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Let X be a possibly non-reduced space of pure dimension. We 
introduce a pointwise Hermitian norm on smooth (0, q)-forms, 
in particular on holomorphic functions, on X. The norm is
canonical, up to equivalence, where the underlying reduced 
space is a manifold. We prove that the space of holomorphic 
functions is complete with respect to the natural topology 
induced by this norm.
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1. Introduction

Starting with papers by Pardon and Stern, [29,30], in the early 90s, a lot of research 
on the ∂̄-equation on a reduced singular space X has been conducted during the last 
decades, e.g., [14,20,28,31,26,22,23,8,12] and many others. In most of them estimates 
for solutions are discussed. There are also works, e.g., [1], on estimates of holomorphic 
extensions from a singular subvariety. Given a local embedding of a reduced X into a 
smooth manifold U , a pointwise norm of functions and forms on X is inherited from a 
Hermitian norm on U . Any two such local norms are equivalent, and thus one gets a 
global pointwise norm that is unique, up equivalence, on any compact subset of X.
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Only quite recently there has been some work about analysis on non-reduced spaces. 
The celebrated Ohsawa-Takegoshi theorem, [27], has been generalized to encompass ex-
tensions of holomorphic functions defined on non-reduced subvarieties X defined by 
certain multiplier ideal sheaves of a manifold Y , see, e.g., [17,19]. In this case the L2-
norm of a function (or form) φ on the subvariety is defined as a limit of L2-norms of 
an arbitrary extension of φ over small neighborhoods of X in Y . A pointwise, but not 
canonical, norm of holomorphic functions on a non-reduced X is used by Sznajdman in 
[33], where he proved an analytically formulated Briançon-Skoda-Huneke type theorem 
on a non-reduced X of pure dimension.

In this paper we introduce, given a non-reduced space X of pure dimension n, a point-
wise Hermitian norm | · |X on OX such that |φ|2X is a smooth function on the underlying 
reduced space Z for any holomorphic φ. The norm is canonical (up to local equivalence) 
on the regular part of Z, whereas the extension across Zsing possibly depends on some 
choices. The norm extends to smooth (0, q)-forms on X.

Given any point x ∈ X there is a local embedding i : X → U ⊂ CN , where U ⊂ CN

is an open subset and x ∈ X ∩U . This means that we have an ordinary local embedding 
ι : Z → U and a coherent ideal sheaf J in U with zero set Z ∩U such that the structure 
sheaf OX , the sheaf of holomorphic functions on X, is isomorphic to OU/J . Thus we 
have a natural surjective mapping i∗ : OU → OX with kernel J .

Recall that a holomorphic differential operator L in U is Noetherian with respect to 
J if LΦ = 0 on Z for all Φ in J . It is well-known that locally one can find a finite set 
L1, . . . , Lm of Noetherian operators such that LjΦ = 0 on Z if and only if Φ is in J . The 
analogous statement for a polynomial ideal is a keystone in the celebrated Fundamental 
principle due to Ehrenpreis and Palamodov, see, e.g., [15,24]. Each Noetherian operator 
with respect to J defines an intrinsic mapping L : OX → OZ by

L(i∗Φ) = ι∗LΦ. (1.1)

We say that L is a Noetherian operator on X. It follows that locally there are Noetherian 
operators L0, . . . , Lm on X such that

Ljφ = 0 in OZ , j = 1, . . . ,m, if and only if φ = 0 in OX . (1.2)

Given Lj as in (1.2), following [33] let us consider

|φ(z)|2 =
m∑
0

|Ljφ(z)|2. (1.3)

Clearly |φ| = 0 in an open set if and only if φ = 0 there so (1.3) is a Hermitian norm. 
However, it depends on the choice of Lj. For instance, (1.2) still holds if Lj are multiplied 
by any h in OZ that is generically non-vanishing on Z. The set of all Noetherian operators 
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on X is a (left) OZ-module,2 but it is not locally finitely generated since any derivation 
along Z is Noetherian. We will define our norm from a suitable subsheaf. The construction 
relies on the close connection between Noetherian operators and so-called Coleff-Herrera 
currents established by J-E Björk, [16].

Assume for the moment that Z is smooth and that we have a local embedding i : X →
U . Let HomOU (OU/J , CHZ

X) be the OU -module of Coleff-Herrera currents in U that are 
annihilated by J . This sheaf, introduced by J-E Björk, [16], consists of all ∂̄-closed 
(N, N − n)-currents in U , with support on Z ∩ U , such that h̄μ = 0 for all holomorphic 
h that vanish on Z, and3 Φμ = 0 for Φ in J .

Proposition 1.1. Let π : U → Z ∩ U be a submersion and let ωz be a non-vanishing 
holomorphic n-form on Z ∩ U . Each μ in HomOU (OU/J , CHZ

X) induces a Noetherian 
operator L : OX → OZ by

Lφωz = π∗(φμ). (1.4)

The set of L so obtained is a coherent OZ-module NX,π on Z ∩ U , and any set of local 
generators satisfies (1.2).

Clearly NX,π is independent of the choice of ωz. After shrinking U , if needed, we can 
assume that NX,π is finitely generated in U . A finite set of generators, cf. (1.3), therefore 
gives a pointwise norm | · |X,π in U . If | · |′X,π is obtained in this way from another finite 
set of generators, then | · |′X,π is equivalent to | · |X,π on (compact subsets of) U , which 
we write as | · |′X,π ∼ | · |X,π.

Definition 1.2. Let NX be the OZ-module generated by all local Noetherian operators 
L on X obtained from local embeddings and submersions as in (1.4).

Theorem 1.3. Let X be a reduced space of pure dimension such that its underlying re-
duced space Z is smooth. Then NX is a coherent OZ-module on Z, and any set of local 
generators of NX satisfies (1.2).

Any finite set of local generators, cf. (1.3), gives rise to a local pointwise Hermitian 
norm. Moreover, any two norms obtained in this way are locally equivalent. It turns 
out, see Proposition 4.3, that if U is small enough, then NX is generated in Z ∩ U by 
the sheaves NX.π� for a suitable finite set of submersions π� : U → Z ∩ U . Thus | · |X is 
equivalent in X ∩ U to the finite sum of the norms |φ|X,π� . Patching together we get a 
global pointwise Hermitian norm | · |X on X.

2 In this paper ‘OZ -module’ means ‘sheaf of OZ -modules’.
3 If Z has singular points an additional regularity assumption is required, see Section 2.1 below.
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To describe the norm | · |X more concretely, assume that we have a local embedding 
i : U → Ω ⊂ CN and coordinates (z, w) = (z1, . . . , zn, w1, . . . , wκ) in U , where κ = N−n, 
such that Z = {w = 0}. By the Nullstellensatz,

I := 〈wM1+1
1 , . . . , wMκ+1

κ 〉 ⊂ J (1.5)

if Mj are large enough natural numbers. For multiindices m = (m1, . . . , mκ) ∈ Nκ, let 
|m| = m1 + · · · + mκ. If M = (M1, . . . , Mκ), then m ≤ M means that mj ≤ Mj for j =
1, . . . , κ. We will use the short-hand notation ∂|m|/∂wm = (∂m1/∂wm

κ ) · · · (∂mκ/∂wm
κ ), 

and define ∂|β|/∂zβ similarly for β = (β1, . . . , βn).

Theorem 1.4. With the notation above, if U is small enough and (1.5) holds, then there 
is a finite set of holomorphic functions a1, . . . , aν in U such that the operators

φ 
→ Lm,β,jφ := ∂|m|+|β|(φaj)
∂zβ∂wm

(·, 0), m ≤ M, |β| ≤ |M | − |m|, j = 1, . . . , ν, (1.6)

are Noetherian on X ∩ U and generate the OZ-module NX on Z ∩ U .

The precise requirement of the functions aj is that they generate the coherent OU -
module (I : J )/I, see Remark 4.1. An immediate consequence of the theorem is that

|φ(z)|2X ∼
ν∑

j=1

∑
m≤M

∑
|β|≤|M |−|m|

∣∣∣∂|m|+|β|(φaj)
∂zβ∂wm

(z, 0)
∣∣∣2 (1.7)

in U . It follows from (1.7) that

|ξφ|X ≤ C|φ|X ,

locally in U where C only depends on ξ ∈ OX . Notice that if in addition ξ is invertible 
in OX , then |φ|X ∼ |ξφ|X since |φ|X = |ξ−1ξφ|X ≤ C|ξφ|X .

We say that a point x ∈ X is regular if Z is smooth at x and in addition OX is Cohen-
Macaulay. The set of regular points is a Zariski-open dense subset of Z. In a neighborhood 
of a regular point we can represent OX as a free OZ-module (in a non-canonical way): 
Let i : X → U be a local embedding at x and assume that we have local coordinates 
(z, w) in U such that Z = {w = 0}. To each multiindex αi = (αi1, . . . , αiκ) ∈ Nκ we 
associate the monomial wαi := wαi1

1 · · ·wαiκ
κ . After possibly shrinking U there is a (not 

unique) set of monomials 1, wα1 , . . . , wατ−1 such that each φ in OX in U has a unique 
representative

φ̂(z, w) = φ̂0(z) ⊗ 1 + φ̂1(z) ⊗ wα1 + · · · + φ̂ν−1(z) ⊗ wατ−1 , (1.8)

in OU , where φ̂i are in OZ . Let π : U → Z ∩ U be the submersion (z, w) 
→ z.
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Theorem 1.5. Assume that x ∈ X is a regular point, and let i : X → U be a local embed-
ding at x as above. Then

(
|φ̂0(z)|2 + · · · + |φ̂τ−1(z)|2

)1/2 (1.9)

is a pointwise norm in X ∩ U that is equivalent to |φ(z)|X,π in Z ∩ U .

It follows that (1.9) only depends, up to equivalence, on the submersion π. Moreover, 
the sum of the norms (1.9) obtained from a suitable finite set of submersions U → Z ∩U
is equivalent to |φ|X .

In Section 7 we consider an arbitrary pure-dimensional singular space X and prove 
that at each point x on the singular locus Zsing there is a local embedding i : X → U
such that NX , a priori defined on (Z \Zsing) ∩U , admits a coherent extension to Z ∩U . 
Patching together we get a global pointwise Hermitian norm on X.

Definitions of the sheaf of smooth (0, q)-forms E0,q
X on a non-reduced X and of an 

associated ∂̄-operator were recently given in [7]. In Section 8 we point out that the 
Noetherian operators in NX extend to mappings E0,q

X → E0,q
Z . In this way we get an 

extension of the norm | · |X to smooth (0, q)-forms. Thus one, e.g., can discuss norm 
estimates for possible solutions to the ∂̄-equation on X, but this question is not pursued 
in this paper. In the recent paper [6] we find Lp-estimates of extensions of holomorphic 
functions φ defined on a non-reduced subvariety X of a strictly pseudoconvex domain 
D, given that certain Lp-norms of |φ|X over Z ∩D are finite. This generalizes results in 
[2,18], see also [1], in the case when X is reduced. In this paper we prove the following.

