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a b s t r a c t

Deep learning (DL) based software systems are difficult to develop and maintain in industrial
settings due to several challenges. Data management is one of the most prominent challenges which
complicates DL in industrial deployments. DL models are data-hungry and require high-quality data.
Therefore, the volume, variety, velocity, and quality of data cannot be compromised. This study aims
to explore the data management challenges encountered by practitioners developing systems with DL
components, identify the potential solutions from the literature and validate the solutions through a
multiple case study. We identified 20 data management challenges experienced by DL practitioners
through a multiple interpretive case study. Further, we identified 48 articles through a systematic
literature review that discuss the solutions for the data management challenges. With the second
round of multiple case study, we show that many of these solutions have limitations and are not
used in practice due to a combination of four factors: high cost, lack of skill-set and infrastructure,
inability to solve the problem completely, and incompatibility with certain DL use cases. Thus, data
management for data-intensive DL models in production is complicated. Although the DL technology
has achieved very promising results, there is still a significant need for further research in the
field of data management to build high-quality datasets and streams that can be used for building
production-ready DL systems. Furthermore, we have classified the data management challenges into
four categories based on the availability of the solutions.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep learning (DL) is fundamentally a neural network with
hree or more layers. The software systems that employ DL can
earn multiple levels of representations (Zhang et al., 2019). DL
s a subset of machine learning techniques that use supervised
nd/or unsupervised strategies to automatically learn hierarchi-
al representations in deep architectures for classification (Ben-
io, 2000; Ranzato et al., 2007) contrary to the conventional
earning methods, which use shallow-structured learning archi-
ectures. Consequently, deep learning is now used extensively
or image processing in healthcare applications (Litjens et al.,
017), Self Driving Cars (Daily et al., 2017; Rao and Frtunikj,
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2018), Virtual Assistants (Kepuska and Bohouta, 2018), Auto-
matic Machine Translation (Bahdanau et al., 2014) and Fraud
Detection (Roy et al., 2018). Large companies such as Face-
book (Abadi et al., 2016), Google (Beaufays, 2015), Uber (Sergeev
and Del Balso, 2018; Gruener et al., 2018), Amazon (Rastogi,
2018), Microsoft (Deng et al., 2014) have employed DL in a wide
range of their products. For instance, Facebook uses DL to identify
excessively promotional posts, spam, or clickbait (Abadi et al.,
2016). Google incorporates DL into the search engine (Beaufays,
2015) to understand spoken commands and questions. Uber
implements automated DL transcription technology to enable
scalable, reliable, and quick validation of driver identity when
drivers go online (Sergeev and Del Balso, 2018; Gruener et al.,
2018). Amazon uses DL to improve customers’ experience with
Alexa skills (Rastogi, 2018). DL is one of the most refined machine
learning techniques that does not often require feature engineer-
ing. However, DL is not a widely used technique among industries
due to poor explainability, poor traceability, data dependencies,
dataset incompleteness, and data management problems (Rao

and Frtunikj, 2018; Kahng et al., 2017).
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Although DL models demand less domain expertise and are
apable of learning automatically from input data (i.e. the features
re not given by a human) (Zhang et al., 2016), understanding
nd explaining the learned models is extremely difficult. Even
he most well-studied models that operate so well remain a
ystery, requiring additional research. Consequently, changing

he model, its network structure, and hyperparameters demands
ore effort and time. Further, it has inherent drawbacks, such as
igh sensitivity to underlying data compared to machine learning
odels (LeCun et al., 2015). Furthermore, data is treated as a

irst-class citizen, equal to code, and therefore data management
as a significant impact on model accuracy. Although data is
verywhere, searching for the right ones in the right quantity
tself becomes a challenge (Whang and Lee, 2020). Moreover, the
ollected data should be clean and validated to rectify problems
n the data, so that it will not affect the performance of the DL
odel (Whang and Lee, 2020). Even after collecting the right data
nd cleaning it, data quality may still be an issue during model
raining (Whang and Lee, 2020). The evolving nature of data leads
o problems after the model deployment as well (Munappy et al.,
019). Thus, data management becomes a challenge that affects
ll phases of a DL model development pipeline.
The objective of this paper is to explore, analyze, and under-

tand the data management challenges encountered by industry
ractitioners when developing and maintaining DL systems. Fur-
her, this study aims to analyze why data management for DL
annot be solved by existing solutions from other domains such
s Big Data, data analytics, machine learning, and data mining.
sing a multiple interpretive case study, we identified the data
anagement challenges for production-quality DL models and
apped them with the corresponding data lifecycle phase, which

s published as a conference paper (Munappy et al., 2019). This
tudy is an extension of it by incorporating the potential solu-
ions to data management challenges from the previous research
sing a systematic literature review (Kitchenham, 2004). Further-
ore, we validated the solutions in the second round of multi-
ase study research with companies that work on real-world DL
rojects.
The contribution of this paper is four-fold. First, we identify

he data lifecycle phases and describe the data management
hallenges for DL at each phase of the data lifecycle through a
ultiple case study. Second, we present the solutions that can
itigate the data management challenges discussed in previous

esearch through a systematic literature review. Third, we analyze
hy not all of these identified solutions presented in the litera-
ure are applicable in practice. Based on the identified limitations,
e classify the challenges into four categories. Finally, we identify
pen research challenges in data management for DL and present
hem as future research directions.

The remainder of this paper is organized as follows. Back-
round is presented next in Section 2 followed by the description
f research method in Section 3. Section 4 presents an overview
f the data lifecycle phases and data management challenges
ncountered at each phase. Section 5 presents the solutions for
ata management challenges. Section 6 shows the categorization
f challenges according to the availability of solutions. The find-
ngs and research implications of the study are discussed and
oncluded in Section 7.

. Background

Over the past few years, DL has spawned a tremendous col-
ection of ideas and techniques that were previously believed to
e infeasible. At first glance, this collection of ideas appears to
e incoherent and dissimilar. However, over time, patterns and
pproaches evolve, and today DL (LeCun et al., 2015) represents a
2

significant step forward in overcoming the challenges. DL became
the center of attraction after Krizhevsky et al. (2012) corroborated
the significant performance of a Convolutional Neural Network
(CNN) (Krizhevsky et al., 2012) based model on a challenging
large-scale visual recognition task (LeCun et al., 1989) in 2012.

2.1. Data - The fuel for DL models

Digital data, in all its forms and sizes, is exploding at an
incredible rate (National Security Agency, 2013). It also results in
a significant paradigm shift in modern scientific research, with
data-driven discovery becoming the norm (Manyika et al., 2011).
Big data presents unprecedented challenges to harnessing data
and information because of the sheer volume of data available
today. On the one hand, it presents big opportunities and trans-
formative potential for various sectors. Deep neural networks
are trained using massive datasets to imitate human intelligence.
Through a hierarchical learning process, DL algorithms extract
high-level, complex abstractions as data representations. At each
level of the hierarchy, complex abstractions are learned based
on comparatively smaller abstractions formulated at the previous
level. There are multiple high-performance algorithms in DL that
are designed for diverse purposes. No algorithm, however, can
guarantee the same results across all datasets, which is a clear
indication of the importance of data and its impact on the output
of DL models. The core benefit of DL is the analysis and learning
of tremendous amounts of unsupervised data, which makes it a
useful tool for Big Data Analytics even when raw data is mostly
unlabeled and uncategorized. Furthermore, DL algorithms belong
to the representation learning class, which has the capability of
handling raw data and automatically extracting useful features
as the representations (LeCun et al., 2015). As a result, data
quality is crucial in determining the performance of a DL model.
This combined power of Big Data and Deep Learning when they
are working together clearly illustrates the considerable synergy
between them.

2.2. Synergy between big data and DL

Machine learning and deep learning algorithms are capable of
extracting every last detail from the input data, which is then
utilized to develop new rules to fulfill the function (Labrinidis and
Jagadish, 2012). Data and DL forms a symbiotic relationship in
which DL is useless without data and data management is almost
impossible to overcome without DL. Business decisions, previ-
ously reliant on speculation or painstakingly crafted models of
reality, are now based on big data (Oguntimilehin and Ademola,
2014). The sheer volume and variety of data ingested by modern
analytical pipelines considerably enhances the links between data
integration and machine learning (Dong and Rekatsinas, 2018).
Data management systems are increasingly using AI models like
machine learning to automate parts of data life cycle tasks. Ex-
amples include data cataloging and inferring the schema of raw
data (Halevy et al., 2016). Data analytics drives almost every
prospect of our contemporary society, including mobile services,
retail manufacturing, financial services, life sciences, and physical
sciences (Oguntimilehin and Ademola, 2014). Established com-
panies and newcomers alike prefer to use data-driven tactics
to develop, compete, and gain value from deep and up-to-date
information in most industries (Manyika et al., 2011). However,
in the current scenario organizations struggle with collecting,
integrating, and managing the data. Instead of solving these data
issues, DL will only make them more noticeable.
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.3. Data management for DL models

The dimensions of big data are marked by three Vs namely
olume, Velocity, and Variety. Volume denotes the amount of
ata, variety denotes the number of types of data and velocity
enotes the speed of data processing (Tole et al., 2013). The
xpansion of all three qualities results in the issues of big data
anagement. As users come up with new ways to scrub and
rocess data, the amount of data that can be extracted from the
igital universe continues to grow.
Data management for DL can be defined as a process that

ncludes collecting, processing, analyzing, validating, storing, pro-
ecting, and monitoring data to ensure the consistency, accuracy,
nd reliability of the data. Industry products that make use of
remendous volume of digital data can successfully employ DL.
owever, real-world data needs to be processed and managed
efore fed as input to the DL models. Training a DL model with
uch massive and variegated data sets is challenging, and several
spects need to be considered. e.g. data sparsity, redundancy,
nd missing values. To ensure the high performance from DL
odels, a set of good data management practices such as data
ipelines (Raj et al., 2020) and DataOps (Munappy et al., 2020)
hould be followed from data collection, through data process-
ng and analysis, dataset preparation, and deployment of the
odel. Wang et al. (2016) describe how certain challenges like
ata dependency, memory management, concurrency, data in-
onsistency can be solved by combining database techniques and
eep neural networks. Moreover, ML based data management
olutions have a GUI to help understand, visualize, and curate
ata for training, uncover corrupted data like mislabeled ex-
mples, and identify difficult edge cases. Solutions tie into an
L model and its data to determine the data that is helpful,
urtful, or useless for training algorithms. However, they are not
ood at multiple adjacencies like data labeling, label split bal-
ncing, embeddings-as-a-service, model monitoring, and model
obustness verification.

Popular companies like Apple (Chen and Lin, 2014), Facebook,
icrosoft is collecting a copious amount of data daily through
pplications like Siri, Google translator, Bing voice search (Jones,
014) to provide a variety of other services such as reminders,
eather reports, personalized recommendations. Although big
ata can render numerous opportunities, it also enforces conse-
uential engineering challenges (Najafabadi et al., 2015). X. W.
hen et al. describe the big data challenges such as streaming
ata, high-dimensional data, scalability of models, and distributed
omputing (Tur and De Mori, 2011). However, in these papers,
L is considered a solution for the management of data. Data
anagement challenges involved in implementing DL models are
ot seriously considered, and our paper intends to focus on that
erspective.

