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abstract: Generation time is a measure of the pace of life and is
used to describe processes in population dynamics and evolution.
We show that three commonly used mathematical definitions of
generation time in age-structured populations can produce differ-
ent estimates of up to several years for the same set of life history data.
We present and prove a mathematical theorem that reveals a general
order relation among the definitions. Furthermore, the exact popula-
tion growth rate at the time of sampling influences estimates of gen-
eration time, which calls for attention. For phylogenetic estimates of
divergence times between species, included demographic data should
be collected when the population growth rate for each species is most
common and typical. In conservationbiology, demographic data should
be collected during phases of population decline in declining species,
contrary to common recommendations to use predisturbance data.
The results can be used to improve the International Union for Con-
servation of Nature’s recommendation in parameterizing models for
evaluating threat categories of threatened species and to avoid un-
derestimating extinction risk.

Keywords: population dynamics, conservation biology, phylogenetics,
demography, population extinction risk, theoretical biology.

Introduction

Generation time is a pivotal parameter in estimating the
extinction risks of vulnerable species, and it is widely used
in phylogenetic analysis in estimating divergence times of
species. Consequently, it is important to estimate genera-
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tion time in a consistent and replicable manner in many
applications in evolutionary and conservation biology (Bird
et al. 2020). A precise measure of generation time in age-
structured populations has to account for both the survival
of mothers up to the age of each breeding event and the
number of offspring produced at each age class over the
entire female life span. Thus, we need to estimate gener-
ation time as an average from demographic rates in age-
structured populations.
The International Union for Conservation of Nature

(IUCN) provides an international standard for evaluation
of the status of species and populations (IUCN 2006, 2012;
Cooke et al. 2018). One important criterion for classifying
the vulnerability of a population into threat categories is the
rate of decline over a time span of three generations. Thus,
the estimated length of a generation influences the time pe-
riod of assessment and thereby threat category and conser-
vation efforts. An estimate of generation time that is too short
will underestimate the threat facing adeclining species,whereas
an estimate that is too long will exaggerate the risk for extinc-
tion (Staerk et al. 2019). The importance of choosing a rele-
vant method in estimating generation time in conservation
biology has, to our knowledge, not been systematically re-
viewed, and guidance would be valuable for which of the pos-
sible measures to apply in given situations and which demo-
graphic data collected during population decline or growth
should be used in estimating population threat categories.
The effective population size (Ne) of a species is a funda-

mental parameter with relevance to conservation biology
and molecular evolution. Estimates of effective population
sizes (Nei 1987; Nei et al. 1975; Nei and Takahata 1993)
depend critically on the generation time parameter and can
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therefore vary with the definition of generation time (Bak-
ker et al. 2022). For example, in the black-footed albatross
(Diomeida nigripes), three different estimates of generation
time, ranging from 7 to 20 years have been reported from
field studies, which generated estimates ofNe ranging from
5,340 to 15,286 individuals (Cousins and Cooper 2000;
Niel and Lebreton 2005; Dierickx et al. 2015). Ohta and
Kimura (1971) famously invoked an inverse relationship
between Ne and generation time to explain the constancy
of the evolutionary rate of proteins, where substitution
rates of deleterious mutations are influenced by Ne. This
inverse relationship has been corroborated empirically (Chao
and Carr 1993) and reminds us how important generation
time is to our parameterization of molecular evolutionary
rates.
The effect of generation time on molecular evolutionary

rates also makes it central to estimate divergence times on
phylogenies (Easteal 1985; Martin and Palumbi 1993; Mooers
and Harvey 1994; Li et al. 1996). Age at first breeding is of-
ten used as a proxy for estimates of generation time (Weir
and Schluter 2008; Lehtonen and Lanfear 2014; Gao et al.
2016), which obviously will bias results, underestimate true
generation time, and consequently underestimate time since
common ancestry and extinction risk. To estimate divergence
times, we need data on the degree of genetic divergence be-
tween species, the substitution rate, and an estimate of gen-
eration time typical for the species or clade. However, how
estimates of generation time are calculated can have a signif-
icant impact on the resulting estimates of divergence time.
For example, Scally and Durbin (2012) assumed a fixed gen-
eration time of 25 years for humans and elaborated different
estimates of the mutation rate in human evolution (from about
1029 bp21 to 1; 38#1028 bp21 per generation) and then
showed how the estimated time for the split of Neander-
thals and modern humans changed from about 350,000 to
500,000 years (Scally and Durbin 2012). However, genera-
tion times of modern humans in hunter-gatherer societies
vary by as much as 10 years (Fenner 2005), a level of var-
iation that strongly influences the estimated divergence times.
The measure of generation time itself will introduce an ad-
ditional variation of about 50% in the estimated divergence
time ofNeanderthals andmodern humans, since annualmu-
tation rates will change from 0:4#1029 to 0:6#1029 per
year given a generation time of 20 versus 30 years (Scally
and Durbin 2012). Furthermore, the contribution to the hu-
manmutation rate from the maternal and paternal sides is
significantly different, with up to three timesmoremutations
per year from the paternal side, which calls for even more
detailed calculations of the contribution of each sex to the
functional generation time for phylogenetic inference (Kong
et al. 2012; Besenbacher et al. 2019; Taylor et al. 2019).
One reason why accurate measures of generation time

often have been overlooked might be the seemingly simple
means of calculating them. However, estimates of genera-
tion time are evasive when it comes to parameterization and
require somemathematical attention. Age-structured pop-
ulation growth is correctly described in continuous time
by renewal processes, and individual-level demographic
variation can be portrayed using branching process theory
(Jagers 1975), which is not commonly used by biologists.
An initial simplifying approach of the population dynamics
of seasonally breeding organisms is therefore to represent
the demography with discrete time projection models, such
as the Leslie matrix model (Leslie 1966). Fortunately, the
discretization of population dynamics has proved to be a
very good approximation of continuous time models (Fuji-
wara and Diaz-Lopez 2017), and we will build on that tra-
dition here.
Estimating generation time fromdiscrete data can be com-

plicated and carried out in several ways. One method is the
individual-centered estimate of “the mean age at births for
a female during her lifetime” (denoted m below). Another
mathematical method can be phrased as a population-
centered estimate: “the average age of mothers for a given co-
hort of newborns” (denoted A below). Over the past several
decades, many theoretical articles have elaborated equations
to capture measures of generation time (Dublin and Lotka
1925; Laughlin 1965; Leslie 1966; Jagers 1975; Lande 1988;
Caswell 2001; Haccou et al. 2005; Bienvenu and Legendre
2015). We review common methods used for estimating
generation time and categorize them into three different mea-
sures on the basis of their mathematical properties. We then
give a strict mathematical proof of the relation between them.
We also illustrate the performance of the three measures of
generation time using biologically founded functions of vital
rates from a range of species with contrasting life histories
(Fujiwara and Diaz-Lopez 2017). We find that the resulting
measures of generation time depend not only on the mathe-
matical method applied but also on when the life history data
were collected, in particular, the exact population growth rate
at the time of collection.
The analyses presented here focus on age-structured pop-

ulations described by Leslie matrices and do not extend to
stage-structured populations. However, our analyses have
quite broad relevance and are germane, for example, to
most mammal and bird species, which typically have age-
structured life histories (Caswell 2001), in addition tomany
other organisms from different taxa with life histories where
age is used to model the population growth, such as sharks,
many amphibians, and fishes (IUCN 2012). Among such
populations are many red-listed species, where the exact
measure of generation time is important in defining their
threat status, as we discuss. We also give recommenda-
tions on which measure of generation time to apply and
which life history data to collect, depending on the research
question.
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Material and Methods

