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ABSTRACT
In alignment with climate change, the European Union endeavors to accelerate the electrification
progress of the public transit system. In particular, Copenhagen in Denmark and Oslo in Norway
develop a blueprint to have 100% public transit electrification by 2030 and 2028, respectively. In
this study, the lifecycle approach is applied to explore the role of electric buses in the electrifica-
tion progress of the public transport system in different European countries. To better model the
energy/fuel consumption, we integrate the theoretical model of human thermal comfortable tem-
perature into our proposed framework. We take into account the effects of weather, the daily
operation characteristics, and the energy mix of different European counties, and evaluate the life-
cycle environmental and economic performance of electric buses. The result shows that the public
transportation system with both hybrid and electric buses can be good compensation between
financial and environmental needs instead of using electric buses to replace all the conventional
buses. Moreover, the operational plan of the public transportation system mixed with electric and
hybrid buses may be adjusted according to the seasonal temperature variation so as to maximize
the environmental benefits. Considering the different economic and environmental scenarios of
energy sources, some EU countries would be able to reduce or remove the incentives for elec-
tric buses.
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1. Introduction

The transportation sector creates approximately 22% of total
greenhouse gas (GHG) emissions in European Union states
(European Environment Agency, 2019). Considering the
advantages of alternatively fueled buses in urban areas, sev-
eral European cities and regions endeavor to accelerate the
electrification progress of the public transportation system.
For example, before 2025, several cities (e.g., Athens, Paris,
Copenhagen, Berlin, and Madrid) and government (e.g.,
Norway) have the plan to abandon diesel vehicles or stop
purchasing conventional buses. In 2016, to achieve zero-
emission transportation, European countries have proposed
the Clean Bus Deployment Initiative to cut carbon emissions
from the public transportation system. Over 80 cities,
regions, manufacturers, and other organizations have signed
the Clean Bus Declaration. In particular, Copenhagen in
Denmark and Oslo in Norway develop a blueprint to have
100% public transit electrification by 2030 and 2028, respect-
ively. Therefore, the governmental policymakers and transit
operators in European countries are facing challenges in the
transition period to purely electrified public transportation

systems. In order to support their decision-making, lifecycle
analysis has been widely applied to understand the overall
and long-term worth of public transport electrification. The
energy mix determines the environmental performance of
electric vehicles (Faria et al., 2013). Moreover, with the
maturing of electric vehicle technologies, it is important to
determine when or how to achieve purely electrified public
transportation systems. Therefore, it is important to investi-
gate the lifecycle cost of battery-electric buses considering
the existing energy mix and possible future conditions. The
results can help policymakers and operators to design
proper strategies to maximize the benefit and minimize the
side effect of transportation electrification.

Lifecycle analysis associated with passenger cars and
buses, which are powered by alternative powertrains, has
gained worldwide attention. Mahmoud et al. conduct a com-
prehensive review of buses with detailed alternative power-
trains considering the economic, operational, energy, and
environmental characteristics (Mahmoud et al., 2016). The
review pointed out that the lifecycle cost-benefit of the bat-
tery-electric bus highly depends on operational characteris-
tics and energy resources.
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In the United States, by assessing the value of lifecycle
emissions and oil consumption for different vehicle types
power by alternative fuel technologies, Michalek et al. indi-
cated that the external costs of plug-in vehicles are largely
dependent on GHG and SO2 emissions from battery manu-
facturing and vehicle charging (Michalek et al., 2011).
Mckenzie and Durango-Cohen applied a hybrid input–out-
put model to analyze the life-cycle economic and environ-
mental performance of alternative fuel transit buses
(Mckenzie & Durango-Cohen, 2012). The results showed
that buses powered by alternative fuel have lower operating
costs and emissions. However, the lifecycle cost of alterna-
tive fuel buses is higher than diesel buses. By comparing life-
cycle environmental impact from convention buses and
battery-electric buses, Cooney et al. indicated that energy
resources dominate most impact categories in the operation
phase (Cooney et al., 2013). Moreover, battery production
can significantly affect global warming, carcinogens, ozone
depletion, and eco-toxicity. Bi et al. compared the impact of
different charging technologies on the lifecycle performance
of battery-electric buses in terms of energy consumption
and GHG emissions (Bi et al., 2015). The results show that
the wireless charging system outperforms the plug-in charg-
ing system in terms of lifecycle energy consumption and
GHG emission. Bi et al. investigated the lifecycle perform-
ance of the battery-electric bus system with different charg-
ing methods and compared the cost to both conventional
diesel and hybrid bus systems (Bi et al., 2017). Tong et al.
conduct a lifecycle cost analysis for transit buses powered by
different sources, such as diesel, diesel hybrid-electric, com-
pressed natural gas, liquefied natural gas, and electricity
(Tong et al., 2017). The study considered GHGs and criteria
air pollutants together with ownership costs to estimate total
costs. The results showed that diesel buses have lower life-
cycle ownership costs than alternative fuel-powered buses.
Moreover, the battery-electric bus can significantly reduce
city-level air pollutants.

