been performed extensively by the computer
vision community, providing stronger cues for, e.g., activ-
ity detection or speaker recognition than processing video
or audio separately. Some of the studied tasks overlap
with audio-only tasks such as on-video speaker and sound
source localization [176] and video-guided monophonic
source separation [177]. In any case, there is no doubt that
the use of video recordings for addressing spatial audio
tasks has been receiving increasing attention in the last
years.
In this context, the availability of very large audio-

visual datasets have contributed significantly to pro-
moting the use of audiovisual information to exploit
both auditory and visual spatial cues jointly. In [178], a
dataset of 360◦ videos from YouTube containing first-
order ambisonics audio was collected to train a self-
supervised audiovisual model aimed at aligning spatially
video and audio clips extracted from different viewing
angles. The approach was shown to yield better represen-
tations, outperforming prior work on audio-visual self-
supervision for downstream tasks like audio-visual corre-
spondence, action recognition, and semantic video seg-
mentation. Similarly, the work in [179] proposed another
self-supervised approach to understand audio-visual spa-
tial correlation by training a DNN over a large dataset of
ASMR (autonomous sensory meridian response) videos
to classify whether a video’s left-right audio channels had
been flipped. The learnt audio-visual representations were
proven to be useful for carrying out some downstream
tasks including source localization, mono-to-binaural up-
mixing, and sound source separation. A similar appli-
cation is addressed in [180], where a U-net network is
proposed to infer binaural audio from videos and their
respective monophonic audio recording using a database
of binaural music recordings as training targets. Simi-
lar to mid-side stereo, a mid signal corresponds to the
mono mix-down of the binaural audio, and the network
learns to predict the side signal only. A similar approach
was followed in [181]. In [178], a network is taught to
upscale a monophonic signal to first-order ambisonics by
self-supervised learning from 360◦ videos. The network is
taught to produce time frequency masks to separate the
mono input into directional components along with a set
of directional weights encoding those components into
first-order ambisonics signals. The work in [182] shares
some similarities but assumes static source positions and
does not perform source separation. Finally, an attempt
of a completely synthetic approach to generation of an
audible scene from a 360◦ image is presented in [183]
by mixing background ambience based on scene classi-
fication and object, people, or action sounds, based on

visual object recognition and spatialized at their respec-
tive detected image locations. Of course, there is no tem-
poral information on the arrangement of events in this
scenario, bringing the work closer to sonification of the
immersive image.

4 Spatial audio reproduction
The final stage in the spatial audio pipeline is the repro-
duction of the multichannel signals that result from the
preceding capture and processing stages. In general, the
theory underlying spatial audio reproduction is well estab-
lished and no disruptive methods or discoverings have
been observed in the last years, especially in the context of
loudspeaker-based reproduction. It is true that the power
of DL has attracted great interest in the context of bin-
aural reproduction where some interesting DNN-based
approaches have recently emerged for selecting or synthe-
sizing binaural signals adapted to a given listener. There-
fore, while this section briefly outlines conventional linear
spatial audio reproduction methods for the sake of com-
pleteness, only the aforementioned DL-driven attempts
are reviewed.

4.1 Linear spatial audio reproduction
Any audio reproduction method converts a scene rep-
resentation into loudspeaker input signals that produce
a sound field with a given desired physical structure or
binaural signals with given desired properties. Traditional
audio reproduction concepts like stereophony feed the
signals from the microphones of the capture stage directly
into the loudspeakers of the reproduction stage. More
advanced concepts like modern ambisonics formulations
perform linear filtering operations to compute the loud-
speakers signal from the entire set of microphone signals
whereby one of the scene representations discussed in
Section 2 can be an intermediate format. Many such
methods are linear.
We refer the reader to the literature such as [184, 185]

on binaural rendering, [122, Ch. 14] on loudspeaker pan-
ning, [25] on ambisonics, and [186] on wave field synthesis
for more detailed discussions. Further overviews are pro-
vided in [2, 17, 18, 187].Wewill focus on certain aspects of
binaural reproduction the subsequent Section 4.2. Binau-
ral rendering in its most common form is a linear method
that is straightforward and comprises filtering the given
scene representation with a suitable representation of the
user’s HRTFs. What is interest in the scope of the present
article is the computation of HRTFs for this purpose
that are personalized to the user by means of data-based
processing.

4.2 DL-driven HRTF personalization and generalization
HRTFs are highly dependent on the individual anthropo-
metric features of a given listener. A major challenge for
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personalized binaural audio reproduction is the measure-
ment procedure of HRTFs, which is tedious and expen-
sive. Research efforts have therefore addressed the prob-
lem of HRTF customization with the objective of estimat-
ing individual HRTFs based only on geometric informa-
tion or user feedback without the need for any measure-
ment process. Traditionally, principal component analysis
(PCA) has been the technique of choice for dimensionality
reduction in HRTF datasets, leading to many interesting
observations and experiments that evaluate the impact of
different eigenmodes on spatial audio perception [188].
Further improvements in PCA-basedHRTFmodeling and
customization were presented in [189, 190]. HRTFs were
synthesized in [191] using a sparse combination of a sub-
ject’s anthropometric features. The use of DNNs in the
subject matter is rapidly gaining momentum.
An HRTF selection method based on a multi-layer

perceptron neural network was proposed in [192]. The
system was trained by using as input a set of measured
anthropometric parameters (shapes and sizes of listeners’
heads and pinnas) extracted from photographs. To train
the network, 30 subjects listened to music rendered by
using different HRTFs to assess their fitness and obtain
a score used as target output. Such an approach was
shown to be more effective in selecting the best match-
ing HRTF for a given listener than selecting the one with
the smallest sum of squared errors between the listen-
ers’ measurements and each of the database members.
In a similar spirit, but with the aim of synthesizing a
personalized HRTF, [193] proposed a method consisting
of three sub-networks: a feedforward network taking as
input anthropometric measurements, a CNN using ear
images, and another feedforward network that estimates a
personalized HRTF by using the outputs of the other two
subnetworks.
Autoencoder (AE) architectures have been selected by

several works to capture relevant patterns across HRTF
datasets. An AE is an unsupervised DNN that learns how
to efficiently compress and encode data by learning how
to reconstruct the data back from a reduced encoded rep-
resentation, usually referred to as embedding. In [194], a
sparse AE is used to create embeddings from the captured
HRTFs, which are used to train a generalized regression
neural network (GRNN) to approximate equivalent latent
representations of the corresponding HRTFs at arbitrary
angles. The sparse AE is then able to decode the GRNN
output to reconstruct the desiredHRTF. Such an approach
provides an efficient way to jointly address the creation
of generalized HRTFmodels and angle interpolation from
large datasets. Similarly, a set of independent AEs was
used in [195] for each elevation angle to reconstruct
HRTFs on the horizontal plane and used the resulting
latent representations in the bottleneck as targets for a
feedforward network using anthropometric features as

input. A personalized HRTF can then be synthesized by
estimating the latent representation given the features of a
new subject and feeding the result into the decoder part.
In [196], a training and calibration procedure based

on a variational AE structure was proposed. Variational
AEs are deep generative models that provide a probabilis-
tic manner for describing an observation in latent space,
modeling the probability distribution of the input data.
In the training step, an HRTF generator is created by
learning the individual and nonindividual features from
an HRTF dataset. The generator is based on an extended
variational AE that separates with a set of adaptive lay-
ers the individuality and non-individuality factors of the
users in a nonlinear space. The learned latent variables
together with some personalization weights optimized by
user feedback are then used in the calibration step to
generate a personalized HRTF for a specified direction.
A study of several aspects related to HRTF individual-

ization that provides further insight into the research lines
discussed above is presented in [197]. As expected, mod-
els seem to generalize better by having access to larger
datasets. This may be achieved by a proper and care-
ful merging of existing datasets [198] or by synthetically
creating new ones [199].

