Crystal responses to general dark matter-electron interactions

Downloaded from: https://research.chalmers.se, 2023-10-31 21:59 UTC

Citation for the original published paper (version of record):

N.B. When citing this work, cite the original published paper.
Crystal responses to general dark matter-electron interactions

Einar Urshals
Chalmers University of Technology, Department of Physics, SE-412 96 Göteborg, Sweden
E-mail: urshals@chalmers.se

Abstract. In [1] we develop a non-relativistic effective field theory (NR-EFT) based framework with which rates of dark matter (DM) induced electron hole pair creation in silicon and germanium crystals can be obtained for any form of non-relativistic DM-electron interactions with spin 1/2 DM. We find that the crystal physics is captured by 5 crystal response functions, 4 of which are novel to that work, and we evaluate them using a state of the art DFT calculation.

1. Introduction
With the growing attention directed towards dark matter (DM) electron scattering in the quest for detecting DM with masses below the well explored GeV range down to below an MeV, it is crucial to have a theoretical understanding of DM electron interactions. Previously one has largely focused on the simplest scenarios of DM electron interactions, such as the dark photon model. Using non-relativistic effective field theory (NR-EFT) we derive the rate of DM induced electron hole excitations in silicon and germanium crystals.

2. DM and crystal responses
We expand the DM electron interaction matrix element in non-relativistic operators,

$$\mathcal{M}(\mathbf{q}, \mathbf{v}_{el}^\perp) = \sum_i \left(c_i^s + c_i^l q_{\text{ref}}^2 \frac{q_{\text{ref}}}{|q|^2} \right) \langle \mathcal{O}_i \rangle,$$

where the operators \mathcal{O}_i are given in table 1 and their contributions to the rate are given in figure 1, $q_{\text{ref}} = \alpha m_e$ is the reference momentum, and c_i^s (c_i^l) denotes the short (long) range coupling of operator \mathcal{O}_i. We find that the rate of electron hole pair creation can be written as [1]

$$\mathcal{R}_{\text{crystal}} = \frac{n_X V_{\text{cell}}}{128 \pi n_e^2 n^2 m_e^2} \int d(\ln \Delta E) \int dq \frac{q}{\Delta E} \hat{n}(q, \Delta E) \sum_{l=1}^{5} \mathfrak{R}(R_l^s(q, v) \mathfrak{W}_l(q, \Delta E)),$$

where

$$\mathfrak{W}_l(q, \Delta E) = (4\pi)^2 V_{\text{cell}} \frac{\Delta E}{q^2} \sum_{\Delta G_{\text{iv}}} \int_{BZ} \frac{d^3k}{(2\pi)^3} \int_{BZ} \frac{d^3k'}{(2\pi)^3} B_l \times \delta(|\mathbf{k} - \Delta \mathbf{G} - \mathbf{k}'| - q) \delta(\Delta E - E_{ik} + E_{i'k'}).$$

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
\(O_1 = \mathbb{1}_{\chi e} \)
\(O_3 = iS_e \cdot \left(\frac{\mathbf{a}}{m_e} \times \mathbf{v}_{\text{el}} \right) \)
\(O_4 = S_X \cdot S_e \)
\(O_5 = iS_X \cdot \left(\frac{\mathbf{a}}{m_e} \times \mathbf{v}_{\text{el}} \right) \)
\(O_6 = \left(S_X \cdot \frac{\mathbf{a}}{m_e} \right) \left(S_e \cdot \frac{\mathbf{a}}{m_e} \right) \)

\[\begin{align*}
O_7 &= S_e \cdot \mathbf{v}_{\text{el}}^\perp \\
O_8 &= S_X \cdot \mathbf{v}_{\text{el}}^\perp \\
O_9 &= iS_X \cdot \left(S_e \times \frac{\mathbf{a}}{m_e} \right) \\
O_{10} &= iS_e \cdot \frac{\mathbf{a}}{m_e} \\
O_{11} &= iS_X \cdot \frac{\mathbf{a}}{m_e} \\
O_{12} &= S_X \cdot (S_e \times \mathbf{v}_{\text{el}}^\perp) \\
O_{13} &= i(S_X \cdot \mathbf{v}_{\text{el}}^\perp) (S_e \cdot \frac{\mathbf{a}}{m_e}) \\
O_{14} &= i(S_X \cdot \frac{\mathbf{a}}{m_e}) (S_e \cdot \mathbf{v}_{\text{el}}^\perp) \\
O_{15} &= iO_{11} \left[(S_e \times \mathbf{v}_{\text{el}}^\perp) \cdot \frac{\mathbf{a}}{m_e} \right]
\end{align*} \]

