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The rules that govern a two-dimensional inviscid incompressible fluid are simple. Yet,
to characterise the long-time behaviour is a knotty problem. The fluid fulfils Euler’s
equations: a nonlinear Hamiltonian system with an infinite number of conservation laws.
In both experiments and numerical simulations, coherent vortex structures emerge after
an initial stage. These formations dominate the large-scale dynamics, but small scales
also emerge and persist. The resulting scale separation resembles Kraichnan’s theory of
forward and backward cascades of enstrophy and energy. Previous attempts to model
the double cascade use filtering techniques that enforce separation from the outset.
Here, we show that Euler’s equations possess an intrinsic, canonical splitting of the
vorticity function. The splitting is remarkable in four ways: (i) it is defined solely by the
Poisson bracket and the Hamiltonian; (ii) it characterises steady flows; (iii) it innately
separates scales, enabling the dynamics behind Kraichnan’s qualitative description; and
(iv) it accounts for ‘broken line’ energy spectra observed in both experiments and
numerical simulations. The splitting originates from Zeitlin’s truncated model of Euler’s
equations in combination with a standard quantum tool: the spectral decomposition of
Hermitian matrices. In addition to theoretical insight, the scale separation dynamics
enables stochastic model reduction, where multiplicative noise models small scales.

Key words: Hamiltonian theory, computational methods

1. Introduction

Two-dimensional turbulence is the study of incompressible hydrodynamics at large
(including infinite) Reynolds numbers. It is a vibrant field of both mathematics and physics
that began with Euler (1757), who derived the basic equations of motion. Turbulent flows in
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Figure 1. Evolution of vorticity for Euler’s equations on the sphere. Vorticity regions of equal sign undergo
merging to form stable, interacting vortex condensates.

two space dimensions do not exist as classical fluids in nature. Rather, they constitute basic
models of intermediate-scale flows in ‘almost’ two-dimensional (thin) domains (Majda
& Bertozzi 2002; Cullen 2006; Majda & Wang 2006; Dolzhansky 2013; Pedlosky 2013;
Zeitlin 2018).

The conditions of two-dimensional (2-D) turbulence can be emulated in experiments.
One set-up is a soap film flowing rapidly through a fine comb (Couder 1984). Another is a
conducting fluid confined to a thin layer and driven into turbulence by a temporally varying
magnetic field (Sommeria 1988). When such a ‘quasi-2-D’ flow is released it self-organises
into blob-like condensates. The progression is depicted in figure 1 for a spherical domain.
Heuristically, the mechanism is driven by the merging of equally signed vorticity regions.
This large-scale fusion is balanced by fine-scale dissipation. In many ways, 2-D turbulence
is propelled by the quest to understand the resulting scale separation.

To make theoretical progress, Onsager (1949) applied statistical mechanics to a large
but finite number N of point vortices. They are weak (distributional) solutions of Euler’s
equations where vorticity is a sum of weighted Dirac pulses. Onsager realised that a fixed
number of positive and negative point vortices, confined to a bounded domain, can have
energies from −∞ to ∞. The phase volume function, therefore, has an inflexion point
at some finite energy. At this energy, the thermodynamical temperature is zero. If the
energy exceeds this point, so the temperature is negative, then equally signed vortices
should cluster according to thermodynamics. This theory of statistical hydrodynamics is a
prominent, although lesser-known, part of Onsager’s legacy (Eyink & Sreenivasan 2006).
Its validation is a long-standing open problem (Marchioro & Pulvirenti 2012, discussion
in chap. 7). On the mathematical side, Caglioti et al. (1992, 1995) and Kiessling (1993)
gave rigorous results on clustering of point vortices in the negative temperature regime
as N → ∞ under the assumption of ergodicity. Their work has fostered much theoretical
progress (Marchioro & Pulvirenti 2012, and references therein). On the experimental side,
seventy years after Onsager presented his theory, the conditions of negative temperature
point vortex dynamics were experimentally realised in planar Bose–Einstein condensates
(Gauthier et al. 2019; Johnstone et al. 2019). As predicted, persisting vortex clusters
emerge.

Onsager’s theory cannot be applied to continuous vorticity fields (corresponding to
smooth solutions). Consequently, it is natural to look for a statistical theory of continua.
One approach is to expand the vorticity field in a Fourier series and then truncate
it (Kraichnan 1975). The truncated, finite-dimensional system preserves phase volume
and quadratic invariants, but not higher-order invariants (Casimir functions). To account
also for those invariants, another approach is to maximise the entropy of a probability
distribution of coarse-grained vorticity fields (Lynden-Bell 1967; Miller 1990; Robert &
Sommeria 1991).
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Canonical scale separation in 2-D hydrodynamics

All theories based on statistical mechanics assume an ergodic dynamics. Rigorous
results on ergodicity are available for 2-D Navier–Stokes on a doubly periodic domain (flat
torus) with added regular-in-space noise proportional to the square root of the viscosity ν.
In this setting there exists a unique stationary measure μν (Kuksin & Shirikyan 2012,
2017). As ν → 0, one obtains a stationary measure μ0 for the 2-D Euler equations, but it
is not expected to be unique (Kuksin & Shirikyan 2017).

Statistical mechanics is not the only approach. Another possibility is to study energy
and enstrophy spectra. The inspiration comes from Kolmogorov’s (1941) theory of
3-D turbulence. Notably, Kraichnan (1967) argued that viscous 2-D fluids in forced
equilibrium, where energy at an intermediate scale is fed into the system, exhibit a forward
cascade of enstrophy into fine scales and a simultaneous backward cascade of energy into
large scales. Direct numerical simulations typically support Kraichnan’s theory (Xiao et al.
2009, and references therein).

For 2-D systems with no energy dissipation at the large scale (so that vortex
condensation occurs), numerical simulations develop a ‘broken line’ energy spectrum with
a steep slope at the large scale, typically steeper than k−3 where k is the wavenumber,
and then a swift switch at an intermediate scale to a less steep slope, typically between
k−5/3 and k−1 (Boffetta & Ecke 2012, and references therein). An approximate broken
line energy spectrum is also observed in zonal and meridional wind measurements on
Earth over the scales 3–10 000 km (Nastrom, Gage & Jasperson 1984).

To better understand characteristic energy spectra it is natural to impose a splitting
of the vorticity field ω = ωs + ωr into a large-scale component ωs and a small-scale
component ωr. A wavelet-based vorticity splitting is proposed by Farge, Schneider &
Kevlahan (1999) and applied to numerical simulation on the doubly periodic square
(where condensation occurs) by Chertkov et al. (2007). The results (Chertkov et al. 2007,
figure 1f ) show an energy spectrum slope of k−3 for the large-scale component and of
k−1 for the intermediate-to-small-scale component. It is a powerful technique to analyse
energy spectra, but it depends on a choice of wavelet basis and parameters identifying the
different scales. Therefore, the method cannot give insights into the mechanisms behind
vortex condensation or broken line energy spectra.