5 Discussion
Many of the paradigms behind spatial audio are deeply
rooted in physics, whereby the ultimate goal of spatial
audio is evoking a given sensation in the listener. This
sensation may be evoked through pure physical accuracy,
i.e., if one intends to reproduce a performance in a con-
cert hall, then the perfect re-construction of the sound
field in the concert hall at the listening location is guaran-
teed to provide the best possible perceptual result. But it
has been clear since a long time that such physical accu-
racy would require immense resources, if it is achievable
at all [22, 200]. It was shown in different situations that
authenticity, i.e., a reproduced scene being indistinguish-
able from the captured original scene, can be achieved
even if the physical accuracy is relatively low [201–203].
The interpretation of the ear signals by the human audi-
tory system seems to lead to the same perceptual result
for different input signals in certain situations. This psy-
choacoustic route is what virtually all methods in the
processing stage have been taking. Some concepts that are
applied in the capture and reproduction stages also rely
explicitly or implicitly on given psychoacoustic properties
of the human hearing system [187].
The capture and reproduction stages base heavily on the

underlying physics of the problem, such as the relation
between the signals impinging on a set of microphones or
the spatial structure of a sound field created by an array of
loudspeakers. These physical mechanisms are well under-
stood, and there exist powerful mathematical tools that
describe those in a compact and accurate way.
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The non-ML data-based approaches in the process-
ing stage use perceptually motivated representations of
acoustic scenes to accurately reproduce the relevant spa-
tial cues while preserving the highest audio signal fidelity.
Many of these data-based techniques, described, e.g., in
Section 3.2, including parametric processing, up-mixing,
spatial audio coding, and viewpoint translations, success-
fully achieve the designated goals. As a result, these meth-
ods steadily play a dominant role in present audio and
multimedia applications.
The recent irruption of DL has opened new opportu-

nities for spatial audio, offering enticing alternatives to
the classical signal processing. Major breakthroughs in
DL have taken place in the context of image processing,
and these advances have been quickly adopted in closely
related speech and audio tasks. For instance, image seg-
mentation relies on partitioning a digital image intomean-
ingful segments such as objects or contours by assigning
a corresponding label to every pixel in an image. Acous-
tic source separation can be considered an analogous task
where source labels are assigned to each time frequency
bin in a 2D time frequency representation of an audio
channel. Similarly, image classification in vision can be
considered an analogous task to acoustic scene classifica-
tion in audio since both tasks assign a class label to the
input signal representation, which is clearly evident when
a 2D time frequency audio spectrogram is treated as an
input image.
Due to the apparent similarities, DL approaches have

quickly become very successful in those tasks in audio,
often outperforming classical signal processing methods.
ML has also swiftly found its way into classification of
audio content, e.g., in background-foreground or sound
event classification discussed in Section 3.2.1, as well as
in otherML-predisposed tasks such as HRTF personaliza-
tion described in Section 4.2. In DL-driven personalized
binaural audio reproduction, a listener can benefit from
using individualized HRTFs that are synthesized based on
the user’s anthropometric features.
We can also observe a rise in popularity of ML in mod-

eling psychoacoustic phenomena. The nonlinear nature
of physiology and psychology related to human hearing
mechanisms makes ML highly suitable for such tasks.
Notable progress has been made, for example, in design-
ing learnable low-level audio features as alternatives to the
well-known filterbanks [204–206]. Due to the availability
of large amounts of audio content and due to the scarcity
of explainable models of the complex human auditory sys-
tem, we shall expect DL to play an ever increasing role in
psychoacoustics in the near future.
Furthermore, multi-modal DL enables spatial audio pro-

cessing that was either very difficult or even impossible
for non-ML-based approaches. One good example is the
audio-visual processing covered in Section 3.3, in which

multichannel audio is generated from a mono audio sig-
nal based on spatial information drawn from the visual
content. Since audio-visual dependencies are not straight-
forward to model mathematically, DL unfolds its potential
in finding such complex inter-dependencies, leading to
the estimation of, often abstract, representations of spatial
audio-visual information.
ML-based approaches have not yet reached a point

in which they indisputably surpass in all types of spa-
tial audio processing. One likely reason for the scarcity
of powerful DL-based end-to-end models for spatial
audio processing is the difficulty to jointly control
the timbre, perceptual spatial cues, and audio signal
fidelity, as required in high-end applications. Physi-
cal accuracy is a criterion that is straightforward to
define on a signal level, for example, by means of the
squared error. Criteria for achieving a given psychoa-
coustic result are incomparably more difficult to define
because the relation between the signals at the ears
of a listener and the resulting perception are known
mostly only for relatively simple scenarios [135, 207].
Models for a large range of hearing mechanisms were
formulated in [208] from a machine perspective to facili-
tate integrating them into a machine learning framework.
So far, only applications outside of the domain of spa-
tial audio such as music information retrieval have been
realized. A proof-of-concept for ML-based assessment of
the quality of general (non-spatial) audio was presented
in [209], which cannot be generalized to spatial audio.
An initial attempt for predicting the perceptual impair-
ment due to system errors in spherical microphone array
auralizations using ML for a narrow scope of signals was
presented in [210]. Consequently, it still remains a chal-
lenge to formulate a single differentiable loss function for
neural network training that guarantees that all critically
relevant aspects of spatial hearing are represented with
the right balance.
Another limiting factor in developing DL-driven spa-

tial audio methods is the lack of available datasets with
multichannel audio content at sufficiently large amounts
to facilitate the training of DL models. In addition, just
the way it is currently unclear how proper loss functions
should be defined, the form that ground-truth data should
ideally take is also unsettled, whichmakes data annotation
tasks difficult. Until recently, the spatial audio community
has not striven to collect and make available multichan-
nel recordings of high fidelity and in large quantity. Note
that, in general, the datasets with audio are significantly
larger in terms of the data volume than, for example,
the datasets for image processing. For instance, the large
scale audio-visual dataset of human speech known as Vox-
Celeb2 [211], which is popular in speaker recognition,
contains over one million of speech utterances of a length
of 3–20 s with an overall duration of over 2000 h of 16-