Theorem 1.6. Assume that φj is a sequence of holomorphic functions on X that is a 
Cauchy sequence on each compact subset with respect to the uniform norm induced by 
| · |X . Then there is a holomorphic function φ on X such that φj → φ uniformly on 
compact subsets of X.

This statement is well-known but non-trivial in the reduced case, see, e.g., [24, The-
orem 7.4.9].

The plan of the paper is as follows. In Section 2 we recall the definition of Coleff-
Herrera currents as well as some basic facts. Proposition 1.1 and Theorems 1.3 and 1.4
are proved in Sections 3 and 4. Theorem 1.5 is proved in Section 5. Section 6 is devoted 
to a non-trivial example where the NX and the norm | · |X are computed explicitly. The 
content of Sections 7 and 8 is already mentioned.

The proof of Theorem 1.6 relies on some further residue theory that we recall in 
Sections 9 and 10. In the latter one we also provide a proof of Theorem 1.6 in case Z
is smooth. For the general case we need a kind of resolution of X that is described in 
Section 11, and in Section 12 the proof of Theorem 1.6 is concluded.
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2. Some preliminaries

In this section we have collected a few definitions and results that will be used.

2.1. Coleff-Herrera currents

Assume that j : Z → U ⊂ CN is an embedding of a reduced variety Z of pure 
dimension n. A germ of a current μ in U of bidegree (N, N − n) is a Coleff-Herrera 
current with support on Z, μ ∈ CHZ

U , if it is ∂̄-closed, is annihilated by J̄Z (i.e., h̄μ = 0
for h in JZ) and in addition has the standard extension property (SEP). The latter 
condition can be expressed in the following way: Let χ be any smooth function on the 
real axis that is 0 close to the origin and 1 in a neighborhood of ∞. Then μ has the SEP 
if for any holomorphic function h (or tuple h of holomorphic functions) whose zero set 
Z(h) has positive codimension on Z, χ(|h|/ε)μ → μ when ε → 0. The intuitive meaning 
is that μ does not carry any mass on the set Z ∩ Z(h). See, e.g., [3, Section 5] for a 
discussion.

Example 2.1 (Coleff-Herrera product). If f1, . . . , fN−n are holomorphic functions in U
with common zero set Z, then the Coleff-Herrera product

∂̄
1
f

:= ∂̄
1

fN−n
∧ · · · ∧∂̄ 1

f1
(2.1)

can be defined in various ways by suitable limit processes. Its annihilator is precisely the 
ideal (sheaf) J (f) = 〈f1, . . . , fN−n〉. If A is a holomorphic N -form, then A∧∂̄(1/f) is a 
Coleff-Herrera current. �
Proposition 2.2. If fj are as in Example 2.1, μ is in CHZ

U and J (f)μ = 0, then there is 
(locally) a holomorphic N -form A such that

μ = A∧∂̄ 1
f
. (2.2)

The statements in Example 2.1 are due to Coleff and Herrera, Dickenstein and Sessa, 
and Passare in the ’80s, whereas Proposition 2.2 is due to Björk, [16]. Proofs and further 
discussions and references can be found in [16] and [3, Sections 3 and 4].
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2.2. Embeddings of a non-reduced space

Let i : X → U ⊂ CN be a local embedding of a non-reduced space of pure dimension 
n and consider the sheaf HomOU (OU/J , CHZ

U ), i.e., the sheaf of currents μ in CHZ
U such 

that J μ = 0. It is indeed a sheaf over OX = OU/J ; for the rest of this paper we will 
omit the lower index and write just Hom (OU/J , CHZ

U ). The duality principle,

Φ ∈ J if and only if Φμ = 0 for all μ ∈ Hom (OU/J , CHZ
U ), (2.3)

is known since long ago, see, e.g., [5, (1.6)].
Given a point x on X there is a minimal number N̂ such that there is a local embedding 

i′ : X → U ′ ⊂ CN̂
ζ at x. Such a minimal embedding is unique up to biholomorphisms. 

Moreover, any embedding i : X → U ⊂ CN factorizes so that, in a neighborhood of x,

X
i′→ U ′ j→ U := U ′ × U ′′ ⊂ CN̂

ζ ×CN−N̂
w′′ = CN , i = j ◦ i′, (2.4)

where i′ is minimal, U ′′ is an open subset of CN−N̂
w′′ , j(ζ) = (ζ, 0), and the ideal in U is 

J = J ′ ⊗ 1 + (w′′
1 , . . . , w

′′
m), where OX � OU ′/J ′. It follows from [7, Lemma 4] that the 

mapping

j∗ : Hom (OU ′/J ′, CHZ
U ′) → Hom (OU/J , CHZ

U ) (2.5)

is an OX -linear isomorphism. It is naturally expressed as μ′ 
→ μ = μ′ ⊗ [w′′ = 0], where 
[w′′ = 0] denotes the current of integration over {w′′ = 0}.

Remark 2.3. The equivalence classes in (2.5) can be considered as elements of an intrin-
sic OX -module ωn

X of ∂̄-closed (n, 0)-form on X, introduced in [7], so that i∗ : ωn
X →

Hom (OU/J , CHZ
U ) is an isomorphism. In case X is reduced, ωn

X is the classical Barlet 
sheaf, [13], consisting of ∂̄-closed meromorphic n-forms. �

If Z is smooth, π : U → Z is a (holomorphic) submersion, and μ is in Hom (OU/J ,

CHZ
U ), then π∗μ is a holomorphic n-form on Z.

Lemma 2.4. With the notation above, there is a submersion π′ : U ′ → Z such that π′
∗μ

′ =
π∗μ.

Proof. Let (z, w′) be coordinates in U ′ such that Z = {w′ = 0}. Then the fiber of π over 
z ∈ Z must be of the form (w′, w′′) 
→ (z + b′w′ + b′′w′′, w′, w′′), where

b′w′ = b′(z, w′, w′′)w′ =
N̂−n∑

b′i(z, w′, w′′)w′
i,
i=1
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b′′w′′ = b′′(z, w′, w′′)w′′ =
m∑
j=1

b′′j (z, w′, w′′)w′′
j ,

and b′i and b′′j are holomorphic. Now, since μ = μ′ ⊗ [w′′ = 0],

π∗μ(z) =
∫

w′,w′′

μ(z + b′w′ + b′′w′′, w′, w′′) =
∫
w′

μ′(z + b′|w′′=0w
′, w′).

This is precisely π′
∗μ

′(z), where π′ is the submersion with fiber w′ 
→ (z+b′(z, w′, 0)w′, w′)
over z. �
2.3. Local representation of certain currents

Consider an open set U ⊂ Cn
z ×Cκ

w, let Z = Cn
z × {0}, and let π : U → Z ∩ U be the 

submersion (z, w) 
→ z. We use the short-hand notation

dz = dz1∧ . . .∧dzn, dw = dw1∧ . . .∧dwκ, (2.6)

and

∂̄
dw

wm+1 = ∂̄
dw1

wm1+1
1

∧∂̄ dw2

wm2+1
2

∧ . . .∧∂̄ dwκ

wmκ+1
κ

, (2.7)

if m = (m1, . . . , mκ) ∈ Nκ is a multiindex. It is well-known, and follows immediately 
from the one-variable case, that if ξJ(z, w)dz̄J is a smooth (0, k)-form in U , then

π∗
(
ξJ(z, w)dz̄J

1
(2πi)κ ∂̄

dw

wm+1∧dz
)

= 1
m!

∂|m|

∂wm
ξJ(z, 0) dz̄J∧dz. (2.8)

If τ is any (N, N − n + k)-current in U with support on Z that is annihilated by all 
w̄j and dw̄�, then it has the unique representation (as a locally finite sum)

τ =
∑
γ

τγ(z) 1
(2πi)κ ∂̄

dw

wγ+1∧dz, (2.9)

where τγ are (0, k)-currents on Z ∩ U and

τγ∧dz = π∗(wγτ) (2.10)

on Z ∩ U , cf. [7, (2.11)]. Clearly ∂̄τ = 0 if and only if ∂̄τα = 0 for all α. In particular, τ
is a Coleff-Herrera current if and only if all τα are holomorphic functions.
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3. The sheaf NX in a special case

Let ι : Z → U ⊂ Cn+κ be a smooth submanifold of dimension n, let w1, . . . , wκ be 
functions in U that generate JZ , and let M ∈ Nκ be a multiindex. In this section we 
prove Proposition 1.1 and Theorems 1.3 and 1.4 for the space i : X ′ → U ⊂ Cn+κ with 
structure sheaf OX′ = OU/I, where

I = 〈wM1+1
1 , . . . , wMκ+1

κ 〉.

Proof of Proposition 1.1 for X ′. Assume that π : U → Z is a submersion. In a neighbor-
hood V of a given point x ∈ Z, there are coordinates (z, w) such that π is (z, w) 
→ z

there. Since the proposition is local it is enough to prove it in V. Given these coordinates, 
each function φ in OX′ has a unique representation

φ =
∑

m≤M

φm(z)wm, (3.1)

where φm are in OZ . Using the notation (2.6) and (2.7), let

μ̂ = 1
(2πi)κ ∂̄

dw

wM+1∧dz. (3.2)

It follows from Proposition 2.2 that each μ in Hom (OU/I, CHZ
X′) is aμ̂ for some holo-

morphic a, i.e., the OU -module Hom (OU/I, CHZ
X′) is generated by μ̂. If μ = aμ̂, then 

π∗(ψμ) = π∗(ψaμ̂) so in view of (2.8) we have

Lψ dz = π∗(ψaμ̂) = 1
M !

∂|M |

∂wM
(ψa)(z, 0) dz =

∑
m≤M

cm(z) ∂
|m|

∂wm
ψ(z, 0) dz, (3.3)

where cm are functions in OZ . More precisely,

cm(z) = 1
M !

(
M

m

)
∂|M−m|

∂wM−m
a(z, 0)

with suitable multiindex notation. It follows that NX′,π is the OZ-module in Z ∩ V
generated by the Noetherian operators (∂|m|/∂wm)|w=0 for m ≤ M . By the uniqueness 
of the representations (3.1) these generators are independent, so NX′,π is a free OZ-
module in V and hence coherent, and clearly (1.2) holds. �

The next result is a main technical point in this paper.

Proposition 3.1. Assume that (z, w) are coordinates in U . The OZ-module NX′ is gen-
erated by the Noetherian operators

Lm,β := ∂|m|+|β| ∣∣∣ , m ≤ M, |β| ≤ |M −m|. (3.4)

∂wm∂zβ w=0
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Noting that |M − m| = |M | − |m|, Proposition 3.1 is precisely Theorem 1.4 for X ′. 
In view of the unique representations (3.1) one sees that NX′ is a free OZ-module and 
therefore coherent. Furthermore, (1.2) holds since it does already for NX′,π. Thus also 
Theorem 1.3 follows for X ′.