In Europe, Brand et al. introduced the U.K. transport car-
bon model which covers the transport-energy-environmental
issues from energy demand reduction to lifecycle carbon
emission and external costs (Brand et al., 2012). Antonio
Garc�ıa S�anchez et al. investigated the impact of the Spanish
electric mix on different powertrain technologies in terms of
lifecycle energy consumption and GHG emissions (Antonio
Garc�ıa S�anchez et al., 2013). Among all powertrain technolo-
gies, battery-electric buses generate the lowest GHG emis-
sions. By extensively simulating different bus routes,
Lajunen investigated the cost-benefit of hybrid and electric
buses and pointed out that electric bus is one of the best
choices to decrease energy consumption and emissions
(Lajunen, 2014). Ribau et al. indicated the importance of
driving profile and the tradeoff between investment cost,
efficiency, and LCA in the powertrain design of hybrid elec-
tric vehicles (Ribau et al., 2014). The results show that fuel-
cell powered hybrid vehicles lead to a lower lifecycle cost
and higher financial savings potential than plug-in electric
hybrid vehicles. Lajunen investigated the lifecycle cost and
energy consumption of different charging power and battery

requirements considering electric buses on different operat-
ing routes (Lajunen, 2018). The results show battery size has
a limited impact on the lifecycle performance of fast charg-
ing buses. Harris et al. developed a framework to access the
lifecycle of alternative bus technologies considering the
uncertainty of these technologies (Harris et al., 2018). By
comparing to the diesel bus, the results showed that the
electric bus can significantly reduce GHG emissions.
However, the lifecycle cost of electric buses is 129–247%
higher than the conventional buses. By considering emis-
sions associated with fuels and batteries producing process
of alternative bus powertrains, Xylia et al. proposed a model
to optimize the location of bus chargers using a life cycle
perspective (Xylia et al., 2019). The results show that electric
buses with larger battery sizes may not lead to a significant
drop in total emissions. Nordel€of et al. point out that
impacts related to emission decreases with the degree of
electrification which is based on renewable energy resources
(Nordel€of et al., 2019). Recently, Zhang et al. uncovered the
impact of battery degradation on electric bus fleet operation
(Zhang et al., 2020). The result shows that maintaining
proper depth of discharge during the operation would able
to extend battery lifespan up to three years. Moreover, they
also point out that battery degradation would significantly
affect the lifecycle cost of electric bus fleets.

Moreover, Sharma et al. investigated the economic and
greenhouse performance of passenger vehicles with alterna-
tive powertrains in Australia (Sharma et al., 2013, 2012).
The simulation results show that Class-B electric vehicle has
worse performance than an equivalent conventional vehicle
in terms of ownership cost and lifecycle emissions. The
major reason is that electric vehicle has significantly higher
embedded emissions where battery contributes about 50% of
the electric vehicle embedded emissions. Bases on on-road
tests in Macau, China, Zhou et al. compared the lifetime
carbon dioxide emission of battery-electric buses and con-
ventional buses (Zhou et al., 2016). They pointed out that
the impact of air-conditioning usage on energy consumption
is larger than passenger load. Moreover, Song et al. conduct
a lifecycle assessment to compare the traditional diesel pub-
lic buses and electric buses in terms of GHG emission by
using real-world data in Macau (Song et al., 2018). The
result shows that electric buses can hardly reduce GHG
emissions from traditional diesel public buses based on cur-
rent electricity distribution. Enrique et al. investigate the life
cycle environmental impact of manufacturing BEV and BEB
in Brazil considering geographic characteristics (Enrique
et al., 2019). As a result, manufacturing BEB and BEV in
Brazil is not environmentally competitive unless the impact
of metal extraction and metal use can be reduced.

According to the results from the existing works, the life-
cycle cost of electric vehicles varies with the analysis meth-
ods, data resources, geographic locations, and other impacts.
However, to the best of the authors’ knowledge, limited
work explored the performances of alternative fuel buses in
different countries by partially considering local climate, bat-
tery degradation, and operation characteristics. By address-
ing the existing limitations, we explored the lifecycle
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economic and environmental performance of buses with dif-
ferent powertrains in European countries. Based on the
results, we provide insight into the tradeoff between eco-
nomic and environmental benefits during public transport
electrification progress. And several suggestions are pro-
posed to speed up the electrification progress of the public
transportation system.