Cobos et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2022) 2022:10 Page 16 of 21

bit single-channel audio recorded at a sampling frequency
of 16 kHz. This amounts to around 78 GB of data, which
is straightforward to handle in practice. In DCASE 2021,
the development dataset for the SELD task mentioned
in Section 3.2.1 contains overall around 20 hours of 4-
channel audio recordings sampled at 24 kHz, which yields
already around 13.8 GB of data [107]. In particular, in
the case of spatial audio, multiple channels need to be
stored for each recording, which poses huge require-
ments on storage capacity as well as on cache memory
and computational power during the training. This is par-
ticularly true for more difficult tasks such as those that
produce multichannel output data rather than a label, in
which the training time can easily last many days even
on supercomputers with several GPUs. Most likely for
these reasons, only a limited number of datasets with
spatial audio, or audio-video, content have been made
available.
For instance, binaural audio-visual content is collected

in [179, 180, 212], distributed multichannel recordings of
multi-speaker conversations are available in [213], while
large number of B-format recordings from YouTube are
collected in [178]. More such effort and data are required
to train generic DL spatial audio models. Furthermore,
many available datasets are specific to the input and
output setups, i.e., they contain multichannel recordings
made using a microphone array with a particular geome-
try or are synthesized for a particular loudspeaker setup.
One remedy to this setup-specific limitation could be to
store the captured signals and output signals to be repro-
duced in one of the commonly accepted representations
described in Section 2 such as in the ambisonic format.
This way, end-to-endmodels could be trained irrespective
of the capture and reproduction setups. The requirement
for standardized capture formats was also identified as an
important pre-requisite for databases for training ML sys-
tems on the quality of general (non-spatial) audio content
[214].
The degree to which the ML-based spatial audio meth-

ods will be successful in the future will largely depend
on how the audio research community addresses the dis-
cussed issues and on the emergence of new applications
possible only with DL. For the time being, we are still
waiting for the appearance of further disruptive DL-based
methods that can deliver spatial audio processing that is
out of reach today.

6 Conclusions
We presented an overview of data-based methods in the
domain of spatial audio with a special focus on recent
approaches that make use of ML. We categorized the
methods based on their function in the general signal pro-
cessing pipeline, which consist of capture, processing, and
reproduction.

The capture stage is dominated by solutions that do not
employ ML. This is similar for the reproduction stage, in
which linear methods are most commmon apart from the
task of individualization of the user’s head-related transfer
functions.
The processing stage is where most of the ML-based

solutions are found. For many tasks in this stage, there
are both ML-based and non-ML-based methods avail-
able. Unlike other domains of data-based processing like
visual object recognition and others where the perfor-
mance of ML-based solutions is significantly superior to
non-ML-based ones, such trends have not crystallized in
the field of spatial audio. Tasks like source separation,
sound event detection, or extraction of spatial informa-
tion from accompanying video have been highly impacted
by DL, leading to outstanding results even with single-
channel recordings. Other tasks with a higher focus on
extracting or analyzing the spatial properties of sound
have not been so much disrupted by ML methods.
Possible causes for this are the lack of robust success cri-

teria (i.e., how to measure that the processing was useful)
and, partly as a consequence of this, the amount of the
available training and test data, which is lower by orders
of magnitude compared to classical application domains
of ML.
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67. S. K. Zieliński, H. Lee, P. Antoniuk, O. Dadan, A comparison of human
against machine-classification of spatial audio scenes in binaural
recordings of music. Appl. Sci. 10(17), 5956 (2020)

68. J. Vilkamo, T. Bäckström, A. Kuntz, Optimized covariance domain
framework for time–frequency processing of spatial audio. J. Audio Eng.
Soc. 61(6), 403–411 (2013)

69. V. Pulkki, U. P. Svensson, Machine-learning-based estimation and
rendering of scattering in virtual reality. J. Acoust. Soc. Am. 145(4),
2664–2676 (2019)

70. Z. Fan, V. Vineet, H. Gamper, N. Raghuvanshi, in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Fast acoustic scattering using convolutional neural networks
(IEEE, Barcelona, 2020), pp. 171–175

71. Z. Fan, V. Vineet, C. Lu, T. W. Wu, K. McMullen, in EEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Prediction
of Object Geometry from Acoustic Scattering Using Convolutional
Neural Networks, (2021), pp. 471–475. online

72. Z. Tang, H.-Y. Meng, D. Manocha, Learning Acoustic Scattering Fields for
Dynamic Interactive Sound Propagation, (2021). online

73. R. L. Jenison, A spherical basis function neural network for approximating
acoustic scatter. J. Acoust. Soc. Am. 99(5), 3242–3245 (1996)

74. S. Watanabe, M. Yoneyama, An ultrasonic visual sensor for
three-dimensional object recognition using neural networks. IEEE Trans.
Robot. Autom. 8(2), 240–249 (1992)

75. H. Kon, H. Koike, in Audio Engineering Society Convention 144. Deep neural
networks for cross-modal estimations of acoustic reverberation
characteristics from two-dimensional images (AES, Milan, 2018)

76. R. F. Perez, G. Götz, V. Pulkki, in Proceedings of the 23rd International
Congress on Acoustics: Integrating 4th EAA Euroregio, vol. 9.
Machine-learning-based estimation of reverberation time using room
geometry for room effect rendering (ICA, Aachen, 2019), p. 13

77. H. Kim, L. Remaggi, P. J. Jackson, A. Hilton, in 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR). Immersive spatial audio
reproduction for VR/AR using room acoustic modelling from 360 images
(IEEE, Osaka, 2019), pp. 120–126

78. H. Kim, L. Remaggi, S. Fowler, P. Jackson, A. Hilton, Acoustic room
modelling using 360 stereo cameras. IEEE Trans. Multimedia. 23,
4117–4130 (2020)

79. C. Schissler, C. Loftin, D. Manocha, Acoustic classification and
optimization for multi-modal rendering of real-world scenes. IEEE Trans.
Vis. Comput. Graph. 24(3), 1246–1259 (2017)

80. D. Li, T. R. Langlois, C. Zheng, Scene-aware audio for 360 videos. ACM
Trans. Graph. (TOG). 37(4), 1–12 (2018)

81. Z. Tang, N. J. Bryan, D. Li, T. R. Langlois, D. Manocha, Scene-aware audio
rendering via deep acoustic analysis. IEEE Trans. Vis. Comput. Graph.
26(5), 1991–2001 (2020)

82. F. Lluís, P. Martínez-Nuevo, M. Bo Møller, S. Ewan Shepstone, Sound field
reconstruction in rooms: inpainting meets super-resolution. J. Acoust.
Soc. Am. 148(2), 649–659 (2020)

83. O. Ronneberger, P. Fischer, T. Brox, in International Conference onMedical
Image Computing and Computer-assisted Intervention. U-net:
convolutional networks for biomedical image segmentation (Springer,
Munich, 2015), pp. 234–241

84. M. S. Kristoffersen, M. B. Møller, P. Martínez-Nuevo, J. Østergaard, Deep
sound field reconstruction in real rooms: introducing the isobel sound
field dataset. arXiv preprint arXiv:2102.06455 (2021)

85. M. M. J.-A. Simeoni, S. Kashani, P. Hurley, M. Vetterli, Deepwave: a
recurrent neural-network for real-time acoustic imaging. Adv. Neural Inf.
Process. Syst. 32 (Nips 2019). 32(CONF), 1–5 (2019)

86. Y. Cai, X. Liu, Y. Xiong, X. Wu, Three-dimensional sound field
reconstruction and sound power estimation by stereo vision and
beamforming technology. Appl. Sci. 11(1), 92 (2021)

