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Abstract
In order for a system to stay operational, its components need maintenance. We consider two
stakeholders—a system operator and a maintenance workshop—and a contract governing
their joint activities. Components in the operating systems that are to be maintained are sent
to the maintenance workshop, which should perform all maintenance activities on time in
order to satisfy the contract. The maintained components are then sent back to be used in the
operating systems. Our modeling of this system-of-systems includes stocks of damaged and
repaired components, the workshop scheduling, and the planning of preventive maintenance
for the operating systems. Our modeling is based on a mixed-binary linear optimization
(MBLP) model of a preventive maintenance scheduling problem with so-called interval
costs over a finite and discretized time horizon. We generalize and extend this model with the
flow of components through the workshop, including the stocks of spare components. The
resulting scheduling model—a mixed-integer optimization (MILP) model—is then utilized
to optimize the main contract in a bi-objective setting: maximizing the availability of repaired
(or new) components and minimizing the costs of maintaining the operating systems over the
time horizon. We analyze the main contract and briefly discuss a turn-around time contract.
Our results concern the effect of our modeling on the levels of the stocks of components over
time, in particular minimizing the risk for lack of spare components.
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1 Introduction

While a system operates its components deteriorate and in order for the system to stay
operational, the components have to be maintained regularly in relation to their usage in the
system. When planning the maintenance for the system, the decisions to be made concern
when each of its components should be maintained (i.e., repaired or serviced) and what kind
of maintenance should then be performed, with respect to the operational schedule of the
system. So-called preventive maintenance (PM) can often be planned well in advance, while
corrective maintenance (CM) is done after a failure has occurred, which may come on very
short notice. On the other hand, an unexpected but necessary CM action may provide an
opportunity for PM actions to be be rescheduled, starting from the system’s current state.
While both PM and CM are aimed at restoring the components in order to put the system
back in an operational state, CM is often much more costly than PM, due to a longer system
down-time and also due to possible damages to other components caused by the failure. In
this research, we consider PM scheduling, while CM is implicitly included by an additional
cost which increases with the time between PM occasions. The increasing cost reflects the
increased risk of having to perform CM. See Yu and Strömberg (2021) for a model that uses
failure time distributions to model such additional costs.

We consider a setting with one system operator and onemaintenance workshop, which are
typically two separate stake-holders, and a contract governing their joint activities. Compo-
nents that are to be maintained are sent to a maintenance workshop that should schedule and
perform all maintenance activities while satisfying the contract, which may define conditions
on delivery dates for and/or requirements on the availability of components for the system
operator. The workshop’s ability to fulfill the contract is dependent on its capacity, in terms
of the number of parallel repair lines; the investment costs for additional repair lines should
thus be weighed against the cost of not being able to fulfill the contract at hand.

The original goal of the research leading to the results presented in this paper was to
investigate how different contracting forms affect the efficiency of maintenance activities,
the flow of components through the system-of-systems, as well as the availability of the
systems over time. The first contract modeled resembles one commonly used contract in
the aviation maintenance industry, i.e., a component repair turn-around time based contract.
Since the resulting mathematical model appeared to be computationally intractable we chose
to challenge and compare this contract’s performance with a contract aimed at regulating
the availability of repaired components. The corresponding mathematical model appeared
to be substantially more tractable, and also the solutions—in terms of resulting numbers of
repaired components on the stock—seem to be more robust in terms of ability to keep the
systems running.

We formulate a multi-objective optimization model of the following system-of-systems:
(i) scheduling the PM occasions for the components of the system(s) and (ii) scheduling the
repair activities in the maintenance workshop. The contract types analysed are (iii) a contract
aimed at regulating the availability of components and (iv) a component repair turn-around
time based contract. The objectives considered are (v) minimizing the preventive maintenance
costs for the system operator (i.e., set-up costs for the maintenance occasions as well as
component replacement costs which depend on the maintenance intervals), (vi) maximizing
the availability (to the system operator) of components repaired by the maintenance workshop,
and (vii) minimizing the penalty costs (paid by the maintenance workshop) for late or early
deliveries of repaired components.

123



Annals of Operations Research

The main contributions of this work are a mathematical model of the integration and
simultaneous scheduling of replacement and repair of components used in multiple systems,
mathematical modeling of contracting forms between stakeholders, and an analysis of these
contracts via a bi-objective optimization problem corresponding to each given contract.

The motivation behind this research lies in real-world applications. Any system that per-
forms some sort of operations and undergoes maintenance can be applied to our modeling;
some of numerous examples are railway and air traffic, and manufacturing machines in indus-
try (see, e.g., Robert et al., 2018; Verhoeff et al., 2015; Boliang et al., 2019; Papakostas et
al., 2010). The outcome of our modeling and computations—for a specific application and
instance—is a maintenance schedule, which takes into account the operational requirements
on and schedules for the systems, the maintenance requirements for the components of the
systems, and the capacity of the maintenance workshop.