2. Methodology

An evaluation framework was developed to compare the
performance of conventional, hybrid, and electric vehicles
considering the influence of ambient temperature, daily
operation, battery characteristics, and local energy mix.
Based on the vehicle power models used in this study have
been widely used in the existing works (Gao et al., 2017;
Lajunen, 2018; Lajunen & Lipman, 2016), we integrated the
theoretical model of cabin comfort temperature into the
models to provide detailed and comprehensive energy evalu-
ation of buses. As described in Table 1, the simulations were
based on four different European drive-cycles, which are
Braunschweig, E11, H550, and Millbrook London Transport
Bus (MLTB) drive-cycles. Meanwhile, the yearly operation
hours and mileage from different European countries are
based on the ZeEUS reports (International Association of
Public Transport, 2017, 2016). Additionally, battery oper-
ation and degradation models are integrated into the life-
cycle assessment framework.

2.1. Vehicle power models

Recently, Luin et al. indicated that the power-based energy
consumption model is easy to apply and/or modify to model
different vehicle types (Luin et al., 2019). Considering the
widely applied vehicle power models develop by Lajunen
(2018), Gao et al. (2017), and Wang and Rakha (2017,
2016a, 2016b), the total instantaneous bus tractive power
(Pout) of conventional buses, BEB and Euro VI hybrid bus is
formulated as follows:

Pout ¼
0:5qaCDAf v3 þ vMgCrrcosaþ vMgsinaþ vM dv

dt þ xv

gfd

þ PAUX ,

(1)

x ¼
Tm0ifd, For BEB,

kþ 0:0324nv2ð ÞMdv
dt

, For diesel or hybrid bus:

8<
:

(2)

where qa is the air density; CD is the coefficient of drag; Crr

is the coefficient of rolling resistance; Af is the frontal area
of the bus; M is the total mass of bus; g is the gravitational
acceleration; gfd is the driveline efficiency (Wang & Rakha,
2016a); v is the speed; t is operating time; a is the road
grade; Tm0 is the inertial torque for the electric engine
(Lajunen, 2018); ifd is the gear ratio of the final drive
(Lajunen, 2018); k is the mass factor accounting for rota-
tional masses, a value of 0.1 is used for heavy-duty vehicles
(Feng et al., 2007); n is the term related to the gear ratio,
which is assumed to be zero due to the lack of gear data
(Wang & Rakha, 2017, 2016a, 2016b); and, PAUX is the aux-
iliary power demand.

Liu et al. pointed out that the ambient temperature sig-
nificantly affects the electric vehicle auxiliary loads and
energy efficiency (Liu et al., 2018). However, only a few
works are conducted to modeling the effect of ambient tem-
perature on the auxiliary loads of buses. Recently,
Veps€al€ainen et al. develop a computationally efficient model
for electric buses, which takes the impact of ambient tem-
perature on auxiliary loads into consideration (Veps€al€ainen
et al., 2019). However, the model is a black-box model that
does not provide the mathematical formulation to describe
the relationship between ambient temperature and auxiliary
loads. Therefore, by searching the existing works, we derived
a model to describe the relationship between ambient tem-
perature and auxiliary loads. Moreover, the proposed model
is compared with the model described in the work con-
ducted by Veps€al€ainen et al. (2019). Moreover, based on
hybrid buses, Bottiglione et al. (2014) formulated the auxil-
iary load as follows

PAUX tð Þ ¼ Pconstant þ c Asun Tsun � Tdesiredj j þ AshadjTshad � Tdesiredjð Þ
(3)

where TdesiredðtÞ is the desired cabin temperature in the
cabin; Tsun is the temperatures at the area exposed to sun-
light; Tshad is the temperature at the shadow area; Asun is the
area of the bus external surface exposed to sunlight; Ashad is
the shadowed bus external surface; c is the average thermal
resistance of the cabin walls, which is 7.09W/(m2 � �C); and
Pconstant includes power other than AC, which is 6 kW
(Lajunen & Kalttonen, 2015).

The exposition area of the bus varies with the location,
time of day, direction, and seasons. Moreover, there is no
existing model to describe the temperature difference
between the area exposed to sunlight and the shadow area
of the bus. Results from existing works proposed the U-
shaped relationship between auxiliary load and ambient tem-
perature (Liu et al., 2018; Lu et al., 2019; Wang et al., 2017;
Yuksel & Michalek, 2015). Therefore, Equation (3) is

Table 1. Drive cycles characteristics.

Cycle E11 (Lajunen & Lipman, 2016) H550 (Lajunen & Lipman, 2016) Braunschweight MLTB

Duration (s) 1548 3384 1740 2281
Distance (km) 10.2 28.7 10.9 9
Average speed (km/h) 27.9 36 30.1 14.2
Maximum speed (km/h) 74.9 58.4 58.2 48.7
Maximum acceleration (m/s2) 1.6 2 2.4 1.5
Maximum deceleration (m/s2) �1.9 �2.9 �3.6 �2.2
Percent of idle time 11.8% 15.5% 25.7% 33.8%
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simplified as follows:

PAUX tð Þ ¼ Pconstant þ cAbusjTa � Tdesiredj, (4)

where Abus is the bus external surface, which is 116m2

(Bottiglione et al., 2014); Ta is the ambient tempera-
ture (�C).