Remark 3.2. If Mj = 1 for some j then (3.4) means that there are no derivatives with 
respect to wj . Then the embedding i : X ′ → U is not minimal so one can delete this 
variable, cf. Section 2.2. In view of Lemma 2.4 this does not affect the definition of NX′ . 
With no loss of generality one can therefore assume that Mj > 1 for all j. �
Proof of Proposition 3.1. Let us temporarily denote the OZ-module generated by the 
operators Lm,β in (3.4) by M. Fix a point x ∈ Z. Any local submersion π : U → Z at 
x (thus possibly just defined in a neighborhood V of x) is a trivial projection (ζ, η) 
→ ζ

via the local change of coordinates

wk = ηk, k = 1, . . . , κ, zj = ζj +
κ∑

i=1
bjiηi, j = 1, . . . , n, (3.5)

where bjk are holomorphic functions. In fact, if π(z, w) = (π1(z, w), . . . , πn(z, w)) in the 
coordinates (z, w), then πj(z, 0) = zj . Thus πj(z, w) = zj + O(w), where each O(w)
denotes a function that vanishes on Z, i.e., contains some factor wi, and so we get (3.5)
with ηk = wk and ζj = πj(z, w). We have

∂

∂ηk
= ∂

∂wk
+

n∑
j=1

(bjk + O(w)) ∂

∂zj
, k = 1, . . . , κ. (3.6)

In these new coordinates I = 〈ηM+1〉. It thus follows from the argument above that this 
submersion π gives rise to the Noetherian operators

( ∂

∂η

)γ

:=
( ∂

∂ηκ

)γκ

· · ·
( ∂

∂η1

)γ1
(3.7)

for γ ≤ M , generating NX′,π. The notation in (3.7) will be used for the rest of this 
section. We will also suppress the distinction between a Noetherian operator L in U with 
respect to I and its induced operator L on X ′.

Lemma 3.3. Each operator (∂/∂η)γ, γ ≤ M , belongs to (i.e., induces an element in) M.

Proof. We will proceed by induction over the number of factors k ≤ κ involved in (3.7). 
Therefore, assume that γ = (γ1, . . . , γk) ≤ (M1, . . . , Mk),

γ′ = (γ1, . . . , γk−1) ≤ M ′ := (M1, . . . ,Mk−1)

and let
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( ∂

∂η

)γ′

:=
( ∂

∂ηk−1

)γk−1
· · ·

( ∂

∂η1

)γ1
.

Assume also that we have proved that there are holomorphic functions cm,α, depending 
on both z and w, such that

( ∂

∂η

)γ′

=
∑

m′≤M ′

∑
|α|≤|M ′−m′|

cm′,α

( ∂

∂z

)α( ∂

∂w

)m′

. (3.8)

If we apply (∂/∂ηk)γk to (3.8) a simple computation gives us (3.8) for k instead of k− 1. 
By induction therefore (3.8) holds for k = κ and so the lemma follows. �
Proposition 3.4. One can choose a finite number of submersions π� at x such that the 
corresponding operators (∂/∂η�)γ for γ ≤ M together generate M at x.

Taking this proposition for granted, we can conclude the proof of Proposition 3.1. 
In fact, Lemma 3.3 means that NX′,π ⊂ M for an arbitrary submersion π at x. By 
definition thus NX′ ⊂ M. On the other hand, Proposition 3.4 implies, cf. Remark 3.2, 
that M ⊂ NX′ . Thus NX′ = M and so Proposition 3.1 is proved. �

The rest of this section is devoted to the proof of Proposition 3.4. It will be apparent 
that one can choose the π� as arbitrarily small perturbations of any fixed submersion at 
x. First notice that if we choose a submersion so that bjk are constant in the associated 
change of variables in (3.5), then

∂

∂ηk
= ∂

∂wk
+

n∑
j=1

bjk
∂

∂zj
, k = 1, . . . , κ. (3.9)

We will choose our π� in this way. Then ∂/∂ηk is independent of wk′ for k′ �= k which 
makes it possible to proceed by induction over the codimension κ.

Let us first assume that κ = 1, i.e., that we have just one variable w. Each point 
a� = (a�1, . . . , a�n) ∈ Cn gives rise to a change of coordinates, with bj1 = a�j , and thus a 
submersion π�. The associated non-tangential derivative is, cf. (3.9),

∂

∂η�
= ∂

∂w
+

n∑
j=1

a�j
∂

∂zj
. (3.10)

Recall that

Cm :=
(
n + m

m

)
(3.11)

is the number of multiindices α = (α1, . . . , αn) such that |α| ≤ m.
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Lemma 3.5. If we choose Cm generic points a� ∈ Cn, then for each α with |α| ≤ m there 
are unique d�,α such that

( ∂

∂z

)α( ∂

∂w

)m−|α|
ψ =

∑
�

d�,α

( ∂

∂η�

)m

ψ.

Proof. In view of (3.10) we have

( ∂

∂η�

)m

ψ =
( ∂

∂w
+
∑
j

a�j
∂

∂zj

)m

ψ =
∑

|α|≤m

(a�)α
(
m

α

)( ∂

∂z

)α( ∂

∂w

)m−|α|
ψ,

where

(a�)α = (a�1)α1 · · · (a�n)αn .

We claim that the Cm × Cm-matrix A = (a�)α is invertible if the a� are generic. If 
n = 1 then A is a Vandermonde matrix, and it is well-known that it is invertible if the 
Cm = m + 1 points a� in C are distinct, so the claim follows. For the general case one 
can argue as follows: Given xα ∈ CCm , consider the polynomial

p(t) =
∑

|α|≤m

xαt
α

in Cn
t . We get the action of the matrix A on xα by evaluating p(t) at the various points 

a�. Now A(xα) = 0 means that p(t) vanishes at these Cm generic points, and hence 
p(t) must vanish identically. This means that (xα) = 0 and since (xα) is arbitrary, A is 
invertible. Now the lemma follows by taking

xα =
(
m

α

)( ∂

∂η�

)m

ψ. �
Proof of Proposition 3.4. For k = 1, . . . , κ, let Lk be a set of CMk

generic points in 
Cn. For each � = (�1, · · · , �κ) ∈ L := ⊕κ

k=1Lk we get a change of coordinates, and an 
associated submersion π�, determined by b�jk = b�kj . The associated differential operators 
∂/∂η�k, k = 1, . . . , κ, only depend, cf. (3.9), on the components �k ∈ Lκ, respectively, so 
we can denote them by ∂/∂η�kk .

We claim that if m ≤ M and |β| ≤ |M −m|, then there are complex numbers cα,m,�,γ

for γ ≤ M such that, for any ψ in OU/I,

( ∂

∂z

)α( ∂

∂w

)m

ψ =
∑
�∈L

∑
γ≤M

cα,m,�,γ

( ∂

∂η�
)γ
ψ. (3.12)

Clearly the claim implies the proposition. If κ = 0 the claim is trivially true. Assume 
now that the claim is proved for κ − 1. We can write, in a non-unique way,
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( ∂

∂z

)β( ∂

∂w

)m

=
( ∂

∂z

)βκ
( ∂

∂wκ

)mκ
( ∂

∂z

)β′( ∂

∂w′

)m′

where w′ = (w1, . . . , wκ−1), m′ = (m′
1, . . . , mκ−1) ≤ M ′ = (M1, . . . , Mκ−1), |α′| ≤

|M ′ −m′|, mκ ≤ Mκ and |βκ| ≤ Mκ −mk. By the induction hypothesis

ω :=
( ∂

∂z

)β′( ∂

∂w′

)m′

ψ

is a linear combination of

( ∂

∂η�

)γ′

ψ =
( ∂

∂η
�κ−1
κ−1

)γκ−1
· · ·

( ∂

∂η�11

)γ1
ψ

for γ′ = (γ1, . . . , γκ−1) ≤ M ′ and �′ = (�1, . . . , �κ−1) ∈ ⊕κ−1
j=1Lk. Lemma 3.5 implies that

( ∂

∂z

)βκ
( ∂

∂wκ

)mκ

ω

is a linear combination of
( ∂

∂η�κκ

)γκ

ω

for γκ ≤ Mκ and �κ ∈ Lκ. Now the claim follows. �
The proof requires CM1 · · ·CMκ

different projections π� to generate the entire OZ-
module NX′ , and we think that this is the optimal number.

4. The sheaf NX when Z is smooth

We shall now prove Proposition 1.1 and Theorems 1.3 and 1.4 in the general case. 
They are local, so let us assume that we at a given point x ∈ X have an embedding

i : X → U ⊂ CN (4.1)

and that the underlying reduced space Z is smooth.

Proof of Proposition 1.1. We can assume that we have coordinates (z, w) in U so that 
π(z, w) = z. We first claim that NX,π is an OZ-module at x. In fact, if L is defined by 
(1.2) for some μ in Hom (OU/J , CHZ

U ) and ξ is in OZ , then

ξLφωz = ξπ∗(φμ) = π∗(φπ∗ξ μ). (4.2)

Since π∗ξ μ is in Hom (OU/J , CHZ
U ) as well, ξL is in NX,π, and so the claim follows.
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Let us now prove that NX,π is finitely generated at x. By the Nullstellensatz there is 
a multi-index M = (M1, . . . , Mκ) ∈ Nκ such that (1.5) holds. If μ is in Hom (OX , CHZ

U ), 
therefore wMj+1

j μ = 0 for each j. Shrinking U if necessary we can find μ1, . . . , μν that 
generate the OU -module Hom (OU/J , CHZ

U ). If μ is any current in this sheaf thus

μ =
ν∑
1

cj(z, w)μj

for some holomorphic cj . Since

cj(z, w) =
∑

m≤M

cjk(z)wm, j = 1, . . . , ν, (4.3)

in OX′ = OU/I, the equalities (4.3) hold in OX = OU/J as well. Thus

μ =
ν∑

j=1

∑
m≤M

cjkw
mμj .

Notice that each wmμj is in Hom (OX , CHZ
U ). If φ is in OX ,

π∗(φμ) =
ν∑

j=1

∑
m≤M

cjkπ∗(φwmμj). (4.4)

Thus the OZ-module NX,π is generated in U by Lj,m, where

Lj,mφωz = π∗(φwmμj), m ≤ M, j = 1, . . . , ν. (4.5)

With no loss of generality we can assume that ωz = dz. Let μ̂ be as in (3.2). After 
possibly shrinking U further, there are holomorphic aj in U such that μj = ajμ̂. Thus

Lj,mφωz = π∗(φwmμj) = π∗(φajwmμ̂).

It follows from (3.3) that Lj,m are induced by differential operators Lj,mΦ in U which 
are Noetherian with respect to J since Φaj is in I if Φ is in J .

We now claim that (1.2) holds for the set of generators Lj,m above, cf. (4.5), i.e., that 
Lj,mφ = 0 for m ≤ M and j = 1, . . . , ν, if and only if φ = 0 in OX . By possibly shrinking 
U further, there are holomorphic aj in U such that μj = ajμ̂. For each fixed j, Lj,mφ = 0
for all m ≤ M if and only if 0 = π∗(φwmμj) = π∗(φajμ̂) for all m ≤ M , and this holds 
if and only if φaj = 0 in OX′ , which in turn holds if and only if φajμ̂ = 0, i.e., φμj = 0. 
Now the claim follows from the duality principle (2.3).