The incentive for considering the tight integration of the maintenance planning for the
systems and the scheduling of the maintenance workshop is threefold. In the first place, it
provides a useful planning tool for the case when the workshop is actually integrated with the
operating systems (i.e., when there is only one stakeholder). However, also when the work-
shop is controlled by another stakeholder, our tightly integrated model will provide optimistic
estimates of achievable results which can be used as benchmarks for assessing current results.
Lastly, our integration enables an investigation of schedules resulting from different types of
contracts between the stakeholders as well as from different capacity levels of the workshop.
We also study the load level of the workshop for different capacity levels. Results from this
type of analysis can be used as decision support for the stakeholders/operations management
when setting up a contract as well as when making investment decisions.

Part of the model presented in this article (i.e., scheduling of PM activities) is based on the
preventive maintenance scheduling problem with interval costs (PMSPIC) model presented
in Gustavsson et al. (2014). The PMSPIC considers a system with multiple component types
and for which the costs for replacement/repair of components take into account the interval
between any two consecutive replacements/maintenance occasions; in Obradović (2021) we
generalize the PMSPIC to considering multiple individuals of each component type and such
that each individual may be placed in any of the systems. In this paper—in order to improve
the computational efficiency for our integrated scheduling problem—we utilize an extension
to multiple systems of the PMSPIC.

In order to reduce the probability of unexpected failures, which will reduce the need for
CM, we enforce the PM activities to be scheduled before the end of the respective component’s
expected life. We also take into account the operational schedules for the systems which yield
time windows in which the different maintenance activities may or must be performed.

An efficient way of generating the operational schedules (e.g., timetables) for the systems
considered is presented in Gavranis and Kozanidis (2015), where the availability of a fleet of
aircraft is maximized subject to requirements on the transport missions and on the mainte-
nance of the aircraft and their components. The results obtained include a tool for deciding
which aircraft to fly when and for how long, and at what times the aircraft may and/or must
undergo maintenance. The goal is to maximize the fleet availability over the planning horizon
while ensuring that the operational and maintenance requirements are met. We use methods
from that article to generate timetables used as input to our model.

The remainder of this article is organized as follows. In Sect. 2, we define the multi-system
PMSPIC (MS-PMSPIC), the structure of the maintenance workshop, the stock dynamics
modeling, and their integration with the operational demand on the systems. We define the
objectives associated with the two stake-holders, one on the system maintenance side and
one on the workshop side. In Sect. 3, we present our multi-objective modeling. Tests and
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Fig. 1 The operating systems and the maintenance workshop, with operational demand as input and scheduling
of component replacement and repair as output

results are presented in Sect. 4, and in Sect. 5 we draw conclusions and present ideas for
future research and continuation of the work presented.

2 Definition of themaintenance scheduling problem

The problem studied in this article is described as follows. A number of systems are oper-
ating to fulfill a common production demand; their operating schedules are assumed to be
predefined, resulting in certain time-windows during which maintenance of the systems’
components may be performed. While the systems operate their components degrade, which
lead to a requirement for maintenance (i.e., service, replacement, or repair of the compo-
nents of the systems). At a maintenance occasion, one or several components are taken out
of the system, sent to the maintenance workshop for repair, and returned back to the stock
of repaired components, ready to be used again (by any of the systems). The components
that are sent for repair are instantly replaced by components that are currently on the the
stock of repaired components. Hence, there is a circulating flow of individual components,
being used and degraded, replaced, repaired or serviced, and then put back in a system to
be used again. This structure of the system-of-systems is illustrated in Fig. 1. We model
this system-of-systems such that (i) the operating systems (if possible) should be preserved
operational and (ii) the capacity of the maintenance workshop should be respected. Unlike
in Obradović (2021), we do not keep track of individual components, the reason being that
the flow of individual components leads to a computational intractability of the model for
larger instance sizes (see Sect. 4.2.1). To enable a so-called time-indexed modeling (e.g., van
den Akker et al., 2000) time is discretized. Depending on the length of the planning horizon,
components will undergo repair different many times.
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We begin by making a formal definition of the MS-PMSPIC—which models the replace-
ment scheduling for the components of the systems considered—along with a mixed-binary
linear optimization (MBLP) formulation. Then, the scheduling of the maintenance work-
shop is modeled using mixed-integer linear optimization (MILP). These systems are then
integrated through the dynamics of the stocks of components waiting to be maintained and
those that have finished maintenance and are available to be used again by the systems. The
section is concluded with a summary of the combined MILP model.

2.1 Themulti-system preventive maintenance scheduling problemwith interval
costs

The multi-system preventive maintenance scheduling problem with interval costs (MS-
PMSPIC) is defined as follows; cf. (Gustavsson et al., 2014, Sec. 5).