In this paper, we give a new, canonical decomposition of vorticity. By ‘canonical’ we
mean parameter free, determined solely in terms of the data for the 2-D Euler equations:
the Poisson bracket and the Hamiltonian function. The decomposition has the following
properties:

(i) The vorticity field ω = ωs + ωr is a steady state if and only if ωr = 0.
(ii) Under numerical simulation of Euler’s equations, ωs and ωr evolve into a separation

of scales. The component ωs traps large-scale condensates whereas the component
ωr captures small-scale fluctuations.

(iii) After a short transient time, the energy spectrum slope of ωs is approximately k−3

and that of ωr is between k−5/3 and k−1.
(iv) Over time, the component ωr displays an average enstrophy increase (quantifying

the forward enstrophy cascade) and an average energy decrease (quantifying the
backward energy cascade).

The coupled equations governing the dynamics of ωs and ωr embody a new line of
attack for 2-D turbulence. Our standpoint is that a detailed study of these equations may
explain the mechanisms behind vortex condensation and broken line energy spectra, or at
least give deep insights. The numerical simulations we present suggest so.
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1.1. Two-dimensional Euler equations
Our starting point is Euler’s equations for an inviscid, incompressible fluid on a 2-D
closed surface. Throughout the paper, we take the surface to be the unit sphere S2 ⊂ R3.
It makes our arguments more explicit and enables numerics. Most concepts are readily
transferable to arbitrary closed surfaces (in particular to the flat torus, which is the most
studied example in the literature albeit less relevant than the sphere in applications).

In vorticity formulation, Euler’s equations on S2 are

ω̇ = {ψ,ω}, Δψ = ω, (1.1a,b)

where {·, ·} is the Poisson bracket on S2, ω is the vorticity function of the fluid, related
to the fluid velocity v via ω = curl v, and ψ is the streamfunction, related to the
vorticity function via the Laplace–Beltrami operatorΔ. Geometrically, (1.1a,b) constitute
an infinite-dimensional Lie–Poisson system (Arnold & Khesin 1998, and references
therein). The phase space consists of vorticity fields and is equipped with the following
infinite-dimensional Poisson bracket:

≺F,G�(ω) =
∫

S2

{
δF
δω
,
δG
δω

}
ω. (1.2)

The Hamiltonian (total energy) for the vorticity equation (1.1a,b) is

H = −1
2

∫
S2
ψω. (1.3)

In addition to total energy, there is an infinite number of conservation laws: total angular
momentum

L =
∫

S2
ωn, n unit normal on S

2, (1.4)

and Casimir functions

Cf (ω) =
∫

S2
f (ω), for any smooth f : R → R. (1.5)

These conservation laws are fundamental for long-time behaviour. In particular, the
presence of infinitely many Casimir functions sets apart 2-D from 3-D fluids.

1.2. Overview of the paper
Zeitlin’s truncated model of Euler’s equations originates from the vorticity
formulation (1.1a,b). In the spirit of quantisation theory, the space of vorticity functions
is replaced by the space 𝔲(N) of skew-Hermitian complex matrices, while the Poisson
bracket is replaced by the matrix commutator. The size N of the matrices is the spatial
discretisation parameter, related to ‘Planck’s constant’ in quantum theory via � = 1/N.
We present an overview of how functions and matrices are related in § 2.

There are at least two advantages of Zeitlin’s model. First, it yields a spatial
discretisation that preserves all the underlying geometry of the Euler equations:
the Hamiltonian structure and the conservation laws. Combined with a symplectic
time-integration scheme one can obtain fully structure-preserving numerical methods
(Modin & Viviani 2020a). Second, complicated topological or geometrical properties
of the Euler equations can be described in terms of standard tools from linear algebra
and matrix Lie groups. Indeed, our splitting naturally arises from the standard spectral
decomposition of Hermitian matrices applied to the stream matrix. The splitting has a
943 A36-4
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Canonical scale separation in 2-D hydrodynamics

precise geometric meaning in terms of Lie algebras, but also a dynamical interpretation as
the steady and unsteady vorticity components. The details are given in § 3.

Numerical experiments for the canonical splitting are presented and discussed in § 4. We
demonstrate that the components in the splitting converge into a separation of scales. They
also capture broken line energy spectra. To rigorously answer to what degree simulations
based on Zeitlin’s model capture the behaviour of Euler’s equations is an open problem.

In § 5 we translate our results about Zeitlin’s model to the continuous Euler equations.
All matrix concepts used for the canonical splitting have classical, fluid dynamical
counterparts. But to define them rigorously requires prudence. It is essential to use a
weak formulation. The section sets the foundation for an L∞-based theory of canonical
vorticity splitting, independent of Zeitlin’s model. It is the most mathematical part of the
paper. Even so, a heuristic explanation is straightforward. Let us give it here. For a smooth
vorticity function ω, the aim is to construct a splitting ω = ωs + ωr. Let γ (τ ) be a closed
level curve of ψ . We define ωs, restricted to γ , to take the constant value

ωs|γ = 1
length(γ )

∫
γ

ω dτ. (1.6)

In other words, ωs is obtained via averaging of ω along the level curves, or streamlines,
of ψ . The mathematical difficulties arise where the level curves contain bifurcations.

2. Background to Euler–Zeitlin equations

In this section we give background to the ‘consistent truncation’ of Euler’s equations
introduced by Zeitlin (1991, 2004). The model relies on quantisation of the Poisson algebra
of smooth functions (Hoppe 1982; Fairlie & Zachos 1989). Recall that the Poisson bracket
between two smooth functions f , g ∈ C∞(S2) is

{f , g}(x) = x · (∇f × ∇g), x ∈ S
2 ⊂ R

3. (2.1)

Quantisation, in our context, means to find a projection from smooth functions C∞(S2)
to complex skew-Hermitian matrices 𝔲(N) such that the Poisson bracket (2.1) under this
map is approximated by the matrix commutator.

On the sphere, quantisation is explicit, obtained as follows. Hoppe & Yau (1998) gave
an operatorΔN : 𝔲(N) → 𝔲(N) with the same spectrum as the Laplace–Beltrami operator
(up to truncation N). The eigenvectors T N

lm of ΔN are the quantised analogues of the
spherical harmonics Ylm. It is therefore natural to define the projection ΠN : C∞(S2) →
𝔲(N) mapping functions to matrices via

C∞(S2) � ω =
∞∑

l=0

l∑
m=−l

ωlmYlm 	→
N∑

l=0

l∑
m=−l

ωlmT N
lm = W ∈ 𝔲(N). (2.2)

For more details and explicit formulae we refer to Hoppe & Yau (1998), Zeitlin (2004) and
Modin & Viviani (2020a).