Finally we notice that NX,π is a finitely generated submodule at x of the free 
OZ-module NX′,π, generated by (∂|m[/∂wm)|w=0, m ≤ M , and therefore NX,π is co-
herent. �
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Remark 4.1. Using the setup and notation in the preceding proof we have

Hom (OU/J , CHZ
U ) = {aμ̂; a ∈ (I : J )/I}; (4.6)

the colon ideal (sheaf) (I : J ) by definition consists of all a in OU such that aJ ⊂ I. 
In fact, we already know that each μ on the left hand side has the form aμ̂ for some a. 
Recall that aμ̂ = 0 if and only if a ∈ I, cf. Example 2.1. Thus J aμ̂ = 0 if and only if 
J a ⊂ I. Now (4.6) follows. �

Notice that the generators for the OZ-module NX,π, cf. (4.5) are, if ωz = dz, precisely 
Lj,mφ = (∂|m|(ajφ)/∂wm)|m=0, m ≤ M , j = 1, . . . , ν, where a1, . . . , aν is a generating 
set for the coherent OU -module (I : J )/I.

Proof of Theorems 1.3 and 1.4. Recall that the OZ-module NX at a point x ∈ X is by 
definition generated by NX,π obtained from all submersions in any local embeddings at 
x. In view of Lemma 2.4 it is however enough to take all NX,π obtained from one single 
embedding, so let us fix (4.1). We will use the notation from the proof of Proposition 1.1. 
Assume that

Lφdz = π∗(φμ),

where π is a local submersion and μ is in Hom (OU/J , CHZ
U ). In view of (4.4) and (4.5),

μ =
ν∑

j=1

∑
γ≤M

cjγ(z)wγμj =
ν∑

j=1

∑
γ≤M

cjγ(z)wγajμ̂. (4.7)

By Theorem 1.4 for X ′, i.e., so that OX′ = OU/I, we have

π∗(ψwγμ) =
∑

m≤M

∑
|β|≤|M−m|

dm,γ,β(z) ∂
|β|+|m|

∂zβ∂wm
ψ(z, 0) dz. (4.8)

Combining (4.7) and (4.8) we get

Lφ dz = π∗(φμ) =
ν∑

j=1

∑
m≤M

∑
|β|≤|M−m|

c′j,m,β(z) ∂
|β|+|m|

∂zβ∂wm
(ajφ)(z, 0).

Thus the OZ-module NX is generated by the finite set (1.6) of Noetherian operators on 
X and so Theorem 1.4 follows. Moreover, each of these differential operators belongs to 
the free OZ-module NX′ and hence NX is coherent. Since (1.2) holds already for NX,π, 
by Proposition 1.1, now also Theorem 1.3 is proved. �
Remark 4.2. To compute the norm | · |X locally at x by means of Theorem 1.5 one has to 
choose suitable coordinates, the ideal I ⊂ J , and find a1, . . . , aν that generate (I : J )/I, 
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i.e., so that a1μ̂, . . . , aν μ̂ generate Hom (OU/J , CHZ
U ), in U . Then the norm is given by 

(1.7). �
Proposition 4.3. Let (4.1) be a local embedding at x ∈ X and let π� : U → Z∩U be a finite 
number of independent local submersions as in Proposition 3.4. Then the submodules 
NX,π� generate NX in a neighborhood of x.

Proof. Assume that Lφ ωz = π∗(φμ) for a local submersion π and μ in Hom (OU/J ,

CHZ
U ). Let (z, w) be coordinates in U such that π is (z, w) 
→ z, and choose I ⊂ J and 

the associated μ̂ as before. Moreover, cf. Proposition 2.2, let a be a holomorphic function 
in U such that μ = aμ̂. In view of (3.3) and Proposition 3.4 we have

Lφ dz = 1
M !

∂|M |

∂wM

∣∣∣
w=0

(φa) dz =
∑
�

∑
γ≤M

c�,γ(z)
( ∂

∂η�

)γ∣∣∣
w=0

(φa) dz. (4.9)

If dζ� is the non-vanishing holomorphic n-form associated with coordinates defining π�, 
then dz = c�(z)dζ�, so

1
γ!

( ∂

∂η�

)γ∣∣∣
w=0

(φa) dz = c�
1
γ!

( ∂

∂η�

)γ∣∣∣
w=0

(φa) dζ� = c�π
�
∗(φawM−γ μ̂). (4.10)

Thus each L�,γφ = (∂/∂η�)γ)|w=0(φa) is in NX,π� , so the proposition follows from 
(4.9). �
5. The sheaf NX at regular points

Let i : X → U be a local embedding at x ∈ X with coordinates (z, w) in U so that 
Z = {w = 0}. If (1.5) holds and Φ is holomorphic in U , then

Φ(z) =
∑

m≤M

cm(z)wm

in OX = OU/J , where cm are in OZ , cf. (4.3). Thus the right hand side is a representative 
of φ = i∗Φ in OX . Therefore the set of monomials {wm; m ≤ M} generates OX as an 
OZ-module. Let us extract a minimal generating set 1, wα1 , . . . , wατ−1 at x (clearly 1
must be one of the generators). Then each element φ in OX,x has a representative φ̂ of 
the form (1.8), where φ̂j are in OZ,x.

Proposition 5.1. Given such a minimal generating set at x, the representation (1.8) of φ
is unique for all φ in OX,x if and only if OX,x is Cohen-Macaulay.

For a proof of Proposition 5.1, see, e.g., [7, Proposition 3.1].
Assume now that x is a regular point, i.e., Z is smooth at x and OX,x is Cohen-

Macaulay. Given a minimal generating set wαj , thus OX,x is a free OZ,x-module, i.e.,
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Oτ
Z,x′ → OX,x′ , (φ̂j) 
→ φ̂ := φ̂0 + φ̂1w

α1 + · · · φ̂τ−1w
ατ−1 (5.1)

is an isomorphism for x′ = x. By coherence, it is an isomorphism for all x′ ∈ Z in a 
neighborhood of x, say, in Z ∩ U , after shrinking U . Thus φ = 0 in OX,x′ if and only if 
φ̂j = 0 in OZ.x′ for j = 0, . . . , τ − 1, so the expression (1.9) is a pointwise norm of φ in 
X ∩ U .

Proof of Theorem 1.5. Let us choose i : X → U at x so that (5.1) is an isomorphism 
for x ∈ X ∩ U . We have to relate (1.9) to our norm | · |X , and we proceed as follows: 
Assume that μ1, . . . , μν is a generating set for the OU -module Hom (OU/J , CHZ

U ). If φ is 
in OX , then φμj are well-defined elements in Hom (OU/J , CHZ

U ). With the notation in 
the proof of Proposition 1.1, cf. (2.9) and (2.10), we have the unique representations

φμj =
∑

m≤M

bj,m(z) 1
(2πi)κ ∂̄

dw

wm+1∧dz, j = 1, . . . , ν, (5.2)

where

bj,m∧dz = π∗(φwmμj). (5.3)

If we represent φ by φ̂ in (5.1), then

bj,m = φ̂0π∗(wmμj) + φ̂1π∗(wm+α1μj) + · · · + φ̂ν−1π∗(wm+αν−1μj)

and thus bj,m are OZ-linear combinations of the φ̂j . Hence the mapping

φ 
→ φ∧μj , j = 1, . . . , ν,

via the isomorphism (5.1), induces an OZ-linear holomorphic morphism

T : Oτ
Z → OνCM

Z ,

where CM = (M + 1)! is the number of m ∈ Nκ such that m ≤ M .
In view of the duality principle (2.3), T is injective. In fact, the image of T being zero, 

means that φμ = 0, i.e., φμj = 0 for j = 1, . . . , ν, and so φ = 0 in OX which in turn, 
cf. (5.1), means that φ̂j = 0 for j = 0, . . . , τ − 1. By [7, Lemma 4.11], the matrix T is 
pointwise injective. If (bj,m) is in the image of T therefore

∑
j=0

|φ̂j |2 ∼
ν∑

j=1

∑
m≤M

|bj,m|2. (5.4)

From (4.5) and (5.3) we see that
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ν∑
j=1

∑
m≤M

|bj,m|2 ∼
ν∑

j=1

∑
m≤M

|Lj,mφ|2 = |φ|2X,π. (5.5)

Now Theorem 1.5 follows from (5.4) and (5.5). �
6. An example

Consider the 2-plane Z = {w1 = w2 = 0} in U ⊂ C4
z1,z2,w1,w2

, where U is the product 
of balls {|z| < 1, |w| < 1} in C4, and let

J = 〈w2
1, w

2
2, w1w2, w1z2 − w2z1〉.

Then OU/J has pure dimension 2 and is Cohen-Macaulay except at the point 0 ∈
U , see, [7, Example 6.9]. It is also shown there, notice that I = 〈w2

1, w
2
2〉 ⊂ J , that 

Hom (OU/J , CHZ
U ) is generated by

μ1 = w1w2μ̂, μ2 = (z1w2 + z2w1)μ̂,

where

μ̂ = 1
(2πi)2 ∂̄

dw1

w2
1
∧∂̄ dw2

w2
2
∧dz1∧dz2.

Following the recipe in Theorem 1.4 and Remark 4.2 we get a generating set for NX by 
applying each of the differential operators

1, ∂

∂w1
,

∂

∂w2
,

∂

∂z1
,

∂

∂z2
,

∂2

∂z1∂w1
,

∂2

∂z1∂w2
,

∂2

∂z2∂w1
,

∂2

∂z2∂w2
,

∂2

∂w1∂w2

to a1φ = w1w2φ and a2φ = (z1w2 + z2w1)φ, respectively, and evaluate at w = 0. Then 
a1 only contributes with the Noetherian operator 1, whereas a2 gives rise to

z1, z2, 0, 0, z2
∂

∂z1
, (1 + z1

∂

∂z1
), (1 + z2

∂

∂z2
), z1

∂

∂z2
, (z1

∂

∂w1
+ z2

∂

∂w2
). (6.1)

Because of the operator 1 from the a1, we can forget about zj and replace 1 + zj
∂

∂zj
by 

zj
∂

∂zj
. Thus we get

|φ|2X ∼ |φ|2 + |z|2
∣∣ ∂φ
∂z1

∣∣2 + |z|2
∣∣ ∂φ
∂z2

∣∣2 +
∣∣z1

∂φ

∂w1
+ z2

∂φ

∂w2

∣∣2.
6.1. Functions in X \ {0}

Let L0 = 1 and let L denote the right-most operator in (6.1). If φ is an OX -function 
defined in Z \ {0}, then both L0φ and Lφ are holomorphic functions in Z \ {0}. Since 
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{0} has codimension 2 in Z, they both have holomorphic extensions across 0 that we 
denote by φ0(z) and h(z), respectively.

Notice that 1, w1 is a basis for OX over OZ where z1 �= 0, and similarly, 1, w2 is a 
basis for OX over OZ where z2 �= 0. Given any φ0 and h in U we get a OX -function φ
in U \ {0}, defined as

φ = φ0 + (h/z1)w1, z1 �= 0; φ = φ0 + (h/z2)w2, z2 �= 0. (6.2)

It is readily checked that L0φ = φ0 and Lφ = h. In other words, there is a 1 − 1
correspondence between OX-functions φ in Z \ {0} and O2

Z .