87. A. S. Bregman, Auditory scene analysis: the perceptual organization of
sound. (MIT press, Cambridge, 1994)

88. D. Wang, G. J. Brown, Computational auditory scene analysis: principles,
algorithms, and applications. (Wiley-IEEE press, Hoboken, 2006)

89. M. Brandstein,Microphone arrays: signal processing techniques and
applications. (Springer, Berlin/Heidelberg, 2001)

90. S. Gannot, E. Vincent, S. Markovich-Golan, A. Ozerov, A consolidated
perspective on multimicrophone speech enhancement and source
separation. IEEE/ACM Trans. Audio Speech Lang. Process. 25(4), 692–730
(2017)

91. S. Adavanne, A. Politis, J. Nikunen, T. Virtanen, Sound event localization
and detection of overlapping sources using convolutional recurrent
neural networks. IEEE J. Sel. Top. Signal Process. 13(1), 34–48 (2018)

92. S. Chakrabarty, E. A. Habets, Multi-speaker DOA estimation using deep
convolutional networks trained with noise signals. IEEE J. Sel. Top. Signal
Process. 13(1), 8–21 (2019)

93. M. J. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M. A. Roch, S. Gannot, C.-A.
Deledalle, Machine learning in acoustics: theory and applications. J.

https://doi.org/10.1109/IWAENC.2018.8521397
https://doi.org/10.1109/IWAENC.2018.8521397
https://doi.org/10.1109/LSP.2021.3055463
https://doi.org/10.1109/TASLP.2018.2876169
https://doi.org/10.1109/TASLP.2018.2876169
https://doi.org/10.1109/TASSP.1976.1162830
https://doi.org/10.1109/ICASSP.2018.8462024
https://doi.org/10.1109/ICASSP.2018.8462024
https://doi.org/10.1109/ICASSP40776.2020.9053429
https://doi.org/10.1109/ICASSP40776.2020.9053429
https://doi.org/10.1109/TASLP.2021.3069193
https://doi.org/10.1109/TASLP.2021.3069193
https://doi.org/10.1121/1.1288411
https://doi.org/10.1109/ICASSP.2018.8462315


Cobos et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2022) 2022:10 Page 19 of 21

Acoust. Soc. Am. 146(5), 3590–3628 (2019). https://doi.org/10.1121/1.
5133944

94. X. Xiao, S. Watanabe, H. Erdogan, L. Lu, J. Hershey, M. L. Seltzer, G. Chen,
Y. Zhang, M. Mandel, D. Yu, in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Deep beamforming
networks for multi-channel speech recognition (IEEE, Shanghai, 2016),
pp. 5745–5749

95. K. Niwa, T. Nishino, K. Takeda, in 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing. Encoding large array signals into
a 3D sound field representation for selective listening point audio based
on blind source separation (IEEE, Las Vegas, 2008), pp. 181–184

96. M. Cobos, J. J. Lopez, Resynthesis of sound scenes on wave-field
synthesis from stereo mixtures using sound source separation
algorithms. J. Audio Eng. Soc. 57(3), 91–110 (2009)

97. Q. Liu, W. Wang, P. J. B. Jackson, T. J. Cox, in 2015 23rd European Signal
Processing Conference (EUSIPCO). A source separation evaluation method
in object-based spatial audio, (2015), pp. 1088–1092. https://doi.org/10.
1109/EUSIPCO.2015.7362551

98. J. Nikunen, A. Diment, T. Virtanen, M. Vilermo, Binaural rendering of
microphone array captures based on source separation. Speech Comm.
76, 157–169 (2016)

99. Y. Mitsufuji, N. Takamune, S. Koyama, H. Saruwatari, Multichannel blind
source separation based on evanescent-region-aware non-negative
tensor factorization in spherical harmonic domain. IEEE/ACM Trans.
Audio Speech Lang. Process. 29, 607–617 (2020)

100. Z.-Q. Wang, D. Wang, Combining spectral and spatial features for deep
learning based blind speaker separation. IEEE/ACM Trans. Audio Speech
Lang. Process. 27(2), 457–468 (2018)

101. L. Drude, R. Haeb-Umbach, Integration of neural networks and
probabilistic spatial models for acoustic blind source separation. IEEE J.
Sel. Top. Signal Process. 13(4), 815–826 (2019)

102. H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-Y. Chang, T. Sainath, Deep
learning for audio signal processing. IEEE J. Sel. Top. Signal Process.
13(2), 206–219 (2019). https://doi.org/10.1109/JSTSP.2019.2908700

103. A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange, T. Virtanen,
M. D. Plumbley, Detection and classification of acoustic scenes and
events: outcome of the DCASE 2016 challenge. IEEE J. Sel. Top. Signal
Process. 26(2), 379–393 (2017)

104. M. C. Green, D. Murphy, in Proceedings of the Detection and Classification
of Acoustic Scenes and Events, Munich, Germany. Acoustic scene
classification using spatial features (DCASE, Munich, 2017), pp. 16–17

105. A. Mesaros, A. Diment, B. Elizalde, T. Heittola, E. Vincent, B. Raj, T. Virtanen,
Sound event detection in the dcase 2017 challenge. IEEE/ACM Trans.
Audio Speech Lang. Process. 27(6), 992–1006 (2019)

106. S. Adavanne, P. Pertilä, T. Virtanen, in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Sound event
detection using spatial features and convolutional recurrent neural
network (IEEE, New Orleans, 2017), pp. 771–775

107. A. Politis, A. Mesaros, S. Adavanne, T. Heittola, T. Virtanen, Overview and
evaluation of sound event localization and detection in dcase 2019.
IEEE/ACM Trans. Audio Speech Lang. Process. 29, 684–698 (2020)

108. V. Pulkki, S. Delikaris-Manias, A. Politis, Parametric time-frequency domain
spatial audio. (Wiley Online Library, Hoboken, 2018)

109. J. Merimaa, V. Pulkki, Spatial impulse response rendering I: analysis and
synthesis. J. Audio Eng. Soc. 53(12), 1115–1127 (2005)

110. V. Pulkki, J. Merimaa, Spatial impulse response rendering II: reproduction
of diffuse sound and listening tests. J. Audio Eng. Soc. 54(1/2), 3–20
(2006)

111. M. Cobos, J. Lopez, S. Spors, A sparsity-based approach to 3D binaural
sound synthesis using time-frequency array processing. EURASIP J. Adv.
Signal Process. 2010, 1–13 (2010)

112. V. Pulkki, Spatial sound reproduction with directional audio coding. J.
Audio Eng. Soc. 55(6), 503–516 (2007)

113. G. Del Galdo, M. Taseska, O. Thiergart, J. Ahonen, V. Pulkki, The diffuse
sound field in energetic analysis. J. Acoust. Soc. Am. 131(3), 2141–2151
(2012). https://doi.org/10.1121/1.3682064

114. K. Kowalczyk, O. Thiergart, M. Taseska, G. Del Galdo, V. Pulkki, E. A. P.
Habets, Parametric spatial sound processing: a flexible and efficient
solution to sound scene acquisition, modification, and reproduction.
IEEE Signal Process. Mag. 32(2), 31–42 (2015). https://doi.org/10.1109/
MSP.2014.2369531