. Research methodology

We have used a three-step research process as shown in
ig. 1. In the first step, we identified data management challenges
sing interpretative multi-case research. As the second step, we
onducted a systematic literature review and identified potential
olutions for the identified challenges. Finally, and as the third
tep, we conducted a second round of multiple case study to
alidate the applicability of identified solutions on real-world
ndustrial datasets. Detailed steps of the research process are
llustrated in Fig. 2
3

3.1. Definition of research questions

The primary objective of this study is to identify data man-
agement challenges and solutions specific to DL in real-world
settings. The secondary objective is to identify the open research
questions in the area of data management for DL. We developed
the following research questions to achieve our high-level goal:

RQ1. What are the data management challenges experienced
in the industry while developing DL models?

RQ2. What solutions are proposed in literature to address the
identified challenges?

RQ3. What are the limitations of the existing solutions, and
what remain as open challenges in data management for
DL?

3.2. Step 1: Interpretive multiple-case study (Exploration)

A multiple case study research method was adopted in this
study. According to Yin et al. a case study is most suitable for
‘how’ and ‘why’ questions, as well as exploratory ‘what’ ques-
tions (Yin, 2013). In this study, ‘what’ questions are the key
research questions justifying the choice of a case study approach.
Further, Stuart et al. (2002) and Meredith (1998) propose that
a case study can be considered as the appropriate method to
explore new phenomena and generate new knowledge. Further-
more, a multiple case study method facilitates the exploration
of the real-life challenges in its context through a variety of
lenses (Baxter et al., 2008; Yin, 2003) and enhances the robust-
ness of research findings, compared to a single case study, by
reducing the risk of observer bias (Eisenhardt, 1989). Although
our primary source of data collection is interviews, information
collected through ethnographical observations and minutes from
meetings are also incorporated by the two authors from the
company wherever necessary, which in turn implements trian-
gulation. The objective of this study is to identify challenges
specifically concerned to the management of data in different
real-world DL applications. An interpretive multiple-case study
approach that adheres to the guidelines by Runeson et al. (Rune-
son and Höst, 2009) and Verner et al. (Verner et al., 2009) is
employed in this research. The challenges identified are grounded
on our interpretations of the experiences of experts who build
and maintain DL systems in a real-time scenario with real-world
datasets. The overall research design and the major steps in the
research process of the study are described below.

3.2.1. Overview of Deep Learning use cases
This section describes real-world DL cases that has been cho-

sen for this research. We focus on the system including the DL
model, even if our focus is predominantly on the DL part of the
system. DL use cases were selected based on the availability of
experts working on it. The DL systems discussed are Online rec-
ommender service, Medical imaging, Energy Prediction, Real-Estate
Forecast,Manufacturing, and Financial Systems as shown in Table 1.
All of these are using real-world dataset and are operational.

Case A — Online recommender services: Case A is an online
recommender system used by an electric vendor. DL components
in recommender systems are trained on user reviews and the
purchase history. When a customer visits the website, the recom-
mender system predicts users’ interest and recommends electric
products based on previous customer reviews and purchase his-
tory. Online recommender services help the company boost sales
by leveraging the power of data. Many customers tend to look
at the website for their recommendations. Personalized recom-
mendations from the system thus increase customer satisfaction
and thus customer retention. It not only creates personalized
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Fig. 1. Three-step Research Process.
Fig. 2. Research methods and process for conducting the study.
Table 1
Deep Learning use cases and description.
Case No Deep Learning Use case Description

Case A Online Recommender Service Predicts users’ interest and recommends electric products for them based on
previous customer reviews and purchase history

Case B Medical imaging Automated classification of skin lesions into malicious and benign
Case C Energy Prediction Wind power is predicted based on the meteorological data
Case D Real-Estate Forecast Predicts the property prices based on historical data
Case E Manufacturing Predicts the quality of cartons made from pulp
Case F Financial Systems Automated classification of transactions into fraudulent and normal
informational flows independently for each user, but also takes
into account the behavior of all users of a service. Along with the
information about users’ interactions with items, there is usually
data describing users and items separately. This data could be
assorted and heterogeneous — items and users contain textual de-
scriptions, numerical characteristics, categorical features, images,
and other types of data.

Case B — Medical imaging: Case B is a melanoma detection
ystem. Melanoma is a type of skin cancer, which is not usual
ike basal cell and squamous carcinoma, but it has dangerous
mplications since it tends to migrate to other parts of the body.
herefore, early detection is required to prevent it from spreading
o other parts; otherwise, it becomes incurable. The skin cancer
4

detector not only intends to diagnose whether a person has skin
cancer or not, but also the type of cancer and severity. Here, the
DL system is used for the diagnostic classification of dermoscopic
images of lesions of melanocytic origin. Although datasets such as
MED-NODE, ISIC Archive, are publicly available, dealing with real-
world data is still challenging. Automated classification of skin
lesions using images is a difficult task because of the unavailabil-
ity of fine-grained varieties of the appearance of skin lesions. In
this use case, datasets are formed over several years by working
in close collaboration with clinics. The company has regulations
on the usage of the dataset and the data is not allowed to leave
the servers. With these regulations, the practitioners conform to
the rules specific to the dataset and move the code and model to
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he server where data is stored for developing the DL system. The
elanoma detector is still not production-ready.

ase C — Wind power prediction: Case C is a wind power
redictor. Wind power is weather-dependent, and therefore it is
rregular and fluctuates over different time scales. Thus, accurate
orecasting of wind power is considered as a major contribu-
ion to reliable large-scale wind power integration. Here, the DL
ystem is utilized to predict accurately the amount of electric-
ty and power the wind turbines are going to produce within
4 to 48 h so that an accurate report can be furnished to the
ower companies for which energy is supplied. In this use case, a
ombination of wind and weather is predicted, from which the
ower generated by the wind turbines is calculated. The wind
ower is predicted based on the meteorological data obtained
rom the National meteorological agency. Deep Learning is used
o forecast weather and thereby predicting the wind power that
an be generated in the future. The power companies have strict
equirements in terms of the amount of power they are going to
eliver, and penalties should be paid if they cannot deliver the
eported energy.

ase D — Real-Estate Forecast: Case D is a system used for
eal-estate forecasting. Predicting property values is of significant
nterest to various parties in an economy. Estimation of the
ouse price is important to prospective homeowners, developers,
nvestors, appraisers, tax assessors, and other real estates market
articipants, such as mortgage lenders and insurers. Real-estate
nvestors and portfolio managers prepare and conduct their in-
estment decisions grounded on periodic evaluations of their
eal-estate portfolios. Individuals are interested in knowing the
alues of their properties before determining their list prices.
ax authorities levy property taxes based on estimates of the
alue of the properties. Banks and mortgage providers conduct
ousing collateral valuations to qualify the borrowers for their
ortgage applications. Initially, house price was predicted based
n the comparison between cost and sale price and there were
either accepted standards nor certification processes. Therefore,
he house price prediction system was used to fill up the existed
nformation gap, and it also enhanced the efficiency of the real
state market. The house price prediction case was initially built
n a traditional assorted database system where SQL queries
nd data pipeline scripts were used, whereas now it utilizes DL
echniques where the model is trained with historical sales data
bout properties, geography, and demography in the Swedish
arket. The house price prediction system is a long-running DL
ystem deployed in production and is used by many banks in
weden.

ase E — Manufacturing: Case E is from the manufacturing
omain, which is a paper mill industry that produces paper
rom pulp. The pulp is dried to form cartons and cardboard,
hich is further used for making milk cartons. The company
roduces a huge amount of paper board every year and wants
o keep material costs as low as possible while retaining high
uality. Paper mills gather large amounts of data, which provides
hem with ever-growing visibility into their processes, due to the
apidly increasing availability of instrumentation and the usage
f centralized data historians. The quality of the paper board
s predicted based on data from process sensors and images of
ood fibers taken with the PulpEye technology. A DL component

s incorporated in the system to predict the quality of the re-
ulting product based on all the measurements in the machine
nd measurements on the pulp that goes in. Further, there are
lso images of what happens at the start of the machine, and
icroscope images of the fibers in the pulp. The DL system serve
s a foundation to control the manufacturing process so that the
5

Table 2
Description of Use cases and Roles of the interviewees.
Case Use case Interviewed Experts

ID Role

A Recommending products to P1 Principal Data Scientist
the users in a personalized fashion

B Predicting the wind power using P2 Data Scientist
the historical weather data P3 Head of Data Analytics team

P4 Data Scientist
P5 AI Research Engineer

C Estimating and predicting P2 Data Scientist
the price of houses P3 Head of Data Analytics team

D Automated classification of P2 Data Scientist
skin lesions into benign P3 Head of Data Analytics team
and malignant P4 Data Scientist

P5 AI Research Engineer

D Detecting the credit card frauds P2 Data Scientist
during gaming P3 Head of Data Analytics team

E Predicting quality of paper boards P4 Data Scientist
P5 AI Research Engineer

same quality could be maintained with less input material and
waste.

Case F — Financial Systems: Case F is a financial fraud detec-
tion system. Frauds in finance still amount to significant loss of
money. Hackers and fraudsters all over the world are experiment-
ing with new techniques to perpetrate financial fraud. Therefore,
trusting financial fraud detection systems programmed based on
the conventional rule-based method alone will not serve the
purpose. This is where Deep Learning shines as a unique solution.
The DL system utilizes customer details such as payment his-
tory, activity history and payment request data such as payment
method, amount, location, etc. For fraud detection, post-payment
signals of anomalous pay are also considered. In the current
world, fraud detection requires a complete strategy that matches
data points with activities to determine what is wrong. When it
comes to modeling fraud detection as a classification problem,
the main challenge is that in the real world, the majority of the
transactions are not fraudulent. However, to train DL systems,
counterexamples are also required.

Based on the study with the aforementioned use cases, data
management challenges are identified. This study presents a set
of clearly explained data management challenges faced by prac-
titioners while integrating DL components in real-world software
systems. We have also classified the challenges according to the
data life cycle phase in which they are encountered.

3.2.2. Expert interviews
The primary objective of our study was to explore data man-

agement challenges encountered while implementing DL sys-
tems in real-world settings. Each case in the study pertains to
a software-intensive system that incorporates DL components
developed at an organization. For the study, a sample pool of
DL experts who has an experience of minimum 3 years working
exclusively on DL systems and works in seven different domains
were selected by their expertise in the area of study. The selected
seven practitioners include two authors of this paper. From the
acknowledgment in the literature (and our experiences when
soliciting interviewees), it can be inferred that only a few experi-
enced practitioners are skilled in the area of intersection between
DL and SE, Table 2 illustrates the roles of our interviewees in

implementing use cases across multiple domains.
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.2.3. Data collection
Semi-structured interviews were used to acquire qualitative

ata. Based on the objective of the research to explore data
anagement challenges for DL systems, an interview guide with
0 questions categorized into four sections was formulated. The
irst and second sections focused on the background of the in-
erviewee. The third section concentrated on the importance of
ata in various projects and the last section inquired in detail
bout data management, the challenges faced during every phase
f the data processing pipeline. The interview guide was reviewed
y the authors and some additional questions were added, a few
imilar questions were merged, and some less relevant questions
ere removed, finally forming an interview protocol with 36
uestions spread across five different categories. All interviews
ere face-to-face except for one which was done via video con-

erence and each interview lasted 45 to 55 min. All the interviews
ere recorded with the permission of respondents and were
ranscribed later for analysis.