Lemma 6.1. The OX-function φ has an extension across 0 if and only if h(0) = 0.

Proof. If φ is defined in U then h = Lφ in U and then clearly h(0) = 0. Conversely, 
if h(0) = 0, then h(z) = c1(z)z1 + c2(z)z2 for some functions c1, c2 in U . It is readily 
checked that indeed φ, defined by (6.2), coincides with

φ0(z) + c1(z)w1 + c2(z)w2

in U \ {0}. Thus φ extends across 0. �
In view of this lemma, if we take, e.g., h = 1 in (6.2), we get an OX -function φ in 

U \ {0} that does not extend across 0.

7. Extension of NX across Zsing

We now drop the assumption that the underlying space Z is smooth.

Lemma 7.1. Let x be a fixed point on the singular locus Zsing of Z and let X → U ⊂ CN

be a local embedding at x. If U is small enough there are holomorphic functions f1, . . . , fκ
so that Z(f) = {f1 = · · · = fκ = 0} has codimension κ, and contains Z ∩ U and such 
that df := df1∧ . . .∧dfκ is non-vanishing on Zreg \ Z(f)sing. If x′ ∈ U \ Z is given we 
can choose fj so that x′ /∈ Z(f).

That is, Z(f) is a complete intersection that may have “unnecessary” irreducible 
components, but df �= 0 at each point on Zreg that is not hit by any of these components. 
This is of course a well-known result and follows, e.g., from the more precise statement 
in the lemma on page 72 in [21]. However, we provide a simple argument here for the 
reader’s convenience.

Proof. If U is small enough we can find a finite number of functions g1, . . . , gm that 
generate JZ . For each irreducible component Z� of Z we choose a point x� ∈ Z�

reg ∩ U . 
Notice that dgj span the annihilator of the tangent bundle at x� for each �. If f1, · · · , fκ
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are generic linear combinations of the gj, then dfj span these spaces as well for each 
�, and fj define a complete intersection Z(f) that avoids x′. Clearly Z ⊂ Z(f) and 
df �= 0 at x� for each �. It is not hard to see (cf. [25, Theorem 4.3.6]) that df is non-
vanishing on the regular part of the irreducible component of Z(f) that contains x�; i.e., 
on Z�

reg \ Z(f)sing, for each �. �
Let x, f and U be as in Lemma 7.1 and let us write Z rather than Z ∩ U . Since df is 

generically non-vanishing on Z we can choose coordinates (ζ, η) = (ζ1, · · · , ζn; η1 · · · , ηκ)
in U such that, with suitable matrix notation, H = ∂f/∂η is generically invertible on Z. 
Let h = detH. If

w = f(ζ, η), z = ζ, (7.1)

then, cf. (2.6), dw∧dz = hdη∧dζ and hence (z, w) are local coordinates at each point on 
Z \ {h = 0}. Notice that

∂

∂w
= H−1 ∂

∂η
,

∂

∂z
= ∂

∂ζ
−G

∂

∂w
, (7.2)

where G = ∂f/∂ζ is holomorphic. Since H−1 = Θ/h, where Θ is holomorphic, therefore

h
∂

∂w
= Θ ∂

∂η
, h

∂

∂z
= h

∂

∂ζ
−GΘ ∂

∂η
. (7.3)

For a sufficiently large multiindex M = (M1, . . . , Mκ) the complete intersection ideal 
〈fM1+1

1 , . . . , fMκ+1
κ 〉 is contained in J . Possibly after shrinking the neighborhood U

of x there are generators μ1, . . . , μν for Hom (OU/J , CHZ
U ) and holomorphic functions 

a1, . . . , aκ in U , cf. Proposition 2.2, such that

μj = aj
1

(2πi)κ ∂̄
1

fM+1∧dη∧dζ. (7.4)

Notice that aj must vanish on the “unnecessary” irreducible components of Z(f). For 
the rest of this section we will use the notation (3.7).

Proposition 7.2. With the notation above, the differential operators

Φ 
→ Lm,β,jΦ :=
(
h

∂

∂w

)m(
h
∂

∂z

)β

(ajΦ), m ≤ M, |β| ≤ |M −m|, j = 1, . . . , ν, (7.5)

a priori defined on U ∩{h �= 0}, have holomorphic extensions to U . They are Noetherian 
with respect to J and the induced operators Lm,β,j, cf. (1.1), belong to NX on Zreg and 
generate the OZ-module NX where h �= 0.
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Proof. From (7.3) it is clear that Lm,β,j have holomorphic extensions to U . Since (z, w)
are local coordinates at a point on Zreg where h �= 0 it follows from (7.2) and Theo-
rem 1.4, cf. Remark 4.1, that the induced operators Lm,β,j are in NX there. By a simple 
induction argument it follows from the same theorem that they actually generate NX

there. It also follows that Lm,β,j are Noetherian there with respect to J in U ∩ {h �= 0}
and by continuity their extensions are Noetherian as well. Thus Lm,β,j are Noetherian 
on X ∩ U .

We have to prove that Lm,β,j are in NX on Zreg where h = 0. Let x′ ∈ Xreg be such 
a point and assume that df �= 0. For a generic choice of constant matrices b, c we have 
that df∧d(cζ + bη) �= 0. Thus we can choose new coordinates

w′ = f(ζ, η), z′ = cζ + bη

in a neighborhood V ⊂ U of x′. It follows that

φ 
→
( ∂

∂w′

)m( ∂

∂z′

)α∣∣∣
w′=0

(φaj), m ≤ M, |α| ≤ |M −m|, (7.6)

are in NX in Z ∩ V. Since z′ = bz + cw, w′ = w, in V \ {h = 0}, we have

∂

∂w
= ∂

∂w′ + ∂z′

∂w

∂

∂z′
,

∂

∂z
= ∂z′

∂z

∂

∂z′
,

so by (7.3), applied to z′, w′ instead of ζ, η,

h
∂

∂wk
= h

∂

∂w′
k

+
∑
i

dki
∂

∂z′i
, h

∂

∂zk
=

∑
i

d′ki
∂

∂z′i
, (7.7)

where dki, d′ki have holomorphic extensions to V. Thus Lm,β,j are OZ-linear combinations 
of (7.6), and hence belong to NX .

Let us now consider a point x′ ∈ Zreg where df = 0, i.e., some “unnecessary” com-
ponent of Z(f) passes through x′. Then certainly h(x′) = 0. Let π be the projection 
(z, w) 
→ z. By (7.1), (7.4), and (3.3),

1
γ!

( ∂

∂w

)γ

(ajφ) dz = π∗
(
φajdf∧fM−γ 1

(2πi)κ ∂̄
1

fM+1 ∧dz
)
, γ ≤ M, (7.8)

in U \ {h = 0}. Let v = (v1, . . . , vκ) generate JZ at x′ and assume first that dv∧dz �= 0
so that (z, v) are local coordinates in a neighborhood V ⊂ U of x′. Since J (f) ⊂ JZ , 
f = Av for a holomorphic matrix A in V. At points z ∈ Z ∩ V \ {h = 0} both fj and vj
are minimal sets of generators for JZ so A is invertible there. Therefore also (z, v) define 
the submersion π in V \ {h = 0}. Since fM−γdf∧dz = αdη∧dζ, where α is holomorphic, 
the right hand side of (7.8) is π∗(φαμk) which is dζ times an element in NX in V. It 
follows that the left hand side of (7.8) is dζ times Lφ, where L extends to an element in 
NX in V.
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Notice that if b� is a small constant n × κ-matrix, then η′ = η, ζ ′ = ζ + b�f is a 
change of variables in V, possibly after shrinking our neighborhood V of x′. In fact, 
dη′∧dζ ′ = dη∧(dζ + b�df) is non-vanishing if b� is small enough. Taking w� = f , z� = ζ ′, 
we get that w� = w, z� = z + b�w, and hence

dw�∧dz� = df∧d(ζ + b�df) = df∧dζ = hdη∧dζ,

where h is the same function as in (7.7). As in the preceding step of the proof we conclude 
that

φ 
→
( ∂

∂w�

)γ

(ajφ), γ ≤ M,

a priori defined in V \ {h = 0}, have extensions to elements in NX in Z ∩V. By Proposi-
tion 3.4 there is a finite set of such b� and holomorphic dm,β,�,j in a possibly even smaller 
neighborhood V of x′ such that

( ∂

∂w

)m( ∂

∂z

)β

(ajφ) =
∑
�

∑
γ≤M

dm,β,�,γ

( ∂

∂w�

)γ

(ajφ), m ≤ M, |β| ≤ |M −m|. (7.9)

It follows that all the operators on the left hand side of (7.9) are in NX in V.
Finally, if dv∧dζ = 0 at x′ we introduce new coordinates z′ = cζ + bη, w′ = w as 

before so that dv∧dz′ �= 0. From what we have just proved, then all

( ∂

∂w′

)m( ∂

∂z′

)β

(ajφ)

are holomorphic at x′. It now follows from (7.7) that Lm,β,j are in NX at x′. Thus 
Proposition 7.2 is proved. �

We can now formulate our main result of this section.

Theorem 7.3. Given a point x ∈ Zsing there is a local embedding at x i : X → U ⊂ CN

and a finite number of Noetherian operators L1, . . . , Lr on X ∩ U that generate NX on 
U ∩ Zreg.

Clearly, such a set L1, . . . , Lr defines a coherent extension of NX to U ∩ Z.

Proof. Choose the embedding i : X → U ⊂ CN at x small enough so that we have a 
complete intersection f = (f1, . . . , fκ) as above, global coordinates (ζ, η), and so that 
Proposition 7.2 applies, with h = det(∂f/∂η). We then get Lj in NX on X ∩ Zreg that 
have holomorphic extensions across Zsing and that generate NX in Zreg ∩ (U \ {h = 0}). 
Choosing η′ as other sets of κ coordinates we get another set of such Lj that generate 
NX on Zreg ∩ U except where h′ = det(∂f/∂η′) vanishes. Repeating a finite number of 
times we get a finite set of Lj that generate NX on Zreg ∩ (U \ {df = 0}).
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Possibly after shrinking U , we can make the same construction for a finite number 
f1, . . . , fρ of complete intersections such that Z ∩ U = Z(f1) ∩ · · · ∩ Z(fρ) ∩ U , see 
Lemma 7.1, and we thus get a finite set Lj as desired. �
Example 7.4. Let Z = {f = 0} be a reduced subvariety of U ⊂ C2 and assume that 
df �= 0 on Zreg. If X is defined by J = 〈f2〉, then

μ = ∂̄
1
f2∧dη∧dζ

is a generator for Hom (OU/J , CHZ
U ). Let us choose coordinates (ζ, η) on C2 so that 

neither h := ∂f/∂η nor ∂f/∂ζ vanish identically on Z. If we let w = f(ζ, η) and z = ζ, 
then

h
∂

∂w
= ∂

∂η
, h

∂

∂z
= h

∂

∂ζ
− ∂f

∂ζ

∂

∂η
.