Human thermal comfort is highly dependent on the ther-
mal insulation in clothing (Oǧulata, 2007). Pala and Oz and
Velt and Daanen propose the HVAC design methods con-
sidered human thermal comfort (Pala & Oz, 2015; Velt &
Daanen, 2017). In this study, we assume that the desired
temperature in the bus cabin satisfied the human thermal
comfort of passengers. Therefore, based on the theoretical
work developed by Huang (2007) and Oǧ ulata Oǧ ulata
(2007), the thermal comfortable temperature of passengers
and the desired temperature in the bus cabin is formulated
as follows:

Tdesired ¼ Tcl

Icle
Taj j
60

þ 1, (5)

Tcl¼Tskþð0:155Iclþ0:4805Icl2ÞhcTa

½1þ 0:155Iclþ0:4805Icl2ð Þhc�

� 0:155Icl�r�0:75� Tskþ273ð Þ4� 0:94Taþ271:62ð Þ4
� �

½1þ 0:155Iclþ0:4805Icl2ð Þhc� hcþhrð Þ� Icl�0:155þ1=ð1þ0:31� IclÞ
� � ,

(6)

hr¼r�0:75� Tskþ273ð Þ4� 0:94Taþ271:62ð Þ4
Tsk�ð0:94Taþ271:62Þ , (7)

Tsk¼35:7�0:00285�Metabolic rate, (8)

where hr is the coefficient of radiative heat transfer; r is
Stefan–Boltzmann constant, which is 5.67�10�8 W/
m2 K4(Huang, 2007); Tsk is the mean skin temperature (�C);
hc is the coefficient of convective heat transfer; and Icl is the
the intrinsic insulation value.

According to the work conducted by Pala and Oz (2015),
the convective heat transfer coefficient can be calculated as
follows:

hc ¼ 8:3V0:6
air , (9)

where Vair is the air velocity inside the bus, which is 0.35m/
s (Pala & Oz, 2015).

Based on the reference data, Havenith et al. (2012) pro-
posed a regression model to recover the relationship between
intrinsic clothing insulation and ambient temperature.

Icl ¼ 1:372� 0:01866Ta � 0:0004849T2
a � 0:000009333T3

a :

(10)

Considering the human acceptable temperature range in
the existing studies (Cheung & Jim, 2019; Pala & Oz, 2015;
Yang et al., 2016), the desired temperature in the bus
should not exceed 20�C: As shown in Figure 1, the mod-
eled relationship between auxiliary power and ambient
temperature is compared with the reference curve from the
study conducted by Veps€al€ainen et al. (2019). The pro-
posed model well captured the pattern of the existing rela-
tionship developed from the existing black-box model. The

major reason for the difference between the proposed
model and the reference curve is that the desired tempera-
ture would be impacted by different factors, such as life-
style, residence length, and climate (Cheung & Jim, 2019;
Yang et al., 2016).

2.1.1. Modeling energy consumption of electric bus
Despite the tractive power (Pout), the internal losses of
the battery system must be considered in the energy con-
sumption model of the electric bus. Therefore, the power
consumption of electric buses contains tractive power (Pout)
and battery internal losses (PlossBEB), as described in
Equation (11).

PBEB ¼ Pout þ PlossBEB ¼ Pout þ RbIb
2, (11)

Ib ¼ OCV �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OCV2 � 4RbPout

p
2Rb

, (12)

where Ib is the battery current; Rb is the battery internal
resistance; and, OCV is the battery open-circuit voltage.

Among different battery technologies, Li-ion batteries are
widely implemented in electric buses (Mahmoud et al.,
2016). Therefore, Li-ion battery models are applied in this
study as the energy storage of electric buses. The generalized
OCV model proposed by Zhang et al. (2016) is formulated
as follows:

OCV ¼ K0 þ K1 �lnSoCð ÞK2 þ K3SoC þ K4e
K5ðSoC�1Þ, (13)

where SoC is the state-of-charge.
Moreover, Stroe et al. (2016) proposed an internal resist-

ance (IR) model as follows:

Rb ¼ ðK0 � eK1�TÞðK2 � eK3�SoCÞAK4 , (14)

where A is calendar age, in month; T is battery temperature.
In the existing work conducted by Lashway and

Mohammed (2016), the relationship between SoC at time t
is calculated as follows:

Figure 1. Comparison of the proposed model and the curve proposed in
Veps€al€ainen et al. (2019).
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SoCt ¼ SoC0 þ g
3600Cn

ðt
0
IbðsÞVðsÞds� 100%: (15)

The Coulombic efficiency g is 1.0 and 0.98 during the
discharge and charging, respectively (Zou et al., 2015).