.2.4. Data analysis
The audio recordings were sent to be transcribed after the

nterviews, and the first author wrote a synopsis of each in-
erview, summarizing the important points of discussion. After
ranscription, the analytical insights from the summary were
ross-checked repeatedly with the audio recordings and inter-
iew transcripts. The results of data analysis were checked by
econd and third author of this paper to reduce the bias. A
heoretical thematic data analysis approach was opted for cod-
ng (Maguire and Delahunt, 2017). First, the author coded each
egment of the interview transcript that was relevant to or cap-
ured something interesting about data in NVivo. In the first
teration, the aim was to identify the phases of the data life
ycle. After identifying the phases as shown in Fig. 2, a second
teration was performed to code the data management chal-
enges encountered in each phase by setting high-level themes
s (i) Data Collection, (ii) Data Exploration, (iii) Data Preprocess-
ng, (iv) Dataset Preparation, (v) Data Testing, (vi) Deployment,
vii) Post-deployment. Further, the codes such as problem descrip-
ion, implications, empirical basis, examples etc. were formed.
he results deduced from the analysis were tabulated and sent
o the authors for comments, and then the final summary of the
ases and mapping were sent to the interviewees for validating
he inferred results.

.3. Step 2: Systematic literature review

As the second step in our research, we conducted a system-
tic literature review (SLR) based on the guidelines proposed
y Kitchenham (2004). In this study, the goal of the SLR was
o identify the solutions for data management challenges iden-
ified through multiple case study. As we already identified the
ata management challenges through interview study, we have
nly searched for solutions to the identified challenges in the
iterature. We have not attempted to expand the list of data
anagement challenges through literature review. According to
itchenham, systematic literature reviews not only aggregate
ll existing evidence on a research question, but also intend to
upport the development of evidence-based guidelines for practi-
ioners. Further, SLRs help to identify less explored areas and thus
rovide a framework to position new research activities. More-
ver, systematic literature reviews aim to identify, analyze, and
nterpret all relevant studies on the topic of interest (Kitchenham,
004). In this study, our topic of interest was data management
hallenges for DL and solutions. From the topic, the aim was
o investigate the data management challenges experienced by
ractitioners while implementing DL components in software-
ntensive systems. The interview study was performed followed
6

by a literature review to identify the data management chal-
lenges. Further, we identified proposed solutions from literature
as well as from the practitioners. The SLR process is summa-
rized as three phases: (1) planning the review, (2) conducting
the review, and (3) reporting the review. Definition of research
questions, identification of research, selection of primary stud-
ies, study quality assessment, data extraction, data analysis, and
synthesis are the steps that are described in detail below.

3.3.1. Selection of relevant studies
To analyze all available empirical materials specific to the

objective of this research, we started with the formulation of
a formal search strategy after defining our research goals and
questions.

Search strategy. Google Scholar, IEEE Xplore, Web of Science, and
ACM Digital Library databases were searched since they include
journals and conferences focusing on data management as well
as DL. These databases allow us to perform keyword searches.
The search was conducted in April 2020 and therefore this SLR
includes studies that were published before the date. To collect
the maximum number of relevant papers, we did not restrict
ourselves to selected journals/conferences.

Search string. We formulated search strings that included searc-
hed the three important keywords in our four research questions.
Further, we supplemented the keywords with their synonyms, re-
sulting in the following search string: (((Data) AND (metadata OR
labeling OR aggregation OR GDPR OR duplication OR redundant
OR heterogeneous OR dirty OR categorical OR transformation OR
sequences OR time-series OR extraction OR overfitting OR regu-
larization OR cross-validation OR feedback) AND (challenges OR
problems OR issues OR characteristics) OR (technique OR meth-
ods OR approaches)) AND (data OR data management OR data
analytics OR machine learning OR data mining)) AND (‘‘(industry
OR company OR validation OR empirical)’’)

3.3.2. Study selection
We formulated the inclusion criteria and exclusion criteria to

select the papers relevant to the study.
Inclusion criteria (IC)

1. A research paper that describes the data management for
deep learning/machine learning in industrial settings,

2. A research paper that explicitly describes solution for a
particular identified data management challenge with val-
idation

Exclusion criteria (EC)

1. Non-scientific papers
2. Non-English and duplicates
3. Proposals without industrial/academic validation

We conducted a literature review to identify the data manage-
ment methods for solving challenges associated with the data for
DL. DL is a widely used technique among large-scale companies
like Facebook, Google, Uber, etc. We were only interested in
identifying the papers that discuss data management solutions
for DL models. As data and challenges around it are discussed
in various contexts, solutions for data management challenges
can be adopted from other data domains as well. Therefore, we
extended our search to data analytics, data management, and
data mining papers to identify solutions for data management
challenges. We have only included the papers that validate the
solution with some datasets.

The paper titles were examined to filter studies that were
unrelated to our search objective. We reviewed the abstracts and
keywords in the remaining studies to select relevant studies. In
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any cases, an abstract and keywords were insufficient to estab-
ish whether a study was relevant. In such cases, we also went
ver the conclusions. Further, we filtered the remaining studies
y applying the inclusion/exclusion criteria. The initial primary
tudies for the SLR are chosen from this final step. A complete list
f included papers (primary studies as well as supporting studies)
s provided in the Figshare.

.3.3. Data extraction
We defined a data extraction process according to the guide-

ines provided in Kitchenham (2004) to identify relevant infor-
ation from the 32 included primary studies that pertain to
ur research questions. Our data extraction process includes the
ollowing: First, we set up an Excel table to record ideas, concepts,
nd findings of each of the 58 papers.

.3.4. Data analysis and synthesis
The solutions are classified according to the data life cycle

hase in which they can be used to mitigate the challenge. The
olution was analyzed to check if it was applicable in the context
f deep learning. Furthermore, the solutions were again classified
nto expensive and cheap in terms of infrastructure and cost-
ffectiveness. Each of the identified solutions was thoroughly
nalyzed to interpret the reason for it being counted as a chal-
enge in the deep learning context even with the solutions from
ther domains.

.4. Step3: Interpretive multiple case study (Validation)

We have conducted a second round of study for validating
he results obtained after performing the first two steps. The
bjective of this follow-up study is to validate the solutions we
dentified from the literature. We followed exactly the same
rocedure as step 1. The interviewees who participated in the
irst round of multiple case study were contacted through email.
e shared the results of the first study in the form of a conference
aper and the solutions from literature as a separate document,
nd requested them to go through those documents if they are
nterested in participating in the validation study. After 1.5 weeks,
hey were contacted again with an interview guide for validation
tudy. Most of them showed interest in participating in the study.
herefore, we conducted the follow-up study with the interview
uide we prepared for validating the solutions. All the interviews
asted for around 30–45 min. Interviewees were asked for the
hanges in the availability of solutions for the identified set of
hallenges. We also asked if they are familiar with the solutions
rom literature. Further, we inquired in detail about the solutions
dentified from literature and their reasoning for not using it in
he industries. The interviews were recorded with the permission
f interviewees and transcribed for performing data analysis. First
uthor performed open coding and identified high level codes
uch as working solutions, used solutions, non-general solutions,
artial solutions, reasons etc. The codes were reviewed by the
econd and third author.

.5. Threats to validity

The interview study can have some threats to validity such
s construct, internal, and external threats, credibility and trans-
erability. This section explains the mitigation strategies used to
dminister these threats.
7

3.5.1. Construct validity
A few cases were removed from the results to verify construct

validity, as some interviewers did not have a thorough com-
prehension of the concepts covered. Our study includes certain
limitations with multiple interviews as a result of the screening
process. This limitation, on the other hand, can be viewed as
an opportunity for future research. The results of the interviews
were disclosed to the participants in order to reduce researcher
bias. We also created a semi-structured interview guide and
delivered it to the interviewees prior to the interviews. Before the
interview, the interviewees were supplied a brief synopsis of the
topic to be discussed. We rephrased the question of whenever the
response becomes off-topic, or asked them to elaborate when we
received ambiguous answers. Further, confusions or lack of clarity
were resolved by contacting the participants.

3.5.2. Internal validity
As the researcher only had limited access to the descriptions of

the strategies, it was not possible to investigate about the other
influential factors that can affect the final results. To minimize
internal validity threats, two of the co-authors, who has in-depth
knowledge about the data processed in the company, were asked
to validate the findings. Moreover, the paper was sent to the
steering committee for review before the final submission.

3.5.3. External validity
The presented study is derived from the cases studied with dif-

ferent teams in the domains of manufacturing, banking, business
and healthcare. Some parts of the work can be seen in parts of the
company differently. All company terminologies are normalized,
and implementation details are given at the appropriate degree
of abstraction (Bickman and Rog, 2008). We do not claim that the
opportunities and challenges will be the same for companies from
different disciplines.

3.5.4. Descriptive validity
Descriptive Validity refers to the accuracy and objectivity of

the data collected during the case study. In order to mitigate
the problems with factual accuracy and objectivity, all the in-
terviews were recorded with the permission of interviewees.
Further, interviewees were contacted through email whenever
lack of clarity is encountered while transcribing the recordings.
Two co-authors from the company also helped with certain com-
pany specific terminologies. Thus, we rule out the chance of
misinterpreting what participants say and do, as well as their per-
spective on what is going on, which is a crucial way of detecting
biases and misconceptions of what is interpreted.

3.5.5. Credibility
To increase the credibility of the results obtained through

literature review, we conducted a second round of interview
study with the practitioners participated in the first round.

3.5.6. Transferability
The degree to which qualitative research findings can be gen-

eralized or transferred to different contexts or settings is referred
to as transferability. Due to the non-disclosure agreement with
the participants of the case study, we have limitations in dis-
closing the entire details gathered during data collection. We
agree that this impacts the transferability and to reduce this, we
have tried to include details wherever possible with the help of
anonymization

A strength of our study is the use of both multi-case study
approach and systematic literature review for framing the results.
However, several factors present some potential threat to the
validity of the systematic literature review.
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Fig. 3. Data lifecycle phases.
Table 3
Mapping between data management challenges and DL use cases.
Phase Challenge Use cases of DL components

RSa WPPb HPPc MDd FFDe MSf

Data Collection

Lack of labeled data X X X X X X
Data Granularity X X
Shortage of diverse samples X X X X
Need for sharing and tracking techniques X X X X X
Data Storage complying to GDPR X

Data Exploration
Statistical Understanding X X X
Deduplication Complexity X X X X X X
Heterogeneity in data X X X X X

Data Preprocessing
Dirty data X X X X X X
Managing sequences in data X X X
Managing categorical data X X

Dataset Preparation Data Dependency X X X X X X
Data Quality X X X X X X

Data Testing Tooling X X X X X X
Expensive Testing X X X

Deployment Data Extraction Methods X X X X X X
Overfitting X X

Post Deployment
Data sources and Distribution X X X
Data drifts X X X
Feedback loops X

aRecommender System.
bWind Power Prediction.
cHouse Price Prediction.
dMelanoma Detection.
eFinancial Fraud Detection.
fManufacturing Systems.
p
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t
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.5.7. Identification and selection of papers
Search string based approach was adopted for identifying and

electing the primary set of papers. This might have resulted
n missing of relevant studies and in turn the solutions to the
hallenges. To mitigate this threat, we conducted a second round
f interview study to validate the solutions and sought the help
f experts to see if we missed any relevant solutions. Further,
ata collection period will have an impact on our findings. Many
ew papers would have been published after we did our search
n various databases.

.5.8. Exclusion of gray literature
Our study is also limited by the fact that we have not used

ray literature or non-academic literature. According to Garousi
t al. multi-vocal literature review with both academic and non-
cademic literature is used when there is limited studies on a
pecific topic. Since, deep learning is a mature field, we had 58
apers included in the study. Therefore, we did not incorporate
he results from gray literature.