The vorticity formulation (1.1a,b) uses only the Laplacian Δ and the Poisson bracket
{·, ·}. Their quantised analogues ΔN and [·, ·] give rise to the Euler–Zeitlin equations

Ẇ = [P,W ], ΔNP = W , (2.3a,b)

where W ∈ 𝔰𝔲(N) is the vorticity matrix and P ∈ 𝔰𝔲(N) is the stream matrix. The
condition

W ∈ 𝔰𝔲(N) = {A ∈ 𝔲(N) | tr A = 0} (2.4)

corresponds to vanishing total circulation
∫

S2 ω = 0.
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The Euler–Zeitlin equations (2.3a,b) have been studied in various contexts, primarily
on the flat torus (Zeitlin 1991; McLachlan 1993; Abramov & Majda 2003), but also on the
sphere (Zeitlin 2004; Modin & Viviani 2020a). Their main feature is that they preserve
the rich phase space geometry of the original equations (1.1a,b), namely the Lie–Poisson
structure (Modin & Viviani 2020a,c, and references therein). In turn, this structure implies
conservation of total energy H(W ) = Tr(PW )/2, (quantised) Casimirs Ck(W ) = Tr(W k)

and angular momentum L = (Lx, Ly, Lz). Conventional discretisations do not maintain
these conservation laws.

REMARK 2.1. Quantisation on the sphere is more complicated to work with than
quantisation on the torus. Even so, the Euler–Zeitlin equations are more accurate on the
sphere than on the torus. This has a deep geometric reason: quantisation exactly preserves
the rotational symmetry of the sphere, but the translational symmetry of the torus is only
approximately captured. The quantised Poisson equation on the torus, therefore, suffers
from the Gibbs phenomenon, which is not present on the sphere.

In previous work (Modin & Viviani 2020a,c) we develop a Lie–Poisson-preserving
numerical method for the Euler–Zeitlin equations on the sphere and we use it to study
the long-time behaviour. Our numerical results, along with earlier ones by Dritschel, Qi
& Marston (2015), give strong evidence against the predictions of statistical mechanics
theories, derived for the sphere by Herbert (2013); see also Bouchet & Venaille (2012).
Rather, the results suggest the existence of near-integrable parts of phase space that act as
barriers for the statistical predictions to be reached. Those near-integrable solutions take
the form of interacting vortex blobs (3 or 4 depending on the total angular momentum),
perfectly reflecting integrability conditions for the Hamiltonian dynamics on the sphere
(Modin & Viviani 2021).

During our work with Zeitlin’s model, a new point of view emerged. More than a
spatial discretisation, the Euler–Zeitlin equations themselves provide new mathematical
tools 2-D hydrodynamics. Those tools include, in particular, Lie theory for 𝔲(N), which
is exceptionally well understood from quantum theory, representation theory and linear
algebra. In particular, through the lens of Lie algebra theory, it is natural to split the
vorticity matrix W by orthogonal projection onto the stabiliser of the stream matrix P – the
underpinning point of this paper. By simulating the Euler–Zeitlin equations (2.3a,b) using
our Lie–Poisson integrator, and then for each output computing the canonical splitting,
we see that it captures the dynamics of vortex condensation and scale separation, directly
related to the theory of Kraichnan (1967) for an inverse energy cascade.

3. Canonical splitting of the vorticity matrix

In this section, we present and discuss canonical vorticity splitting for Zeitlin’s model.
Here, ‘canonical’ means that the splitting only depends on the Lie algebra structure, the
vorticity matrix W and the stream matrix P. It does not require any ad hoc choice of scale
as previous methods do. The scale separation is a result of the dynamics itself.

Consider again the Euler–Zeitlin equations (2.3a,b). Equip 𝔰𝔲(N) with the Frobenius
inner product. The canonical splitting of the vorticity matrix

W = W s + W r (3.1)
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Canonical scale separation in 2-D hydrodynamics

is obtained by taking W s to be the orthogonal projection of W onto the stabiliser of the
stream matrix P

stabP = {A ∈ 𝔰𝔲(N) | [A,P] = 0}. (3.2)

If P is generic, then all its eigenvalues are distinct, and stabP is equivalently given by

stabP = {A ∈ 𝔰𝔲(N) | A,P simultaneously diagonalisable}. (3.3)

In this case W s is obtained via the spectral decomposition: first find E ∈ SU(N) that
diagonalises P, then define ΠP : 𝔰𝔲(N) → stabP as

W s := ΠP(W ) = E diag(E†WE)E†. (3.4)

REMARK 3.1. Relative to the splitting (3.1), the Euler–Zeitlin equations (2.3a,b) can be
written

Ẇ = [P,Wr]. (3.5)

In fact, W = Ws + Wr is a steady solution (equilibrium) if and only if Wr = 0. So, in a
way, the dynamics emerges from the residual part Wr.

3.1. Dynamics of Ws and Wr

For insight into the splitting (3.1) we derive the Euler–Zeitlin equations in the variables
W s and W r. Consider first a general flow on 𝔰𝔲(N) of the form

Ṗ = F(P), (3.6)

for some smooth vector field F : 𝔰𝔲(N) → 𝔰𝔲(N). Let E ∈ SU(N) and 𝞚 ∈ diagN denote
an eigenbasis and corresponding eigenvalues for P. Given (3.6) we first determine the
evolution of E and 𝞚. The Lie algebra 𝔰𝔲(N) is foliated in orbits (cf. Kirillov 2004) given
by

OP = {UPU†|U ∈ SU(N)}. (3.7)

In the generic case, when all eigenvalues are distinct, the tangent space TPOP is spanned
by {ieke†

l }k /= l, where E = [e1, . . . , eN] is an orthonormal eigenbasis of P. The orthogonal
directions TPO⊥

P = span{ieke†
k} = stabP are the linear subspace of matrices in 𝔰𝔲(N)

sharing the same eigenbasis (they are simultaneously diagonalisable). Thus, the two
projections

ΠP : 𝔰𝔲(N) → stabP and Π⊥
P := Id −ΠP : 𝔰𝔲(N) → stab⊥

P (3.8a,b)

correspond to decomposition in the basis {ieke†
k}k and {ieke†

l }k /= l. Notice, as expected, that
neither ΠP nor Π⊥

P depend on the eigenvalues of P, only on the eigenbasis.
We can now write (3.6) as

Ṗ = ΠPF(P)+Π⊥
P F(P). (3.9)