115. J. Benesty, C. Jingdong, Y. Huang,Microphone array signal processing.
(Springer, Berlin, 2008)

116. A. Plinge, S. J. Schlecht, O. Thiergart, T. Robothama, O. Rummukainen, E.
Habets, in AES Int. Conf. on Audio for Virtual and Augmented Reality.
Six-degrees-of-freedom binaural audio reproduction of first-order
ambisonics with distance information (AES, Redmond, 2018)

117. M. Kentgens, A. Behler, P. Jax, in IEEE Int. Conf. on Acoustics, Speech and
Signal Proc. (ICASSP). Translation of a higher order ambisonics sound
scene based on parametric decomposition, (2020), pp. 151–155. https://
doi.org/10.1109/ICASSP40776.2020.9054414

118. J. Vilkamo, T. Lokki, V. Pulkki, Directional audio coding: virtual
microphone-based synthesis and subjective evaluation. J. Audio Eng.
Soc. 57(9), 709–724 (2009)

119. A. Politis, M.-V. Laitinen, J. Ahonen, V. Pulkki, Parametric spatial audio
processing of spaced microphone array recordings for multichannel
reproduction. J. Audio Eng. Soc. 63(4), 216–227 (2015). https://doi.org/
10.17743/jaes.2015.0015

120. K. Kowalczyk, O. Thiergart, A. Craciun, E. A. P. Habets, in 2013 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics.
Sound acquisition in noisy and reverberant environments using virtual
microphones, (2013), pp. 1–4. https://doi.org/10.1109/WASPAA.2013.
6701869

121. O. Thiergart, G. Del Galdo, M. Taseska, E. A. P. Habets, Geometry-based
spatial sound acquisition using distributed microphone arrays. IEEE
Trans. Audio Speech Lang. Process. 21(12), 2583–2594 (2013). https://
doi.org/10.1109/TASL.2013.2280210

122. V. Pulkki, M. Karjalainen, Communication acoustics: an introduction to
speech, audio and psychoacoustics. (Wiley, Hoboken, 2015)

123. O. Thiergart, K. Kowalczyk, E. A. P. Habets, in 2014 14th International
Workshop on Acoustic Signal Enhancement (IWAENC). An acoustical zoom
based on informed spatial filtering, (2014), pp. 109–113. https://doi.org/
10.1109/IWAENC.2014.6953348

124. E. Habets, O. Thiergart, K. Kowalczyk, System, apparatus and method for
consistent acoustic scene reproduction based on informed spatial
filtering. US Patent 10015613 (2018)

125. A. Favrot, C. Faller, Wiener-based spatial B-format equalization. J. Audio
Eng. Soc. 68(7/8), 488–494 (2020). https://doi.org/10.17743/jaes.2020.
0040

126. S. Berge, N. Barrett, in 2nd Int. Symposium on Ambisonics and Spherical
Acoustics. High angular resolution planewave expansion (AmbiSym,
Paris, 2010)

127. A. Wabnitz, N. Epain, A. McEwan, C. Jin, in IEEEWorkshop on Appl. of
Sig. Proc. to Audio and Acoustics (WASPAA). Upscaling ambisonic sound
scenes using compressed sensing techniques, (2011), pp. 1–4. https://
doi.org/10.1109/ASPAA.2011.6082301

128. L. McCormack, A. Politis, O. Scheuregger, V. Pulkki, in 23rd Int. Congress on
Acoustics. Higher-order processing of spatial impulse responses (ICA,
Aachen, 2019)

129. L. McCormack, V. Pulkki, A. Politis, O. Scheuregger, M. Marschall,
Higher-order spatial impulse response rendering: investigating the
perceived effects of spherical order, dedicated diffuse rendering, and
frequency resolution. J. Audio Eng. Soc. 68(5), 338–354 (2020)

130. A. Politis, J. Vilkamo, V. Pulkki, Sector-based parametric sound field
reproduction in the spherical harmonic domain. IEEE J. Sel. Top. Sig.
Proc. 9(5), 852–866 (2015)

131. A. Politis, S. Tervo, V. Pulkki, in IEEE Int. Conf. on Acoustics, Speech and
Sig. Proc. (ICASSP). COMPASS: coding and multidirectional
parameterization of ambisonic sound scenes, (2018), pp. 6802–6806.
https://doi.org/10.1109/ICASSP.2018.8462608

132. W. Oomen, E. Schuijers, B. den Brinker, J. Breebaart, in Proc. 114th Audio
Eng. Soc. (AES) Convention. Advances in parametric coding for
high-quality audio (AES, Milan, 2003)

133. E. Schuijers, J. Breebaart, H. Purnhagen, J. Engdegard, in Proc. 116th Audio
Eng. Soc. (AES) Convention. Low complexity parametric stereo coding
(AES, Berlin, 2004)

134. J. Hilpert, S. Disch, The MPEG surround audio coding standard [standards
in a nutshell]. IEEE Signal Proc. Mag. 26(1), 148–52 (2009). https://doi.
org/10.1109/MSP.2008.930433

135. J. Blauert (ed.), The technology of binaural listening (Springer, Heidelberg,
2013)

136. F. Baumgarte, C. Faller, Binaural cue coding-part i: psychoacoustic
fundamentals and design principles. IEEE Trans. Speech Audio Process.
11(6), 509–519 (2003). https://doi.org/10.1109/TSA.2003.818109

https://doi.org/10.1121/1.5133944
https://doi.org/10.1121/1.5133944
https://doi.org/10.1109/EUSIPCO.2015.7362551
https://doi.org/10.1109/EUSIPCO.2015.7362551
https://doi.org/10.1109/JSTSP.2019.2908700
https://doi.org/10.1121/1.3682064
https://doi.org/10.1109/MSP.2014.2369531
https://doi.org/10.1109/MSP.2014.2369531
https://doi.org/10.1109/ICASSP40776.2020.9054414
https://doi.org/10.1109/ICASSP40776.2020.9054414
https://doi.org/10.17743/jaes.2015.0015
https://doi.org/10.17743/jaes.2015.0015
https://doi.org/10.1109/WASPAA.2013.6701869
https://doi.org/10.1109/WASPAA.2013.6701869
https://doi.org/10.1109/TASL.2013.2280210
https://doi.org/10.1109/TASL.2013.2280210
https://doi.org/10.1109/IWAENC.2014.6953348
https://doi.org/10.1109/IWAENC.2014.6953348
https://doi.org/10.17743/jaes.2020.0040
https://doi.org/10.17743/jaes.2020.0040
https://doi.org/10.1109/ASPAA.2011.6082301
https://doi.org/10.1109/ASPAA.2011.6082301
https://doi.org/10.1109/ICASSP.2018.8462608
https://doi.org/10.1109/MSP.2008.930433
https://doi.org/10.1109/MSP.2008.930433
https://doi.org/10.1109/TSA.2003.818109


Cobos et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2022) 2022:10 Page 20 of 21

137. C. Faller, F. Baumgarte, Binaural cue coding-part ii: schemes and
applications. IEEE Trans. Speech Audio Process. 11(6), 520–531 (2003).
https://doi.org/10.1109/TSA.2003.818108