Establishing Age-Structured Dynamics

Life histories for a species consisting of individuals with a
maximum life span of n years can be specified by the Les-
lie matrix L p [lij]i,jp1,:::,n

, where the first-row elements
l1j p f j are the age-specific fertilities, that is, the expected
number of offspring at age j of a (surviving) individual of
age j2 1. The subdiagonal of the matrix, lj11,j p sj, is the
probability that an individual of age j2 1 survives to the
age of j, and lij p 0 for all other matrix elements (i, j):

L p

 
f 1 f 2 ::: f n
s1 0 ::: 0
⋮ ⋮ ⋱ ⋮
0 ::: sn21 0

!
:

The age-specific fertility fj can itself be written as sjbj, where
bj is the fecundity at age j; that is, bj is the expected number
of offspring of an individual at age j given that she is alive at
age j (unlike fj, which conditions only on the individual be-
ing alive 1 year earlier).
To project the population forward in time, the matrix

is multiplied with a column vector with the starting con-
figuration x0 p (x0(1), ::: , x0(n))

0, where x0( j) is the
number of individuals of age j2 1 at year 0. Then for each
t p 1, 2, ::: , the expected population configuration at time t
is given by

xt p Ltx0:

Let Sj p
Qj

ip1si, j p 0, ::: , n2 1, be the probability that
an individual survives until the age of j years and write

pj p Sj21 f j, j p 1, ::: , n:

Then, pj is the expected number of offspring a newborn in-
dividual will generate at the age of j (note the difference be-
tween pj and fj; fj is the conditional expected number of off-
spring at time j given that the individual is still alive at time
j2 1, whereas pj, the so-called net age-specific fertility, also
takes into account the probability of surviving up to each
specific age class). This is analogous to how fj can be writ-
ten as sjbj, where bj is the fecundity at age j, with the differ-
ence that fj takes into account survival probability from age
j2 1 to j, whereas pj takes into account survival the whole
way from being a newborn to age j.
Let l be the largest real eigenvalue of L. The population

size will roughly grow with a factor l per year.
Strict and Self-Looped Leslie Matrices

For the sake of convenience, it is common to decrease the
size of the Leslie matrix in analyzing the dynamics of long-
lived species by treating all adults as one single class and ap-
ply a so-called extended or self-looped Leslie matrix. To rep-
resent that, an element sn 1 0 is added to produce a self-
loop (n, n) on the original Leslie matrix, with the con-
sequence that an individual, after reaching age n, has
probability sn of surviving and breeding again. The classical
generation time measures discussed here can not be calcu-
lated from life history data presented in the self-looped Leslie
matrix format; however, it is straightforward to first trans-
fer any looped Leslie matrix to a strict Leslie matrix and
then apply the estimates and reasoning presented here.
We recommend that, in calculating generation time, ex-

tended Leslie matrices shall first be rewritten in the format
of the strict Leslie matrix by expanding the matrix dimen-
sion to let one row and column represent each age class—
for example, set n to be the maximum longevity of the spe-
cies. With modern software, computation times involving
matrices of the size that we are dealing with here are virtu-
ally instantaneous.
Common Estimators of Generation Time

We performed a literature survey and compiled functions
from seven well-cited articles on estimating generation time
by different methods in age-structured populations, and no-
tations were rewritten to enable comparisons among the
different measures (Dublin and Lotka 1925; Laughlin 1965;
Leslie 1966; Coale 1972; Charlesworth 1994; Lebreton 1996;
Caswell 2001). It turned out that many of the equations were
the same and had been invented repeatedly. We find three
main methods to estimate generation time; the first is here
denoted by T (Dublin and Lotka 1925; Laughlin 1965; Leslie
1966; Coale 1972; Charlesworth 1994), the second by m (Leslie
1966; Coale 1972; Charlesworth 1994; Lebreton 1996; Cas-
well 2001), and the third by A (Leslie 1966; Coale 1972;
Charlesworth 1994; Caswell 2001). These three most com-
mon measures of generation time are defined as follows.
The firstmeasure is the timeT taken for the population to

grow (or decline) by a factor that equals the expected total
number of offspring per female, R0 p

Pn
jp1pj, at the cur-

rent population growth rate (l); that is,

T p
logR0

log l
:

This is equivalent to dividing a number by a rate and thus
obtaining the time.
The secondmeasure is the mean age at reproduction, m, of

an average mother over her lifetime (i.e., the mean age differ-
ence between an average individual and her daughters):

m p

Pn
jp1 jpjPn
jp1 pj

:
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The third measure is the mean age A of the mothers of
the offspring that are born a given year. Here, the contribu-
tion from reproduction at a given age is scaled by the rel-
ative abundance of each age class in the population through
multiplication with l2j. This is a population-centred genera-
tion time (further simplified below):

A p

Pn
jp1 jl

2jpjPn
jp1l

2jpj
:

According to general linear algebra, an eigenvalue of L is a
number v that satisfies the characteristic equation det(vI2
L) p 0, which in this case turns out to be

vn 2
Xn

jp1

vn2jpj p 0: ð1Þ

This equation is equivalent to the standard Euler-Lotka form

Xn

jp1

v2jpj p 1:

Hence, l is the largest real solution to this equation. More-
over, the left-hand side of the Euler-Lotka equation is de-
creasing for v ≥ 0, so l is the unique nonnegative real solu-
tion and

Pn
jp1v

2jpj ≥ 1 implies v ≤ l and vice versa.
The definition of A now simplifies to

A p
Xn

jp1

jpjl
2j:

It is obvious that l p 1 if and only if R0 p
Pn

jp1pj p 1.
Note that T is not defined when l p 1. We suggest that
it would be natural to define T for l p 1 by taking a limit
as p0 p (p00, ::: , p0n21) converges to p p (p0, ::: , pn21) in
such a way that R0(p0) ( 1. However, it has not been clear
that the limit exists or is well defined. One consequence of
theorem 1 below is that the limit indeed exists and is inde-
pendent of the precise form of p0.
Results

Mathematical Result

The mathematical relationship between the three different
methods for estimating generation time is analyzed. The re-
sulting mathematical proof makes repeated use of Jensen’s
inequality (Jensen 1906), which is related to the definition
of a convex function; the proof of theorem 1 is presented in
the appendix. The proof generates a theorem that holds for
all Leslie matrix parameterizations of the three generation
time definitions, A, m, and T. The theorem shows that the
magnitudes of the estimates of the three generation time
measures follow a strict pattern that is given by the popula-
tion growth rate (l).
THEOREM 1. If l 1 1, then

A ≤ T ≤ m,

and if l ! 1, then

A ≥ T ≥ m:

If l p 1, then T can be well defined as a limit as
l → 1, and when doing so

A p T p m:

In plain words, in a growing population, method A pro-
duces the lowest estimate of generation time, followed by
T and m. In a declining population, A gives the highest es-
timate of generation time, and T and m produce gradually
lower estimates.When the population is stable, all threemeth-
ods produce identical measures of generation time. The re-
lation A ≤ m if and only if l 1 1 is intuitive, since estimate
A takes the population age distribution into account (by scal-
ing with population growth rate, l2j) and in a growing pop-
ulation the proportion of young individuals will be relatively
larger than the proportion of older individuals, producing
a lower generation time. By contrast, the mother-centered
method m does not compensate for the distribution of age
classes in the population because it focuses solely on the av-
erage age of mothers at birth over their lifetime.
Fecundity and Survival Functions