Definition 1 (MS-PMSPIC) Consider K systems k ∈ K := {1, . . . , K } with component
types i ∈ I := {1, . . . , I } with Ji as the total number of individual components of type i , and
a set T := {1, . . . , T } of time steps at which maintenance of the systems can be performed,
where T represents the planning horizon. A PM schedule consists of a set of scheduled
replacement times in T for each system k and component type i . A maintenance occasion
for system k at time t generates the maintenance occasion cost dkt . If PM of a component of
type i in system k is scheduled at the times s ∈ T ∪ {0} and t ∈ {s + 1, . . . , T + 1}, but
not in the (possibly empty) time interval {s + 1, . . . , t − 1}, then the maintenance interval,
denoted (s, t), generates the interval cost cist . For each component type i ∈ I no maintenance
interval should be longer than t̄i . Find a PM schedule that minimizes the sum of maintenance
occasion and interval costs. ��

The special case of the MS-PMSPIC with K = 1 coincides with the PMSPIC, which
according to Gustavsson et al. (2014) (see also Arkin et al., 1989; Boctor et al., 2004) is NP-
hard,1 implying that the MS-PMSPIC is NP-hard. This means that the optimal scheduling
of the PM occasions for the components of the systems is a computationally demanding
problem.

We next model the MS-PMSPIC as a linear optimization problem. With the decision
variables being defined as

xikst =

⎧
⎪⎨

⎪⎩

1, if a component of type i in system k recieves

PM at times s and t, but not in-between,

0, otherwise,

i ∈ I, k ∈ K,

0 ≤ s < t ≤ T + 1,

zkt =
{

1, if maintenance of system k occurs at time t,

0, otherwise,
k ∈ K, t ∈ T ,

1 A decision problem is in NP if the time to solve the model (in the worst case) is exponential as a function
of the instance size (i.e., number of variables and/or constraints). A decision problem is NP-hard if any NP
problem can be reduced to it in polynomial time. A decision problem is NP-complete if it is in NP and NP-hard
(Conforti et al., 2014, Ch. 1.3)
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the feasible set of the MS-PMSPIC is modeled by the constraints

T+1∑

r=1

xik0r = 1, i ∈ I, k ∈ K, (1a)

t−1∑

s=0

xikst =
T+1∑

r=t+1

xiktr , i ∈ I, t ∈ T , k ∈ K, (1b)

t−1∑

s=0

xikst ≤ zkt , i ∈ I, t ∈ T , k ∈ K, (1c)

xikst = 0, t̄i ≤ s + t̄i < t ≤ T + 1, i ∈ I, k ∈ K. (1d)

For each system k and component type i , a maintenance interval starts at time 0, which is
modeled by (1a), while the constraints (1b) ensure that the same number (i.e., 0 or 1) of
maintenance intervals ends and starts at time t . The constraints (1c) model that if a mainte-
nance interval of component type i in system k ends at time t , then maintenance of system k
must occur at time t . The constraints (1d) prevent any maintenance interval for component
type i ∈ I from being longer than t̄i ≤ T , which prevents from having to perform corrective
maintenance.

2.2 Themaintenance workshop scheduling problem

Components that should be maintained are sent to themaintenance workshop, which contains
a number of (identical) repair lines for component repair, each of which has a repair capacity
of one unit while each component repair requires one unit of this capacity per time step
during a prespecified and consecutive number of time steps. Even though the repair of a
component is done in consecutive time steps, it is possible that the resulting schedule from
our model is such that the repair is done on more than one repair line. Therefore, we do
not guarantee non-preemption. When a component arrives at the workshop it is available for
repair. Once repaired, the component is returned back to the system operator. This problem is
identified as an identical parallel machines scheduling problem (IPMSP; commonly denoted
P‖ ∑

C j ); see Brucker and Knust (2012, Ch. 1.2.2). A solution to the maintenance workshop
scheduling problem specifies at which time each component arriving at the workshop should
start maintenance.

Definition 2 (IPMSP) Consider a set L := {1, . . . , L} of identical component repair
machines and the (individual) components j ∈ Ji of types i ∈ I that arrive at the workshop.
Each component has a repair time pi > 0. At most L ≥ 1 machines can operate simultane-
ously. Find a schedule for the maintenance workshop such that a given objective is optimized.

��
The IPMSP with a (weighted) sum objective is polynomially solvable (Lawler et al., 1993,

Ch. 8.0), whereas its version with a minimax, i.e., makespan, objective is NP-hard (Brucker
& Knust, 2012, Ch. 2.1).