In the existing works, the battery retires when it reaches
20% capacity loss (Guena & Leblanc, 2006). Therefore, Hoke
et al. (2011) proposed a battery cycle life models as follows:

Cycle life ¼ DOD
145:71

� ��1=0:6844

(16)

where DOD is the depth of the discharge cycle in percent.
Additionally, the general form of the battery cycle life

model is

Cycle life ¼ 5DCEOL
DOD
145:71

� ��1=0:6844

(17)

where DCEOL is a relative variation of battery total capacity
necessary to reach the End-Of-Life criterion.

Therefore, the actual capacity of the Nth cycle (Cn) can
be calculated as follows:

Cn ¼ C0 1� N � DCEOL

Cycle life

� �
(18)

where C0 is the original capacity of the electric bus battery.
Data collected from the electric bus operated in the urban

area is used to validate the proposed energy consumption
model. Figure 2 shows good agreement between the esti-
mated energy consumption and the ground truth energy
consumption of real-world operated buses.

2.1.2. Modeling fuel consumption and emission of conven-
tional and hybrid buses

Based on the tractive power (Pout), Wang and Rakha (2017,
2016a, 2016b) proposed a group of models to calculate the
instantaneous fuel consumption (FC) of diesel and diesel-
hybrid buses.

FC ¼ a0 þ a1Pout þ a2Pout2, 8P � 0,
a0, 8P < 0:

�
(19)

Moreover, the instantaneous basic emission of diesel and
diesel-hybrid buses is calculated as follows:

ERx ¼ EFx �maxðPout , 0Þ (20)

where EFx is the emission factor for pollutant x).

2.2. Simulation parameters

For the simulations, the parameters applied in this study are
consistent with the existing works which are widely used to
describe general technical specifications of the existing bus
powertrains (Lajunen, 2018; Wang & Rakha, 2017, 2016a,
2016b). Table 5 summarized the technical characteristics of
the simulated bus powertrains. Recently, point out that the
battery in electric vehicle contributes a significant weight
penalty compared to conventional vehicles (Gao et al.,
2017). Therefore, the weight penalty of an electric bus is
estimated as

Mpenalty ¼ 6:67� C0 � 170: (21)

In this work, we assume that the original battery capacity of
electric buses is 300 kWh. Moreover, the passenger load was
50 passengers in simulations with average weight vary
between and 75 kg according to the literature (Ally & Pryor,
2007; Lajunen, 2018; Rogge et al., 2018). Four different
drive-cycles, which are E11, H550, Braunschweig, and
(MLTB) drive-cycles, are used to simulate the bus operation
routes. The daily operation hours and mileage of buses in

Figure 2. Electric bus energy consumption model validation.

Table 2. Parameters of the OCV model and IR model for lithium iron phos-
phate battery (Stroe et al., 2016; Zhang et al., 2016).

Model parameters K0 K1 K2 K3 K4 K5
OCV model 3.135 �0.685 0.478 1.734 �1.342 0.4
IR model 6.9656E-10 0.05022 2.897 0.006614 0.8 NA
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different countries are according to the ZeEUS reports
(International Association of Public Transport, 2017, 2016).
The ambient temperature fluctuation in each country is
based on the data from the National Oceanic and
Atmospheric Administration. Since the battery thermal man-
agement system has been widely used in the electric vehicle
to ensure battery life (Huang et al., 2019; Jiang & Qu, 2019),
the battery temperature is kept in the range of 15–30 �C
according to the data from real-world electric buses
(Veps€al€ainen et al., 2019). Recently, Zhang et al. pointed out
that maintain the SoC of the electric bus fleet at a reason-
able level and within proper charging depth can lead to lon-
ger battery service life and lower lifecycle cost (Zhang et al.,
2020). Therefore, in this work, the electric buses are
assumed to charge the battery when SoC is between 30%
and 40%. During the daytime, the bus would stop charging
when SoC reaches 80%. The overnight charging will charge
to full.

2.3. Lifecycle ownership costs

The lifecycle cost model is based on the existing works
(Lajunen, 2018; Tong et al., 2017). The model contains four
major cost areas: capital costs, operation costs, emission
costs, and replacement costs. These annualize costs are cal-
culated according to the formulas as follows:

Annulized Costlifecycle ¼
Costcapital

Annuity factor
þ Costoperation

þ Costemission þ
Costreplacement

Service LifeBus
,

(22)

Annuity factor ¼ 1� ð1þ RdiscountÞ�Service LifeBus

Rdiscount
, (23)

Costoperation ¼ CostEnergy þ CostMaintenance, (24)

Costemission ¼ Emissionsx � Social costx: (25)

The capital costs considered the bus purchase costs, infra-
structure costs, and the bus salvage value.