138. J. Herre, J. Hilpert, A. Kuntz, J. Plogsties, MPEG-H 3D audio—the new
standard for coding of immersive spatial audio. IEEE J. Sel. Top. Signal
Process. 9(5), 770–779 (2015). https://doi.org/10.1109/JSTSP.2015.
2411578

139. R. L. Bleidt, D. Sen, A. Niedermeier, B. Czelhan, S. Füg, S. Disch, J. Herre, J.
Hilpert, M. Neuendorf, H. Fuchs, J. Issing, A. Murtaza, A. Kuntz, M.
Kratschmer, F. Küch, R. Füg, B. Schubert, S. Dick, G. Fuchs, F. Schuh, E.
Burdiel, N. Peters, M.-Y. Kim, Development of the MPEG-H TV audio
system for ATSC 3.0. IEEE Trans. Broadcast. 63(1), 202–236 (2017). https://
doi.org/10.1109/TBC.2017.2661258

140. J. Herre, H. Purnhagen, J. Koppens, O. Hellmuth, J. Engdegård, J. Hilper, L.
Villemoes, L. Terentiv, C. Falch, A. Hölzer, M. L. Valero, B. Resch, H. Mundt,
H.-o. Oh, MPEG spatial audio object coding— the ISO/MPEG standard
for efficient coding of interactive audio scenes. J. Audio Eng. Soc. 60(9),
655–673 (2012)

141. P. Coleman, A. Franck, J. Francombe, Q. Liu, T. de Campos, R. J. Hughes,
D. Menzies, M. F. S. Gálvez, Y. Tang, J. Woodcock, P. J. B. Jackson, F.
Melchior, C. Pike, F. M. Fazi, T. J. Cox, A. Hilton, An audio-visual system for
object-based audio: from recording to listening. IEEE Trans. Multimedia.
20(8), 1919–1931 (2018)

142. Y. Wu, R. Hu, X. Wang, C. Hu, S. Ke, Distortion reduction via cae and
densenet mixture network for low bitrate spatial audio object coding.
MultiMedia IEEE. 29(1), 55–64 (2022). https://doi.org/10.1109/MMUL.
2022.3142752

143. M. Neuendorf, M. Multrus, N. Rettelbach, G. Fuchs, J. Tobilliard, J.
Lecomte, S. Wilde, S. Bayer, S. Disch, C. Helmrich, R. Lefebvre, P. Gournay,
B. Bessette, J. Lapierre, K. Kjörling, H. Purnhagen, L. Villemoes, W. Oomen,
E. Schuijers, K. Kikuiri, T. Chinen, T. Norimatsu, K. S. Chong, E. Oh, M. Mim,
S. Quackenbush, B. Grill, The ISO/MPEG unified speech and audio coding
standard — consistent high quality for all content types and at all bit
rates. J. Audio Eng. Soc. 61(12), 956–977 (2013)

144. J. Herre, M. Dietz, MPEG-4 high-efficiency AAC coding [standards in a
nutshell]. IEEE Signal Process. Mag. 25(3), 137–142 (2008). https://doi.
org/10.1109/MSP.2008.918684

145. Y. Li, M. Tagliasacchi, O. Rybakov, V. Ungureanu, D. Roblek, in ICASSP 2021
- 2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Real-time speech frequency bandwidth extension,
(2021), pp. 691–695. https://doi.org/10.1109/ICASSP39728.2021.9413439

146. A. Biswas, D. Jia, in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Audio codec
enhancement with generative adversarial networks, (2020), pp. 356–360.
https://doi.org/10.1109/ICASSP40776.2020.9053113

147. N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, M. Tagliasacchi,
Soundstream: an end-to-end neural audio codec. IEEE/ACM
Transactions on Audio, Speech, and Language Processing. 30, 495–507
(2022). https://doi.org/10.1109/TASLP.2021.3129994

148. J. Breebaart, C. Faller, Spatial audio processing: MPEG surround and other
applications. (Wiley, Heidelberg, 2007)

149. C. Avendano, J.-M. Jot, in Proc. Int. Conf.: Virtual, Synthetic, and
Entertainment Audio. Frequency domain techniques for stereo to
multichannel upmix (AES, ESPOO, 2002)

150. C. Uhle, C. Paul, in Proc. Int. Conf. Digital Audio Effects (DAFx). A supervised
learning approach to ambience extraction from mono recordings for
blind upmixing (DAFx, Helsinki, 2008)

151. K. M. Ibrahim, M. Allam, in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Primary-ambient source
separation for upmixing to surround sound systems, (2018),
pp. 431–435. https://doi.org/10.1109/ICASSP.2018.8461459

152. S. Y. Park, C. J. Chun, H. K. Kim, in 2016 International Conference on
Information and Communication Technology Convergence (ICTC).
Subband-based upmixing of stereo to 5.1-channel audio signals using
deep neural networks, (2016), pp. 377–380. https://doi.org/10.1109/
ICTC.2016.7763500

153. K. M. Jeon, S. Y. Park, C. J. Chun, N. I. Park, H. K. Kim, Multi-band approach
to deep learning-based artificial stereo extension. ETRI J. 39(3), 398–405
(2017)

154. J. Choi, J.-H. Chang, Exploiting deep neural networks for two-to-five
channel surround decoder. J. Audio Eng. Soc. 68(12), 938–949 (2021)

155. X. Zheng, Soundfield navigation: separation, compression and
transmission. Ph. D. Thesis, University of Wollongong (2013)

156. O. Thiergart, G. D. Galdo, M. Taseska, E. Habets, Geometry-based spatial
sound acquisition using distributed microphone arrays. IEEE Trans.
Audio Speech Lang. Process. 21(12), 2583–2594 (2013)

157. C. Schörkhuber, R. Höldrich, F. Zotter, in Fortschritte der Akustik (DAGA).
Triplet-based variable-perspective (6DoF) audio rendering from
simultaneous surround recordings taken at multiple perspectives, (2020)

158. F. Schultz, S. Spors, in AES Int. Conf. on Sound Field Control. Data-based
binaural synthesis including rotational and translatory head-movements
(AES, Guildford, 2013)

159. Y. Wang, K. Chen, Translations of spherical harmonics expansion
coefficients for a sound field using plane wave expansions. JASA. 143,
3474–3478 (2018)

160. A. Laborie, R. Bruno, S. Montoya, in 114th Conv. of the AES. A new
comprehensive approach of surround sound recording (AES,
Amsterdam, 2003)

161. P. Samarasinghe, T. Abhayapala, M. Poletti, Wavefield analysis over large
areas using distributed higher order microphones. IEEE/ACM Trans.
Audio, Sp. Lang. Proc. 22(3), 647–658 (2014)

162. N. Ueno, S. Koyama, H. Saruwatari, Sound field recording using
distributed microphones based on harmonic analysis of infinite order.
IEEE Sig. Proc. Lett. 25(1), 135–139 (2017)

163. M. Nakanishi, N. Ueno, S. Koyama, H. Saruwatari, in IEEEWorkshop on
Appl. of Sig. Proc. to Audio and Acoustics (WASPAA). Two-dimensional
sound field recording with multiple circular microphone arrays
considering multiple scattering (IEEE, New Paltz, 2019), pp. 368–372