To model the IPMSP as a MILP, define for each i ∈ I and t ∈ T the variables:

uit ∈ Z+ : the number of components of type i starting maintenance at time t;
�t ∈ Z+ : the number of active parallel machines at time t .
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The number �t of active parallel machines at time t should fulfill the inequalities

0 ≤ �t = �t−1 +
∑

i∈I

(
uit − uit−pi

)
≤ L, t ∈ T , (2)

where �0 and uit , t ≤ 0, are initial (fixed) values that constitute input to the model; see (6)
for details. The constraints (2) state that the number of active parallel machines at time t
equals the number of active machines in the previous time step (i.e., t −1) plus the difference
between the numbers of components starting and finishing repair (i.e., the number of parallel
machines being activated and deactivated, respectively) at time step t ; they also state that the
number of activated machines at any time step must be in the interval [0, L]. In our study,
we also vary the number, L , of parallel machines, to enable decision support for capacity
investments in the maintenance workshop.

To connect the mathematical models of the IPMSP and the MS-PMSPIC we next introduce
the stock dynamics modeling.

2.3 The stock dynamics

When a component of type i is taken out of system k it is sent—with no time delay—to the
stock of damaged components, where it stays until its scheduled repair. The transport time
between the stock of damaged components and the maintenance workshop is denoted δia .
Upon being repaired, it goes to the stock of repaired (i.e., as good as new) components—
with a transport time denoted δib—where it is kept until its scheduled time for placement in
a(nother) system k ∈ K. All transport times are represented by non-negative integers.

The integration of the models of the MS-PMSPIC and the IPMSP requires the modeling of
the two stocks of damaged and repaired components, respectively. We introduce the following
variables for all i ∈ I:

ait (bit ) : the number of individuals of component type i on the stock of damaged

(repaired) components at time t ∈ T ∪ {0};
αi
t (β i

t ) : the number of individuals of component of type i taken out of (placed in) any

of the systems k ∈ K at time t ∈ T .

The stock of damaged components is then modeled by the constraints

αi
t =

∑

k∈K

t−1∑

s=0

xikst , i ∈ I, t ∈ T , (3a)

ait = ait−1 + αi
t − uit+δia

≥ 0, i ∈ I, t ∈ {1 − δia, . . . , T + 1}. (3b)

The constraints (3a) connect the variables from the MS-PMSPIC with the stock: taking out
a component of type i from one (or, n ≥ 0) of the systems k ∈ K at time t yields the value of
αi
t = 1 (or, αi

t = n). The constraints (3b) provide the (non-negative) number of components
of type i at time t on the stock of damaged components. The stock level at time t depends
on the level in the previous time step t − 1, whether components are taken out of any system
k and placed on the stock at time step t , and whether they are starting maintenance at time
step t + δia . The variables ai0 and αi

t , t ∈ {1 − δia, . . . , 0}, comprise (fixed) input data, which
must fulfill the initialization constraints (6), below.
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The stock of repaired components is modeled analogously, as

β i
t =

∑

k∈K

T+1∑

r=t+1

xiktr , i ∈ I, t ∈ T , (4a)

bit = bit−1 − β i
t + ui

t−δib−pi
≥ bi , i ∈ I, t ∈ T ∪ {T + 1}, (4b)

The constraints (4a) connect the stock of repaired components with the MS-PMSPIC. Placing
a component of type i in one (or, in n ≥ 0) of the systems k ∈ K at time t , yields the value
β i
t = 1 (or, β i

t = n). The constraints (4b) keep track of the stock levels at time t which depend
on the level in the previous time step t − 1, the components taken out of the stock of repaired
components and placed in one of the systems k at time t , and the components arriving at the
stock of repaired components at time t (i.e., the number ui

t−δib−pi
of components of type i

starting maintenance at time t − δib − pi ). They also express that the stock level of repaired
components of type i may not go below the lower stock limit bi ≥ 0 at any point in time.
The variables bi0, β i

0, and uit , t ∈ {1 − δib − pi , . . . , 0} comprise (fixed) input data, which
must fulfill the initialization constraints (6), below.

The constraints (3)–(4) enable the control of the levels of the stocks/inventory of damaged
and repaired components, respectively, subject to relevant constraints.

2.4 Integration with the operational demand of the systems

What drives the need for maintenance of components, and constitutes the input to our mod-
eling, is the operational demand: We assume that operational schedules are given for the
systems k ∈ K such that the demand for operations can be fulfilled. For our maintenance
planning problem, these schedules are represented in terms of time intervals when the sys-
tem is either operating—at which times maintenance cannot be performed—or accessible for
maintenance. In other words, PM may not be scheduled while a system is operating. In the
case of railway systems; e.g., Lidén (2020), each train is assigned time slots when it should
operate (i.e., transport goods or passengers); hence, PM may be scheduled only in-between
these time slots. In the case of offshore wind turbine maintenance (e.g., Shaee et al., 2013),
the operational demand is fulfilled by wind energy production, while maintenance work can
be done only during time periods of not too harsh weather conditions. When planning any PM
occasion the (predicted or planned) operational schedules for the systems provide time win-
dows during which maintenance may be performed. As input to the integrated MS-PMSPIC
and IPMSP model, for all t ∈ T and all k ∈ K we thus let the parameters

zkt =
{

1, if PM is allowed to be scheduled for system k at time t,
0, otherwise,

and define upper limits on the variables representing maintenance occasions as

zkt ≤ zkt , t ∈ T , k ∈ K, (5)

the fulfilment of which implies that the time windows for PM are respected.