. Data management challenges for DL

This section presents the findings from the first step of the
hree-step research process in Fig. 2 which is an exploratory
nterpretive multi-case study. First, we illustrate the phases of
he data lifecycle. Then, we map the data management chal-
enges to the corresponding phase as shown in Table 3 and
escribe the challenges. Data Collection, Data Exploration, Data
reprocessing, Dataset Preparation, Data Testing, Deployment,
nd Post-deployment are the 7 data lifecycle stages as shown in
ig. 3.
8

4.1. Data collection

The data lifecycle starts with the data collection phase. Data
collection is the process of acquiring data from a wide range
of sources that produces data. Lack of labeled data, data gran-
ularity, shortage of diverse samples, data sharing and tracking
methods, data storage complying with GDPR are the challenges
encountered during the phase of data collection.

4.1.1. Lack of labeled data
Description: Success of supervised DL algorithms is under-

inned by labeled data with sufficient quality data labels that are
equired for training, testing, and validation. Data labels are ob-
ained through the process of transcribing, tagging, and labeling
ignificant features within the data. With high-quality, human-
owered data labeling, companies can build and improve DL
mplementations. As a result of the disparate origins, unlabeled
ata and noisy labels increase the complexity. Further, to label
ata, metadata is required for the practitioners, as they might
ot be experts in the domain where they develop DL models.
ccording to the practitioners that participated in the multiple
ase study, lack of metadata creates confusion and a poor under-
tanding of the data. Further, the semantics of the data is often
bscured due to poor organization, leading to ambiguities.
Implications: As most of the companies use supervised learning

or training their DL models, lack of labeled data is considered as
ne of the biggest challenges. The impact of the absence of meta-
ata challenge varies for different types of data. For instance, the
ataset for building stock market price prediction will have open-
ng price, closing price, quoted price, session price, etc. When the
etadata is missing, it is hard for practitioners who develop DL
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odels to identify and distinguish different prices. On the other
and, if the dataset consists of images, audio, or video, metadata
xtraction methods can be employed to extract the labels for that
ataset. Another associated challenge is that without metadata,
t is difficult to analyze if some pattern makes sense or not. For
xample, a particular column representing the temperature of a
ocation cannot be always zero, while the column indicating the
alue of the on/off switch can have zero all the time.
Empirical basis: Recommender system, wind power prediction

ystem, house price prediction, melanoma detection, financial
raud detection, manufacturing system has encountered both lack
f labeled data problem and absence of metadata problem. For
nstance, practitioners sought help from a doctor to label the skin
esions while developing a melanoma detection system.

.1.2. Data granularity
Description: Data collected over a period is aggregated and

stored in a database or data warehouse. Data aggregation may
remove important data points that cannot be collected again.
Thus, fine granularity or details in the data is lost through data
aggregation techniques. Like in mobile networks, counter data is
collected and aggregated to a value over 15 min, and it is stored.
Because saving every second’s data point is expensive.

Implications: As a result of data aggregation, a significant
mount of information is lost, which could mean that even
hough a lot of data are in place while looking at the details, the
ranularity needed for a use case will not be there. Therefore,
ven if data is collected over ten years, the problem is still limited
y data collection choices which are difficult to get around.
Empirical Basis: In our study, the recommender system case

xperience this data granularity problem. When the reviews from
sers are all logged for a long period and handed over for building
ecommender systems, but failed to log the user’s identity, the
ata granularity is lost. Further, combining the data with an-
ther dataset on the user level becomes impossible. Wind power
rediction systems also suffer from this challenge.

.1.3. Shortage of diverse data samples
Description: Upon training, the deep neural network should be

given all possible instances and varieties of data so that it will not
fail on inputting unseen data in production. However, during data
collection, many companies collect numerous abnormal samples
and fail to collect the counterexamples of data and vice versa,
leading to a class imbalance problem. The DL model needs to be
trained with counterexamples as well. For instance, the company
which did data collection for financial fraud detection only col-
lected fraudulent samples and failed to save the non-fraudulent
transactions in the dataset.

Implications: Financial fraud detection cannot be developed
only with the samples of fraudulent transactions, the model needs
non-fraudulent samples to distinguish between normal and ab-
normal financial transactions. DL models cannot learn the normal
cases by themselves when only the abnormal samples are fed
during the training. The models that are trained on such input
data will produce weird outputs once deployed in production.

Empirical Basis: In our study, wind power prediction system,
ouse price prediction system, melanoma detection, and financial
raud detection system suffers from this challenge. Melanoma
etection is the use case that has the highest impact due to
his challenge. Collecting malignant samples from patients is a
ifficult process for the data collection team.
9

4.1.4. Data sharing and tracking methods
Description: Sharing the collected data with the practitioners

is required for implementing DL models. There is no defined
channel or medium for sharing the collected data. According to
the size of the data, companies choose different means of sharing.
Some companies opt to share the data in the form of Excel files
over email, FTP server, or even in the form of physical tapes.
According to the practitioners, data for wind power prediction
were given in the form of huge magnetic tapes, while the data
for house price prediction was sent through email.

Implications: Two of the experienced practitioners identify
data tracking as an important measure by which data quality can
be assured. However, due to the tight limit on time and resources,
often data tracking is not focused much or is kept at the least
priority, leading to poor data quality.

Empirical Basis: All use cases except melanoma detection sys-
ems do not have data sharing and data tracking methods. Data
ipelines are used for melanoma detection use cases, which en-
bles sharing and tracking of data.

.1.5. Data storage complying to GDPR
Description: DL systems are powerful and have the potential

o memorize every piece of information given to it. Thus, the
mount of training data has the biggest impact on the perfor-
ance of the model. General Data Protection Regulation (GDPR)

s a regulation in EU law to protect online personal data. GDPR is
set of legislative rules which impose restrictions on the process-
ng and storage of information. Major companies that focused on
ollecting and maintaining datasets can build better DL models to
certain extent. The problem with small-scale companies is that
hey do not have clear knowledge on how to collect and store data
omplying with the rules of GDPR, and there is no framework or
rotocol to help them to do data storage efficiently.
Implications: In such cases, a certain percentage of revenue

eeds to be paid as a penalty for not following the regulations
f GDPR, which end up in the deletion of a huge portion of data
hey collected over time.

Empirical Basis: Recommender system’s use case encountered
his challenge and lost a considerable amount of data as they had
o delete the data to comply with the GDPR. Even though this is
problem experienced by only one case in the entire study, it is

mportant as it has significant legal and financial complications
nvolved.

To summarize, data management challenges at the data col-
ection step are lack of data labeling techniques, unavailability of
ine-grained data, shortage of diverse samples, lack of data shar-
ng and tracking methods, and data storage guidelines following
DPR.

.2. Data exploration

Data exploration, or exploratory data analysis (EDA), is a pro-
ess to analyze and understand the data with statistical and
isualization methods. This step helps to identify patterns and
roblems in the dataset, as well as for deciding which model or
lgorithm to use in subsequent steps. Statistical understanding,
ata deduplication complexity, and data heterogeneity are the
ajor challenges encountered at this phase of the data lifecycle.

.2.1. Statistical understanding
Description: When confronted with data that needs to be ana-

yzed, the first step is to carefully identify the distribution of data.
tatistical understanding is much required for determining the
istribution of data. Even with sufficient knowledge in statistics,
t is challenging to identify the distribution of data. The normal
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istribution or Gaussian distribution is that nice, familiar bell-
haped curve. But, data comes from a range of devices out in the
ild, and there is no point in assuming an easy to handle normal
istribution.
Implications: For instance, consider an image processing ap-

lication, to model the pixel values efficiently, the assumption
f Gaussian distribution is inaccurate as it violates the bound-
ry properties. In such cases, models like BMM (Beta Mixture
odel) should be used. Without clear knowledge of statistical
istributions, it will become difficult to model the distribution.
Empirical Basis: Practitioners mentioned that they have en-

ountered this challenge while developing Wind power predic-
ion systems, financial fraud detection systems, and manufactur-
ng systems.

.2.2. Data deduplication complexity
Description: A dataset often has a lot of duplicates, some with

light variations and some exact copies. Consequently, analyzing
he dataset for duplicates and de-duplication is a complex task.
or example, consider a song recommender system trained on a
ataset of songs. If you take a random song, there can be 200
ersions of the same song with slight variations in it, but it is
ore or less the same song. If the model is trained with such
dataset, the result may turn out horrible, such that it may

ecommend 50 copies that sound more or less the same. In such
ases, de-duplication becomes complex. Because if the dataset has
00,000,000 songs, you need to compare a song with every other
ong in the dataset. Therefore, it is a quadratic complexity of that
roblem.
Implications: It is impossible to do from a time point of view

n a single machine, and it is required to run it on hundreds and
undreds of machines.
Empirical Basis: According to the practitioners, they have en-

ountered this challenge for all use cases presented in this study.
specially, with the melanoma detection model, it was almost
mpossible for them to deduplicate the images in the dataset.

.2.3. Data heterogeneity
Description: Different data sources may offer conflicting in-

formation. Moreover, rapidly growing multimedia data from the
Web and mobile devices consists of a huge collection of still
images, video and audio streams, graphics and animations, and
unstructured text, each with different characteristics. The major
challenge here is to find a method that can resolve the con-
flicts and fuse the data from different sources effectively and
efficiently. The majority of current DL algorithms are evaluated
on bi-modalities (i.e., data from two sources). However, format,
size, and encoding techniques vary from data to data. A single
dataset itself may have data in audio, video, and text formats. If a
dataset containing only textual data is examined, some text will
be in UTF-8, others in UTF-16, some in CSV, comma-separated
format, others in tab-separated format, some with HTML code
embedded in the actual text, and others with something strange
like placeholders embedded inside the actual national language
text.

Implications: It is required to invest a significant amount of
ime and effort in just transforming the text into a uniform format
nd coding for the data.
Empirical Basis: All six use cases studied here have encoun-

ered this challenge. Moreover, the system performance decreases
or significantly enlarged modalities. Furthermore, practitioners
ack the idea about levels in DL architectures appropriate for
eature fusion with heterogeneous data.

Statistical understanding, data de-duplication, data hetero-
eneity are the main data management challenges encountered
n the data exploration phase.
10
4.3. Data preprocessing

Data preprocessing is an integral step in DL, as the quality
of data and the useful information that can be derived from it
has direct impact on the model’s learning ability. Therefore, data
must be preprocessed before feeding it into the model. Dirty data,
managing sequences in data, and managing categorical data.

4.3.1. Dirty data
Description: Raw data is typical with imperfections like missing

values, wrong values, and ill-formatted values. These unclean or
noisy data are known as dirty data. Deep neural networks are
good at deriving patterns from the given input. So, it is dangerous
to feed noisy data to the DL models. Also, the DL experts might
not be experts in the domain, and so they are unaware of what
needs to be filled when there are missing values and how to
identify the wrong or ill-formatted values. For example, if there
is a column for age and some values are missing. The system is
supposed to make predictions based on each user, and you do
not have the age for 10% of them. That column can be filled out
with the average or minus one. To fill the column, it is required to
know what the column is meant to be and what can be filled in to
replace the missing/wrong/misformatted values. All practitioners
mentioned the unclean data issue in all the cases they handled,
and in most cases, discussion with the people who collected the
data was the only practical solution.

Implications: Dirty data impacts are related to error type and
error rate. Thus, the error rate of each error type in the provided
data should be necessarily detected. Testing accuracy decreases
with increased noise in data.

Empirical Basis: According to the input from practitioners, all
atasets have the problem with dirty data, and it takes an enor-
ous amount of time to fix the noise in the data.