164. T. Pihlajamaki, V. Pulkki, Synthesis of complex sound scenes with
transformation of recorded spatial sound in virtual reality. JAES. 7/8(63),
542–551 (2015)

165. K. Wakayama, J. Trevino, H. Takada, S. Sakamoto, Y. Suzuki, in IEEE
Workshop on Appl. of Sig. Proc. to Audio and Acoustics (WASPAA). Extended
sound field recording using position information of directional sound
sources (IEEE, New Paltz, 2017), pp. 185–189

166. L. I. Birnie, T. D. Abhayapala, V. Tourbabin, P. Samarasinghe, Mixed source
sound field translation for virtual binaural application with perceptual
validation. IEEE/ACM Trans. Audio Speech Lang. Process., 1–1 (2021).
https://doi.org/10.1109/TASLP.2021.3061939

167. N. Mariette, B. F. G. Katz, in EAA Symp. on Auralization. SoundDelta -
largescale, multi-user audio augmented reality (EAA, Espoo, 2009),
pp. 1–6

168. E. Bates, H. O’Dwyer, K.-P. Flachsbarth, F. M. Boland, in 144th Conv. of the
AES. A recording technique for 6 degrees of freedom vr (AES, Milan,
2018), p. 10022

169. D. R. Mendez, C. Armstrong, J. Stubbs, M. Stiles, G. Kearney, in 145th
Conv. of the AES. Practical recording techniques for music production
with six-degrees of freedom virtual reality (AES, New York, 2018)

170. E. Patricio, A. Ruminski, A. Kuklasinski, L. Januszkiewicz, T. Zernicki, in
Audio Engineering Society Convention 146. Toward six degrees of freedom
audio recording and playback using multiple ambisonics sound fields
(AES, Dublin, 2019)

171. J. G. Tylka, E. Y. Choueiri, Domains of practical applicability for parametric
interpolation methods for virtual sound field navigation. JAES. 67(11),
882–893 (2019)

172. K. Müller, F. Zotter, Auralization based on multi-perspective ambisonic
room impulse responses. Acta Acustica. 4(6), 25 (2020). https://doi.org/
10.1051/aacus/2020024

173. F. Zotter, M. Frank, C. Schörkhuber, R. Höldrich, in Fortschritte der Akustik
(DAGA). Signal-independent approach to variable-perspective (6DoF)
audio rendering from simultaneous surround recordings taken at
multiple perspectives (DEGA, Hannover, 2020)

174. S. Werner, F. Klein, G. Götz, Investigation on spatial auditory perception
using non-uniform spatial distribution of binaural room impulse responses,
(2019), pp. 137–144. https://doi.org/10.22032/dbt.39967

175. M. Blochberger, F. Zotter, Particle-filter tracking of sounds for
frequency-independent 3D audio rendering from distributed B-format
recordings. Acta Acustica. 5, 20 (2021)

176. T. Afouras, A. Owens, J. S. Chung, A. Zisserman, in 16th European
Conference on Computer Vision - ECCV, Glasgow, August 23–28.
Self-supervised learning 2070 of audio-visual objects from video, (2020),
pp. 208–224

https://doi.org/10.1109/TSA.2003.818108
https://doi.org/10.1109/JSTSP.2015.2411578
https://doi.org/10.1109/JSTSP.2015.2411578
https://doi.org/10.1109/TBC.2017.2661258
https://doi.org/10.1109/TBC.2017.2661258
https://doi.org/10.1109/MMUL.2022.3142752
https://doi.org/10.1109/MMUL.2022.3142752
https://doi.org/10.1109/MSP.2008.918684
https://doi.org/10.1109/MSP.2008.918684
https://doi.org/10.1109/ICASSP39728.2021.9413439
https://doi.org/10.1109/ICASSP40776.2020.9053113
https://doi.org/10.1109/TASLP.2021.3129994
https://doi.org/10.1109/ICASSP.2018.8461459
https://doi.org/10.1109/ICTC.2016.7763500
https://doi.org/10.1109/ICTC.2016.7763500
https://doi.org/10.1109/TASLP.2021.3061939
https://doi.org/10.1051/aacus/2020024
https://doi.org/10.1051/aacus/2020024
https://doi.org/10.22032/dbt.39967


Cobos et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2022) 2022:10 Page 21 of 21

177. R. Gao, K. Grauman, in Proc. of the IEEE/CVF International Conference on
Computer Vision. Co-separating sounds of visual objects (IEEE, Seoul,
2019), pp. 3879–3888

178. P. Morgado, Y. Li, N. Nvasconcelos. Learning representations from
audio-visual spatial alignment, vol. 33, (2020), pp. 4733–4744

179. K. Yang, B. Russell, J. Salamon, in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). Telling left from right: learning
spatial correspondence of sight and sound, (2020), pp. 9929–9938.
https://doi.org/10.1109/CVPR42600.2020.00995

180. R. Gao, K. Grauman, in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2.5d visual sound, (2019), pp. 324–333.
https://doi.org/10.1109/CVPR.2019.00041

181. Y.-D. Lu, H.-Y. Lee, H.-Y. Tseng, M.-H. Yang, in 2019 IEEE International
Conference on Image Processing (ICIP). Self-supervised audio spatialization
with correspondence classifier (IEEE, 2019), pp. 3347–3351

182. A. Rana, C. Ozcinar, A. Smolic, in International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Towards generating ambisonics
using audio-visual cue for virtual reality (IEEE, Brighton, 2019),
pp. 2012–2016

183. H. Huang, M. Solah, D. Li, L.-F. Yu, in Proceedings of the Conference on
Human Factors in Computing Systems. Audible panorama: automatic
spatial audio generation for panorama imagery (CHI, Glasgow, 2019),
pp. 1–11

184. S. Paul, Binaural recording technology: a historical review and possible
future developments. Acta Acustica U. Acustica. 95(5), 767–788 (2009)

185. B. Xie, Head-related transfer function and virtual auditory display. (J. Ross
Publishing, Plantation, 2013)

186. S. Spors, R. Rabenstein, J. Ahrens, in 124th Conv. of the Audio Engineering
Society. The theory of wave field synthesis revisited (AES, Amsterdam,
2008), p. 7358

187. H. Hacihabiboglu, E. De Sena, Z. Cvetkovic, J. Johnston, J. O. Smith III,
Perceptual spatial audio recording, simulation, and rendering: an
overview of spatial-audio techniques based on psychoacoustics. IEEE
Signal Process. Mag. 34(3), 36–54 (2017). https://doi.org/10.1109/MSP.
2017.2666081

188. D. J. Kistler, F. L. Wightman, A model of head-related transfer functions
based on principal components analysis and minimum-phase
reconstruction. The J. Acoust. Soc. Am. 91(3), 1637–1647 (1992)

189. M. Zhang, Z. Ge, T. Liu, X. Wu, T. Qu, Modeling of individual hrtfs based
on spatial principal component analysis. IEEE/ACM Trans. Audio Speech
Lang. Process. 28, 785–797 (2020)

190. P. Mokhtari, H. Kato, H. Takemoto, R. Nishimura, S. Enomoto, S. Adachi, T.
Kitamura, Further observations on a principal components analysis of
head-related transfer functions. Sci. Rep. 9(1), 1–7 (2019)