2.5 Boundary conditions

We next ensure that our system is properly initialized at t = 0 and that its state at the end of
the planning horizon is close enough to that at the beginning.
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2.5.1 Initialization

As an initialization of the model (1)–(5) at t = 0 for each component type i ∈ I, the
Ji individual components are distributed over the K systems, the stocks of damaged and
repaired components, and the workshop; the distribution should further fulfill the workshop
capacity as well as the requirements on the stock of repaired components. Hence, we set
fixed values (randomized, or according to the systems’ states at the respective time points)
to the variables ai0 := āi0, bi0 := b̄i0 ≥ bi , αi

r := ᾱi
r , r ∈ {−δia + 1, . . . , 0}, and uir := ūir ,

r ∈ {−δib − pi + 1, . . . , max{pi ; δia}}, i ∈ I, such that the equalities

Ji = K + āi0 + b̄i0 +
0∑

r=−δib−pi+1

ūir , i ∈ I, (6)

and the constraints (2)–(4), for the respective relevant indices, are fulfilled.

2.5.2 End of the planning period

Since our model is meant to be used as a planning and decision making tool, the model
(constraints and objectives) should ensure that the system-of-systems is in a controlled and
desired state at the end of the planning period. This means that the systems’ states should
then possess similar properties as in the beginning, such that when a new planning period
starts at the end of the previous one, the starting point is desirable. To ensure this, and to
eliminate possible boundary effects (such as, e.g., too high levels of damaged components),
we require that the levels of the stocks of repaired components are not (much) lower than in
the beginning of the planning period. We model this by the constraints

bit ≥ bi0 − μi , i ∈ I, t ∈ {T + 2 − s̄, . . . , T + 1}, (7)

where s̄ ≥ 1 is the number of time steps at the end of the planning period during which the
tolerance levels2 μi ≥ 0 are applied to component types i ∈ I.

2.6 The complete feasibility model of the system-of-systems

In summary, the set of feasible solutions to our maintenance scheduling problem is modeled
by (1)–(7) with binary requirements on the variables xikst and zkt and non-negative and integer
requirements on the variables uit , a

i
t , b

i
t , αi

t , β i
t , and �t , for all relevant values of the indices.

3 Contracts and optimization objectives

The turn-around time contract requires a measurement of the lateness/earliness of each indi-
vidual component, which calls for a modeling of individual components (for details, see
Obradović, 2021). Since our preliminary tests (see Sect. 4.2.1) indicated an increased model
complexity, which yields a computational intractability for larger instances, we choose to
adopt an availability contract.

2 For μi = 0, the requirement on the stock will likely increase over a few planning periods.
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3.1 Contract between the stakeholders

To model an turn-around time contract between the stakeholders, and its dependence on the
capacity level in the maintenance workshop, we define the objectives to (i) minimize the
maintenance cost for the system operator and (ii) minimize the penalty for late and early
deliveries of repaired components, which is paid by the maintenance workshop to the system
operator.

To model an availability contract between the stakeholders, we define the objectives (i)
(as defined above) and (iii) to maximize the availability of components on the stock of
repaired components (which can be interpreted as minimizing the risk for lack of repaired
components).

3.2 Optimization objectives

Below follows our detailed modeling of the three objectives defined in Sect. 3.1.

Minimizing costs for maintenance set-up and intervals Each maintenance occasion yields a
set-up/maintenance cost for the system operator. Besides this, there is a so-called interval cost
for each component type which is determined based on the length of the interval between any
two consecutive maintenance occasions. We assume that the interval cost is non-decreasing
with the length of the interval. The rationale behind this assumption that (i) the longer time
the component has been used for operations, the more costly will the maintenance be, and
(ii) it enables the enforcement of scheduling the maintenance at the latest at the end of
each individual component’s life (cf. (1d)). From the system operators’ point of view, the
objective is to minimize the total costs for maintenance during a pre-specified time period.
We formulate mathematically this objective as to

minimize
∑

k∈K

∑

t∈T
dt z

k
t +

∑

k∈K

∑

i∈I

T+1∑

t=1

t−1∑

s=0

cist x
ik
st , (8)

where the first sum represents the maintenance set-up costs and the second the interval costs.
Every maintenance occasion for the system k (i.e., when zkt = 1) generates a cost dt > 0
while every maintenance interval (s, t) for a component of type i in system k (i.e., when
xikst = 1) yields an interval cost cist > 0, which is such that cist ≥ cisr for all r ≥ t .