The first part of the flow changes the eigenbasis but not the eigenvalues and vice versa.
The question is: What is the generator of P 	→ Π⊥

P F(P)? Since it is isospectral it should

943 A36-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

45
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.457


K. Modin and M. Viviani

be of the form P 	→ [B(P),P] for some B(P) ∈ 𝔰𝔲(N). Let us denote X = F(P). If the
eigenvalues p1, . . . , pN of P are distinct, then

Π⊥
P X =

∑
k /= l

xklieke†
l =

∑
k /= l

( pk − pl)bkleke†
l

=
⎡⎣∑

k /= l

bkleke†
l ,P

⎤⎦ = [B,P], (3.10)

where xkl are the components of X in the basis E , and bkl := xkl/( pk − pl). Thus, in
the generic case the generator B(P) is constructed from the eigenvalues p1, . . . , pN and
the eigenbasis e1, . . . , eN of P. This observation allows us to write (3.6) in terms of the
eigenvalues and eigenbasis of P

ṗk = e†
kXek, X = F

( N∑
k=1

pkeke†
k

)

ėk = Bek, B =
∑
k /= l

e†
kXel

pk − pl
eke†

l .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.11)

The matrices Ekk = ieke†
k ∈ 𝔰𝔲(N), forming the eigenbasis of P, are the quantised

analogues of the level curves of the streamfunction ψ .
We now apply the Lie theory machinery to obtain the dynamics of W s and W r. From

the definition of W s we have

Ẇ s = d
dt
(E diag(E†WE)E†)

= [ĖE†,W s] −ΠP([ĖE†,W r]), (3.12)

where we used ΠP(Ẇ ) = 0 and ĖE† = −EĖ†. The dynamics for P is similar

Ṗ = [ĖE†,P] + E�̇�E†. (3.13)

Hence, a formula for ĖE† is needed. But we know that the dynamics of P can be
orthogonally decomposed as

Ṗ = Π⊥
P (Δ

−1
N [P,ΔP])+ΠP(Δ

−1
N [P,ΔP]), (3.14)

so
[ĖE†,P] = Π⊥

P (Δ
−1
N [P,ΔP]). (3.15)

Notice that ĖE† can be taken in stab⊥
P . In fact, the dynamics of W s remains the same for

any ĖE† + S with S ∈ stabP . The map

[·,P] : stab⊥
P → stab⊥

P (3.16)

is invertible so ĖE† is uniquely determined in stab⊥
P . In conclusion, we have derived the

following result for the dynamics of W s and W r.

THEOREM 3.2. Let W = W(t) and P = P(t) be the vorticity and stream matrix for a
solution to the Euler–Zeitlin equations (2.3a,b). Let Ws and Wr respectively be the
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orthogonal projections of W onto stabP and its orthogonal complement as in (3.1). Then
Ws and Wr satisfy the following system of equations:

Ẇs = [B,Ws] −ΠP[B,Wr]

Ẇr = −[B,Ws] +ΠP[B,Wr] + [P,Wr],

}
(3.17)

where P = Δ−1
N (Ws + Wr) and B is the unique solution to

[B,P] = Π⊥
P Δ

−1
N [P,Wr], B ∈ stab⊥

P . (3.18a,b)

From Theorem 3.2 we can deduce properties of W s and W r. First, if W r = 0 then B ∈
stabP ∩ stab⊥

P so B = 0. Conversely, if B = 0 then Ẇ s = 0 and

Ẇ r = [Δ−1
N (W s + W r),W r]. (3.19)

Hence, in that case W s plays the role of a fixed topography, and W r satisfies the
Euler–Zeitlin equation with forcing (3.19). From (3.18a,b) we deduce that B = 0 also
implies

Tr(Δ−1
N W s[Δ−1

N W r,W r]) = 0. (3.20)

Another observation is that if [B,W s] = 0 then B = 0 so Ẇ s = 0. Vice versa,
ΠP[B,W r] = 0 implies (3.20). This means that it is possible to have an evolution of the
eigenvectors of P without any change of the eigenvalues, but not the other way around.

REMARK 3.3. The projectionΠP : 𝔰𝔲(N) → stabP has rank N in the generic case. Hence,
the dynamics of Ws in the moving frame Ekk can be described by only N components,
namely its eigenvalues. Therefore, the vorticity splitting can be interpreted as a reduced
dynamics. As we shall see in § 5 below, the projectionΠP is a quantised version of a mixing
operator. Such operators were used by Shnirelman (1993) to characterise stationary flows.

3.2. Energy and enstrophy splitting
We now study how the canonical splitting (3.1) couples with energy and enstrophy. Since
Tr(PW r) = 0, the energy, given by the square of the energy norm, fulfils

H(W ) = 1
2 Tr(W sΔ

−1
N (W s + W r))

= 1
2 Tr(W sΔ

−1
N W s)− 1

2 Tr(W rΔ
−1
N W r). (3.21)

Yet, the enstrophy, corresponding to the enstrophy norm, fulfils

E(W ) = −Tr(W 2
s )− Tr(W 2

r ). (3.22)

These equalities furnish the interesting relations

H(W ) = H(W s)− H(W r)

E(W ) = E(W s)+ E(W r).

}
(3.23)

Notice that H(W s) is always larger than H(W ) and that the energies of W s and W r have to
increase or decrease at the same rate. On the other hand, if the enstrophy of W s decrease at
some rate then the enstrophy of W r must increase at the same rate. The canonical splitting
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is thus coherent with Kraichnan’s (1967) description of an inverse energy cascade and a
forward enstrophy cascade.

The energy–enstrophy splitting (3.23) has a geometric interpretation. It says that W
and W r are orthogonal in the energy norm, whereas W s and W r are orthogonal in
the enstrophy norm. Consider the plane spanned by W and W r, and let Hr = H(W r)
and H0 = H(W ). Then, since W r = (0,

√
Hr) and W = (

√
H0, 0) in this plane, energy

corresponds to the Euclidean norm on R2. We want to express the enstrophy norm
relative to the energy norm. First, observe that W s = (

√
H0,−

√
Hr). The positive definite

matrix G for the enstrophy inner product restricted to the (W ,W r)-plane can be written
G = CC, where the matrix C ∈ R2×2 is determined by C · (0,√Hr) = (0,

√
E0 sinα)

and C · (√H0, 0) = √
E0(cosα, sinα). Here, α is the angle between W and W s in the

enstrophy norm, and E0 = E(W ). Then we have

G =

⎡⎢⎢⎣
E0

H0

E0√
Hr

√
H0

sin2 α

E0√
Hr

√
H0

sin2 α
E0

Hr
sin2 α

⎤⎥⎥⎦ . (3.24)

PROPOSITION 3.4. Let W /= 0. Then

0 < H(W) � H(Ws) < E(Ws) � E(W). (3.25)

Moreover, with notation as above

Hr � Er = E0 sin2 α

N2Hr � Er = E0 sin2 α.