Thus Proposition 7.2 gives us the Noetherian operators 1, ∂/∂η, h(∂/∂ζ). If we add the 
operators obtained by interchanging the roles of η and ζ we find that the extension of 
NX across Zsing generated by 1, ∂/∂η, ∂/∂ζ. Clearly, this extension is independent of 
the choice of coordinates in U . �
7.1. Global pointwise norm on X

In Example 7.4 the extension of NX across Zsing is invariant. We do not know whether 
this is true in general. In any case we can define a global pointwise norm in the following 
way: Each point x ∈ Zsing has a neighborhood Ux where we have a coherent extension 
by Theorem 7.3 and in Ux we thus have a pointwise norm | · |X,x. We can choose a locally 
finite open covering {Uxj

} of X, and a partition of unity χj subordinate to this covering 
and define the global norm

| · |2X =
∑
j

χj | · |2X,xj
. (7.10)

8. Pointwise norm of smooth (0, q)-forms

In [7] was introduced a notion of smooth (0, q)-form on a non-reduced space X. We 
will recall this definition and show that our pointwise norm | · |X extends to a pointwise 
norm on such forms.

Consider a local embedding i : X → U ⊂ CN as before. If Φ is a smooth (0, q)-form in 
U , Φ ∈ E0,q

U , following [7, Section 4] we say that i∗Φ = 0, or equivalently Φ ∈ Ker i∗, if

Φ∧μ = 0, μ ∈ Hom (OU/J , CHZ
U ).
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In case Φ is holomorphic, this is equivalent to that Φ ∈ J in view of the duality principle 
(2.3). We let

E0,q
X := E0,q

U /Ker i∗

be the sheaf of smooth (0, k)-forms on X. Thus we have a well-defined surjective mapping 
i∗ : E0,q

U → E0,q
X . By a standard argument, cf. Section 2.2, one checks that this definition 

is independent of the local embedding. For φ in E0,q
X and μ in Hom (OU/J , CHZ

U ) thus 
φ∧μ is well-defined, and it vanishes for all such μ if and only if φ = 0.

To extend our norm to forms in E0,q
X let us first assume that the underlying reduced 

space Z is smooth. Assume that we have a local embedding i : X → U , and a submersion 
π : U → Z ∩ U . If μ is in Hom (OU/J , CHZ

U ) and φ is in E0,q
X , then π∗(φ∧μ) is a well-

defined (0, q)-current on Z ∩ U so we have

Lφωz = π∗(φ∧μ). (8.1)

Lemma 8.1. An operator L so defined maps L : E0,q
X → E0,q

Z and it is determined by its 
action on OX . If Lφ = 0 for all μ in Hom (OU/J , CHZ

U ), then φ = 0.

Since the OZ-module NX is generated by operators of the form (8.1), it follows that 
any L in NX extends to an operator L : E0,q

X → E0,q
Z .

Proof. Choose local coordinates (z, w) in U such that π is (z, w) 
→ z. Then, cf. (2.9), 
each μ in Hom (OU/J , CHZ

U ) has the form

μ =
∑
m

cm(z) 1
(2πi)κ ∂̄

dw

wm+1∧dz. (8.2)

Let us first assume that φ is a function in E0,0
X . Choose a smooth function Φ in E0,0

U such 
that φ = i∗Φ. Then

Φμ =
∑
m

cm(z)Φ(z, w) 1
(2πi)κ ∂̄

dw

wm+1∧dz

and by (2.8) thus

π∗(φμ) = π∗(Φμ) =
∑
m

cm(z) 1
m!

∂|m|

∂zm
Φ(z, 0) dz. (8.3)

This differential operator is determined by its action on holomorphic functions and so 
the first statement of the lemma is proved for q = 0. If φ is in E0,q

X , q ≥ 1, then φ = i∗Φ
for some form
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′∑
|J|=q

ΦJ(z, w) dz̄J

in U , since any term with a factor dw̄j belongs to Ker i∗. If φJ = i∗ΦJ , we see that

Lφ =
′∑

|J|=q

LφJ dz̄J .

Thus the first part of the lemma is proved. The second statement follows since 
π∗(φ∧wmμ) = 0 for all m and μ implies that φ∧μ = 0 for all μ so by definition φ = 0. �
Remark 8.2. Notice that if L is the differential operator on the right hand side of (8.3), 
and φ = i∗Φ, then, observing that LΦ is well-defined for (0, q)-forms in U ,

Lφ = ι∗LΦ, (8.4)

where ι : Z → U is the underlying embedding. �
Proposition 8.3. Let x be a fixed point x ∈ Zsing and let i : X → U ⊂ CN be a local 
embedding at x as in Theorem 7.3. All the operators L1, . . . , Lρ extend to operators 
E0,q
X → E0,q

Z . Moreover, φ = 0 if (and only if) Ljφ = 0 for j = 1, . . . , ρ.

Proof. We first prove the extension for the operators Lm,β,j in Proposition 7.2. By 
definition a smooth (0, q)-form φ on X ∩ U is represented by a smooth (0, q)-form Φ in 
U and thus each Lm,β,jΦ is a smooth (0, q)-form in U . Moreover, since it is Noetherian 
with respect to J in U \Zsing, i.e., Lm,β,jΦ = 0 if Φ is in J it follows by continuity that 
this holds also across Zsing. By Remark 8.2, Lm,β,jφ := ι∗Lm,β,jΦ in Zreg ∩ U , and the 
same formula defines a smooth extension across Zsing ∩ U . By continuity this extension 
is unique. All the operators L1, . . . , Lρ are obtained in this way so the first statement in 
Proposition 8.3 is proved. Since Lj generate NX at each point outside Zsing it follows 
that φ = 0 there if Ljφ = 0 for j = 1, . . . , ρ. By continuity then φ = 0 in X ∩ U . �

Assuming that we have chosen a Hermitian norm on Z, cf. the beginning of the 
introduction, we now get a pointwise norm

|φ|2U =
ρ∑

j=1
|Ljφ|2Z

on U of φ in E0,q
X . Patching together as in Section 7.1 we get a global norm on X.

Remark 8.4. Proposition 1.1 as well as Theorem 1.5 have analogues for smooth (0, q)-
forms, and they are proved in basically the same way. We omit the details. �
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9. Pseudomeromorphic currents

Let Y be a reduced analytic space. The OY -module PMY of pseudomeromorphic 
currents on Y was introduced in [10,8]. Roughly speaking, it consists of currents that 
locally are finite sums of direct images (under possibly nonproper mappings) of products 
of simple principal value currents and ∂̄ of such currents. See [11] for a precise definition 
and for the properties stated in this section. The sheaf PMY is closed under ∂̄ and under 
multiplication by smooth forms. If τ is pseudomeromorphic in an open subset U ⊂ Y and 
W ⊂ U is a subvariety then there is a well-defined pseudomeromorphic current 1U\W τ

in U obtained by extending the natural restriction of τ to U \ W in the trivial way. 
With the notation in Section 2.1, 1U\W τ = limε χ(|h|/ε)τ if h is a tuple of holomorphic 
functions with common zero set W . Thus 1W τ := τ − 1U\W τ is a pseudomeromorphic 
current with support on W . If W ′ ⊂ U is another subvariety, then

1W ′1W τ = 1W ′∩W τ. (9.1)

We can rephrase the standard extension property, cf. Section 2.1: If τ has support on a 
subvariety Z of pure dimension, then τ has the SEP with respect to Z if for each open 
subset U ⊂ Y and subvariety W ⊂ U ∩ Z with positive codimension in Z, 1W τ = 0.

An important property is the dimension principle: If τ in PMY has bidegree (∗, q)
and support on a variety of codimension larger than q, then τ must vanish.

Recall that a current τ on a manifold is semi-meromorphic if there are a smooth form 
ω with values in a line bundle L, and a non-trivial holomorphic section f of L, such that 
τ = ω/f , considered as a principal value current. We say that a current α on Y is almost 
semi-meromorphic if there is a smooth modification π : Ỹ → Y and a semi-meromorphic 
current α̃ in Ỹ such that α = π∗α̃. Notice that an almost semi-meromorphic α is smooth 
outside an analytic set W of positive codimension in Y .

Example 9.1. Coleff-Herrera currents in U ⊂ CN are pseudomeromorphic. Almost semi-
meromorphic currents are pseudomeromorphic and have the SEP on U . �

In general one cannot multiply pseudomeromorphic currents. However, assume that τ
is pseudomeromorphic and α is almost semi-meromorphic in U and let W be the analytic 
set where α is not smooth. There is a unique pseudomeromorphic current T in U that 
coincides with the natural product α∧μ in U \W and such that 1WT = 0. For simplicity 
we denote this current by α∧μ. If α′ is another almost semi-meromorphic current in U , 
then the expression α′∧α∧τ means α′∧(α∧τ). The equality

α′∧α∧τ = α∧α′∧τ (9.2)

always holds. However, in general it is not true that α′∧α∧τ = (α′∧α)∧τ .
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Example 9.2. Let f be a holomorphic function with non-empty zero set, let α = 1/f , 
α′ = f , and τ = ∂̄(1/f). Then α′ατ = 0, but α′α = 1 and so (α′α)τ = τ . �

Assume that τ is pseudomeromorphic, α is almost semi-meromorphic, ξ is smooth, 
and V is any subvariety. Then we have

1V α∧τ = α∧1V τ. (9.3)

In particular: If τ has support on and the SEP with respect to Z, then also α∧τ has 
(support on and) the SEP with respect to Z.

10. Uniform limits of holomorphic functions

Let X be a possibly non-reduced space of pure dimension n and let i : X → U ⊂ CN , 
so that OX = OU/J as before. If U is small enough, then there are trivial Hermitian 
vector bundles Ek in U , E0 = C a line bundle, with morphisms fk : Ek → Ek−1, so that

0 → O(EN ) fN→ · · · f2→ O(E1)
f1→ O(E0) → O(E0)/J → 0 (10.1)

is a free resolution of OU/J . In [9] was introduced a residue current R = Rκ + · · ·+RN

with support on Z, where Rk have bidegree (0, k) and take values in Hom (E0, Ek) � Ek, 
such that fk+1Rk+1 − ∂̄Rk = 0 for each k, which can be written more compactly as

(f − ∂̄)R = 0,

where f := f1 + · · ·+ fN . The current R has the additional property that a holomorphic 
function Φ in U belongs to J if and only if the current ΦR = 0. In particular, φR is a 
well-defined current for φ in OX . The assumption that X has pure dimension implies 
that R has the SEP with respect to Z ∩U , see [8, Section 3] or [7, Section 6] for a proof.

Recall that φ is a meromorphic function on X if φ = g/h, where h is not nilpotent, i.e., 
a representative of h does not vanish identically on Z, and g/h = g′/h′ if gh′−g′h = 0 in 
OX . Because of the SEP the product φR is a well-defined pseudomeromorphic current in 
U if φ is meromorphic on X ∩ U . The following criterion for holomorphicity was proved 
in [4].

Theorem 10.1. Assume that i : X → U has pure dimension and R is an associated current 
as above. If φ is meromorphic on X, then it is holomorphic if and only if

(f − ∂̄)(φR) = 0. (10.2)

To give the idea for the general case let us first sketch a proof of Theorem 1.6, relying 
on Theorem 10.1, in case X is reduced.
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Proof of Theorem 1.6 when X is reduced. The statement is elementary on Xreg; more-
over it is clear that φj → φ where φ is bounded (weakly holomorphic) and thus 
meromorphic on X.