Minimizing the risk of exceeding the contracted turn-around times for component repair
When a component individual arrives at the workshop it is available for repair and assigned a
due date, at which the repair should be finished and the component be returned to the system
operator. Whenever a component is delivered before3 or after its due date, the maintenance
workshop has to pay a fee to the system operator. Modeling the ’turn-around time’ contract
requires variables defined corresponding to an individual component flow according to the
following. The variable xi jkst = 1 if individual j ∈ Ji of component type i ∈ I in system
k ∈ K receives PM at times s and t > s, but not in-between; otherwise xi jkst = 0. The variable
ui jt = 1 if individual j of component type i starts repair at time t ; otherwise ui jt = 0. The
variable α

i j
t = 1 if individual component j of type i is taken out of one of the systems k

at time t ; otherwise α
i j
t = 0. For details of the constraints corresponding to (1)–(7) for the

case of individual components, see Obradović (2021).

3 If the delivery of repaired components is desired to be on or close to the due date, a positive penalty for
early delivery is appropriate; otherwise this penalty can be set to zero.
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The turn-around time of an individual component (i, j) is defined as the time from when
it is taken out of one of the systems in K (i.e., a time t such that α

i j
t = 1) until it has

been repaired and is available for usage again in one of the systems (i.e., a time t such that
ui j
t−δib−pi

= 1). The total turn-around time, v
i j
tat, for component individual (i, j), j ∈ Ji ,

i ∈ I, over the planning period T , is thus computed as

v
i j
tat =

(
pi + δib

)
ui j0 +

T+1∑

t=1

((
t + δib + pi

)
ui jt − tαi j

t

)
, (9a)

where the term (δib+ pi )ui j0 is positive if component (i, j) is initially on the stock of damaged

components, and the equalities ui jT+1 = ai j0 − ui j0 + ∑
t∈T (α

i j
t − ui jt ) and α

i j
T+1 = 0 hold.

Letting ci jdelay > 0 and ci jearly ∈ (0, ci jdelay] denote the penalties for late and early, respec-
tively, delivery of a repaired component, this objective is expressed as to

minimize
∑

i∈I

∑

j∈Ji

(
ci jdelayv

i j
delay − ci jearlyv

i j
early

)
, (9b)

where v
i j
delay (vi jearly) denotes the total delay (earliness) for component (i, j) over the planning

period. These variables are due to the constraints

v
i j
early ≤ v

i j
tat − qi jdue

(

ai j0 +
T+1∑

t=1

α
i j
t

)

≤ v
i j
delay, (9c)

v
i j
early ≤ 0 ≤ v

i j
delay, (9d)

where qi jdue > 0 denotes the contracted due date for component (i, j), j ∈ Ji , i ∈ I.

Minimizing the risk for lack of spare parts To ensure that the operational schedule is undis-
turbed, or at least that the disturbance is minimal, it is crucial that enough many spare
components are available. Then, whenever an unexpected failure occurs, the damaged com-
ponent can be replaced by a new one without the planned operations of the system at hand
having to be stopped. A way of minimizing the risk for lack of spare components is to max-
imize a weighted sum of the lowest resulting stock levels over the planning period, i.e., ei ,
i ∈ I, subject to a lower limit for the availability of each component type. Letting wi > 0,
i ∈ I, denote the assigned weights this is modeled as to

maximize
∑

i∈I
wi ei , (10a)

subject to bi ≤ ei ≤ bit , i ∈ I, t ∈ T . (10b)

If a certain component type i has a larger spread in repair times pi , or if there is a need to
prioritize a certain component type for repair (e.g., due to weak stock levels), we can set a
higher value of the corresponding weight wi , such that the lowest stock level ei will most
likely get a higher level than for the other types. This means that this type will be prioritized
(to start earlier) in the workshop, thus reducing the risk for lack of this specific component
type. An alternative way to reducing this risk could be to set a higher lower limit, bi . We
will refer to the value of the objective in (10) as availability.
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4 Application: implementation, tests, and results

We present an application from the aerospace industry, from a collaboration with the Swedish
aerospace and defence company Saab AB. For contract assessment purposes, he instance sizes
are considered reasonable from a practical application point of view and the data sets used
are based on knowledge mediated from the industrial partner; all numbers are normalized.
Our implementation is made using Julia (2012) and JuMP (see Dunning et al., 2017), and
the computations are performed by Gurobi (2020) on a laptop computer with a 2.4 GHz
Intel Core i5 processor and 8 GB of RAM memory. The computer used has eight available
processors. Gurobi usually uses all cores available, but can choose to use less. We investigated
the thread count: for all the results reported, Gurobi used all eight threads, which also performs
faster as compared to using single thread operations.