To illustrate these mathematical results and their poten-
tial biological importance, we collected some simplified and
some biologically motivated classic survival and fecundity
functions (Bielby et al. 2007; Fujiwara and Diaz-Lopez 2017)
and parametrized the Leslie matrix with them. We elabo-
rated four different shapes of the fecundity functions f(t),
t ≥ 0 (fig. 1), here described in continuous time because it
is natural to define fecundity and survival functions for all
times and not only integer-valued time points. One is age
independent, and thus fecundity is constant: b(t) p g. The
second function represents a case with delayed maturity, that
is, no offspring during the first years until a given age ofma-
turity and thereafter constant fecundity (an abrupt fecun-
dity function). We also apply one exponentially decreasing
and one gradually increasing fecundity function:

b(t) p ge2kt ð2Þ
and

b(t) p g(12 e2kt)
3
: ð3Þ

Function (3) starts at zero at age t p 0 and then gradually
increases with rate k (the rate of increase toward full ma-
turity) to very close to g (badult p g, the steady-state fecundity
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of an adult). Bymanipulation of the exact values of k and g,
these functions can represent a multitude of life histories. For
example, by function (3) we obtain a K-strategist, pinniped-
style fecundity function with g p k p 0:5, as illustrated
in figure 1.
Three examples of survival functions S(t) were also im-

plemented. But first let us consider common terms that are
inconsistently defined across authors and disciplines: haz-
ard rate, mortality rate, and survival rate. The survival rate
at age j, where j ≥ 0 is an integer, is taken to be the proba-
bility that an individual of age j2 1 survives to the age of j
(i.e., the survival rate at time j is simply the element sj of the
Leslie matrix). The mortality rate is then 1 minus the sur-
vival rate, 12 sj. These interpretations are the most com-
mon in applied biology, whereas in mathematics the term
“rate”would typically not be used for a quantity that is dis-
crete in nature. The term “hazard rate”will in the following
be taken tomean themortality in continuous time.Writing
h(t) for the hazard rate at time t, this becomes

h(t) p 2
S0(t)
S(t)

:

Conversely, this means for survival rate sj that

sj p
S( j)

S( j2 1)
p e2

Ð j

j21
h(t) dt:
If the hazard rate is small, then

12 sj ≈ h( j),

(i.e., the hazard rate and the mortality rate are close to
equal).
The first two examples of survival functions are

S(t) p e2a ebt21ð Þ ð4Þ
and

S(t) p e2at: ð5Þ
These correspond to an exponentially increasing hazard rate,
h(t) p abebt , and a constant hazard rate over age, h(t) p
a, respectively. Hence, the first of these survival functions
corresponds to senescence (i.e., increased mortality risk with
age). For a population with constant hazard rate a, the yearly
survival probability is s p e2a or, equivalently,a p 2 log(s).

The third survival function investigated is

S(t) p e2ate2b(12e2rt ), ð6Þ
which corresponds to high mortality in juvenile age classes,
after which the hazard rate gradually decreases and con-
verges to a constant value at high age. This type of pattern
is seen in many K-strategists, such as marine mammals,
humans, and long-lived plants. The corresponding hazard
Figure 1: The different fecundity functions used to illustrate variation in estimates of generation time in figures 3–7.
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rate is a1 bre2rt . The hazard rates associated with these
survival functions are illustrated in figure 2.
In the following, we elaborate different combinations and

parameter values of these functions to illustrate how much
the corresponding estimates of generation time can vary
(figs. 3–7).
Estimating Generation Time for Major Life History Types

Here, we calculate the generation time with the three meth-
ods A, m, and T for different combinations of survival and
fecundity, and for each combination the resulting popula-
tion growth rate l is noted. We first give a case where sur-
vival does not vary over age but is kept at 0.8 throughout
life, and only the age-independent fecundity is increased
stepwise, from 0.1 to 0.5, to obtain a range of matrices with
different population growth rates (fig. 3a, x-axis). Here, the
estimate of generation timem remains constant at 4.77 across
all parameterizations (fig. 3a); this illustrates that the mother-
centered estimate m does not respond to the increasing pop-
ulation growth rate, as long as the survival rate is constant
across age classes and fecundity is evenly distributed over
life, because average age at birth from themothers perspec-
tive remains the same. On the other hand, the population-
level generation timeA declineswith increasing population
growth rate, since A depends on the population growth rate
(i.e., at higher population growth rates we have more young
mothers in the population, which leads to a lower population-
level generation time; fig. 3a). The estimate T is always
intermediate.
However, if instead fecundity is kept constant, bj p g p

0:5, across age classes and only survival is adjusted to pro-
duce different growth rates, themother-centred generation
time estimate m increases (since now a mother lives longer
and gives birth to more offspring at later age). Instead, the
population-based estimate A is constant at 2.96 years across
all population growth rates (fig. 3b). This result follows be-
cause the increasing average age of mothers at birth is coun-
teracted at the population level by the steeper age structure
in the growing population in estimate A; in this special case,
the two forces exactly counterbalance each other. The general
pattern is that generation time A is always smaller than m

at positive population growth rates and typically declining
with population growth rate for biologically realistic life his-
tories (figs. 3–7). Figure 3a and figure 3b provide a baseline in
the following discussion and show how different the mother-
based generation time and the population-level generation
time respond to the change in population age structure that
comes with increasing growth rates. In the following, we study
how a range of different interesting age dependencies in the
demographic rates influences generation time.
Next, the age-dependent, gradually increasing fecundity

function (eq. [3]) is explored, and the survival rate is kept
constant (fig. 4a, 4b). The shape of the age-dependent
Figure 2: Hazard rates used to illustrate variation in estimates of generation time in figures 3–7.
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fecundity function was varied in two different ways, first
by manipulation of the adult fecundity g (eq. [3]; fig. 4a) and
second by changing the age at sexual maturation k (eq. [3];
fig. 4b). The resulting pattern of generation time estimates
in the first case resembles figure 3a and is explained in the
same way: the mother-based average generation time m is
not influenced by population growth rate when the fecun-
dity function over age maintains its shape. However, when
age at sexual maturation k is decreased to generate the higher
population growth rates, all measures of generation time
decline rapidly (fig. 4b).
In figure 5a, the age-dependent fecundity function (eq. [3])

is maintained the same in all calculations, and only the pat-
tern of survival is changed. By increasing survival symmet-
rically for all age classes (fig. 5a) we get an almost identical
pattern in generation time estimates as in figure 3b (again,
themother-based estimate m produces a greater generation
time when survival increases, but this is counterbalanced by
the younger age structure reflected in the population-based
generation time estimate A). Next, we tweaked the fecun-
dity function to illustrate a large difference among gener-
ation time estimates for a theoretical life history with repro-
duction only very early and very late in life (fig. 5b). When
reproduction is distributed in this skewed way over a life-
time, the estimates of generation time produce results dif-
fering widely, by up to 10 years for the same data (i.e., for
the same population growth rate in the graphs). Again, m
does not respond to increasing growth rates, since the
distribution of birth over life is kept constant, whereas
the population-based generation time A declines sharply,
reflecting the younger age structure in a growing population
(fig. 5b).
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Figure 3: Estimates of generation time for life histories with con-
stant survival and constant fecundity across age classes. For each com-
bination of survival and fecundity values, the generation time (y-axis)
is calculated with the three different methods (A, m, and T ), and the
resulting population growth rate is given on the x-axis. The life histo-
ries plotted in a all have a survival rate of 0.8 while the average age-
independent fecundity is gradually increased from 0.1 to 0.5, thereby
giving rise to a range of growth rates for these hypothetical life histo-
ries. In b, fecundity is kept constant at 0.5 for all life histories plotted
while the survival rate is gradually increased from 0.5 to 0.8 to obtain
the range of growth rates.
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Figure 4: Measures of generation time for life histories with age-
dependent, gradually increasing fecundity (fecundity function given
by (3), illustrated in fig. 1). The survival rate is kept age independent,
that is, constant at a p 0:8 in both graphs. In a, fecundity values are
derived with a fixed value on the rate of maturation k p 0:4, and the
adult fecundity g is varied between 0.3 and 2.0 in order to obtain the
different growth rates l. In b, we have instead a fixed g p 0:7, and k
is varied between 0.15 and 0.6.
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When instead survival rates aremade age dependent, we
have senescence. If that type of survival function is kept con-
stant across runs and only fecundity is varied, generation
time measures are not affected much and figure 6a is sim-
ilar to figure 3a. When instead the degree of senescence
itself is manipulated, we can obtain a pattern where the
population-based generation time also increases with the
population growth rate (fig. 6b). This pattern arises be-
cause, as the degree of senescence declines (going from left
to right in the graph), the proportion of older individuals
in the population also increases, causing all measures of
generation time to increase (fig. 6b, right-hand side).
Figures 4–6 focus on various cases of life histories with