.3.2. Managing sequences in data
Description: Metadata management should be considered with

qual importance in managing the sequences in data. Storing
he sequencing data alongside the contextual metadata is a bit
hallenging, especially when the data quantity is too large. For
nstance, for chronological data, there is a time series that needs
o be divided chronologically somehow, so we do not end up
redicting the past. Missing the time steps in the sequence is
nother associated challenge. i. e, data has variable-length se-
uences by definition. Those sequences with fewer time steps
ay be considered to have missing values.
Implications: Short gaps in the sequential data can be imputed

sing the before and after data present in the sequence. However,
hen the gap increases, it consists of more contiguous miss-

ng values, and consequently, the amount of information in the
equence is often not sufficient to impute the gaps.
Empirical Basis: House price prediction system and wind power

rediction system have the problem with missing time steps.

.3.3. Managing categorical data
Description: Variables containing label values rather than nu-

erical values are referred to as categorical data. Nominal, or-
inal, interval and ratio are examples of categorical variables.
ounty — Tuscaloosa, Mobile, Walker, and so on are examples
f nominal variables with attribute values that have no natural
rder. The difference between values (e.g., Letter Grade — A,
, C, D, F) does not have a natural order in ordinal variables.
he difference between the two values is meaningful (e.g., Age
f Driver — 22–24, 25–34, 35–44, etc.). Interval variables are
onstructed from intervals on a continuous scale. A ratio variable
as all the properties of an interval variable, but it also has a
istinct definition of 0.0. (e.g., Weight). DL models cannot operate
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n label values as it requires all input variables in the numeric
orm. Even though one-hot encoding is used very frequently, it
an be frustrating during implementation.
Implications:When there are thousands of categories, the com-

plexity increases. For example, if there is text data that needs to
be cleaned up and converted to numeric form, then it might not
be possible to do it with a laptop or even a big server. There are
core systems like Hadoop, Spark, or Google Data Flow where big
data processing can be done. However, it is still very dependent
on the person doing it, what they are comfortable with, and also
the data, how big is it, how difficult is it, and what needs to be
done with it. There are no predefined sets or standards to handle
this.

Empirical Basis: House price prediction system, financial fraud
etection system have more categorical data compared to the
ther use cases.
To summarize, dirty data is the major challenge in this phase,

nd reducing its effect needs an enormous amount of time and
ffort from the practitioners. Managing categorical data, as well
s sequential data, are the other two challenges encountered in
his phase.

.4. Dataset preparation

After the data is preprocessed, the dataset is split into two
arts: training and testing datasets. The training dataset is again
plit into training and validation datasets. The ratio of these two
plits varies according to the size of the dataset, developer, and
ype of dataset. Nevertheless, the typical practice is to split the
ataset in an 80:20 ratio for training and testing respectively.

.4.1. Data dependency
Description: Data leakage is the challenge of not splitting the

raining and validation/test dataset properly so that the training
ata for the model happens to have the data which needs to be
redicted. For instance, data leakage happens when the same data
nstance occurs in both training and testing datasets.

Implications: Data leakage hides the actual performance of the
model and when it is exposed to new and unseen data, the
performance will not be as expected. So proper attention should
be taken while splitting the dataset. Based on the study, we could
infer that checking the data distribution is not always a solution
to reduce data dependency.

Empirical Basis: All use cases discussed in this paper have
ncountered this challenge.

.4.2. Data quality
Description: Quality of data is crucial, as poor quality data can

cause severe performance degradation and exaggerated results.
Data consistency is one of the factors deciding the quality of data.
However, consistency is hard to achieve the target in many ap-
plications. For example, based on our study, the images collected
from the hospitals are all taken in different conditions with dif-
ferent lighting. Accuracy, completeness, validity, and timeliness
are some other factors that ensure the quality of data. However,
there is no exhaustive list of factors that should be checked to
ensure the quality of data, which is challenging. Although the
dirty data problems are fixed in the data exploration phase, DL
experts mentioned that they recheck the data quality during the
dataset preparation stage. Data exploration primarily looks for
dirty data problems with the help of domain experts. However,
in the dataset preparation phase, it is usually the DL expert looks
if he/she has sufficient quality data before feeding it as input to
the model.

Implications: DL models learn by adjusting their internal pa-
rameters with massive quantities of training data until they can
11
consistently discern comparable patterns in data they have never
seen before. Therefore, a deep learning model is acutely sensitive
to the quality of the data. Because of the huge volume of data
required, even relatively small errors in the training data can lead
to large-scale errors in the system’s output.

Empirical Basis: Data quality is a typical challenge faced by all
ractitioners, and all the datasets discussed here have a problem
ith data quality.
To summarize, data quality is the main challenge experienced

n this phase. Identifying what all factors determine data is a
hallenging task, and it, in turn, creates trouble while establishing
ests for checking quality.

.5. Data testing

Data testing is the phase in which practitioners decide whether
o retrain the model or not. When the test cases fail, it indicates
hat there is a possibility of change in the underlying data. Ac-
ording to the experts participated in the interview, data testing
s done at least once before the model deployment. After the
eployment, during the continuous monitoring if data drift is
ncountered, data testing is done again to check if retraining is
equired or not. Therefore, data testing is a step that is conducted
ultiple times in the data life cycle.

.5.1. Expensive testing
Description: Testing the data is a critical step that ensures the

ata quality and reduces the possible occurrence of defected data
hat affects the efficiency of the process. Absent, obsolete, or
rong test data may prevent the practitioners from executing the
est cases or produce unreliable test results.

Implications: Data testing is highly expensive in the sense that
t requires a lot of effort and time to define and automate test-
ases specific to DL models. It is pretty hard to do regression
esting on data as the data is collected from users out in the wild,
here exerting control is impossible.
Empirical Basis: Practitioners who work with recommender

ystems, melanoma detection system and manufacturing systems
as mentioned this challenge.

.5.2. Data management tools
Description: Tooling is a challenge in most of the phases of

he data lifecycle. Although tooling is a challenge experienced at
ost of the data lifecycle stages, many of the tools are under
evelopment. For instance, there exists data cleansing tools such
s TIBCO clarity, Data Wrangler etc. helps with cleaning the dirty
ata. However, tools for data testing is still an unexplored area.
he major advantage of conventional software systems is that
here exists a large variety of tools, especially for testing. As DL
s a recently emerged approach, tools for testing such models are
et to be developed.
Implications: With the help of data management tools, practi-

ioners can easily develop and deploy DL models.
Empirical Basis: Although cloud has good quality tools and

ervices, none of the companies who have participated in the
tudy can use that due to the policy restrictions. Therefore, all
he cases included in our study experience tooling problems.

The main challenge in this phase is the lack of tools for
reating test cases for DL systems. Existing methods are highly
xpensive.

.6. Model deployment

The process of running an application on a server or device
s known as model deployment. All the stages, processes, and
ctivities required to make a DL available to its intended users
re included in the model deployment. Data extraction methods
nd overfitting are the two challenges encountered in this phase.
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.6.1. Data extraction methods
Description: Training-serving skew is a typical problem en-

countered when running DL models in production, where the
data encountered at serving time is significantly different from
the data used to train the model, leading to reduced prediction
quality. Implications: For example, Google once built a system
alled quick access in Google Drive which recommends a list
f documents to open. When the system was built, they first
xtracted data and made a training dataset, trained a model on
t, and did the evaluation which looked great. So, they put it in
roduction, and it did not work. When they investigated, they
iscovered that they had a specific pipeline for extracting data for
raining, but when they deployed it in production, they had data
xtracted from an API, which did not match the extraction they
ad for training. Thus, some additional transformation happening
n the API prevented the model from working as expected.

Empirical Basis: This challenge was encountered during the
eployment of all the DL models discussed in this paper. Prac-
itioners mentioned that the main reason for the challenge is the
ack of tracking of data extraction methods. When an expert is
eplaced by another one, the new expert might not exactly know
hat data extraction method was used during the development
hase and use a different extraction method during deployment,
eading to training serving skew.

.6.2. Overfitting
Description: Overfitting is the situation when a deep neural

network memorizes and fits itself so closely with the training set
that it loses the capability to generalize and make predictions for
new and unseen data.

Implications: An overfit model can cause the regression coef-
icients, p-values, and R-squared to be misleading. Because an
verfitted model will be tailored to the specific data points that
re included in the training sample and not generalizable out-
ide the training sample. Therefore, it gives poor performance to
nseen data.
Empirical Basis: For instance, in melanoma detection use case

here tabular data is used along with images, it turned out that
he model was just learning the ID number of a certain hospital,
nd that hospital was a popular hospital to which the more severe
ases were sent. Thus, the model was not learning anything from
he images, rather it was just learning that the patients in that
ospital are more likely to be sick, which is because they were
ent there.
Data Extraction methods and Overfitting are the two main

roblems encountered in this phase of the data pipeline. Usage
f different data extraction methods while training and testing
reate problems. Overfitting is a common challenge with machine
earning as well as DL systems. Overfitting challenge has solutions
uch as cross validation and regularization when detected during
odel training. However, during model deployment and post
eployment, it is hard to solve.

.7. Post-deployment

Monitoring the models that are deployed in production is an
mportant task in the data lifecycle. Because, change in the data
ource, distribution, data drifts, etc. can cause serious perfor-
ance degradation. Therefore, these are considered as challenges
fter the model deployment.

.7.1. Changes in data sources and distribution
Description: When a certain problem is modeled, a distribution

s postulated based on the data available at that time. However,
onsistency in data distribution cannot be expected all the time.
onsider the house price prediction system in our study, which
12
is trained on historical real-estate data. When some sudden envi-
ronmental disaster or society-wide effect takes place, the usual
distribution will be disturbed, and the trend in data changes.
Deep neural networks may not always be able to handle new
data distributions when they appear. An abrupt change in the
data source can sometimes result in unexpected and undesirable
effects.

Implications: Change in data distribution has a far-reaching
impact on any DL model. For example, when building the DL
model, data that arrived before a change can bias the models
towards characteristics that no longer hold.

Empirical Basis: For instance, the distribution of the price of
houses shows abnormal deviation after a natural calamity. It
is the same with data for wind power prediction systems as
well. As a result, an already deployed well-performing model
in production may not perform well after the change in data
distribution.

4.7.2. Data drifts
Description: Data drifts are also known as data shifts that

happen over time. When data shifts happen, DL models may
deliver weird and erroneous results. Consider systems, such as
mobile interactions, sensor logs, and web clickstreams. Whenever
the business tweaks or updates happen, the data those types
of systems generate changes continuously. The sum of these
changes is data drift. Other common examples of structural drift
are fields being added, deleted, and re-ordered, or the type of field
being changed.

Implications: When drift in a model is detected, the next step
s identifying which features in the data are causing the drift. It
s possible that some features have drifted but have not created
significant change in the model because these features are not
ery important. Identifying the feature that causes the drift and
s of great importance to the model, is crucial to the performance
f the model and should therefore receive better attention when
etraining the model.

Empirical Basis: For example, data for case E, which is a fi-
ancial fraud detection system, have this challenge. To support
growing customer base, a bank adds leading characters to its

ext-based account numbers. This kind of data change causes the
ank’s customer service system to combine data related to bank
ccount 00-56789 with account 01-56789. All practitioners agree
hat most of the cases that they handle are subjected to this
hallenge.

.7.3. Feedback loops
Description: Feedback loops are sometimes beneficial and at

imes detrimental. For instance, feedback loops are inherent to
he recommendation systems. Because, the data collected will be
ostly from the customers and if good suggestions are given on
hat to buy, of course, the customers will buy more. As a result,
he model sort of reinforces itself.