4.1 Themain test instances andmulti-objective settings

As main test cases, we consider K ∈ {5, 10} systems, each having I ∈ {3, 5} component
types and Ji ∈ {10, 15} (individual) components of each type i ∈ I. The operational and
maintenance related differences of the component types are reflected by their respective
repair times in the maintenance workshop, as well as their respective due dates, which are
chosen randomly within the same order of magnitude. The different component types are
also assigned differently structured interval costs, all increasing with the time between main-
tenance occasions, reflecting the increasing risk of having to perform CM. The planning
horizon is T ∈ {20, 40} time steps and the workshop capacity is either L ∈ {3, 10} parallel
machines. We have investigated two main cases of our planning problem: (i) with no lower
limits on the stocks of repaired components, i.e., with bi = 0, i ∈ I, and (ii) with the lower
limits bi = 1, i ∈ I. The weights in (10) are set to wi = 1, i ∈ I. The timetable for the
systems’ operations is generated by applying the model in Gavranis and Kozanidis (2015) to
the set K of systems over the planning period T .

When solving a multi-objective optimization problem, one is usually interested in finding
Pareto optimal, or efficient solutions; see e.g., (Ehrgott, 2005, Ch. 2.1). A solution is called
Pareto optimal if none of the objective functions can be improved in value without degrading
at least one of the other objectives’ values. To find points on the Pareto front—the set of all
Pareto optimal points—we employ the ε-constraint method (see Mavrotas, 2009), which—in
the bi-objective case—optimizes iteratively one objective function, while the other is being
constrained.

4.2 Computational tests and results

In Sect. 4.2.1 we study the turn-around time contract. The preliminary results then obtained
motivate the continuation with an availability contracting form, which is studied in Sect. 4.2.2.

4.2.1 The turn-around time contract and comparison with an availability contract

The turn-around time contract is modeled as a bi-objective optimization problem. The system
operator’s objective is modeled as to minimize the total costs for maintenance, i.e., the
objective (8), while the minimization of the penalty for late and early deliveries is achieved
by the objective defined in (9). The set of feasible schedules is defined by constraints similar
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to (1)–(7), but involving also individual components (see Obradović, 2021 for details). The
size of the resulting MBLP model for the turn-around time contract is shown in Table 1, which
also reveals that obtaining a feasible solution with a verified duality gap of 1% requires around
10 h of computing time, while reducing the gap below 0.5% takes around 124 h. While the
smaller instances are solved to optimality in a reasonable computing time, the larger ones
require significantly longer time to reach a duality gap of 0.45%; for details, see Table 1.
Presolve times are around 0.45 s for the first and around 12 s for the second instance; hence,
the solver quickly eliminates redundant variables and/or constraints.4 From these preliminary
tests we conclude that the model becomes intractable for larger instance sizes.

4.2.2 Investigation of the availability contract

In Table 2, solution times required to solve instances of different sizes with our model are
listed. Computing times grow with the instance sizes. It is noticeable that the problem size
grows significantly with an increasing length of the planning horizon. However, since re-
planning is often needed (e.g., at unexpected failures, leading to necessary CM), any schedule
will be subject to changes in due time. Therefore, it is not a big priority to solve our model to
optimality over long time horizons, which may also yield approximate schedules and costs.

In our scheduling problem, increasing the total number of components of type i is equiv-
alent to decreasing the lower limit, bi on the stock of available/repaired components. While
adding components comes with a higher cost, decreasing the lower limit bi comes with a
higher risk. It is the decision maker who chooses the trade-off between cost and risk. For
example, if there is no available component on the stock, it may lead to disruptions in the
operations until a component arrives, which is a risk and most likely leads to a cost as well.
In our test, we use bi = 1, i ∈ I, but results could naturally be different for different values
of bi .

Figure 2 shows the computed points on the Pareto front for the objectives (8) and (10),
and the workshop capacity L = 10 and L = 3, respectively. The availability, defined in (10)
as the weighted sum of the lowest resulting stock levels over the planning period, is in the
interval5 [5, 10] while the total maintenance cost is in the interval [5542, 5828] for L = 10
and in the interval [5631, 5856] for L = 3. We observe that for every increase by one in
the availability, the increase in the maintenance cost becomes higher. To receive a higher
availability, there has to be a loss on the maintenance scheduling side, which could be, for
example, that maintenance intervals are longer which lead to higher maintenance costs, or
to a higher risk for unforeseen failures. Another observation is that the difference between
maintenance costs, for both L = 3 and L = 10, decreases with an increasing availability.
This means that the high cost of obtaining a high availability is (almost) regardless of the
capacity in the maintenance workshop.