early maturation, different reproductive outputs, and dif-
ferent survival rates, whereas figure 7 illustrates life histo-
ries with delayed maturation. All functions in figures 1 and
2 were investigated, although results are not illustrated be-
cause themain patterns described abovewere also repeated
when a more abrupt function for maturation was applied.
We note that in some cases the three measures of genera-
tion time differ very little, whereas in other cases the differ-
ences are quite large. The general patterns depend on how
the population age structure changes with growth rate to
influence A.
We usedn p 20 as the number of age classes infigures 3–

6, which is sufficient to theoretically illustrate the phe-
nomena that can occur, but this needs to be adjusted to the
maximum life span of every study species. In figure 7, n p 40
is the number of age classes, which is the longevity of a
ringed seal.
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Figure 5: In a we again use the age-dependent fecundity function
(3) with parameters kept fixed at g p 1:2 and k p 0:3. Instead, pop-
ulation growth rate varies as the age-independent survival rate a

varies between 0.6 and 0.9. In b, a theoretical life history with extreme
difference between themeasures of generation time is shown. (Constant
survival rate at 1, reproduction only at the ages of 1 and 20 years and
f 1 p f 20 p b, and l varies as b ranges from 0.01 to 1.3.)
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Figure 6: Here, the fecundity g is constant over time in both plots,
and survival rates are age dependent and declining with age, as given
by Sj p e2a(ebj21), corresponding to senescence (yellow curve in fig. 2,
“exponentially decreasing to constant”). In a, this survival function is
kept fixed with a p 0:25 and b p 0:3. The population growth rate
l is varied by having offspring numbers g across hypothetical pop-
ulations between 0.15 and 0.4. In b, we instead keep the fecundity g
fixed at 0.3, while the shape of the survival function is varied as a
varies between 0.1 and 0.5 and b is fixed at 0.35. Thus, the degree
of senescence declines going from left to right in the graph, produc-
ing a gradually older age distribution in the populations and thus
also a higher generation time for the population-based estimate A.
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The Ringed Seal: A Case Study

Consider the ringed seal (Phoca hispida), which is found
throughout the polar Arctic, as a concrete example of the
consequences of applying different estimates of generation
time. The ringed seal is an extreme K-strategist with low
reproduction rate and high survival. Female ringed seals give
birth to, at most, one pup annually, and age at first partu-
rition is about 5 years (McLaren 1958; Smith 1973; Fedoseev
1975; Smith and Hammill 1981; Holst and Stirling 2002).
First-year survival (s1) is often about 0.5, annual subadult
survival (s2, s3, s4) is about 0.9, and annual adult survival
(s5, ::: , sn) is often estimated to about 0.95. These values re-
sult in an exponential rate of population growth (l) at 1.1,
a growth rate close to the maximum growth rate observed
for this and similar pinnipeds under favorable conditions
(Harkonen et al. 2002; Harding et al. 2007). Lower values
of population growth rates are common and often caused
by food limitation, infectious diseases, and other disturbances
(Harding et al. 2002, 2007; Silva et al. 2021). Poor nutritive
condition influences a suite of changes in life history traits, fol-
lowing a typical sequence where pup survival is lowered first,
followed by increased age at first reproduction of females, in-
creased subadult mortality, and declining adult fertility; adult
mortality is often the last parameter to be affected (Kjell-
qvist et al. 1995). Figure 7 illustrates how the three measures
of generation time are affected by changes in these life his-
tory parameters. Here, survival probabilities are modeled
by one of the standard functions given by Fujiwara andDiaz-
Lopez (2017) closely resembling the survival functions for
the ringed seal. Thus, the generation time varies from 14 to
22 years according to measure A depending on whether life
history values are sampled under exponential growth or de-
cline. The estimated generation time depends onwhether the
life history responds to better conditions with improved re-
production (fig. 7a) or increased survival rate (fig. 7b). The
mother-based estimator m does not change at all when re-
production is increased over all age classes (fig. 7a), whereas
it increases as female survival is improved (fig. 7b).
Discussion

We focused on three commonly used approaches for esti-
mating generation time represented by the definitions of T,
m, and A. We found that the choice of method has signifi-
cant consequences for the resulting estimate (of up to several
years) and that estimates also depend on the species’ life his-
tory type. Furthermore, our results call for attention in the
selection of demographic data from a given population, since
generation time estimates depend on the population growth
rate at the time of collection.
The general connection between generation time and pop-

ulation growth may not be immediately intuitive, but it is
central to the dynamics displayed by the three measures of
generation time we have considered here. As our analyses
show, population growth can cause estimates of generation
time to increase or decrease, depending on the pattern of
age-specific fecundity and mortality rates giving rise to pop-
ulation growth. At the most general level, changes in popula-
tion growth influence generation time because they change
the age distribution of mothers, as is reflected in measures
A and T, or the distribution of differences in age between
mothers and daughters, as in estimate m. But population
growth and generation time do not display a simple corre-
lation in terms of their effect on generation time. For exam-
ple, when population growth rate is increased by increasing
the fecundity alone but symmetrically over all age classes,
the mother-based estimate m is unaffected, since the average
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Figure 7: Measures of generation time of a pinniped-type life his-
tory, with delayed maturation; the fecundity is zero until the age of
reproduction, where it increases to the constant g (fig. 1, “abruptly
increasing”). The survival probabilities reflect higher mortality at
young ages, which then decreases to a small constant a (for the cor-
responding hazard rate, see fig. 2, “exp. decr to constant”). This choice
of fecundity and survival functions reflects the life history of a pinni-
ped and is here parameterized for the ringed seal (Phoca hispida). In
a, a p 0:05, b p 1:2, and r p 0:7, and l varies as a function of g,
ranging from 0.1 to 0.5. In b, instead b p 0:9, r p 0:7, and g p 0:4,
and a ranging from 0.2 to 0.02. The life histories in this figure span
40 years, which is the maximum life span of ringed seals.
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age at birth for an individual mother remains the same.
By contrast, if growth is increased by changing survival rate
alone, then in fact m may increase (each female becomes
older and also has a chance to breed at later age classes),
whileAmay decrease, since the population-based estimate
A also captures the younger age structure in a rapidly in-
creasing population. Thus, the varied influences from life
history arise because of the influence (A and T) or lack of
influence (m) of population growth on the age distribution
used by each estimator. In general, the effects of population
growth on generation time are very dependent on the form
of the survival and fecundity functions and their parameters
(figs. 1, 2), and these will influence the dependence of gen-
eration time on population growth rate as well as the be-
havior of the different estimators of generation time.
The generation time estimate A describes the situation