With the maturing of battery technology, the battery
price is continuously decreasing. In this study, the battery
cost follows the result of the study conducted by Cole and
Frazier (2019). Based on the existing study conducted by
Guena and Leblanc (2006), the battery will be replaced
when it lost 20% of the original capacity. In other words,
80% of the original capacity is still usable, which makes it
possible to repurpose the disposed batteries. The second life
use of the disposed battery of electric vehicles has been
widely considered as a potential solution to cut electric
vehicle costs (Martinez-Laserna et al., 2018). According to
the existing studies (Martinez-Laserna et al., 2018; Neubauer
et al., 2015), the battery replacement cost is described as fol-
lows:

Costreplacement ¼
X

½CostbatteryðjÞ � C0�Salvaje ValuebatteryðjÞ

� C0 � ð1� DCEOLÞ� (26)

Salvage Valuebattery jð Þ ¼ Kh � Ku � Costbattery jð Þ (27)

where j is the year of battery replacement; Kh and Ku are
the health factor and the used product discount factor,
respectively.

Based on the values suggested in the existing literature,
the chosen cost parameters in this study are shown in
Table 6. Diesel prices and electricity prices vary a lot
between countries. Moreover, the emissions of electricity are
determined by the energy mix of each country. In this study,
the diesel price of each country is obtained from Statista
(Statista Research Department, 2019). Moreover, the electri-
city price of each country is obtained Eurostat (“Electricity
price statistics - Statistics Explained,” n.d.). The carbon
intensities of electricity for each country are based on the
study conducted by Moro and Lonza (2018).

With the proposed framework, the energy consumption
of electric buses is modeled based on Equations (1)–(18).
And the fuel consumption of conventional and hybrid buses
is modeled based on Equations (1)–(10), and (19) and (20).
Therefore, the energy/fuel consumption, GHG emissions,
and battery life of different European countries are simu-
lated by considering different vehicle characteristics, daily
operation patterns, temperatures, and drive-cycles. By using
results from the simulation as inputs of the lifecycle cost
model (Equations (22)–(27)), the annualized life-cycle cost
can be estimated by using the parameters from Table 6.

3. Results and discussion

In this section, the energy consumption and emissions are
calculated from the simulation results considering the

Table 3. Parameters of the fuel consumption models (Wang & Rakha, 2017,
2016a, 2016b).

Vehicle type a0 a1 a2
Diesel 1.66 E–03 8.68 E–05 1.00 E–08
Diesel-hybrid 1.00 E–03 5.18 E–05 1.00 E–08

Table 4. Emission factors of diesel and diesel-hybrid buses.

Vehicle type CO2 (kg/L) PM (g/kwh) NOx (g/kwh) CO (g/kwh) THCc (g/kwh)

Diesel 2.7a 0.03b 2b 4b 0.55b

Diesel-hybrid 2.7a 0.01b 0.46b 4b 0.16b

aEmission Factors for Greenhouse Gas Inventories (U.S Environmental
Protection Agency, 2018).

bKeramydas et al. (2018).
cTHC is the total hydrocarbons.

Table 5. Technical characteristics of bus powertrains (Lajunen, 2018; Wang &
Rakha, 2017, 2016a, 2016b).

Abbrv. Electric Diesel Hybrid

Gross weight (kg) Mg 12837 12837 14125
Penalty weight (kg) Mpenalty 2171 N/A N/A
Vehicle frontal area (m2) Af 6.2 6.2 6.2
Drag coefficient CD 0.7 0.8 0.8
Rolling resistance coefficient Crr 0.008 0.008 0.008
Rolling radius (m) rd 0.412 0.412 0.412
Final drive ratio ifd 4.88 N/A N/A
Driveline efficiency gfd 0.97 0.95 0.95
Nominal torque (Nm) Tmot 1000 N/A N/A
Mass factor k N/A 0.1 0.1
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characteristics of different European countries. The results
are summarized and compared in the following subsections.

3.1. Lifecycle emission performance

Considering the range limitation and charging time of the
electric bus, it may need more electric buses to replace the
existing conventional buses in the public transport system to
guarantee the existing service quality. According to the
research conducted by Lajunen (2014), the replacement ratio
of the number of electric buses to the number of conven-
tional buses in the system is shown as follows:

Rreplace ¼ NEB

NCB
, (28)

where NEB is the number of required electric buses; and NCB

is the number of existing conventional buses.
Considering the ideal case where replace ratio is 1

(Rreplace ¼ 1), the GHG emission performance is shown in
Figure 3. Both of electric buses and hybrid buses outper-
formed diesel buses in terms of GHG emission, which sup-
ports the policy of abandoning diesel buses. The results
indicated that electric buses outperformed hybrid buses in
GHG emission in most of the European countries. However,
the average improvements in GHG emissions caused by
electric buses and hybrid buses are very close in Latvia.
Moreover, in several countries, the worst case of the GHG
emission improvement indicated that the electric bus may
not lead to fewer emissions compare to the hybrid bus.
Moreover, the GHG emissions caused by electric buses vary
across European countries. The results are consistent with
the research conducted by Moro and Lonza (2018).