There is a (unique) almost semi-meromorphic current ω on X of bidegree (n, ∗) such 
that i∗ω = R∧dz, where (z1, . . . , zN ) are coordinates in U , see [8, Proposition 3.3]. In 
particular, ω has the SEP on X. Let π : X ′ → X be a smooth modification so that ω =
π∗ω

′, where ω′ is semi-meromorphic. Since π∗φj → π∗φ in OX′ and X ′ is smooth, indeed 
π∗φj → π∗φ in EX′ . Therefore π∗φj ω

′ → π∗φ ω′. Since φj are smooth, π∗(π∗φj ω
′) =

φjω. Combining we find that

φjω → π∗(π∗φω′). (10.3)

Since ω′ has the SEP, so have π∗φ ω′ and π∗(π∗φ ω′). Moreover,

π∗(π∗φω′) = φω (10.4)

on the open subset of X where φ is holomorphic, thus on Xreg. Since both sides of (10.4)
have the SEP and coincide outside a set of positive codimension, they indeed coincide on 
X. By (10.3) thus φjω → φω. Applying i∗ we get φjR → φR and hence (f − ∂̄)(φjR) →
(f − ∂̄)(φR). It now follows from Theorem 10.1 that φ is indeed holomorphic. �

For the rest of this section we will discuss the proof Theorem 1.6 when X is non-
reduced but Z is smooth. We begin with

Lemma 10.2. Theorem 1.6 is true when Z is smooth and OX is Cohen-Macaulay.

Proof. Given a point x ∈ Z, let i : W → U be an embedding at x as in Section 5, so that 
we have unique representatives

φ̂j(z, w) =
τ−1∑
�=0

φ̂j�(z)wα�

in U of φj in Theorem 1.6. By the hypothesis and Theorem 1.5 it follows that φ̂j� is 
a Cauchy sequence in Z ∩ U for each fixed �, and hence we have holomorphic limits 
φ̂� = limj φ̂j� for each �. Let us define the function

φ̂(z, w) :=
τ−1∑
�=0

φ̂�(z)wα�

in U and let φ be its pullback to OX . Since the convergence holds for all derivatives of 
φ̂j� as well, it follows from (1.7) that |φj − φ|X → 0. �

The non-Cohen-Macaulay case is trickier. Let us first look at an example.
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Example 10.3. Consider the space X in Section 6. If φj is a sequence as in Theorem 1.6, 
it follows from Lemma 10.2 that φj has a holomorphic limit φ in X \ {0}. Let L be 
the Noetherian operator in Section 6.1 and recall that Lφ is a well-defined function 
on Z. By the hypothesis in Theorem 1.6, Lφj is a Cauchy sequence on Z and since 
Lφj → Lφ in Z \ {0} we conclude that Lφj → Lφ uniformly in Z. Since Lφj(0) = 0
therefore Lφ(0) = 0, and thus φ is OX -holomorphic in X, cf. Lemma 6.1. It follows that 
|φj − φ|X → 0 on X. �

We cannot see how the argument in Example 10.3 can be extended directly, so we 
have to go back to the relation between our Lj and Coleff-Herrera currents.

Proof of Theorem 1.6 when Z is smooth. Given any point x ∈ X let us choose a local 
embedding i : X → U at x such that there is a Hermitian free resolution (10.1) and the 
associated residue current R in U . Since Theorem 1.6 is local it is enough to prove it in 
X ∩ U . We will use, [7, Lemma 6.2]:

Proposition 10.4. There is a trivial vector bundle F → U and an F -valued Coleff-
Herrera current μ such that its entries generate Hom (OU/J , CHZ

U ), and an almost 
semi-meromorphic current α = α0 + · · · + αn, where αk have bidegree (0, k) and take 
values in Hom (F, Eκ+k), such that

R∧dz = αμ, Rκ+k∧dz = αkμ, k = 0, 1, . . . , n.

Moreover, α is smooth where OX is Cohen-Macaulay.

Let W be the subset of Z ∩ U where OX is not Cohen-Macaulay. Since OX has pure 
dimension W has codimension at least 2 in Z ∩ U , see, e.g., [7].

Lemma 10.5. If φ is holomorphic in (X ∩ U) \W , then φ has a meromorphic extension 
to X ∩ U .

This result should be well-known but we provide a proof since we could not find any 
reference.

Proof. Since Z is smooth we can assume that we have coordinates (z, w) in U so that 
Z ∩ U = {w = 0}. Let μ = (μ1, . . . , μν) be the tuple in Proposition 10.4 and consider 
the representations (5.2). Here M must be chosen so that (1.5) holds. Fix x′ ∈ Z ∩ U
where OX is Cohen-Macaulay and a monomial basis 1, . . . , wατ−1 for OX over OZ in 
a neighborhood U ′ of x′, cf. Section 5. We then have (letting R = νCM ) the R × ν-
matrix T in U ′ that for each holomorphic φ in O(X ∩ U ′) maps the coefficients (φ̂�) of 
its representative φ̂ given by (5.1) in this monomial basis onto the coefficients of the 
expansions (5.2) of φμj , cf. Section 5.
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Notice that the entries in T are C-linear combinations of the coefficients of the repre-
sentations (5.2) for φ = 1 in U . Thus T has a holomorphic extension to Z ∩ U (we may 
assume that Z ∩U is connected). As pointed out in Section 5, T is pointwise injective in 
Z ∩ U ′ and hence, after reordering the rows, T = (T ′ T ′′)t where T ′ is a ν × ν-matrix 
that is invertible in U ′. Thus T ′ has a meromorphic inverse S′ in Z∩U and if S = (S′ 0), 
then ST = I in Z ∩ U .

Since φ is holomorphic outside W , it defines a tuple (bj,m) in OR
Z in (Z ∩ U) \W via 

the representation (5.2) of φμ. Since W has at least codimension 2 in Z ∩ U , the tuple 
(bj,m) extends to Z ∩ U . Now

Φ̃ :=
τ−1∑
�=0

(Sb)�(z)wα�

is a meromorphic function in U that defines a meromorphic function φ̃ on X ∩ U , since 
(Sb)�(z) are meromorphic on Z ∩ U . Moreover, Φ̃ = φ̂ in U ′ and so φ̃ coincides with 
φ in X ∩ U ′. By uniqueness φ̃ = φ in U \ W and thus φ̃ is the desired meromorphic 
extension. �

If φj is a Cauchy sequence in | · |X -norm and Z ∩U is smooth, then φj → φ uniformly 
on compact subsets of U \ W by Lemma 10.2 and φ has a meromorphic extension to 
X ∩ U by Lemma 10.5.

Lemma 10.6. With this notation φjR → φR in U .

Proof. Let I and μ be as in Proposition 10.4 and the proof of Lemma 10.2. Assume that 
a is an F -valued holomorphic function in U such that μ = aμ̂, cf. (3.2). Recall that

|φ|X = |φa|X′ , (10.5)

where OX′ = O/I. Define the F -valued OX′-functions ψj = aφj . It follows from the 
hypothesis and (10.5) that ψj is a Cauchy sequence with respect to | · |X′ . Since OX′

is Cohen-Macaulay it follows from the proof of Lemma 10.2 that there is ψ in OX′ and 
representatives ψ̂j and ψ̂ in U such that ψ̂j → ψ̂ in E(U). Let Φj be representatives of 
φj in U . By Proposition 10.4 and (9.2) we have

φjR∧dz = ΦjR∧dz = Φjαμ = Φjαaμ̂ = αΦjaμ̂ = α(Φja)μ̂ = αψ̂j μ̂, (10.6)

where the fifth equality holds since both Φj and a are holomorphic, and the last equality 
holds since both Φja and ψ̂j are representatives in U of the class ψj in OX′ . Since ψ̂j → ψ̂

in E(U), αψ̂j μ̂ = ψ̂jαμ̂ → ψ̂αμ̂ = αψ̂μ̂ = αψμ̂. By (10.6) thus

φjR∧dz → αψμ̂. (10.7)
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Let Φ be a representative in U of φ. Since Φ, α and a are almost semi-meromorphic in 
U , by (9.2),

φR∧dz = ΦR∧dz = Φαμ = αΦμ = αΦaμ̂. (10.8)

We claim that

αΦaμ̂ = α(Φa)μ̂. (10.9)

In fact, both Φ and α are almost semi-meromorphic in U and smooth in a neighborhood of 
each point on Z∩U where OX is Cohen-Macaulay, cf. Lemma 10.2 and Proposition 10.4. 
Therefore (10.9) holds in U \W , and W ⊂ Z ∩ U has positive codimension in Z. Both 
sides of (10.9) have the SEP with respect to Z, see Section 9, so (10.9) holds everywhere. 
The right hand side of (10.9) is equal to αψμ̂, and so Lemma 10.6 follows from (10.7), 
(10.8), and (10.9). �

Since φj are holomorphic, we have by Theorem 10.1 and Lemma 10.6 that 0 =
∇f (φjR) → ∇f (φR), and hence φ is holomorphic in view of Theorem 10.1. Now take 
L in NX . By the hypothesis and definition of | · |X , Lφj is a holomorphic Cauchy se-
quence in U so it converges to a holomorphic limit H. On the other hand we know that 
Lφj → Lφ where OX is Cohen-Macaulay. Thus Lφj → Lφ uniformly. We conclude that 
|φj−φ|X → 0 uniformly in U . Thus Theorem 1.6 is proved in X∩U and hence in general 
if Z is smooth. �
11. Resolution of X

Assume that our X of pure dimension n is embedded in the smooth manifold Y of 
dimension N as before, and let Z denote the underlying reduced space. There exists a 
modification π : Y ′ → Y that is a biholomorphism Y ′ \ π−1Zsing � Y \ Zsing and such 
that the strict transform Z ′ of Z is smooth and the restriction of π to Z ′ is a modification 
of Z. Such a π is called a strong resolution. Let J̃ be the ideal sheaf on Y ′ generated 
by pullbacks of generators of J and consider the relative gap sheaf J ′ = J̃ [π−1Zsing], 
which is coherent, cf. [32, Theorem 2]. In fact, one obtains J ′ by extending J̃ so that 
one gets rid of all primary components corresponding to the exceptional divisor, and also 
possible embedded primary ideals in Z ′ ∩ π−1Zsing. Thus J ′ is the smallest coherent 
sheaf of pure dimension n that contains J̃ and such that OY ′/J ′ has support on Z ′. 
We let X ′ denote the analytic space with structure sheaf OX′ = OY ′/J ′. Notice that 
we have the induced mapping

p∗ : OX → OX′ . (11.1)

In fact, if Φ ∈ J , then π∗Φ ∈ J̃ ⊂ J ′ and thus p∗ in (11.1) is well-defined. We say that 
p : X ′ → X is a resolution of X. Notice that p∗ extends to map meromorphic functions 
on X to meromorphic functions on X ′. Let p0 = π|Z′ and let



32 M. Andersson / Journal of Functional Analysis 283 (2022) 109520
V := p−1
0 Zsing = π−1Zsing ∩ Z ′. (11.2)

Lemma 11.1. Assume that φ′ is meromorphic on X ′ and holomorphic on X ′ \ V . Then 
there is a unique meromorphic φ on X, holomorphic in X \ Zsing, such that φ′ = p∗φ.