Table 1: Interaction operators spanning the NR-EFT of spin 1/2 DM-electron interactions [2, 3, 4]. \(S_e \) (\(S_X \)) denotes the electron (DM) spin, \(\mathbf{v}_{\text{el}}^\perp = \mathbf{v} - \ell/m_e - \mathbf{q}/(2\mu_{\chi e}) \), where \(\mu_{\chi e} \) is the reduced mass of the DM-electron system and \(\mathbb{1}_{\chi e} \) is the identity in the DM-electron spin space.

\(\tilde{\eta} \) is the velocity integral, \(q \) is the transferred momentum and \(\Delta E \) is the deposited energy. \(\Delta \mathbf{G} \) is a relative reciprocal lattice vector, and \(\mathbf{k} \) (\(\mathbf{k}' \)) and \(i \) (\(i' \)) denotes the initial (final) brillouin zone momentum and crystal band index, respectively. \(R_l \) is the DM response function and depends on DM physics, whereas \(\bar{W}_l \) is the crystal response function and depends on crystal physics. \(\bar{W}_l \) differ with the different \(B_l \),

\[B_1 = \left| f_{l,k \rightarrow i',k'} \right|^2 \]

\[B_2 = \left| \frac{q}{m_e} \cdot (f_{l,k \rightarrow i',k'}^*(f_{l,k \rightarrow i',k'}^*)^* \right| \]

\[B_3 = \left| f_{l,k \rightarrow i',k'} \right|^2 \]

\[B_4 = \left| \frac{q}{m_e} \cdot f_{l,k \rightarrow i',k'}^* \right|^2 \]

\[B_5 = i \frac{q}{m_e} \left[f_{l,k \rightarrow i',k'} \times (f_{l,k \rightarrow i',k'}^*)^* \right] \]

\[\text{(4)} \]

where

\[f_{l,k \rightarrow i',k'} = \sum_G u_i^* (k' + G + \Delta G) u_i (k + G) \]

\[f_{l,k \rightarrow i',k'} = -\frac{1}{m_e} \sum_G u_i^* (k' + G + \Delta G) (k + G) u_i (k + G) , \]

\[\text{(5)} \]

\[\text{(6)} \]

and the coefficients \(u_i (k + G) \) come from the Bloch wave-function,

\[\psi_{ik}(\mathbf{x}) = \frac{1}{\sqrt{V}} \sum_G u_i (k + G) e^{i(k+G) \cdot \mathbf{x}} . \]

\[\text{(7)} \]

For the dark photon model, the only non-zero DM response is \(R_1 \), and therefore \(\bar{W}_1 \) was the only previously known crystal response functions. The other 4 are novel and identified in [1] for the first time.

3. Results
\(\bar{W}_l \) is evaluated by \texttt{QEdark-EFT} [5], an extension to the \texttt{QEdark} package [6], interfacing with the DFT code \texttt{QuantumEspresso} v. 5.1.2 [7]. The rate is evaluated with \(v_0 = 220 \) km sec\(^{-1} \) [8] being the most probable velocity in the galactic rest frame, \(v_\text{esc} = 544 \) km sec\(^{-1} \) [9] being the local escape velocity, \(v_\infty = 244 \) km sec\(^{-1} \) being the earth velocity in the galactic rest frame and \(n_\chi = 0.4 \) GeV/cm\(^3 \) [10] being the local DM density. To illustrate what can be done with our framework we take the examples of the anapole and magnetic dipole interactions, whose Lagrangians are given as

\[\mathcal{L}_{\text{anapole}} = \frac{g}{2\Lambda^2} \chi \gamma^\mu \gamma^5 \chi \partial^\nu F_{\mu\nu} , \]

\[\mathcal{L}_{\text{magnetic}} = \frac{g}{\Lambda} \bar{\psi} \sigma^{\mu\nu} \psi F_{\mu\nu} , \]

\[\text{(8)} \]
Figure 1: Rate contributions from operators \mathcal{O}_1 to \mathcal{O}_{15} from table 1 for silicon (blue) and germanium (red), with DM masses of 0.5 MeV (left), 5 MeV (middle) and 50 MeV (right). For $m_\chi = 0.5$ MeV the expected excitation rate in silicon is 0 due to the larger band gap.