}
(3.26)

Hence, if sinα /= 0 then
E0

N2 � Hr

sin2 α
� E0. (3.27)

Proof . First notice that W s = 0 if and only if W = 0 since
√

H(·) is a norm. The
inequalities (3.25) then follow from (3.23) and the fact that the enstrophy is always larger
than the energy. To get the second inequality of (3.26), we use that the largest eigenvalue
of the discrete Laplacian ΔN is (N − 1)N. �

REMARK 3.5. In the limit N → ∞ the ratio sin2 α/Hr in (3.27) is potentially unbounded.
It could, and does, happen that the enstrophy norm of Wr is far from zero while its energy
norm tends to zero. This corresponds to Wr being shifted towards small scales while not
decreasing in enstrophy. It is a manifestation of Kraichnan’s theory of forward enstrophy
and inverse energy cascades.

4. Dynamically emerging scale separation

This section contains numerical evidence that the canonical vorticity splitting (3.1)
captures the dynamics of scale separation. We also provide theoretical arguments to
support these results. To give a complete mathematical proof that fully explains the
numerical observations is a challenge not addressed in this paper.

A good reason to study the vorticity splitting W = W s + W r is that unsteadiness
precisely means non-vanishing of W r. From an analytical point of view, W s represents
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Canonical scale separation in 2-D hydrodynamics

a projection of W onto a smoother subspace. Indeed, the relation via the Laplace operator
between P and W says that P admits two derivatives more than W does. Hence, since
W s is related to P via a polynomial relationship, W s is, in general, more regular than
W . Vice versa, W r contains the rougher part of W . The tempting conjecture is that W s
represents the low-dimensional, large-scale dynamics, whereas W r represents the noisy,
small-scale dynamics. To assess this conjecture we present two numerical simulations,
both with randomly generated, smooth initial data. These two simulations represent the
two generic behaviours described by Modin & Viviani (2020a): formation of either 3
or 4 coherent vortex formations, strongly correlated to the momentum–enstrophy ratio.
(We have run many more simulation with randomly generated initial conditions. The two
simulations presented here capture the universal behaviour in all simulations.)

4.1. Vanishing momentum simulation
This simulation starts from smooth, randomly generated initial data. Each spherical
harmonic coefficient ωlm in the range 2 � l � 10 was drawn from the standard normal
distribution. The remaining coefficients were set to zero. The data were then transformed
to a vorticity matrix of size N = 512 (see Modin & Viviani (2020a) for details and explicit
formulae). For reproducibility, the initial conditions are available in the supplementary
material at https://doi.org/10.1017/jfm.2022.457.

For time discretisation of the Euler–Zeitlin equations (2.3a,b) we use the second-order
isospectral midpoint method (Modin & Viviani 2020b). The time step length is 1.2239 ×
10−4 s. This corresponds to 0.2 time units in Zeitlin’s model, which scales time by
4
√

π/N3/2.
To visualise the fluid motion stages, we sample at the initial time (t = 0), at an

intermediate time during mixing (t = 13 s) and at a long time well after the large-scale
condensates are formed (t = 318 s). The vorticity matrices at these outputs are then
transformed to functions in azimuth–elevation coordinates. The result is shown in figure 1.

Due to vanishing momentum (ω1m = 0 in the initial data), integrability theory for the
Hamiltonian dynamics on the sphere suggests that 4 vortex blobs should appear (Modin &
Viviani 2020a,b). Indeed they do appear and then pass into quasi-periodic orbits. The first
movie of the supplementary material captures the entire process. On top of the large-scale
condensates, a noisy, fine-scale structure emerges. In essence, we see a separation of
scales.

Figure 2 displays azimuth–elevation fields for the stream matrix P and the vorticity
matrix components W s and W r at the same sampled output times. After some time of
initial mixing, the large scales of the vorticity are all contained in W s, whereas W r
collects the small-scale fluctuations. The long-time W r state resembles noise but, as such,
is not completely uniform. In fact, the non-uniform character captures the quasi-periodic
dynamics since Ẇ = [P,W r]. An open problem is to model the noise by a stochastic
process.

Figure 3 shows the evolution of the energy and enstrophy of W s and W r. Over time,
Er increases whereas Hr decreases. Also notice that Es, Er, Hs and Hr fulfil the energy
and enstrophy relations (3.23). The residual vorticity W r decreases in energy norm but
increases in enstrophy norm. This is a quantification of Kraichnan’s (1967) qualitative
description.

The scale separation of the vorticity is even more clear in the spectral domain. Figure 4
contains energy spectra for W , W s and W r at the sampled output times. The energy level
H(l), corresponding to the wavenumber l = 1, . . . ,N, contains the energy of the modes
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Figure 2. Vanishing momentum simulation. Progression of the stream matrix P and the components W s and
W r for the same simulation as in figure 1. Initially, W s and W r are similar in nature, but they evolve so W s
traps the large-scale condensates whereas W r captures the small-scale fluctuations.

Time

Long time Long time

Intermediate time

Intermediate time
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Figure 3. Vanishing momentum simulation. Evolution of the decomposed enstrophies Es and Er (a), and
decomposed energies Hs and Hr (b). The dashed, vertical lines indicate the sample times in figures 1, 2 and 4.
The energy Hr decays almost to zero so that most of the energy is contained in Hs (reflecting the inverse energy
cascade). On the other hand, the enstrophy Er increases over time (reflecting the forward enstrophy cascade).

for the spherical harmonics Ylm with m = −l, . . . , l. We notice that the energy spectrum
of W is similar in nature to that described by Boffetta & Ecke (2012). Indeed, the ‘broken
line’ slope in the energy spectrum of W originates from an l−3 slope of W s and an l−1

slope of W r. Thus, the vorticity splitting yields a scale separation of the vorticity field that
exactly reflects the broken line spectra previously observed in numerical simulations and
empirical observations. The broken line spectrum is not reached at the intermediate time
before mixing has settled.
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Figure 4. Vanishing momentum simulation. Spectrum in log–log scale for the energies H, Hs and Hr at the
initial (a), intermediate (b) and long times (c). The dashed lines indicate the slopes l−3 and l−1. The slope of
Hs is almost settled at the intermediate time. The slope of Hr takes much longer to settle. At long times, the
broken line spectrum of H is captured well by the components Hs and Hr, which themselves have almost the
same average slope at each scale.