at the population level, taking the current population age
structure into account, and is most accurate to use in ap-
plications of conservation biology and evolution. However,
one can ask whether there are situations where m is pre-
ferred over A. One case could be when studying individual
reproductive schedules and how they change over time. For
example, in pinnipeds, years with low food availability also
cause delayed age at sexual maturity and year skipping in
adult females; this will influence the mother-based gen-
eration time. A general point is perhaps that the mother-
based definition m is the easiest to understand intuitively
and also to calculate, whereas A and T both require some
more reflection and matrix manipulations. Also, in prac-
tice the coefficients of the Leslie matrix have to be esti-
mated, for example, by following a sufficiently large number
of females through their life span. These estimates then of
course come with a variance, which causes variance in the
estimates of m, A, and T. It could be that the variance of
A is typically higher than the variance of m, as there is one
more estimated parameter (namely, l) in the formula for
A than in the formula for m. It would be interesting to see
whether this is actually true for a reasonable model for the
probability distribution of the observed data.
We suggest that methodA should be themeasure of choice

for general use, since this estimate is based on the age dif-
ference between an average individual and her mother, which
is the mean time between genetic recombination events and
is hence themost relevantmeasure from a phylogenetic stand-
point when considering the divergence time among species.
For example, consider a population where all individuals
survive until the age of 3 and then die andwhere the fecun-
dity is 1 for 1- and 3-year-olds and 0 for individuals of age 2.
Such a population will be exponentially increasing with a
stationary age structure, for which there are more than twice
asmany 1-year-olds as 3-year-olds. Hence, themean of age
of an individual’s mother will be less than 5/3, which is re-
flected by A, whereas for the estimator m it equals 2. For spe-
cies that are K-strategists, such as whales or seals, it might be
the case that the population growth rate is typically close to
1 over evolutionary timescales. However, for a species where
population growth is typically high during times between
collapses (r-strategists such as rodents), the difference might
be large, and it is important to use the most relevant method.
Implications for Phylogenetics

In recent years, there has been increased appreciation of the
linkages between life history traits, generation time, and ge-
nome evolution. The generation timehypothesis, which states
that variation in rates of molecular evolution over time and
across lineages can be expected as generation time varies,
has been a staple of molecular evolution for decades (Sarich
andWilson 1973; Easteal 1985; Wu and Li 1985). More re-
cently, increased genome data have revealed dramatic signa-
tures of generation time, effective population size, and life
history traits on genomic traits, such as genome size, GC
content, and rates of evolution (Romiguier et al. 2010; Fi-
guet et al. 2016). The results presented here suggest that in-
creased attention to variables influencing generation time
is warranted, particularly given the increased detail withwhich
we can now estimate changes in population size and growth
through time (Li andDurbin 2011; Bakker et al. 2022) aswell
as sex differences in germline mutation rates per generation
(Kong et al. 2012; Gao et al. 2016). Estimating divergence
times, effective population sizes, and population dynamics be-
tween species is critically dependent on accurate estimates of
generation time (Stoffel et al. 2018; Bakker et al. 2022), yet
the connections betweenpopulation dynamics and generation
time have been little explored in the context of molecular dat-
ing. For example, more work is needed to explore the effective
generation time of a phylogenetic lineage whose population
growth varies over time. More detailed models of generation
time will better serve the flood of genome data that allows in-
creasingly precise connections between molecular rates, ge-
nome characteristics, and population and life history dynam-
ics (Nadachowska-Brzyska et al. 2015; Wu et al. 2021).
Estimates of divergence times of species are ultimately

based on estimates of generation times and effective popu-
lation sizes. However, such estimates are often based on life
history data from contemporary populations, which can be
under transient phases of growth. For example, estimated gen-
eration times for minke whales (Balaenoptera acutorostrata)
range between 7 years (Skaug 2001) and 17 years (Kishino
et al. 1991), and these measures have been arbitrarily used
in estimates of divergence times of species (e.g., Pastene et al.
2007). Similarly, life history data from populations of hump-
back whales (Megaptera novaeangliae), where estimates of
generation time estimates range between 12 years (Chittle-
borough 1965) and 24 years (Pastene et al. 2007) among pop-
ulations, have been used for analyses of historical events



58 The American Naturalist
(Roman and Palumbi 2003; Jackson et al. 2009). Data from
current populations are commonly used in evolutionary ge-
netic analyses in most other species, including birds (Sæther
et al. 2005) and seals (Palo et al. 2003; Harkonen et al. 2005).
Implications for Conservation Biology

The conservation status of a species or population can be
evaluated according to an IUCN criterion for the magnitude
of population declinemeasured over (the longer of) 10 years
or three generations. Threat categories are critically endan-
gered (CR) for more than 90% decline in the given time
period, endangered (E) for more than 70% decline, and vul-
nerable (V) for more than 50% decline in three generations.
The IUCN also proposes the following stricter definition and
recommendation: “Generation length is the average age of
parents of the current cohort (i.e., newborn individuals in
the population). Generation length therefore reflects the
turnover rate of breeding individuals in a population. Gen-
eration length is greater than the age at first breeding and
less than the age of the oldest breeding individual, except in
taxa that breed only once. Where generation length varies
under threat, the more natural, i.e. pre-disturbance, gen-
eration length should be used” (see https://www.iucnredlist
.org/resources/categories-and-criteria, ver. 3.1). This defini-
tion is exactly the definition of A in the current study, and
thus our analysis support the IUCN’s recommendation in
the choice of method. However, our conclusion from the
analysis is the opposite when it comes to the parametrization
with demographic data. Declining populations often show
longer generation times, as we have illustrated for measure
A in theorem 1 and the figures (e.g., see the ringed seal exam-
ple in fig. 7a). Longer generation times lead to larger re-
corded declines in population size over time and thus give
a more accurate estimate of the threat to a vulnerable spe-
cies compared with “predisturbance” demography (which
is often characterized by higher reproductive rates and
shorter generation time). Thus, the precautionary principle
(Kriebel et al. 1981) would suggest the use of generation
time measure A parametrized with demographic data from
the contemporary declining population.
Conclusion

Three classical main approaches for estimating generation
time produce different estimates for the same life history
data. We provide a mathematical theorem showing the rel-
ative order of magnitude of the estimates, and we illustrate
the problem for many biologically realistic situations. It is
important to carefully select both method and the empirical
life history data for parametrization, since estimates of gen-
eration time can be biased by up to several years. Such errors
magnify if used in phylogenetic studies of time since common
ancestry and can also bias estimates of the population ex-
tinction risk of red-listed species. We propose one method
over the other two, which is population based and equiva-
lent to the average age of breeding females a given year, and
discuss how it shall be parameterized with demographic
data depending on research question.
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APPENDIX

Proof of Theorem 1 and Remarks

Recall the definitions of the three common methods for
estimating generation time, m, A, and T:

T p
logR0

log l
;

mp

Pn
jp1 jpjPn
jp1pj

;

Ap

Pn
jp1 jl

2jpjPn
jp1l

2jpj
;

where pj is the expected number of offspring a newborn
individual will have at age j, Rj is the expected total num-
ber of offspring an individual will have during her lifetime,
and l is the unique real eigenvalue of the Leslie matrix.