4 The small differences in presolve times when solving one instance more than once come from slightly
different solve times.
5 Note that

∑
i∈I wi bi = 5 is the lowest possible value of this measure.
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Fig. 2 Pareto front for the availability objective (10) versus the maintenance cost objective (8); here,
(I , Ji , K , T , bi , wi ) = (5, 15, 10, 40, 1, 1) and L ∈ {3, 10}; ε = 1 in the ε-constraint method

Fig. 3 Stock levels for (I , Ji , K , T , L, bi ) = (5, 15, 10, 40, 10, 1). Point on the Pareto front for the objectives
(10) and (8): availability = 5; maintenance cost = 5542; no constraints on the stock levels at the end of the
planning horizon

Figure 3 shows the stock levels for the capacity L = 10 in the maintenance workshop.
Comparing with Fig. 4, where constraints on the levels of the stocks of repaired components
at the end of the planning horizon (Sect. 2.5.2) are included, we observe that the effect of
piling up of components to be repaired by the end is reduced, if not eliminated. In both
figures, bi = 1 and availability equals five, which means that at each time step there is one
component of each type available. It is noticeable that the levels of repaired components are
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Fig. 4 Stock levels for (I , Ji , K , T , L, bi ) = (5, 15, 10, 40, 10, 1). Point on the Pareto front for objectives
(10) and (8): availability = 5; maintenance cost = 5563; with constraints (7) on the stock levels at the planning
horizon: s̄ = 1, μi = 0, i ∈ I

higher in the first half of the planning period, which is partly due to the initialization of the
systems and the levels of the stocks of repaired components (i.e., bi0, i ∈ I).

A reduction of the workshop capacity from L = 10 (Fig. 4) to L = 3 repair lines (Fig. 5)
yields slightly higher stock levels of components (total average of repaired (damaged) com-
ponents over the planning period: 10.8 (2.55) for L = 10 and 12.45 (3.525) for L = 3). The
higher stock levels resulting from a lower workshop capacity is likely due to fewer repairs
then being performed at the expense of longer maintenance intervals, resulting in a higher
maintenance cost (cf. Fig. 2).

Figure 6 shows the load of the maintenance workshop over time, for the capacities
L ∈ {3, 5, 10}. We observe that for L = 10 the number of active repair lines does not exceed
seven, which implies that no capacity limit L ≥ 7 restricts the number of active repair lines at
any time in an optimal solution. When reducing the capacity to L = 5, the workshop is, how-
ever, working at full capacity in many time steps, which is even more expressed for L = 3.
If some unexpected failure occur, or if some components possess longer repair times, a full
capacity utilization of the workshop at multiple consecutive time steps can lead to postponed
deliveries. This may, in turn, lead to lower levels on the stock of repaired components and
even to not satisfying the lower limit on availability. A further consequence could be that
maintenance intervals have to be extended (incurring higher maintenance costs), or that some
systems simply become unable to operate. Hence, modeling some excess workshop capacity
will yield a more robust system-of-systems.

In terms of the specific application to maintenance of military aircraft, a real instance size
could differ from the ones we present. For example, the number, I , of component types may
be larger (typically in the range of 20–50), while the number, Ji , of individual components
may be smaller than the considered value of 15 (due to the components considered being
usually quite expensive). The capacity, L , of the maintenance workshop may vary as well
but most of the time it is not very high. The fleet size, K , would be in the range of 5–30
aircraft. The length of the planning horizon depends heavily on the length of each time step
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Fig. 5 Stock levels for (I , Ji , K , T , L, bi ) = (5, 15, 10, 40, 3, 1). Point on the Pareto front for objectives
(10) and (8): availability = 6, maintenance cost = 5655; with constraints (7) on the stock levels at the planning
horizon: s̄ = 1, μi = 0, i ∈ I

Fig. 6 Maintenance workshop load over time for (I , Ji , K , T , bi ) = (5, 15, 10, 40, 1) and L ∈ {10, 5, 3}.
Points on the Pareto front for objectives (10) and (8): availability = 5; maintenance cost ∈ {5542, 5546, 5631};
no constraints on the stock levels at the end of the planning horizon

(e.g., 1 h/half-day/day/week). The use of our model in different applications will thus result
in varying instance sizes. For example, rail traffic or commercial airlines instances would
have a larger number of systems (i.e., train sets/aircraft).

5 Conclusions and future research

We start from an NP-hard maintenance scheduling problem, generalize it to consider multi-
ple systems and incorporate modeling for a maintenance workshop, stock dynamics and
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an availability objective. The resulting solutions can be used to find a lower limit for
an optimal performance of a collaboration between stakeholders governing a common
system-of-systems. Our modeling also enables an investigation of contracting forms between
stakeholders and provides a planning tool when the maintenance workshop and the system
operator are integrated. We conclude that a turn-around time contract with modeling of
the individual components is inferior to an availability contract due to its computational
intractability.

Our intended application typically comprises several maintenance workshops/companies
who may enter into the cooperation by means of different contracting forms. Such general-
izations of our problem is a topic for further research.

We define and analyze one form of each of the two contract types studied (i.e., availability
and turn-around time). As a future research topic, we will investigate alternative ways to
define and benchmark the two contract types.

An important extension of this work for the intended application is to include corrective
maintenance (CM) in terms of the risk of having to perform CM due to unexpected failures.
At the current stage, the means to handle and reduce this risk are to not allow too large
maintenance intervals (cf. the constraints (1d)).

We intend to integrate the scheduling of the systems’ operations (currently used as input
data to our model) with our maintenance scheduling for the components.
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