Proof. Since π is proper it follows from Grauert’s theorem that the direct image 
F = π∗(OY ′/J ′) is coherent, and clearly it coincides with OY /J outside Zsing ⊂ Y . 
Moreover, it contains OX = OY /J since π∗π−1φ = φ for φ in OX . Thus F/OX has 
support on Zsing. Let h be a function that vanishes on Zsing but not identically in Z. 
Then hνF/OX = 0 if ν is large enough. If φ′ is a section of OX′ , therefore g := hνπ∗φ′

is holomorphic. Thus φ := g/hν is meromorphic and φ′ = p∗φ. �
Lemma 11.2. Let μ be a tuple of currents that generate the OX-module Hom (OY /J ,

CHZ
Y ).

(i) There is a unique tuple μ′ of pseudomeromorphic (N, κ)-currents in Y ′ with support 
on Z ′ such that π∗μ

′ = μ.
(ii) A holomorphic function Φ′ defined in a neighborhood in Y ′ of a point on Z ′ is in J ′

if and only if Φ′μ′ = 0.

In view of (ii) thus φ′μ′ is well-defined for φ′ in OX′ . It is not necessarily true that 
μ′ is ∂̄-closed. Since π is a biholomorphism outside π−1Zsing it follows however that 
∂̄μ′ = 0 there. Moreover, since μ′ is pseudomeromorphic it has the SEP, by virtue of 
the dimension principle. In the literature such a μ′ is often said to be a Coleff-Herrera 
current with poles at V ⊂ Z ′. If h′ is holomorphic and vanishes to enough order on V
then 0 = h′∂̄μ′ = ∂̄(h′μ′), and hence h′μ′ is in Hom (OY ′/J ′, CHZ′

Y ′).

Proof. Recall that μ is pseudomeromorphic, cf. Section 9. By [11, Theorem 2.15] there is 
a pseudomeromorphic current T in Y ′ such that π∗T = μ. Since π is a biholomorphism 
outside π−1Zsing the current T must be unique there, in particular it must have support 
on π−1Z. Thus T = 1Z′T + 1π−1Z\Z′T . Since π∗(1π−1Z\Z′) has support on Zsing that 
has codimension at least 1 in Z, it vanishes by the dimension principle. If μ′ := 1Z′T , 
therefore π∗μ

′ = π∗T = μ. Moreover, since μ′ is unique outside Z ′ ∩ π−1Zsing = V it is 
unique, again by the dimension principle, since V has codimension at least 1 in Z ′. Thus 
(i) is proved.

Since J ′ has no embedded components, Φ′ is in J ′ if and only if Φ′ is in J ′ on Z ′ \V . 
This in turn holds if and only if Φ = π∗Φ′ belongs to J on Zreg which holds if and only 
if Φμ = 0 on Zreg. However this holds if and only if Φ′μ′ = 0 on Z ′ \ V which by the 
SEP of μ′ holds if and only if Φ′μ′ = 0 on Z ′. Thus (ii) holds. �

Let R be a current in Y with support on Z and the SEP as in Section 10. Recall, 
Proposition 10.4, that there is an almost semi-meromorphic current α in Y such that 
R = αμ, where μ is a tuple of Coleff-Herrera currents that generate Hom (OY /J , CHZ

Y ).
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Lemma 11.3. There is an almost semi-meromorphic current α′ in Y ′ such that R′ = α′μ′

has the SEP and π∗R
′ = R.

Proof. By definition there is a modification τ : W → Y such that α = τ∗γ, where γ is 
semi-meromorphic. There is a modification W ′ → Y that factors over both V and Y ′. 
If we pull back γ to W ′, then its direct image α′ in Y ′ is almost semi-meromorphic and 
π∗α

′ = α. It follows from (9.3) that R′ := α′μ′ has the SEP. Moreover, π∗R
′ = R where 

π is a biholomorphism, i.e., outside Zsing. Since both currents have the SEP, the equality 
holds in Y . �
12. Proof of Theorem 1.6

Lemma 12.1. Assume that Z is smooth and that L is a holomorphic differential operator 
on X that belongs to NX in Z \ W , where W has positive codimension. If Z(h) ⊃ W , 
then hrL is in NX for large enough r.

Proof. Recall that the sheaf NX locally can be considered as a coherent submodule of Oν
Z

for some large ν. Then also L can be considered as an element in Oν
Z . If L is not in NX , 

then M′ = 〈NX , L〉/NX is a coherent sheaf with support on W . By the Nullstellensatz 
hrM′ = 0 for large enough r. Thus hrL ∈ NX for such r. �

It remains to prove Theorem 1.6 in a neighborhood of a point x ∈ Zsing, cf. (7.10). 
Let i : X → U ⊂ CN be a local embedding at x. We can assume that NX admits a 
coherent extension to X ∩U , cf. Theorem 7.3, that we denote by NX as well. Recall that 
the OZ module NX is generated in U by a finite number of operators L1, . . . , Lr that 
are induced by Noetherian operators L1, . . . , Lr with respect to J in U .

Let π : U ′ → U be a modification as in Section 11, with U ′ and U instead of Y ′ and 
Y , respectively. Thus we have the space i′ : X ′ → U ′, p∗ : OX → OX′ and the induced 
mapping p0 : Z ′ → Z ∩U . Since Z ′ is smooth we have the well-defined OX′-module NX′

of Noetherian operators on X ′.
We say that L′ is a meromorphic Noetherian operator on X ′ with poles on V :=

p−1
0 Zsing ⊂ Z ′ if ξρL′ is a Noetherian operator on X ′ as soon as ξ in OZ′ vanishes on V

and ρ is large enough.

Lemma 12.2. There are meromorphic operators L′
1, . . . , Lr on X ′ such that

L′
j(p∗φ) = p∗0(Ljφ) (12.1)

on Z ′ \V . Moreover, there is a holomorphic (nontrivial) function h on Z such that h′L′
j

are in NX′ if h′ = p0h.

Proof. Given a holomorphic differential operator T on U there is a holomorphic differen-
tial operator T̃ in U ′ with values in a power Nν

′ of the relative canonical bundle, and a 
U /U
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holomorphic section s of NU ′/U , vanishing on π−1Zsing, such that π∗(TΦ) = s−ν T̃ (π∗Φ). 
See, e.g., the discussion preceding [11, Corollary 4.26]. Thus T ′ = s−ν T̃ is a meromorphic 
differential operator, with poles at π−1Zsing, such that π∗(TΦ) = T ′(π∗Φ).

Let L′
1, . . . , L

′
r be meromorphic differential operators on U ′ such that π∗(LjΨ) =

L′
j(π∗Ψ), j = 1, . . . , r. If Φ′ is in J ′, then Φ′ = π∗Φ for some Φ in J outside Zsing and 

hence L′
jΦ′ = 0 outside V . By continuity L′

jΦ′ = 0. Thus we have induced meromorphic 
operators L′

1, . . . , L′
r on X ′ with poles at V and (12.1) holds.

Since π is a biholomorphism outside π−1Zsing it follows that L′
j belong to NX′ there. 

By Lemma 12.1, h′Lj are in NX′ if h′ = p∗0h, where h is a holomorphic function in Z
that vanishes to high enough order on Zsing. �
Lemma 12.3. After possibly shrinking U there is a holomorphic function H in U , not 
vanishing identically on Z, such that

|p∗(Hφ)(z′)|X′ ≤ C|φ(p0(z′))|X , z′ ∈ Z ′. (12.2)

Proof. Let N̂X′ be the OZ′-module generated by the h′L′
j from Lemma 12.2. Then 

N̂X′ ⊂ NX′ with equality outside Z(h′). Therefore NX′/N̂X′ is annihilated by H ′ = π∗H

if H is a high power of h. That is, if T is in NX′ , then H ′T is in N̂X′ and thus H ′T is 
an OZ′-linear combination of the h′L′

j .
Fix a point x′ ∈ π−1(x) ∩Z ′. Let T� be a set of generators for NX′ in a neighborhood 

V of x′. For any φ we have, with φ′ = p∗φ, and z′ ∈ V,

|H ′(z′)||φ′(z′)|X′ ∼
∑
�

∣∣(H ′T�φ′)(z′)
∣∣ � ∑

j

∣∣(h′L′
jp

∗φ′)(z′)
∣∣ ≤

∑
j

∣∣p∗0(Ljφ)(z′)
∣∣ ∼ |φ(π(z′))|X .

On the other hand, if ν is large enough, |T�((H ′)νφ′)| � |H ′T�φ′| for each � and hence 
|(H ′)νφ′|X′ � |H ′||φ′|X′ . Denoting Hν by H thus (12.2) holds for z′ ∈ V. Since π−1(x)
is compact, (12.2) holds for all z′ in an open neighborhood of π−1(x). Hence the lemma 
follows. �

Assume that φj is a sequence as in Theorem 1.6 and let φ′
j = p∗φj . It follows from 

Lemma 12.3, and Theorem 1.6 in case that Z is smooth, see Section 10, that there is a 
holomorphic function ξ′ on X ′ ∩ U ′ such that H ′φ′

j → ξ′ uniformly in the | · |X′ -norm. 
Notice that ξ′/H ′ is meromorphic on X ′ ∩ U ′.

Lemma 12.4. With the notation above, φ′
jR

′ → (ξ′/H ′)R′ in U ′.

Proof. Let μ′ be as in Lemma 11.3. Since ∂̄μ′ has support on V , ∂̄(g′μ′) = 0 for a 
suitable g′ = π∗g not vanishing identically on Z ′. From Lemma 11.2 we conclude that 
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g′μ′ is a tuple in Hom (OU ′/J ′, CHZ′

U ′ ). Since Z ′ is smooth, if V ⊂ U ′ is a small enough 
open neighborhood of any given point in U ′, then we have coordinates (z, w) such that 
Z ′ ∩ V = {w = 0}. Then g′μ′ = adz∧μ̂, cf. (3.2), for a suitable holomorphic tuple a in 
V. Using (9.2) and Lemma 11.3 we can now prove Lemma 12.4 in V in the same way as 
Lemma 10.6. Now Lemma 12.4 follows in U ′ since the statement is local. �

By Lemma 11.1 there is a meromorphic ξ on X ∩ U such that ξ′ = p∗ξ. Define the 
meromorphic function φ = ξ/H on X ∩ U . Clearly p∗φ = ξ′/H ′ so that

π∗((ξ′/H ′)R′) = φR (12.3)

in U\(Z(H) ∩Z). However, both sides of (12.3) have the SEP with respect to Z∩U so the 
equality holds in U . Since π∗(φ′

jR
′) = π∗(p∗φjR

′) = φjR we conclude from Lemma 12.4
that φjR → φR. In view of Theorem 10.1 now Theorem 1.6 follows as in the smooth 
case in Section 10.
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