Since A differs from m by the weight l2j to term j, it is
obvious that A ≤ m for l 1 1 and the reverse when l ! 1
is also obvious. However, that T is sandwiched between
them is not at all obvious and has to the best of our knowl-
edge not been strictly proven before. To prove it, wewillmake
repeated use of Jensen’s inequality, which is a standard
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result of probability theory, stating that for any convex
function g and any random variable such that E[X] and
E[g(X)] both exist,

E[g(X)] ≥ g(E[X]):

Recall also that a function g is said to be convex if for any
x1, x2 and any a ∈ [0; 1], g(ax1 1 (12 a)x2) ≤ ag(x1)1
(12 a)g(x2). In particular, if g is twice differentiable, then g
is convex if and only if g 00(x) ≥ 0 for all x.

Let us first prove the relation between T and m. We will use
that logR0= logR

1=m
0 p m so that since T p logR0= log l,

it suffices to show that l ≥ R1=m
0 . For that, we use Jensen’s

inequality. Observe that for any number a 1 0, the func-
tion x → ax is convex, so for any random variable X, Jen-
sen’s inequality tells us that E[aX] ≥ aE[X]. Use this with X
being the random variable for which P(X p n2 j) p qj,
where qj p pj=R0, j p 1; ::: ; n, and a p R1=m

0 to get, on
observing that E[n2 X] p (1=R0)

P
jjpj p m so that

E[X=m] p n=m2 1,

Xn

jp1

pjR
(n2j)=m
0 p R0

Xn

jp1

qjR
(n2j)=m
0 p R0E[aX]

≥ R0aE[X] p Rn=m
0 :

Hence, with v p R1=m
0 , we have

vn 2
Xn

jp1

vn2jpj ≤ 0;

that is,

Xn

jp1

v2jpj ≥ 1;

from which we recall that it follows that l ≥ R1=m
0 . If l 1 1,

this gives

T p
logR0

log l
≤ logR0

logR1=m
0

p m:

For l ! 1, we have

T p
log(1=R0)
log(1=l)

≥ log(1=R0)

log(1=R1=m
0 )

p m:

To compare T with A, observe that 1 p
P

jl
2jpj p

R0

P
jl

n2jqj, that is,

R0 p
1Pn

jp1l
2jqj

p
1

E[e2ℓX]
;

where ℓ p log l and X is given by P(X p j) p qj.
Hence,

T p
2 logE[e2ℓX]

ℓ
:

With this notation we also have

A p
Xn

jp1

jl2jpj p

Pn
jp1jl

2jpjPn
jp1l

2jpj
p

E[Xe2ℓX]
E[e2ℓX]

:

It follows that if l 1 1 (i.e., ℓ 1 0), then T 2 A has the
same sign as

2E[e2ℓX] log E[e2ℓX]2 lE[Xe2ℓX];

which, on using Jensen’s inequality on the convex function
x → x log x and taking x p e2ℓX , is seen to be at least

2E[2ℓXe2ℓX]2 ℓE[Xe2ℓX] p 0:

For ℓ ! 0, take m p 2ℓ and observe that T 2 A has the
sign of

mE[XemX]2 E[emX] log E[emX];

which by an analogous argument is at most 0. This fin-
ishes the proof.

There are several remarks that are worthwhile to
make, outlined below.
Remarks

1. If all mothers produce offspring at a given fixed age
(i.e., f j 1 0 for only one j), then pj 1 0 for only that j;
in that case, l p p1=jj and it is easy to see that T p
A p m p j.

2. If pj is of the form pj p gqj (e.g., if the fecundity is
constantly equal to g and qj p Sj21), then m is trivially
independent of g, whereas clearly A is strictly decreasing
as l is strictly increasing in g.

3. If pj p gaj (e.g., with constant fecundity and con-
stant survival rate), then A is independent of a. To see
this, note that the Euler-Lotka equation in this case
reads

Xn

jp1

� a
v

�j

p
1
g
:

Let c be the unique positive real solution to
P

jc j p 1=g.
Then l p a=c and hence

A p g
Xn

jp1

jl2jaj p g
Xn

jp1

jc j;

which is independent of a.
4. The difference between the three measures of genera-

tion time can sometimes be extreme. Take, for example,
p1 p pn p g and pj p 0 for all other j and let g grow.
Then m is constantly equal to (n1 1)=2. However,
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l=g → 1 as g → ∞. This follows from plugging in g and
(11 ϵ)g, respectively, in the characteristic equation and
finding that the left-hand side is negative in the former case
and positive in the latter for sufficiently large g. From this
we see thatT p log(2g)= log(g) plus a factor that converges
to 0 asg → ∞. This in turn also converges to 1. SinceT → 1,
theorem 1 implies that also A → 1 as g → ∞.

5. If one regards T, m, and A as functions of l, then
T 0(1) p (A0(1)1 m0(1))=2 regardless of the underlying
change of the pj’s. To prove that, consider the three mea-
sures as functions of l, which in turn converges to 1 as
p0j → pj, j p 1; ::: ; n, where

P
pj p 1. Write p0j p pj1

ϵrj, where we without loss of generality assume thatP
rj p 1 and consider ϵ → 0. Nowl changes as a function

of ϵ, but it is more convenient to turn the tables and regard
ϵ as a function of l. The two quantities relate asX

l2j(pj 1 ϵrj) p 1;

which gives

ϵ(l) p
12

P
l2jpjP

l2jrj
:

Differentiating we find after some algebra (using that
ϵ(1) p 0 and

P
pj p

P
rj p 1) that

ϵ0(1) p P1

and
ϵ00(1) p (2R1 2 1)P1 2 P2;

where P1 p
P

jpj, R1 p
P

jrj, and P2 p
P

j2pj. Now m

regarded as a function of l reads

m(l) p
P1 1 R1ϵ(l)
11 ϵ(l)

:

The chain rule then gives

m0(l) p
R1ϵ0(l)
11 ϵ(l)

2
(P1 1 R1ϵ(l))ϵ0(l)

(11 ϵ(l))2
;

which gives in turn

m0(1) p P1R1 2 P2
1:

Using the chain rule on

A(l) p
X

jl2j(pj 1 ϵ(l)rj)

leads to

A0(1) p P1R1 2 P2:
Next, writing l p 11 r and using Taylor’s formula twice,

T(l)p T(11 r) p
log(11 ϵ(r))
log(11 r)

p
log(11 P1r1 (1=2)((2R1 2 1)P1 2 P2)

log(11 r)
1 O(r2)

p P1 1

�
P1R1 2

1
2
P2
1 2

1
2
P2

�
r1 O(r2):

Since T(1) p P1, we can read off from this that

T 0(1) p P1R1 2
1
2
P 2

1 2
1
2
P2 p

m0(1)1 A0(1)
2

as desired. (Many of the above computations have been
completedwith symbol-manipulating software, such asMaple.)
Literature Cited

Bakker, V. J., M. E. Finkelstein, J. D’Elia, D. F. Doak, and S.
Kirkland. 2022. Genetically based demographic reconstructions
require careful consideration of generation time. Current Biol-
ogy 32:R356–R357. https://doi.org/10.1016/j.cub.2022.03.048.

Besenbacher, S., C. Hvilsom, T. Marques-Bonet, T. Mailund, and M. H.
Schierup. 2019. Direct estimation of mutations in great apes recon-
ciles phylogenetic dating. Nature Ecology and Evolution 3:286–292.

Bielby, J., G. M. Mace, O. R. Bininda-Emonds, M. Cardillo, J. L. Gittle-
man, K. E. Jones, C. D. Orme, and A. Purvis. 2007. The fast-slow
continuum in mammalian life history: an empirical reevaluation.
American Naturalist 169:748–757.