Implications: These feedback loops give rise to the ‘‘echo cham-
ers’’ or ‘‘filter bubbles’’ that have user and societal implications.
ystems that lead to a self-reinforcing pattern of narrowing ex-
osure and shift in user’s interest are often denoted as ‘‘echo
hamber’’ and ‘‘filter bubble’’.
Empirical Basis: Feedback loops are not a typical challenge with

egression models or classification models. Therefore, only case A
as encountered this challenge.
To summarize, the data management challenges that can be

ound at the post-deployment stage include the change in data
ources and distribution, feedback loops, and data drifts. A de-
enerative feedback loop is a problem specific to recommender
ystems.
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Table 4
Mapping between Data Lifecycle phase, Challenges and Potential Solutions.
Data lifecycle Phase Challenge Potential Solutions validated

through case study

Data Collection

1. Lack of labeled data 1. Crowdsourcing
2. Active Learning
3. N-shot Learning
4. Unsupervised Learning
5. Semi-supervised learning
6. Self-supervised Learning
7. Help from Domain Experts

2. Data Granularity 1. Lossless data aggregation
2. Synthetic data

3. Shortage of diverse samples 1. N-shot Learning
2. Resampling
3. Synthetic data generation
4. Class weighting with
data augmentation

4. Data sharing and
tracking methods

1. Data Pipelines

5. Data Storage complying
to GDPR

Data Exploration
6. Statistical Understanding

7. Deduplication Complexity

8. Heterogeneity in data 1. Data Pipelines

Data Preprocessing
9. Dirty data 1. Data Cleaning

2. Data Scrubbing
3. Data Imputation

10. Managing sequences in data

11. Managing categorical data 1. Learned Embeddings
2. One-hot encoding

Dataset Preparation 12. Data Dependency

13. Data Quality 1. Data Validation Frameworks
2. Data Linter

Data Testing 14. Tooling 1. Cloud based services

15. Expensive Testing

Deployment 16. Data Extraction Methods

17. Overfitting 1. Regularization
2. Cross Validation
3. Model simplification
4. Data Augmentation
5. Dropouts
6. Transfer Learning

Post-deployment
18. Data sources and Distribution

19. Feedback Loops

20. Data Drifts
5. Solutions for data management challenges

This section summarizes the solutions to the challenges iden-
ified and described in the previous section. The solutions pre-
ented were derived from a systematic literature review and
alidated in the second round of multi-case study research. Fur-
her, Table 4 shows the mapping between the data lifecycle
hase, challenges, and the identified solutions. Data management
xisted even before the emergence of DL and machine learning.
herefore, many of the data management challenges were solved
n the context of big data analytics, data mining, machine learn-
ng, etc. On the other hand, some challenges are very specific to
L. For instance, categorical data challenge, tooling, etc. are very
pecific to DL. Although there exist solutions for a subgroup of
ata management problems, industrial practitioners still list them
s challenges. Therefore, we did a second round of multiple case
tudy analysis to explore the validity of identified solutions.
13
5.1. Data collection

Challenges such as lack of labeled data, data granularity, short-
age of diverse samples, need for sharing and tracking tech-
niques are the challenges encountered in this data lifecycle phase.
Crowdsourcing, active labeling, semi-supervised learning, and
self-supervised learning are some solutions that can address
the lack of labeled data challenges. Few-shot learning, zero-shot
learning, less than one-shot learning can be used to address both
lack of labeled data challenge and shortage of diverse sample
problems. Resampling with data augmentation, synthetic data
and data augmentation with class weighting are some other
solutions that help with the shortage of diverse sample problems.
Data granularity can be addressed with lossless data aggregation
techniques and synthetic data. Data pipelines can partially solve
the challenge of data sharing and tracking techniques.
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.1.1. Crowdsourcing
Description: Crowdsourcing is a brilliant platform to outsource

high-volume data labeling jobs to a flexible workforce (Mal-
one et al., 2009). Crowdsourcing usually achieves its purpose by
combining the responses of numerous annotators on the same
sample. For instance, Nowak et al. (Nowak and Rüger, 2010) con-
sidered the problem of multi-label image annotation by experts
and ordinary annotators from the MTurk crowdsourcing plat-
form. After calculating various agreement statistics, the authors
determined that if annotators are specialists, several labels for
an object are redundant with high-quality recommendations for
annotators. On the contrary instance, despite annotators’ excel-
lent accuracy, a dataset produced by multiple annotators doing a
single task is of much greater quality.

Crowdsourcing is extensively utilized to solve problems that
re not accessible to automatic calculations and necessitate hu-
an intervention. Three things hindrances affect the efficiency
f crowdsourcing platforms. The first is quality, which refers to
lgorithms that accurately discriminate between true and false
abels. The second factor is the labeling costs: it is not always
easible to fix an issue by increasing the number of annotators
er sample. The third factor is that, in some cases, labeling speed
s critical; in these cases, task execution latency must be kept to
minimum (Gilyazev and Turdakov, 2018).
Challenges addressed: Lack of labeled data
Limitations: According to the practitioners, crowdsourcing has

the following limitations.

• Poor quality data labels
• Lack of agility with the workforce or tools
• Need for reviewing and evaluating the quality of labels
• Crowdsourcing cannot work in the absence of metadata

Since manually validating the quality of submitted results is
laborious, unethical personnel frequently take advantage of this
limitation and submit low-quality responses. As a result, practi-
tioners have stated that they require systems that can reliably
evaluate worker quality, allowing for the rejection and filtering
of low-performing workers and spammers. Further, when the an-
notators in a pool work more, gradually their efficiency decrease,
affecting the quality of annotations. Consequently, more number
of workers in a pool demand management, which is an overhead.

5.1.2. Active learning
Description: One method to make the data labeling process

easier is to use active learning. The algorithm takes one example
from the unlabeled set for each iteration, then passes it to the or-
acle (expert) for labeling, and the classifier is re-trained using the
new set of training data. The labeled cases are chosen by an active
learning algorithm and added to the training set. A learner typi-
cally starts with a small collection of labeled cases, selects a few
informative instances from a pool of unlabeled data, and queries
an oracle for labels (e.g., a human annotator). The goal is to reduce
the total labeling cost to train a reliable model. (Settles et al.,
2008). Active learning approaches seek out the most informative
examples for the classifier, resulting in a substantial reduction
in the amount of labeled data, as proven both theoretically and
empirically. (Settles, 2009). Further, it helps the practitioners to
identify the part of the data that needs to be labeled to achieve
maximum benefit. For instance, more examples near the classi-
fication boundary help more compared to the labeled instances
that lay far away from the decision boundary. Active learning
assumes that labeling is performed by just one expert (oracle) at
any given instance. However, it is often required to parallelize

the load, thus allowing the expert to label more samples. To

14
connect businesses and employees, crowdsourcing services such
as Amazon Mechanical Turk (MTurk), CrowdFlower, and Toloka
are used. Any platform user can create a job, such as labeling a
set of numerous samples. Another user (annotator), having found
an interesting task, performs it for a certain fee, which is much
lower than the cost of involving an expert.

Challenges addressed: Lack of labeled data
Limitations: Based on the inputs from the practitioners, active

learning has the following limitations:-

• Low-quality labeling due to data ambiguity, poor guidelines
for annotators, and lack of motivation or knowledge

• A fixed cost cannot be assumed for acquiring each label.
For example, if labels are acquired by executing a biological
experiment, then the cost of a query might be the price of
the materials used.

5.1.3. N-shot learning
Description: A shot is simply a single sample that can be used

for training. As a result, N-shot learning has N training instances.
The ‘‘few’’ in the term ‘‘few-shot learning’’ normally ranges from
zero to five, so zero-shot learning refers to training a model with
no instances, one-shot learning refers to training a model with
one example, and so on. Few-shot learning is defined as learning
new concepts from only a few labeled examples (Triantafillou
et al., 2017). K-shot N-way classification is the job of categorizing
a data point into one of N classes when only K instances of
each class are available to guide the decision. This is a challeng-
ing situation that needs methods that are different from those
used when there is a lot of labeled data for each new concept.
Deep learning algorithms rely on large datasets and are prone
to overfitting due to a lack of data. However, expecting many
examples for learning a new class or concept is unrealistic and
undesirable, making few-shot learning a critical issue to handle.
Few-shot learning aims to get as much information out of each
training batch as possible, which is especially critical when the
amount of data available for learning each class is restricted (Snell
et al., 2017). The ability to classify instances of an unseen visual
class, called zero-shot learning (Socher et al., 2013). Zero-shot
learning can be used for products or activities that lack labeled
data and new visual categories, such as the latest electronics or
automobile models. The goal of zero-shot learning is to recognize
items that were not seen during training (Xian et al., 2017).
Some common zero-shot splits may regard feature learning as a
separate stage from training, necessitating the creation of addi-
tional dataset splits. Furthermore, in a zero-shot learning context,
separate training, and validation class split is a crucial component
of parameter adjustment. Image classification systems in real-
world applications do not have advanced knowledge of whether
a new image corresponds to a seen or unseen class. As a re-
sult, generalized zero-shot learning is appealing from a practical
standpoint (Romera-Paredes and Torr, 2015). The model must
learn a new class from a single example in one-shot learning,
which is an extreme variant of few-shot learning. Models learn
N new classes given just M less than N examples in a ‘less
than one-shot learning assignment, which can be accomplished
with the use of soft labels (Sucholutsky and Schonlau, 2020). The
essential premise of less-than-one-shot learning is that after a
few categories have been learned the hard way, some information
from that process can be abstracted to make learning subsequent
categories more efficient. In other words, rather than starting
from scratch to learn a new or unfamiliar category, make use
of existing information (Fei-Fei et al., 2006). However, n-shot
learning is also not free from limitations.

Challenges addressed: Lack of labeled data
Limitations: Based on practitioners experience, n-shot learning
has the following limitations:
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• Lack of generalization
• Hinders the classification ability of the model when the

images have noise
• Not a popular technique in industry

.1.4. Unsupervised learning and semi-supervised learning
Description: To address the issue of annotation, we need a

ethod that reduces the requirement for annotation, as target
nnotation is typically costly. Unsupervised learning (UL) is a
achine learning algorithm that works with unlabeled datasets.
luster analysis is most typically used to identify hidden pat-
erns in huge unlabeled datasets. UL can deduce the structure of
ata that has not been labeled (Celebi and Aydin, 2016). How-
ver, they necessitate some human interaction when it comes
o validating output variables. An unsupervised learning model,
or example, can detect that online buyers frequently purchase
roups of products at the same time. A data analyst would need to
onfirm that grouping makes sense for a recommendation engine.
eature learning settings that are unsupervised, depends on the
nlabeled data. The self-taught learning to set is a more general
nd powerful option, as it does not require your unlabeled data to
ome from the same distribution as your labeled data (Triguero
t al., 2015). The semi-supervised learning (SSL) paradigm has
eceived a lot of attention in a variety of domains, from biology to
eb mining, where getting unlabeled data is easier than getting

abeled data since it takes less effort, expertise, and time (Zhu
nd Goldberg, 2009). Self-labeling approaches are used in semi-
upervised algorithms. Self-labeled techniques are a viable and
romising category of strategies for utilizing both types of data,
nd they are strongly tied to other methods and difficulties.
ingle-classifier methods and multi-classifier methods are two
ypes of self-labeled approaches. In semi-supervised learning, nu-
erous labeled instances are typically required to train a weakly
ffective predictor, which is then utilized to exploit the unla-
eled data (Zhou et al., 2007). However, there may be very
ew labeled training examples in many real-world applications,
hich makes the weakly useful predictor difficult to generate,
nd therefore these semi-supervised learning methods cannot
e applied. Further, they have limitations in extracting the most
onfident predictions from the learner (Zhai et al., 2019).
Challenges addressed: Lack of labeled data
Limitations: According to the practitioners, these learning met-

ods have limitations, such as:

• The spectral classes do not necessarily represent the features
in UL.