4.2. Non-vanishing momentum simulation
In this simulation, the initial data were generated much like before, but now the
range of non-zero spherical harmonics coefficients ωlm is 1 � l � 10. Consequently, the
total angular momentum is no longer zero. For reproducibility also of this simulation,
the generated initial conditions are available in the supplementary material. Time
discretisation, step size lengths, etc. are selected as in the previous simulation.

Figure 5 shows azimuth–elevation fields corresponding to the stream matrix P, the
vorticity matrix W and the components W s and W r, sampled at initial time (t = 0),
intermediate time (t = 13 s) and long time (t = 344 s). The entire motion is captured
in the second movie of the supplementary material. Three vortex blobs emerge. The
formation of these, from initial data with non-vanishing momentum, is again predicted
and demonstrated by Modin & Viviani (2020a). It reflects the integrability of the
low-dimensional Hamiltonian dynamics on the sphere. As before, the large-scale vorticity
patterns are contained in the W s component. The W r component swiftly develops noisy
fluctuations. At long times, it is less uniform than in the vanishing momentum simulation.
The reason is that the 3 blobs here move faster than the 4 blobs in the previous simulation.

The scale separation of the vorticity is again evident from the energy spectrum of W .
Figure 6 gives energy spectra for the three vorticity fields W , W s and W r. The results are
analogous to those in figure 4.

4.3. Streamfunction–vorticity branching and blobs
In the literature on 2-D turbulence, steady solutions are often characterised by a functional
relation between the streamfunction and vorticity. Branching in such relations has been
used as a measure of unsteadiness (Dritschel et al. 2015).

Since W = W s if and only if W is a steady solution, it is natural to consider scatter
plots between values of P and W s. Such diagrams are given at the initial, intermediate
and long times, in figure 7 for the vanishing momentum simulation, and in figure 8 for
the non-vanishing momentum simulation. The following interpretation of branches is
more fundamental than interpretations related to unsteadiness. Each branch represents and
characterises a specific blob in W s. Upward branches represent blobs with positive values.
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Figure 5. Non-vanishing momentum simulation. Progression of the stream matrix P and the components W s
and W r of the vorticity matrix W . Initially, W s and W r are similar in nature, but they evolve so that W s contains
the large-scale condensates whereas W r contains the small-scale fluctuations.
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Figure 6. Non-vanishing momentum simulation. Spectrum in log–log scale for the energies H, Hs and Hr at
the initial (a), intermediate (b) and long times (c). The dashed lines indicate the slopes l−3 and l−1. The slope
of Hs is almost settled at the intermediate time. The slope of Hr takes much longer to settle. At long times, the
broken line spectrum of H is captured well by the components Hs and Hr, which themselves have almost the
same average slope at each scale.

Vice versa for downward branches. This is particularly clear at the long times, where there
are fewer blobs. However, the interpretation is valid also at the initial and intermediated
times, as revealed by carefully comparing the branching diagrams with the values of P and
W s in figures 2 and 5. The end of each specific branch (sometimes they overlap) is then
readily identified with a specific blob. The steepness of the branch corresponds to dW s/dP.
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Figure 7. Vanishing momentum simulation. Values of P vs values of W s. The end of each branch corresponds
to a blob in the W s plot in figure 2. Upward if the blob is positive, otherwise downward. For example, at
intermediate time, the sharp upward branch close to the y-axis matches the small positive blob of W s in the
lower-right corner of the corresponding plot in figure 2.

0

0

Initial time Intermediate time Long time

W
s 

v
al

u
es

5

–5

–0.5 0.5 0

P values
–0.5 0.5 0–0.5 0.5

(a) (b) (c)

Figure 8. Non-vanishing momentum simulation. Values of P vs values of W s. The end of each branch
corresponds to a blob in figure 5. For example, at the initial time, a careful study reveals that the steep,
overlapping branches just to the right of the y-axis match the two positive–negative blob pairs seen in the
corresponding plot in figure 5.

This can be used to determine the shape of the blob, assuming axisymmetry. For example,
in figure 8 at long times, the steeper of the two upward branches corresponds to the
left-most, sharper of the two positive blobs in figure 5. The two negative blobs at long
times in figure 2 are almost indistinguishable, which is reflected as overlapping downward
branches in figure 7.

5. Canonical splitting of the vorticity function

In this section, we map our results for the Euler–Zeitlin equations to the original Euler
equations (1.1a,b). Indeed, all the concepts needed in the canonical splitting for the
Euler–Zeitlin equations have classical counterparts; some are listed in table 1. However,
one has to be careful to rigorously define these concepts: the transition from the quantised
to the classical equations is valid only in a weak sense. Mathematically, the correct
framework is L∞ weak-star convergence. Formally, we may nevertheless proceed as
follows, keeping in mind that concepts are transferable only in the weak sense. The key
ingredient is that the projectionΠP onto the stabiliser of P corresponds to averaging along
the level sets of the streamfunction ψ . This gives the canonical splitting for the vorticity
function via the projector Πψ as

ω = Πψ(ω)+Π⊥
ψ (ω) = ωs + ωr. (5.1)

The projection Πψ is time dependent, since the level curves of ψ change with time.
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Euler’s equations Zeitlin’s model

Lie group Symplectic diffeomorphisms SU(N)
Lie algebra Divergence free vector fields 𝔰𝔲(N)
Phase space L∞ functions 𝔰𝔲(N)∗ � 𝔰𝔲(N)
Strong norm Supremum norm ‖·‖L∞ Spectral norm
Energy norm Sobolev norm ‖·‖H−1

√− Tr(PW )

Enstrophy norm L2 norm ‖·‖L2 Frobenius norm
Canonical splitting Averaging on level-sets of ψ Projection onto stabiliser of P
z-axis symmetry ω is zonal W is diagonal

Table 1. Dictionary between Euler’s and Zeitlin’s models of hydrodynamics.

Let us now proceed with more mathematical details on this construction. First, recall
again Euler’s equations in vorticity formulation

ω̇ = {ψ,ω}, 
ψ = ω. (5.2a,b)

To define the continuous analogue of the vorticity matrix splitting, we have to understand
equations (5.2a,b) in the weak sense. Indeed, in general, the projections Πψ and Π⊥

ψ

cannot preserve the smoothness of ω. But for any p ∈ [1,∞] they are continuous operators
from C0(S2) to Lp(S2) with operator norm one. Since continuous functions are dense in
Lp(S2), we can extendΠψ andΠ⊥

ψ to continuous operators on L∞(S2). This result fits well
with the global well posedness of (5.2a,b), which precisely requires a vorticity function in
L∞ (Yudovich 1963; Majda & Bertozzi 2002; Marchioro & Pulvirenti 2012).