Bienvenu, F., and S. Legendre. 2015. A new approach to the genera-
tion time in matrix population model. American Naturalist 185:834–
843.

Bird, J. P., R. Martin, H. R. Akçakaya, J. Gilroy, I. J. Burfield, S. T.
Garnett, A. Symes, J. Taylor, Ç. H. Şekercioğlu, and S. H. M.
Butchart. 2020. Generation lengths of the world’s birds and their
implications for extinction risk. Conservation Biology 34:1252–
1261. https://doi.org/10.1111/cobi.13486.

Caswell, H. 2001. Matrix population models: construction, analysis,
and interpretation. 2nd ed. Sinauer, Sunderland, MA.

Chao, L., and D. E. Carr. 1993. The molecular clock and the relation-
ship between population size and generation time. Evolution 47:688–
690.

Charlesworth, B. 1994. Evolution in age-structured populations. 2nd
ed. Cambridge University Press, Cambridge.

Chittleborough, R. G. 1965. Dynamics of two populations of the hump-
back whale,Megaptera novaeangliae (Borowski). Australian Jour-
nal of Marine and Freshwater Research 16:33–128.

Coale, A. J. 1972. The growth and structure of human populations—a
mathematical investigation. Princeton University Press, Princeton, NJ.

Cooke, R. S. C., T. C. Gilbert, P. Riordan, and D. Mallon. 2018. Im-
proving generation length estimates for the IUCN Red List. PLoS
ONE 13:e0191770. https://doi.org/10.1371/journal.pone.0191770.

Cousins, K., and J. Cooper. 2000. The population biology of the
black-footed albatross in relation to mortality caused by long-line
fishing. Western Pacific Regional Fishery Management Council,
Honolulu, HI.

https://doi.org/10.1016/j.cub.2022.03.048
https://doi.org/10.1111/cobi.13486
https://doi.org/10.1371/journal.pone.0191770


Measures of Generation Time Revisited 61
Dierickx, E. G., A. J. Shultz, F. Sato, T. Hiraoka, and S. V. Edwards.
2015. Morphological and genomic comparisons of Hawaiian and
Japanese black-footed albatrosses (Phoebastria nigripes). Evolution-
ary Applications 8:662–678.

Dublin, L. I., and A. J. Lotka. 1925. On the true rate of natural in-
crease. Journal of the American Statistical Association 20:305–339.
https://doi.org/10.1080/01621459.1925.10503498.

Easteal, S. 1985. Generation time and the rate of molecular evolu-
tion. Molecular Biology and Evolution 2:450–453.

Fedoseev, G. A. 1975. Ecotypes of the ringed seal (Pusa hispida Schreber,
1777) and their reproductive capabilities. Rapports et procès-verbaux
des réunions Conseil International pour l’Exploration de la Mer
169:156–160.

Fenner, J. 2005. Cross-cultural estimation of the human generation
interval for use in genetics-based population divergence studies.
American Journal of Physical Anthropology 128:415–423.

Figuet, E., B. Nabholz, M. Bonneau, E. M. Carrio, K. Nadachowska-
Brzyska, H. Ellegren, and N. Galtier. 2016. Life history traits, pro-
tein evolution, and the nearly neutral theory in amniotes. Molecu-
lar Biology and Evolution 3:1517–1527.

Fujiwara, M., and J. B. Diaz-Lopez. 2017. Constructing stage-structured
matrix populationmodels from life tables: comparison ofmethods.
PeerJ 5:e3971.

Gao, Z.,M. J.Wyman, G. Sella, andM. Przeworski. 2016. Interpreting
the dependence of mutation rates on age and time. PLoS Biology
14:e1002355. https://doi.org/10.1371/journal.pbio.1002355.

Haccou, P., P. Jagers, and V. A. Vatutin. 2005. Branching processes:
variation, growth, and extinction of populations. Cambridge Uni-
versity Press, Cambridge.

Harding, K. C., T. Harkonen, and H. Caswell. 2002. The 2002 Eu-
ropean seal plague: epidemiology and population consequences.
Ecology Letters 5:727–732.

Harding, K. C., T. Harkonen, B. Helander, and O. Karlsson. 2007.
Status of Baltic grey seals: population assessment and risk anal-
ysis. Nammco Scientific Publications 6:33–56.

Harkonen, T., K. C.Harding, S. Goodman, andK. Johannesson. 2005.
Colonization history of the Baltic harbor seals: integrating archae-
ological, behavioural and genetic data. Marine Mammal Science
21:695–716.

Harkonen, T., K. C. Harding, andM. P. Heide-Jorgensen. 2002. Rates
of increase in age-structured populations: a lesson from the Euro-
pean harbour seal. Canadian Journal of Zoology 80:1498–1510.

Holst, M., and I. Stirling. 2002. A comparison of ringed seal (Phoca
hispida) biology on the east and west sides of the NorthWater Po-
lynya, Baffin Bay. Aquatic Mammals 28:221–230.

IUCN (International Union for Conservation of Nature). 2006. Guide-
lines for using the IUCNRed List categories and criteria. Version 6.2.
Prepared by the Standards and Petitions Working Group of the IUCN
SSC Biodiversity Assessments Sub-Committee in December 2006.

———. 2012. Red List categories and criteria. 2nd ed., version 3.1.
IUCN, Gland.

Jackson, J. A., C. E. Baker, M. Vant, D. J. Steel, L. Medrano-Gonzalez,
and S. R. Palumbi. 2009. Big and slow: phylogenetic estimates of
molecular evolution in baleen whales (suborder Mysticeti). Mo-
lecular Biology and Evolution 26:2427–2440.

Jagers, P. 1975. Branching processes with biological applications.
Wiley, London.

Jensen, J. L. W. V. 1906. Sur les fonctions convexes et les inégalités
entre les valeurs moyennes. Acta Mathematica 30:175–193. https://
doi.org/10.1007/BF02418571.
Jonasson, J. 2022. Generation times. https://doi.org/10.5281/zenodo
.6600015.

Kishino, H., H. Kato, F. Kasamatsu, and Y. Fujise. 1991. Detection
of heterogeneity and estimation of population characteristics from
the field survey data—1987/88 Japanese feasibility study of the South-
ern Hemisphere minke whales. Annals of the Institute of Statistical
Mathematics 43:435–453.

Kjellqvist, S. A., T. Haug, and T. Oritsland. 1995. Trends in age-
composition, growth and reproductive parameters of Barents Sea
harp seals, Phoca groenlandica. ICES Journal of Marine Science
52:197–208.

Kong, A., M. L. Frigge, G. Masson, S. Besenbacher, P. Sulem, G.
Magnusson, S. A. Gudjonsson, et al. 2012. Rate of de novo muta-
tions and the importance of father’s age to disease risk. Nature
488:471–475.

Kriebel, D., J. Tickner, P. Epstein, J. Lemons, R. Levins, E. L.
Loechler, M. Quinn, R. Rudel, T. Schettler, and M. Stoto. 1981.
The precautionary principle in environmental science. Canadian
Journal of Zoology 59:966–981. https://doi.org/10.1289/ehp.0110
9871.

Lande, R. 1988. Demographic models of the northern spotted owl
(Strix occidentalis caurina). Oecologica 75:601–607.

Laughlin, R. 1965. Capacity for increase: a useful population statistic.
Journal of Animal Ecology 34:77–91.

Lebreton, J. D. 1996. Demographic models for subdivided popula-
tions: the renewal equation approach. Theoretical Population Biol-
ogy 49:291–313.