• UL does not consider spatial relationships in the data.
• UL can take time to interpret the spectral classes.
• Iteration results are not stable for semi-supervised learning.
• Semi-supervised learning does not apply to network-level

data.
• Semi-supervised learning has low accuracy.

.1.5. Self-supervised learning
Description: Self-supervised learning is a broad framework

or learning that relies on surrogate (pretext) tasks that can be
reated using solely unsupervised data. A pretext assignment is
reated in such a way that completing it necessitates the acqui-
ition of a useful visual representation (Zhai et al., 2019). Self-
upervised learning attempts to overcome these restrictions by
earning image representations directly from pixels, rather than
epending on pre-defined semantic labels (Misra and Maaten,
020). This is frequently accomplished using a pretext task that
nvolves applying a transformation to the input image and re-
uiring the learner to anticipate transformation properties from
he produced image. Rotations, affine transformations, and jig-
aw transformations are examples of transformations. Without
15
the use of labels, self-supervision produces effective representa-
tions for downstream tasks. These methods outperform systems
that merely learn visual representations from unsupervised im-
ages. Self-supervised learning models, on the other hand, perform
poorly compared to fully supervised learning models, and they
are frequently not considered advantageous beyond obviating or
minimizing the need for annotations (Hendrycks et al., 2019).

Challenges addressed: Lack of labeled data
Limitations: Practitioners mentioned that self-supervised lear-

ning had the following limitations:

• The reason behind its limited usage is mostly due to its
novelty

• Building models can be more computationally intense
• Inaccurate labels may cause inaccurate results

5.1.6. Help from domain experts
Description: Domain experts to label data is one of the labeling

techniques proposed in the literature (Shi et al., 2008). A domain
expert possesses knowledge of the domain in addition to the abil-
ity to label instances. This knowledge can be used to identify areas
of the feature space that are inaccessible, missing features that
are required to divide classes, or features that are not required
for the task at hand (Holmberg et al., 2020). Domain experts
operate in the business domain. Their environment is made up
of real-world business transactions and interactions, and a major
portion of the knowledge they rely on has built up organically in
the form of skill and experience, which they apply in a variety
of ways (Viaene, 2013). Domain experts are especially useful in
domains/use cases where label quality is critical. In reality, this
frequently leads to a trade-off between cost and quality: one
seeks to make the most of expensive domain specialists while
also maximizing the use of low-cost crowd annotations (Nguyen
et al., 2015).

Challenges addressed: Lack of labeled data
Limitations: Based on the case study, we understood that this

solution has the following limitations:

• Not applicable for all sets of problems. For instance, hiring
a doctor to annotate the inner body details from a surgery
video might become a whole day process.

• Time-consuming and expensive

5.1.7. Lossless data aggregation
Description: To combat the challenge of the data granularity

problem, one of the naive techniques is lossless data compres-
sion. Data compression is a common practice (Lin and Kolcz,
2012), especially when data from multiple sources are collected.
BZIP2 based on Burrow Wheelers Transform (BWT) (Burrows
and Wheeler, 1994) and GZIP based on LempelZiv (LZ) (Ziv and
Lempel, 1977) are two popular and successful lossless text com-
pression schemes widely used for the compression of data files.
These techniques can be directly applied to time-series data.
Plane fitting is a method used in Google for aggregating data
obtained through laser range scans which accurately measure
the depth, the two sides, and the front of the vehicle (Anguelov
et al., 2010). Another common technique is to have a separate raw
data storage where data files are stored before aggregation (Raj
et al., 2020). However, the data storage space limitation makes
this approach less acceptable for many small-scale companies.

Challenges addressed: Data granularity
Limitations: Practitioners that participated in the study said

that lossless data aggregation has the following limitation.

• Hard to retain the original amount of data/details without
loss during aggregation
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.1.8. Resampling and synthetic data generation
Description: Up-sampling and down-sampling are two meth-

ods that can be used to re-balance the class distributions, thus
solving challenges with the imbalanced dataset. With synthetic
data generation, artificial objects similar to the minority class
are introduced into the dataset. SMOTE (Chawla et al., 2002),
improved alternatives such as ADASYN (Chen et al., 2010) or
RAMO (He et al., 2008)are some oversampling techniques. Down-
sampling is the least preferred solution, as it may remove valu-
able samples in the dataset. However, running too many it-
erations of these leads to problems such as class distribution
shift (Krawczyk et al., 2012). Besides the application of data level
techniques, it is possible to choose algorithms such as decision
trees that can perform well with the imbalanced dataset. Further-
more, performance evaluation metrics like precision, recall, and
F1-measure can be used to reduce the impact of an imbalanced
dataset problem. Upsampling with data augmentation is the most
used industrial practice to mitigate the challenge of imbalanced
datasets.

Challenges addressed: Shortage of diverse samples
Limitations: Based on the input from the practitioners, resam-

pling and synthetic data generation has the following limitations.

• Oversampling increases the number of training examples,
thus increasing the learning time.

• Oversampling makes exact copies of existing examples, like-
ly leading to overfitting.

• Undersampling discards potentially useful data
• While synthetic data can imitate many properties of original

data, it cannot exactly copy the original content.
• Synthetic data may not often cover the corner cases like

authentic data
• Synthetic data needs a verification server

5.1.9. Class weighting with data augmentation
Description: Manipulation of data, such as weighing data ex-

amples or adding new instances, is becoming more popular as
a solution to the problem of an imbalanced dataset. Data aug-
mentation, for example, expands the data size by applying label-
preserving changes to original data points; class weighting as-
signs significant weight to each instance to modify its effect
on learning, and data synthesis generates entire synthetic cases.
The use of data augmentation methods for time series data is
fraught with challenges. To begin with, current data augmenta-
tion approaches do not completely use the intrinsic features of
time series data. The so-called temporal dependency is a distinc-
tive attribute of time series data (Wen et al., 2020). Time-series
data, unlike image data, may be converted in the frequency and
time–frequency domains, allowing effective data augmentation
methods to be designed and implemented in the changed do-
main. When modeling multivariate time series, we must include
the possibly complex dynamics of various variables across time,
which makes things more complicated. As a result, just using
image and audio processing data augmentation methods may
not result in genuine synthetic data. Second, data augmenta-
tion techniques are task-specific. For example, data augmentation
strategies that are appropriate for time series classification may
not be appropriate for detecting time series anomalies (Hu et al.,
2019). These two techniques of manipulation perform in di-
verse contexts: augmentation outperforms weighing when only
a small quantity of data is available, but weighting outperforms
augmentation when dealing with class imbalance issues. As a
result, depending on the application parameters, the type of
modification changes.

Limitations: Based on the input from the practitioners, class
weighting with data augmentation is the most effective technique
16
to combat a shortage of diverse samples and class imbalance.
They did not mention any limitations for this solution.

Challenges addressed: Shortage of diverse samples and class
imbalance

5.1.10. Data pipelines
Description: Data pipelines are complex chains of intercon-

nected activities that start with a data source and end in a data
sink. In a data pipeline, the output of one component becomes the
input to the other (Van Alstyne et al., 2016) and allows smooth,
automated flow of data from source to destination. Data pipelines
enable data sharing between two companies or organizations
within a company. The ultimate destination of a data pipeline
need not be data storage. Instead, it can be any application such
as a visualization tool (Matheus et al., 2018; Stadler et al., 2016),
Machine Learning(ML) models (Gautam and Yadav, 2014; Tanzil
et al., 2017) or Deep Learning(DL) models (Covington et al., 2016;
Deng et al., 2013). The data pipeline’s components can automate
the operations of extracting, processing, integrating, validating,
and loading data (Sun et al., 2018). Data pipelines can process
different types of data such as continuous, intermittent, and batch
data (Goodhope et al., 2012). Moreover, data pipelines eliminate
errors and accelerate the end-to-end data processes, which in
turn reduces the latency in the development of data products.
Monitoring the data pipeline activities can solve the problem of
data tracking (Munappy et al., 2019).

Challenges addressed: Need for data sharing and tracking meth-
ods, data heterogeneity

Limitations: According to the practitioners, data pipelines has
he following issues.

• Building data pipelines for a use case demands an unreason-
able amount of time and effort

• Need to identify the activities which consume data, the out-
put of each activity, order of execution, monitoring methods,
intermediate storages, where to place the storage in the
pipeline, data collection method, etc. which varies between
use cases

.2. Data preprocessing

Dirty data, managing sequential data and categorical data are
he main challenges in the data preprocessing phase. Dirty data
s an umbrella term used for a collection of problems and there
xist solutions such as data scrubbing, data cleansing, and data
mputation. To manage categorical data, one-hot encoding, la-
el encoding, and embedding vectors are the major solutions.
owever, managing sequences in data are not explored in the
iterature and practitioners are struggling with this challenge,
lthough it is not common in all the use cases.

.2.1. One-hot encoding
Description: Scaling converts categorical data to numerical data

y turning one numerical data type into another numerical data
orm during coding (Zhang et al., 2003). The two most common
caling methods for converting categorical data into numerical
orm are one-hot encoding and label encoding. When categori-
al data has no link between categories, a one-hot encoding is
ppropriate. Each category variable is represented by a binary
ector with one element for each unique label, with the class
abel set to 1 and all other elements set to 0. One of the ad-
antages of one-hot encoding is that the result is binary rather
han ordinal, and everything is stored in an orthogonal vector
pace. The drawback is that with large cardinality, the feature
pace can quickly expand, resulting in the curse of dimension-
lity. One-hot encoding produces billions of trailers and billions
f one-hot vectors, which is challenging to manage as categorical
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ata grows. Furthermore, the mapping is entirely uninformed:
‘similar’’ categories in embedding space are not placed closer to
ach other.
Challenges addressed: Managing categorical data
Limitations: According to the practitioners, this technique has

the following limitations:

• Curse of dimensionality means that the error increases with
the increase in the number of features

• Need for Principal Component Analysis
• Poor Scalability
• Natural order is lost and so is the relationship between each

unique category

5.2.2. Learned embeddings
Description: A learned embedding (vectors of numbers), typi-

cally known as an ‘‘embedding’’, is a distributed representation
for categorical data. Each category is assigned to a unique vector,
and the vector’s attributes are changed or learned as the neural
network is trained. The vector space acts as a projection of the
categories, allowing closely related categories to naturally cluster
together. This has the advantages of an ordinal relationship in
that any such relationship can be learned from data, as well as
a one-hot encoding in that each category has a vector represen-
tation. The input vectors are not sparse, unlike one hot encoding
(do not have lots of zeros). The disadvantage is that it necessitates
learning as part of the model and the creation of many more input
variables (columns) (Guo and Berkhahn, 2016). Embeddings not
only save memory and speed up neural networks as compared
to one-hot encoding, but they also show the intrinsic features
of categorical variables by mapping similar values near together
in the embedding space. One of the solution’s disadvantages is
that the original data is replaced by a similarity matrix in the
first phase, and dimensionality is decreased using an embedding
in the second. The computation of a distance matrix can take
a long time, depending on the data and distance function. An
efficiently constructed distance function may be able to mitigate
this. Furthermore, some embeddings are hypersensitive to noise
in data. This may be mitigated by additional data cleaning. In
addition, some embeddings are sensitive to the choice of their
hyperparameters. This may be mitigated by careful analysis or
hyperparameter tuning.