The GHG emission saving of the electric bus in different
months is shown in Figure 4. According to Figure 4, the
performance of electric buses in terms of GHG emission
varies with month and country. The electric buses could
reduce more overall GHG emissions during the summer
than winter in Estonia (EE) and Poland (PL). However, the
electric buses could reduce more overall GHG emissions
during the winter than summer in Malta (MT) and Cyprus
(CY). The major reason for this difference is the difference
in the weather. In EE and PL, they have relatively cool sum-
mer and cold winter, which makes electric buses use more
energy during the winter than summer. However, in MT
and CY, they have hot summer and warm winter, which

makes electric buses use less energy during the winter
than summer.

As shown in Equation (29), the electric bus (EB) per-
formance index is introduced to clearly show how electric
buses outperform hybrid buses in terms of GHG emissions.
When HB outperforms EB in terms of GHG emission, the
EB performance index reaches 0. Alternatively, when the
GHG emission of EB reaches 0, the EB performance index
reaches 1.

EB GHG Performance Index ¼

max
GHG EmissionHB � GHG EmissionEB

GHG EmissionHB
, 0

� �
(29)

Generally, one hybrid bus can replace one conventional
bus in the public transport system and maintaining the
same service quality. Therefore, only the different replace-
ment ratio of electric buses is considered in this study.
Considering different replacement ratios, the EB perform-
ance in terms of GHG emission of different European coun-
tries is shown in Figure 5. The performance of EB varies
with the country and replacement ratio. In some countries,
hybrid buses lead to better or the same system-level GHG
emission performance as electric buses. According to
Figures 4 and 5, considering the existing constraints of elec-
tric buses, the public transportation system mixed with
hybrid buses and electric buses can reduce more GHG emis-
sions than a purely electrified system since the mixed system
can have a lower replacement ratio to maximize the envir-
onmental benefit of introducing electric buses.

3.2. Lifecycle cost performance

Other than GHG emissions, the lifecycle total ownership
cost is also very crucial for public transport electrification.
In this subsection, the lifecycle total ownership of electric
buses and hybrid buses are compared with conven-
tional buses.

According to most of the existing lifecycle analyses, battery
cost is one of the most important components of the lifecycle
total ownership cost of an electric bus. Bloomberg New
Energy Finance (2018) indicated that the battery warranty is
between 5 and 10 years. Moreover, Yang et al. indicated that
battery life in the different states of the United State is vary-
ing from 5.2 years to 13.3 years (Yang et al., 2018). Annual

Table 6. Cost parameters.

Cost parameter Value Source

Diesel bus purchase cost (e) 225,000 (Lajunen & Lipman, 2016; Schroten et al., 2019)
Hybrid bus purchase cost (e) 315,000 (Lajunen & Lipman, 2016)
Electric bus purchase cost (e) 425,000 (Schroten et al., 2019)
Discount rate 3.5 (Harris et al., 2018)
Service life (yrs) 12 (Harris et al., 2018)
THC (e/kg) 4.3 (Bor�en, 2020)
NOx (e/kg) 7.07 (Birchby et al., 2019)
PM2.5 (e/kg) 120.65 (Birchby et al., 2019)
CO2 (e/ton) 39.4 (Tong et al., 2017)
Electric bus maintenance cost (e/km) 0.16 (Mahmoud et al., 2016)
Diesel bus maintenance cost (e/km) 0.31 (Mahmoud et al., 2016)
Electric bus infrastructure cost (e/km) 0.12 (Mahmoud et al., 2016)
Diesel bus infrastructure cost (e/km) 0.03 (Mahmoud et al., 2016)
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travel demand and ambient temperature are the major rea-
sons for battery degradation. The simulated battery lifespans
of electric buses in EU countries are shown in Figure 6.
Similar to the case in the United States, the battery life of
electric buses varies from 5 to 12 years in different European
countries. Moreover, the simulated battery lives in Figure 6
are in-line with the results from the existing study and the
battery warranty from existing manufacturers.

Considering the operation characteristics, battery life, and
environmental benefit of the buses in different European

countries, the lifecycle total ownership cost (LCC) of hybrid
buses and electric buses are compared with conventional
buses to indicate if the electrification of the public transport
system will be beneficial, as shown in Figure 7. Overall,
hybrid buses lead to a significantly less lifecycle total owner-
ship cost compared to diesel buses and electric buses.
Moreover, the electric buses in several countries have the
potential to outperform diesel buses in terms of lifecycle
total ownership cost under specific conditions, such as large
price differences between diesel and electricity, long battery

Figure 3. GHG emissions improvement of electric bus and hybrid bus. The percentage is calculated as the difference between alternative powertrains and die-
sel powertrain.