191. P. Bilinski, J. Ahrens, M. R. P. Thomas, I. J. Tashev, J. Platt, in IEEE
Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP). HRTF magnitude
synthesis via sparse representation of anthropometric features
(Florence, Italy, 2014), pp. 4468–4472

192. Y. Shu-Nung, T. Collins, C. Liang, Head-related transfer function selection
using neural networks. Arch. Acoust. 42(3), 365–373 (2017)

193. G. W. Lee, H. K. Kim, Personalized hrtf modeling based on deep neural
network using anthropometric measurements and images of the ear.
Appl. Sci. 8(11), 2180 (2018)

194. S. Bharitkar, in 2019 IEEE 9th International Conference on Consumer
Electronics (ICCE-Berlin). Optimization of head-related transfer function
(HRTF) models (IEEE, Berlin, 2019), pp. 251–256

195. T. Chen, T. Kuo, T. Chi, in ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Autoencoding HRTFS
for DNN based HRTF personalization using anthropometric features,
(2019), pp. 271–275. https://doi.org/10.1109/ICASSP.2019.8683814

196. K. Yamamoto, T. Igarashi, Fully perceptual-based 3D spatial sound
individualization with an adaptive variational autoencoder. ACM Trans.
Graph. (TOG). 36(6), 1–13 (2017)

197. R. Miccini, S. Spagnol, in 2020 IEEE Conference on Virtual Reality and 3D
User Interfaces Abstracts andWorkshops (VRW). HRTF individualization
using deep learning, (2020), pp. 390–395. https://doi.org/10.1109/
VRW50115.2020.00084

198. S. Spagnol, in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Auditory model based

subsetting of head-related transfer function datasets, (2020),
pp. 391–395. https://doi.org/10.1109/ICASSP40776.2020.9053360

199. C. Guezenoc, R. Seguier, in 148th AES Convention. Dataset augmentation
and dimensionality reduction of pinna-related transfer functions (AES,
Vienna, 2020)

200. B. Rafaely, Analysis and design of spherical microphone arrays. IEEE
Trans. Speech Audio Process. 13(1), 135–143 (2005). https://doi.org/10.
1109/TSA.2004.839244

201. F. Brinkmann, A. Lindau, S. Weinzierl, On the authenticity of individual
dynamic binaural synthesis. J. Acoust. Soc. Am. 142(4), 1784–1795
(2017). https://doi.org/10.1121/1.5005606

202. M. Zaunschirm, C. Schörkhuber, R. Höldrich, Binaural rendering of
ambisonic signals by head-related impulse response time alignment and
a diffuseness constraint. J. Acoust. Soc. Am. 143(6), 3616–3627 (2018)

203. J. Ahrens, C. Andersson, Perceptual evaluation of headphone
auralization of rooms captured with spherical microphone arrays with
respect to spaciousness and timbre. J. Acoust. Soc. Am. 145(4),
2783–2794 (2019). https://doi.org/10.1121/1.5096164

204. M. Ravanelli, Y. Bengio, in 2018 IEEE Spoken Language Technology
Workshop (SLT). Speaker recognition from raw waveform with sincnet,
(2018), pp. 1021–1028. https://doi.org/10.1109/SLT.2018.8639585

205. R. Balestriero, R. Cosentino, H. Glotin, R. Baraniuk, in Proceedings of
International Conference onMachine Learning. Spline filters for
end-to-end deep learning (ICML, Stockholm, 2018), pp. 364–373

206. N. Zeghidour, O. Teboul, F. de Chaumont Quitry, M. Tagliasacchi, in
International Conference on Learning Representations. LEAF: Aalearnable
frontend for audio classification (ICLR, 2021). online

207. J. Blauert, J. Braasch (eds.), The technology of binaural understanding
(Springer, Heidelberg, 2020)

208. R. F. Lyon, Human andmachine hearing: extractingmeaning from sound.
(Cambridge University Press, Cambridge, 2017)

209. C. Volk, J. Nordby, T. Stegenborg-Andersen, N. Zacharov, in 150th
Conv. of the Audio Engineering Society. Predicting audio quality for
different assessor types using machine learning (AES, New York, 2021)

210. J. Nowak, G. Fischer, Modeling the perception of system errors in
spherical microphone array auralizations. JAES. 67(12), 994–1002 (2019).
https://doi.org/10.17743/jaes.2019.0051

211. J. S. Chung, A. Nagrani, A. Zisserman, in INTERSPEECH. Voxceleb2: deep
speaker recognition (ISCA, Hyderabad, 2018)

212. S. Wang, A. Mesaros, T. Heittola, T. Virtanen, in ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). A curated dataset of urban scenes for audio-visual scene
analysis, (2021), pp. 626–630. https://doi.org/10.1109/ICASSP39728.2021.
9415085

213. J. Barker, S. Watanabe, E. Vincent, J. Trmal, in Proc. Interspeech 2018. The
fifth ’CHiME’ speech separation and recognition challenge: dataset, task
and baselines, (2018), pp. 1561–1565. https://doi.org/10.21437/
Interspeech.2018-1768

214. C. Volk, J. Nordby, T. Stegenborg-Andersen, N. Zacharov, in 150th
Conv. of the Audio Engineering Society. Efficient data collection pipeline
for machine learning of audio quality (AES, New York, 2021)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/CVPR42600.2020.00995
https://doi.org/10.1109/CVPR.2019.00041
https://doi.org/10.1109/MSP.2017.2666081
https://doi.org/10.1109/MSP.2017.2666081
https://doi.org/10.1109/ICASSP.2019.8683814
https://doi.org/10.1109/VRW50115.2020.00084
https://doi.org/10.1109/VRW50115.2020.00084
https://doi.org/10.1109/ICASSP40776.2020.9053360
https://doi.org/10.1109/TSA.2004.839244
https://doi.org/10.1109/TSA.2004.839244
https://doi.org/10.1121/1.5005606
https://doi.org/10.1121/1.5096164
https://doi.org/10.1109/SLT.2018.8639585
https://doi.org/10.17743/jaes.2019.0051
https://doi.org/10.1109/ICASSP39728.2021.9415085
https://doi.org/10.1109/ICASSP39728.2021.9415085
https://doi.org/10.21437/Interspeech.2018-1768
https://doi.org/10.21437/Interspeech.2018-1768

	Abstract
	Keywords

	Introduction
	The spatial audio pipeline
	Data-based and model-based methods
	Article scope

	Spatial audio capture
	Plane wave decomposition
	Spherical harmonics-based representations
	Other transformation-based representations
	Feature-based representations

	Spatial audio processing
	Acoustic analysis
	DL-driven acoustical parameter estimation for spatial audio rendering
	DL-driven sound field reconstruction

	Sound scene processing
	Sound scene decomposition
	Sound field parameterization for analysis, modification, and resynthesis
	Spatial aaudio coding
	Up-mixing
	Viewpoint translation

	Audio-visual processing

	Spatial audio reproduction
	Linear spatial audio reproduction
	DL-driven HRTF personalization and generalization

	Discussion
	Conclusions
	Abbreviations
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	References
	Publisher's Note