Let us first give (5.2a,b) in the weak sense. For any p � 2, if ω ∈ Lp(S2) then ψ ∈
W2,p(S2) ⊂ H1(S2). We define the weak Poisson bracket as∫

S2
{ψ,ω}φ = −

∫
S2
ω{ψ, φ}, (5.3)

for any test function φ ∈ C∞(S2). Hence, we define the stabiliser of ψ as

stabψ := {f ∈ L2(S2) | {f , ψ} = 0}. (5.4)

Next, we define the L2 orthogonal projection Πψ onto stabψ .

PROPOSITION 5.1. If p � 2 and ψ ∈ W2,p(S2) then stabψ is a closed subspace of L2(S2).

Proof . Let {fn} ⊂ stabψ , such that fn → f in L2, for n → ∞. We want to show that f ∈
stabψ . Let φ be a function in C1(S2), then we get∣∣∣∣∫ {f , ψ}φ

∣∣∣∣ =
∣∣∣∣∫ {φ,ψ}f

∣∣∣∣ =
∣∣∣∣∫ {φ,ψ}( f − fn)

∣∣∣∣ � ‖{φ,ψ}‖0‖f − fn‖0 → 0, (5.5)

for n → ∞. �

The operator Πψ has an explicit form when evaluated on continuous functions. To state
it, we first make the following assumption on the critical points of ψ .
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ASSUMPTION 5.2. Let ψ ∈ C1(S2) be the streamfunction. Then the critical points of
ψ define a set of zero Lebesgue measure on S2, such that it is never dense in any
neighbourhood of one of its points.

We say that ψ is generic whenever it satisfies Assumption 5.2. Consider now some
f ∈ C1(S2). Then f ∈ stabψ if and only ∇f and ∇ψ are parallel. Since we take ψ to be
generic, the points where {x | ∇ψ(x) = 0} lie on a set of zero measure, nowhere dense.
Therefore, since f is continuous, f ∈ stabψ if it is constant on the connected components
of the level curves of ψ . Then the projection of f onto stabψ can be defined by evaluating
f on the level curves of ψ , i.e. the streamlines. Let γ be a connected component of a
streamline, then define the projection Πψ : C1(S2) → stabψ as

Πψ( f )
∣∣
γ

= 1
length(γ )

∫
γ

f ds. (5.6)

In the limit when γ approaches a single point, clearly Πψ(ω)|γ = f (γ ).
The operator Πψ does not, in general, preserve the continuity of f . Indeed, consider

a bifurcation saddle point x ∈ S2, namely a saddle point of ψ such that the streamline
passing through x contains a bifurcation point. We then have the following result.

PROPOSITION 5.3. Let ψ be generic and Πψ the projection defined in (5.6). If x ∈ S2

is a bifurcation saddle point for ψ , then there exists f ∈ C1(S2) such that Πψ( f ) is
discontinuous at the streamline passing through x. Vice versa, given f ∈ C1(S2), ifΠψ( f )
is discontinuous at some point x ∈ S2, then the streamline passing through x contains a
bifurcation saddle point.

Proof . (Sketch) The issue about the continuity of f can be treated locally. Hence, let us
work in Cartesian coordinates. Let x ∈ S2 be a bifurcation saddle point for ψ and γ the
streamline passing through x. Then, let β be a curve intersecting γ only in x and let f
be a smooth function positive at one side of β and negative at the other one, such that∫
γ f ds = 0. Then, with x a bifurcation point, for any neighbourhood U of x, there exist

streamlines totally contained in one or another side of β. Then, the average of f on those
streamlines is either strictly positive or negative, creating a discontinuity at γ .

Vice versa, let f ∈ C1(S2), such thatΠψ( f ) is discontinuous at some point x ∈ S2. Then,
the streamline passing through x cannot be homeomorphic to any of those in some tubular
neighbourhood. Hence, the streamline passing through x must contain a critical point for
ψ , which also is a bifurcation saddle point. �

However, we have the following regularity for Πψ .

PROPOSITION 5.4. For any p ∈ [1,∞], the operator Πψ can be extended to a bounded
operator with norm one on Lp(S2).

Proof . Let us first notice that Πψ is defined from C0(S2) to L1(S2), and satisfies
‖Πψ f ‖L1 � ‖f ‖L1 , for any f ∈ C0(S2). Since C0(S2) is dense in L1(S2), it is possible
to extend Πψ to a bounded operator on L1(S2). Secondly, Πψ is well defined from the
space of simple functions to L∞(S2), and satisfies ‖Πψ f ‖L∞ � ‖f ‖L∞ , for any f simple.
Since the space of simple functions is dense in L∞(S2), it is possible to extend Πψ to a
bounded operator on L∞(S2). Furthermore, since Πψ fixes the constant functions, it must
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be that ‖Πψ‖L1 = ‖Πψ‖L∞ = 1. Hence, by the Riesz–Thorin theorem, we conclude that
‖Πψ‖Lp = 1, for any p ∈ [1,∞]. �

Hence, from now on, let us consider (5.2a,b) in the weak form, for ω ∈ L∞(S2). It is
clear that Π2

ψ = Πψ . Moreover, we can formally define the operator Πψ via the kernel

K(x, y) = 1
length(γ x)

δγ x(y), for any x, y ∈ S
2 (5.7)

where γ x is the connected component of the streamline passing through x. In this way we
get that Πψ is self-adjoint with respect to the L2 inner product, i.e. for any f , g ∈ C∞(S2)∫

S2
fΠψg =

∫
S2

f (x)
∫

S2
K(x, y)g(y)

=
∫

S2
g(y)

∫
S2

K(x, y)f (x)

=
∫

S2
gΠψ f . (5.8)

By extension these equalities are valid for f , g ∈ Lp(S2) whenever p ∈ [1,∞].

REMARK 5.5. We notice that the operator Πψ , defined by the kernel K(x, y), is a mixing
operator (or polymorphism or bistochastic operator), as introduced by Shnirelman (1993,
2013). Such operators give rise to a partial ordering on L2(S2): for any f , g ∈ L2(S2),
f � g if there exists a mixing operator, defined via the kernel K, such that f = K ∗ g. In
his work, Shnirelman shows that stationary flows are characterised as minimal elements
of this ordering. In a way, our work shows that it is enough to consider mixing operators
of the form Πψ . Within this class, ω is minimal if there exists a streamfunction such that
Πψω = ω. As we see next, this in turn implies that ω is stationary.