Lehtonen, J., and R. Lanfear. 2014. Generation time, life history and
the substitution rate of neutral mutations. Biology Letters 10:2014
0801. https://doi.org/10.1098/rsbl.2014.0801.

Leslie, P. H. 1966. The intrinsic rate of increase and the overlap of
successive generations in a population of guillemots (Uria aalge
pont.). Journal of Animal Ecology 35:291–231.

Li, H., and R. Durbin. 2011. Inference of human population history
from individual whole-genome sequences. Nature 475:493–496.

Li,W. H., D. L. Ellsworth, J. Krushkal, B. H. J. Chang, andD. Hewett-
Emmet. 1996. Rates of nucleotide substitution in primates and
rodents and the generation-time effect hypothesis. Molecular Phylo-
genetics and Evolution 5:182–187.

Martin, A. P., and S. R. Palumbi. 1993. Body size, metabolic rate, gen-
eration time and the molecular clock. Proceedings of the National
Academy of Sciences of the USA 90:4097–4091.

McLaren, I. A. 1958. The biology of the ringed seal (Phoca hispida
Schreber) in the eastern Canadian arctic. Bulletin of the Fisheries
Research Board of Canada no. 118.

Mooers, A. O., and P. H. Harvey. 1994. Metabolic rate, generation
time and the rate ofmolecular evolution in birds. Molecular Phylo-
genetics and Evolution 3:344–350.

Nadachowska-Brzyska, K., C. Li, L. Smeds, G. J. Zhang, and H.
Ellegren. 2015. Temporal dynamics of avian populations during
Pleistocene revealed by whole-genome sequences. Current Biology
25:1375–1380.

Nei, M. 1987. Molecular evolutionary genetics. Columbia University
Press, New York.

Nei, M., T. Maruyama, and R. Chakraborty. 1975. The bottleneck ef-
fect and genetic variability in populations. Evolution 29:1–10. https://
doi.org/10.1111/j.1558-5646.1975.tb00807.x.

Nei, M., and N. Takahata. 1993. Effective population size, genetic
diversity, and coalescence time in subdivided populations. Jour-
nal of Molecular Evolution 37:240–244.

https://doi.org/10.1080/01621459.1925.10503498
https://doi.org/10.1371/journal.pbio.1002355
https://doi.org/10.1007/BF02418571
https://doi.org/10.1007/BF02418571
https://doi.org/10.5281/zenodo.6600015
https://doi.org/10.5281/zenodo.6600015
https://doi.org/10.1289/ehp.01109871
https://doi.org/10.1289/ehp.01109871
https://doi.org/10.1098/rsbl.2014.0801
https://doi.org/10.1111/j.1558-5646.1975.tb00807.x
https://doi.org/10.1111/j.1558-5646.1975.tb00807.x


62 The American Naturalist
Niel, C., and J. Lebreton. 2005. Using demographic invariants to de-
tect overharvested bird populations from incomplete data. Conser-
vation Biology 19:826–835.

Ohta, T., and M. Kimura. 1971. On the constancy of the evolutionary
rate of cistrons. Journal of Molecular Evolution 1:18–25.

Palo, J. U., H. Hyvärinen, E. Helle, H. S. Mäkinen, and R. Väinölä.
2003. Postglacial loss of microsatellite variation in the landlocked
Lake Saimaa ringed seal. Conservation Genetics 4:117–128.

Pastene, L. A.,M. Goto, N. Kanda, A. N. Zerbini, D. Kerem, K.Watanabe,
Y. Bessho, et al. 2007. Radiation and speciation of pelagic organisms
during periods of global warming: the case of the common minke
whale, Balaenoptera acutorostrata. Molecular Ecology 16:1481–1495.

Roman, J., and S. Palumbi. 2003. Whales before whaling in the North
Atlantic. Science 301:508–510.

Romiguier, J., V. Ranwez, E. J. P. Douzery, and N. Galtier. 2010.
Contrasting GC-content dynamics across 33 mammalian genomes:
relationship with life-history traits and chromosome sizes. Genome
Research 20:1001–1009.

Sæther, B. E., R. Lande, S. Engen, H.Weimerskirch, M. Lillegård, and
R. Altwegg. 2005. Generation time and temporal scaling of bird
population dynamics. Nature 436:99–102.

Sarich, V. M., and A. C. Wilson. 1973. Generation time and genomic
evolution in primates. Science 79:1144–1177.

Scally, A., and R. Durbin. 2012. Revising the human mutation rate:
implications for understanding human evolution. Nature Reviews
Genetics 13:745–753.

Silva, W. T. A. F., E. Bottagisio, T. Härkönen, A. Galatius, M. T.
Olsen, and K. C. Harding. 2021. Risk for overexploiting a seem-
ingly stable seal population: influence of multiple stressors and
hunting. Ecosphere 2:e03343. https://doi.org/10.1002/ecs2.3343.

Skaug, H. J. 2001. Allele-sharing methods for estimation of popula-
tion size. Biometrics 57:750–756.
Smith, T. G. 1973. Population dynamics of the ringed seal in the Ca-
nadian eastern Arctic. Bulletin of the Fisheries Research Board of
Canada no. 181.

Smith, T. G., and M. O. Hammill. 1981. Ecology of the ringed seal,
Phoca hispida, in its fast ice breeding habitat. Canadian Journal of
Zoology 59:966–981.

Staerk, J., D. A. Conde, V. Ronget, J. F. Lemaitre, J. M. Gaillard, and
F. Colchero. 2019. Performance of generation time approximations
for extinction risk assessments. Journal of Applied Ecology 56:1436–
1446.

Stoffel, M. A., E. Humble, A. J. Paijmans, K. Acevedo-Whitehouse,
B. L. Chilvers, B. Dickerson, F. Galimberti, et al. 2018. Demo-
graphic histories and genetic diversity across pinnipeds are
shaped by human exploitation, ecology and life-history. Nature
Communications 9:4836.

Taylor, J. L., J. P. G. Debost, and S. U. Morton. 2019. Paternal-age-
related de novo mutations and risk for five disorders. Nature Com-
munications 10:3043. https://doi.org/10.1038/s41467-019-11039
-6.

Weir, J. T., and D. Schluter. 2008. Calibrating the avian molecular
clock. Molecular Ecology 17:2321–2318. https://doi.org/10.1111/j
.1365-294X.2008.03742.x.

Wu, C. I., andW. H. Li. 1985. Evidence for higher rates of nucleotide
substitution in rodents than in man. Proceedings of the National
Academy of Sciences of the USA 82:1741–1745.

Wu, J., T. Yonezawa, and H. Kishino. 2021. Evolution of reproduc-
tive life history in mammals and the associated change of func-
tional constraints. Genes 12:740.
Associate Editor: Robin E. Snyder
Editor: Jennifer A. Lau
“Each heap, too, is covered with a deposit of earth and vegetable mould, of variable thickness, and in some cases, as at Frenchman’s Bay,
supporting a growth of forest trees, though these were nowhere of such size as to indicate that they had lived a century.” From “An Account
of Some Kjœkkenmœddings, or Shell-Heaps, in Maine and Massachusetts” by Jeffries Wyman (The American Naturalist, 1868, 1:561–584).

https://doi.org/10.1002/ecs2.3343
https://doi.org/10.1038/s41467-019-11039-6
https://doi.org/10.1038/s41467-019-11039-6
https://doi.org/10.1111/j.1365-294X.2008.03742.x
https://doi.org/10.1111/j.1365-294X.2008.03742.x