Limitations: According to the input from the practitioners,
learned embeddings is the most effective technique to combat the
categorical data challenge.

Challenges addressed: Managing categorical data

.2.3. Solutions to dirty data problem
Description: Dirty data problem is an umbrella term that in-

cludes various data problems such as incompleteness, unique-
ness, incorrectness, inconsistency, inaccuracy, Kim et al. (2003)
etc. Data scrubbing is the procedure to modify or removing in-
complete, incorrect, inaccurately formatted, or repeated data in
a dataset to improve consistency, accuracy, and reliability. Data
cleaning is a process of tidying up the data, largely involving
correcting or deleting obsolete, redundant, corrupt, poorly for-
matted, or inconsistent data. Data professionals do the actual
cleaning, checking the dataset, and making corrections and edits
as needed. Data scrubbing is a subset of data cleaning. Imputation
is a powerful method used to solve the missing data problem.
Imputation can be based on statistical methods as well as ma-
chine learning-based methods. K. Lakshminarayan et al. Jerez
et al. (2010) has applied machine learning for implementing data
imputation. Statistical methods include mean hot-deck and mul-
tiple imputation (Lakshminarayan et al., 1996). Data linter (Hynes
et al., 2017) is a new class of tools that automatically inspects ML
data sets to identify potential issues in the data.
17
Challenges addressed: Dirty data problems such as inconsis-
tency, incompleteness, inaccuracy, redundancy, ill-formatted da-
ta.

Limitations: According to the practitioners, the solutions to the
dirty data challenge is still not a well-explored area and have the
following limitations.

• Hard to anticipate all potential data problems in a real-
world context where data changes rapidly.

• Does not preserve the relationships among variables
• Leads to an underestimation of standard errors
• Time consuming and expensive

5.3. Data preparation

Data dependency and data quality are the two challenges en-
countered in the data preparation phase. To combat the challenge
of data quality, data validation frameworks and data linter are
used in practice. However, these are solutions are not applicable
for image data.

5.3.1. Tools for testing data quality
Description: Data linter (Hynes et al., 2017) is an ML-based

tool used in Google for detecting lints which can be classified
into three high-level categories: outliers, packaging errors and
miscodings of data. Data validation at the major steps of the
data processing pipeline can be a possible option to detect and
catch the errors affecting the data quality. However, complete
prevention of data quality problems is not possible as the data
generation happens in distributed data sources where exerting
control is not possible. Therefore, the only possible option is
to detect the quality issues in the early stages and implement
mitigation strategies to overcome the issues (Lwakatare et al.,
2021). To detect the data quality issues, test cases should be
written and executed, which is an expensive task.

Challenges addressed: Data quality
Limitations: According to the practitioners, the data quality

testing tools have the following limitations.

• Incompatible with image data
• Impossible to predict all potential problems with data
• Expensive and time-consuming

5.4. Deployment

The deployment phase faces challenges like data extraction
methods and overfitting. Overfitting can be solved using regular-
ization, data augmentation cross-validation, model simplification,
transfer learning, and dropouts.

5.4.1. Regularization and cross-validation
Description: Regularization is a strategy for improving model

eneralization by making minor changes to the learning proce-
ure. As a result, the model’s performance on previously un-
een data improves as well. Google shows that L1 regularization
an increase performance for a few kernels, but degrade perfor-
ance in larger-scale instances. L2 regularization, on the other
and, never affects performance and improves it significantly
ith many kernels (Cortes et al., 2012). Zhang et al. (2018)
nd Cliche (2017) describes the application of regularizer in Face-
ook and Bloomberg, respectively. DeCov is a specific strategy
sed in Microsoft and Facebook to avoid the overfitting of their
L/DL models (Cogswell et al., 2015). Cross-Validation is a pow-
rful preventative measure against overfitting (Whittaker et al.,
010). Google, Facebook, Uber, and many more large-scale enter-
rises employ K-fold cross-validation as their most widely used
echniques. Cross-validation permits hyperparameter adjustment
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ith the sole original training set, while keeping the test set as
completely unknown dataset for final model selection. Regular-

zation, on the other hand, aims to lower the estimator’s variance
y simplifying it, which increases the bias and reduces the antici-
ated error. When cross-validation is used, the processing power
equired is also considerable. As a result, in the case of huge
ata sets, the time it takes to acquire feedback on the model’s
erformance increases.
Challenges addressed: Overfitting of DL models
Limitations: According to the practitioners, regularization and

ross-validation has the following limitations:

• Curse of dimensionality, which means that the error in-
creases proportional to the increase in number of features.

• Cross Validation is computationally costly, requiring a lot of
processing power.

• Cross-Validation drastically increases the training time

.4.2. Model simplification
Description: When dealing with overfitting, the first step is

o reduce the model’s complexity. We can lower the network’s
omplexity by simply removing layers or reducing the number
f neurons (Fahland and Van Der Aalst, 2013). While doing this,
t is critical to calculate the input and output dimensions of the
arious layers involved in the neural network. Without a general
ule on the size of the neural network, re-architecture is difficult.

Challenges addressed: Model simplification is used to address
the overfitting challenge

Limitations: According to the practitioners, this solution has
the following limitations:

• No guidelines on how to perform model simplification
• Expertise on Neural Network architecture is required

5.4.3. Dropout
Description: Regularization approaches like L1 and L2 change

he cost function to reduce overfitting. Dropout, on the other
and, affects the network as a whole. It removes neurons from
he neural network at random throughout each iteration of train-
ng (Srivastava et al., 2014). When different sets of neurons are
ropped, it is equivalent to training different neural networks.
he different networks will overfit in different ways, so the over-
ll effect of dropout will be to reduce overfitting. Based on the
ase study for validation, dropout can sometimes decrease the
erformance of the model.
Challenges addressed: Dropout is a regularization technique

hat prevents neural networks from overfitting.
Limitations: According to the practitioners, dropout has the

ollowing limitations

• Dropout can hurt the model performance when training
time is limited or when the neural network is small relative
to the dataset

. Summarizing challenges and solutions

We conducted a multiple case study to validate the industrial
pplicability of the identified solutions. Based on the limitations
f the existing solutions and availability, we have classified the
hallenges into four, as shown in Fig. 4. Challenges with working
olutions is a category of challenges that needs improvements in
olutions in terms of time and cost. The second category is the
hallenges with partial solutions, where the solutions can be used
o solve a part of the problem. For example, the lack of labeled
ata can be solved by using crowdsourcing, active learning, N-
hort learning, etc. However, if the metadata itself is missing, it
annot be solved by using any of the listed techniques. Challenges
 w

18
Fig. 4. Classification of challenges based on the availability of solutions.

ith specific solutions is a third category where the existing
olutions are not applicable for all use cases. i.e. the solutions
re applicable only for specific DL use cases. For instance, a data
inter and data validation framework can solve the problem of
ata quality. However, they are not applicable for the use cases
hat use image datasets like Melanoma detection. Finally, the
ourth category of challenges contributes to the open research
hallenges, as the listed challenges have currently no available
olutions.

.1. Challenges with working solutions

Data granularity is a challenge for which we have identified
olutions such as lossless data aggregation techniques and syn-
hetic data. Practitioners mentioned that they need more efficient
olutions in terms of performance, as the existing solutions of-
en affect the performance of the model. Managing categorical
ata is also a challenge for which learned embeddings are an
ffective solution. Practitioners did not mention any limitations
or the technique. Similarly, overfitting is another challenge in
his category, for which there exist a variety of solutions and
egularization is the most widely used technique by the practi-
ioners. The shortage of diverse samples can be solved using class
eighting with data augmentation.
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.2. Challenges with partial solutions

The need for data sharing and tracking methods and the lack
f labeled data are the challenges that fall in this category. Lack
f labeled data can be addressed using crowdsourcing, active
abeling, etc. However, if the metadata is missing, it is often not
ossible to use any of the existing solution approaches. Similarly,
ata sharing and tracking can be partly solved by data pipelines.
owever, implementing data pipelines for each use case itself is
dentified as an expensive task.

.3. Challenges with specific solutions

Data quality, dirty data, data heterogeneity, tooling are the
hallenges for which the solutions are not general. The tooling
roblem is to an extent solved for use cases that can avail cloud
ervices. Similarly, data heterogeneity can be solved by defining
ata ingestion modules in the data pipelines. However, the prac-
ical difficulties of establishing secure data pipelines between two
arties make this solution not applicable for a set of use cases like
ind power prediction.

.4. Challenges without solutions

Challenges in this category are more compared to the other
hree categories. None of these challenges has any available work-
ng solutions. Therefore, this category needs much attention.

The results of our study confirms the data collection and data
uality challenges described by Whang et al. However, our study
s a more extensive version with more challenges identified and
ategorized according to the data lifecycle stages. Moreover, our
tudy identifies the solutions for the identified challenges and
xplains the reason for listing those challenges even with the
xistence of solutions in the literature. We also try to identify
he least explored areas, such as data testing challenge, solu-
ions to feedback loop challenge, statistical understanding etc.
nother closely related study is software engineering challenges
or deep learning, where the authors describe and categorize
he challenges into development, production, and organizational
hallenges. Some challenges such as unintended feedback loops,
onitoring and logging are also described in the study (Arpteg
t al., 2018).

. Conclusion and research implications

Data management challenges are an important part of the
L model development. However, the current body of literature
either discuss the challenges nor the solutions. The inability
o formalize the solution for data management leads to a need
or manual enforcement of them. The research presented here
hows that this is an error-prone and time-consuming task that
akes most of the effort of the data scientists and other prac-
itioners working with data during the construction-intensive
hases of a project. This problem exists in traditional Machine
earning-based development, as well, but it is more apparent
nd acute in DL. Because Deep neural networks has been able
o learn the minute details from the input data. However, in-
ustries applying DL have not been able to completely utilize
he potential of DL due to several reasons, and the inability to
olve the data management challenges is predominant among
hem. The cases presented in this study shows that the data
anagement, is a bottleneck in DL projects and demands a lot of
uman intervention which leads to operational errors, training-
erving skew and performance degradation. This paper presents
0 data management challenges for DL and their categorization
ccording to the data lifecycle phase. Further, we have identified
19
solutions for these challenges through a systematic literature
review. We have also conducted a second round of interview
with the same practitioners to understand the reasons for not
using these solutions in practice. Based on the availability of
solutions, we further categorized the challenges into four, namely
challenges with working solutions, challenges with partial solu-
tions, challenges with specific solutions and challenges without
solutions. We believe that results of this study can be used by
researchers to identify and solve the challenges that are unsolved,
partially solved and specifically solved. Further, it can help the
practitioners to explore the solutions that are not familiar, such
as N-shot learning. The implications for researchers are that there
is a need for further research to find solutions in such a way
that they are both amenable to automatic enforcement on the
detailed design and easy to understand and use by both data
scientists and developers and work in practice. The implications
for practitioners are that there are solutions in the literature
which remains totally unexplored, and this needs to be taken
into account during the development of DL systems. Although
the data management is inherently a task for a relatively small
group, it should be possible to delegate the existing solutions to
a larger group. This would give time for the data scientists to
concentrate on the core tasks: data exploring, learn new tools,
and maintaining the DL systems.
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