PROPOSITION 5.6. Let ψ ∈ C1(S2) be generic. For ω ∈ L∞(S2) we then have

ω ∈ stabψ ⇐⇒ Πψω = ω. (5.9)

Proof . We prove the result for ω ∈ C1(S2), then conclude by extension. Let ω ∈ stabψ .
Then, ∇ω is parallel to ∇ψ almost everywhere. Hence, the gradient of ω along any
streamline must vanish, and so on each connected component it is constant. By continuity
of ω we deduce that f must be constant also on the streamlines containing critical
points. Therefore, Πψω = ω. Assume now that Πψω = ω. Then ω must be constant on
each connected component of a streamline. Hence, ∇ω is orthogonal to the streamlines.
Since ∇ψ is also orthogonal to the streamlines, we conclude that {ω,ψ} = 0, i.e. ω ∈
stabψ . �

We are now in the position to derive continuous analogues of the results in § 3 (which,
remember, are based on Lie theory for matrices). First, the streamfunction ψ satisfies the
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equation

ψ̇ = Δ−1{ψ,
ψ}. (5.10)

This equation is not Hamiltonian. But we can split the right-hand side into a Hamiltonian
and non-Hamiltonian part via the projection Πψ

ψ̇ = Π⊥
ψ Δ

−1{ψ,
ψ} +ΠψΔ
−1{ψ,
ψ}. (5.11)

Analogous to the quantised case, we seek a generator for Π⊥
ψ Δ

−1{ψ,
ψ}. That is, a
function b : S2 → R such that

{b, ψ} = Π⊥
ψ Δ

−1{ψ,
ψ}. (5.12)

It is clear that a necessary condition for the equation {b, ψ} = f to have a solution b is that
f ∈ stab⊥

ψ . Indeed, if b ∈ C1(S2) then {b, ψ} ∈ stab⊥
ψ since∫

S2
{b, ψ}g = −

∫
S2

{g, ψ}b = 0 for any g ∈ stabψ. (5.13)

However, in general (5.12) can be solved only where ∇ψ /= 0. Around the critical points
of ψ the gradient of b is potentially unbounded. Moreover, the right-hand side in (5.12)
can be discontinuous at the level curves of ψ containing saddle points of ψ . Hence, b can
only be defined almost everywhere. Furthermore, we have the following:

PROPOSITION 5.7. Let f ∈ C0(S2) and ψ be generic. Then f ∈ stab⊥
ψ if and only if there

exists b almost everywhere smooth, such that {b, ψ} = f on the set ∇ψ /= 0.

Proof . The if part is clear. Let instead take f ∈ stab⊥
ψ . Then, for any point x ∈ S2, we have

to solve the partial differential equation (PDE) for b

∇⊥ψ · ∇b = f , (5.14)

where ∇⊥ψ = x × ∇ψ . If ∇ψ does not vanish, (5.14) can be solved by integration in the
direction of ∇⊥ψ . At the points where ∇ψ does not vanish, ∇b is not defined by (5.14),
and it can be unbounded around those points. Hence, the field b is almost everywhere
smooth and satisfies {b, ψ} = f , where ∇ψ /= 0. �

5.1. Dynamics of ωs and ωr

To derive the dynamical equations for ωs, we cannot directly define the field b
corresponding to the quantised field B above. Instead, we consider the volume-preserving
vector field

X[ψ] := Π⊥
ψ Δ

−1{ψ,
ψ}. (5.15)

We note that X corresponds to the infinitesimal action of a map ϕt which transports ψ
by deforming its level curves. Hence, ϕt acts naturally on stabψ . Let us write Π t

ψ for the

943 A36-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

45
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.457


K. Modin and M. Viviani

projection onto stabψ at time t. Then, for any point x ∈ S2, let

γ (t) = {y | ψ(y) = ψ(x) and y in connected component of x}, (5.16)

and dŝt be the normalised Lebesgue measure on γ (t). We have then the formal identity

ωs(t, x) = Π t
ψω(t, x)

=
∫

γ (t)
ω(t, y) dŝt(y)

=
∫

γ (0)
(ϕ∗

t ω)(t, y) dŝ0(y)

= Π0
ψ(ϕ

∗
t ω)(t, ϕ

−1
t (x)). (5.17)

Hence, for any test function φ ∈ C∞(S2)

d
dt

∫
S2
ωs(t, x)φ(x) = d

dt

∫
S2
Π0
ψ(ϕ

∗
t ω)(t, ϕ

−1
t (x))φ(x)

=
∫

S2

(
Π0
ψ(ϕ

∗
t LXω)(t, ϕ−1

t x)− LXΠ
0
ψ(ϕ

∗
t ω)(t, ϕ

−1
t x)

)
φ(x)

= −
∫

S2
ω(t, x)LXΠ

t
ψφ(x)+ LXΠ

t
ψω(t, x)φ(x), (5.18)

where LX is the Lie derivative, which simply acts on functions as LXf = X[ f ]. We notice
from the previous calculations that LX has to be evaluated only on elements in stabψ .
Hence, the time derivative of ωs is well defined in the weak sense.

Let us now formally denote X := −{b, ·}. Then, interpreting the Poisson bracket in the
weak sense, we can write the dynamical system for ωs and ωr as

ω̇s = {b, ωs} −Πψ {b, ωr}
ω̇r = −{b, ωs} +Πψ {b, ωr} + {ψ,ωr}

{b, ψ} = Π⊥
ψ Δ

−1{ψ,ωr},

⎫⎪⎬⎪⎭ (5.19)

where b is implicitly defined by the third equation and ψ = Δ−1(ωs + ωr). We notice that
the equations of motion for ωs can also be written in a more compact form as

ω̇s = [Πψ,LX]ω, (5.20)

where the square bracket is the commutator of operators.
Finally, notice that the energy and enstrophy splitting is valid also in the classical setting

H(ω) = H(ωs)− H(ωr)

E(ω) = E(ωs)+ E(ωr).

}
(5.21)

6. Conclusions and outlook

Based on the Euler–Zeitlin equations we have reported on a new technique for studying
2-D turbulence via canonical splitting of vorticity. In numerical simulations, this splitting
dynamically develops into a separation of scales. These numerical results are supported
by some theoretical evidence. To develop a full mathematical understanding of these
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phenomena, even completely within the setting of Zeitlin’s model, is an interesting open
problem. We have further presented mathematical foundations for a weak L∞ theory in
the continuous setting, independent of Zeitlin’s model.

As the numerical simulations so strikingly capture the scale separation process, and as
the inverse relations of the corresponding energy–enstrophy splitting reflect the stationary
theory of Kraichnan, further numerical and theoretical studies of the canonical vorticity
splitting shall likely unveil more details on the mechanism behind vortex condensation.
Furthermore, the splitting into large scales ωs and small scales ωr suggests using these
variables as a basis for stochastic model reduction (cf. Jain, Timofeyev & Vanden-Eijnden
2015) of the 2-D Euler equations, with ωr modelled as multiplicative noise.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.457.
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