Figure 4. GHG emissions improvement of the electric bus during different months.
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life, and green electricity. Since the hybrid buses outper-
formed diesel buses in terms of emission and lifecycle cost,
this work supported the plans made by several EU cities
(e.g., Athens, Paris, Copenhagen, Berlin, and Madrid) and
government (e.g., Norway) to abandon diesel vehicles or
stop purchase conventional buses before 2025. According to
the lessons from Germany (Buehler & Pucher, 2011), public
transport services should be financially sustainable while sat-
isfying social needs. Therefore, a public transport system
with both battery-electric buses and hybrid buses is a poten-
tial approach to make the system both financially and envir-
onmentally sustainable.

In order to investigate the potential of reducing or
removing incentives for the electrification progress of the
public transport system, different energy scenarios are simu-
lated and compared. Table 7 shows the details of the scen-
arios. Based on the average lifecycle cost, Figure 8 shows the

lifecycle economic performance of electric buses in different
EU countries under different conditions. We find out that
some countries have the potential to achieve a purely electri-
fied public transport system by reducing or removing incen-
tives, such as tax benefits, interest-free or low-interest loans,
and subsidies. Without further financial support from the
government, hybrid buses would be the best solution for
most countries considering both the economy and environ-
mental benefits. In the real world, the government always
introduces incentives to support the local application of new
technologies which may lead to further change in business
mode, lifestyle, policy, and so on. Since renewable energy
generation and battery technologies are maturing fast,
adjusting the pace of replacing the buses the public trans-
port system with battery-electric buses according to the local
condition can maximize the benefits of transport electrifica-
tion without sacrificing the economic performance.

Figure 5. GHG emission performance of electric buses in EU countries with different replacement ratios.
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Figure 6. The battery life of electric buses in EU countries.

Figure 7. Lifecycle cost performance of electric bus and hybrid bus. The percentage is calculated as the difference between alternative powertrains and die-
sel powertrain.

Table 7. Scenario descriptions.

Diesel price increment (Euro/L)

Emission reduction Price reduction 0 0.25 0.5 1

Electricity 0% 0% Base Case Scenario 1.1 Scenario 1.2 Scenario 1.3
7.5% 5% Scenario 2.1 Scenario 3.1 Scenario 3.2 Scenario 3.3
15% 10% Scenario 2.2 Scenario 3.4 Scenario 3.5 Scenario 3.6
30% 20% Scenario 2.3 Scenario 3.7 Scenario 3.8 Scenario 3.9
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Therefore, the public transport system mixed with electric
and hybrid buses will be the most common situation in
most of the European countries until the best compensation
points of technologies and incentive policies are reached
considering local situations.

4. Conclusions and future works

In this article, we estimated lifecycle cost and GHG emis-
sions for electric, hybrid, and diesel buses in different
European countries to gain deeper insight into the role of
electric buses in the electrification progress of the public
transport system. To better model the energy/fuel consump-
tion, we integrated the theoretical model of human thermal
comfortable temperature into the framework. Considering
the weather, the daily operation characteristic, and the
energy mix of different European counties, the lifecycle
environmental and economic performance of electric buses
are evaluated. The result shows that the public transporta-
tion system with both hybrid and electric buses can be good
compensation between financial and environmental needs
instead of using electric buses to replace all the conventional
buses. Moreover, the operation plan of the public transpor-
tation system mixed with electric and hybrid buses may be
adjusted according to seasonal temperature variation to
maximize the environmental benefit. Considering the differ-
ent economic and environmental scenarios of energy sour-
ces, some EU countries would able to reduce or remove the
incentives for electric buses. Moreover, public transport
operators and policymakers are suggested to adjust the elec-
trification pace and incentive policies by considering the
local situation and technology development.

The results and findings of this work are limited by the
assumptions made in this work. In the methodology section,
we applied four driving cycles to represent the real-world
energy/fuel consumption of buses in different countries. Using

real-world bus operation data from different countries and/or
cities may yield different results because of the difference in
travel demand, terrain, and traffic conditions (Bingham et al.,
2012; Liu et al., 2017). Additionally, the policies (such as tax
rate, discount rate, incentives, and so on) of different countries
should be further considered in future works. In future studies,
more real-world data should be collected and applied in the
model development. Moreover, the parameters of the battery
models are based on laboratory results and not calibrated based
on the data collected from the real-world operated electric
buses. With more realistic battery models developed in the
future, a more precise life cycle cost and detailed bus compos-
ition plan will be provided. Meanwhile, the potential benefits
of electric buses, such as noise reduction and renewable energy
fluctuation mitigation, are not considered in this work.
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