where $F_{\mu
u} = \partial_\mu A_{\nu} - \partial_\nu A_{\mu}$ is the photon field strength tensor, and A^ν the photon field. In the non-relativistic limit, the free electron scattering amplitudes associated with the above Lagrangians are [4]

\[
\mathcal{M}_{\text{anapole}} = \frac{4e g}{\Lambda^2} m_\chi m_e \left\{ 2 \left(\mathbf{v}_{\text{rel}}^\dagger \cdot \mathbf{\xi} \right) \mathbf{s}_x \mathbf{s}_y \mathbf{s}_z \right\} \delta^{\lambda\lambda} + \frac{g e}{m_e} \left(\mathbf{\xi} \right) \cdot \left(\mathbf{v}_{\text{rel}}^\dagger \times \mathbf{\xi} \right) \delta^{\lambda\lambda} \right\},
\]

\[
\mathcal{M}_{\text{magnetic}} = \frac{e g}{\Lambda^2} \left\{ 4 m_\chi m_e \delta^{\lambda\lambda} + \frac{16 m_\chi m_e}{q^2} \mathbf{q} \cdot \left(\mathbf{v}_{\text{rel}}^\dagger \times \mathbf{\xi} \right) \right\} \delta^{\lambda\lambda} - \frac{8 g e m_\chi}{q^2} \left[\left(\mathbf{q} \cdot \mathbf{\xi} \right) \mathbf{s}_x \mathbf{s}_y \mathbf{s}_z \right] \delta^{\lambda\lambda} + \frac{8 m_\chi}{q^2} \left(\mathbf{\xi} \right) \cdot \left(\mathbf{v}_{\text{rel}}^\dagger \mathbf{\xi} \right) \right\},
\]

where $g_e \approx 2$ is the electron g-factor. From the free electron scattering amplitudes above we find that

\[
c_8^s = 8 e m_e m_\chi \frac{g}{\Lambda^2}, \quad c_9^s = -8 e m_e m_\chi \frac{g}{\Lambda^2},
\]

are the only non-zero coupling constants for the anapole interaction and

\[
c_4^s = 4 e m_e \frac{g}{\Lambda^2}, \quad c_6^s = -16 e m_e \frac{g}{q^2}, \quad c_6^s = -16 e m_e \frac{g}{q^2}, \quad c_6^s = -16 e m_e \frac{g}{q^2},
\]

are the non-zero ones for the magnetic dipole interaction. In fig. 2 the rate spectrum and exclusion limits for these models are presented for the anapole interaction to the left and the magnetic dipole interaction to the right. The dash-dotted lines in the 4 uppermost panels show
Figure 2: Expected rates of events creating Q electron hole pairs in silicon (top), germanium (middle) and 90% C.L. limits (bottom) for anapole (magnetic dipole) interaction to the left (right). In the rate plots the black dash-dotted line denotes the total rate, whereas the colored lines show the contributions of the individual DM crystal response products. The noble gas limits are from [4], whereas the SENSEI@MINOS [11] and EDELWEISS [12] limits are from [1].
the rate of events creating Q electron hole pairs, and the colored lines show the contributions of individual DM crystal response products \mathcal{R}_i, $\mathcal{R}_{\text{crystal}} = \sum_{i=1}^{5} \mathcal{R}_i$. Note that for the magnetic dipole case \mathcal{R}_4 gives a negative contribution to the event rate. In the lower two panels we show the exclusion limits current experiments set on these models. Note that germanium gives the strongest constraint below an MeV due to it having a smaller band gap than silicon, allowing it to probe lower deposited energies. The anapole and magnetic dipole interactions could not be modelled previously, and serve to illustrate the power of our general framework.

References

