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Abstract

The wavenumber domain Boundary Element method (or 2.5D BE) is well suited
for calculating the acoustic sound field around structures with a constant cross-
section along one dimension, such as noise barriers or railway track. By express-
ing the sound field along this dimension in wavenumber domain, the numerical
model is reduced from a 3D model to 2D models at each wavenumber. A conse-
quence of the required discrete Fourier domain representation is that the sound
field is represented by periodically repeating sections, of which only one section
is physically meaningful. The resolution and the number of required wavenum-
bers increases with the desired length and spatial discretization of this section.
Describing the sound field adequately to auralising the sound field without dis-
turbing artefacts requires a large number of wavenumbers (and thus 2D BE
computations), which is not feasible for large geometries. Here, a method is
introduced that allows the calculation of the 3D sound field by solving a sin-
gle 2D BE problem for a dense frequency spectrum and interpolating at higher
wavenumbers. The calculation efficiency is further increased by pre-calculating
the acoustic transfer functions between each BE surface element and receiver
positions. Combining these two methods allows the efficient calculation of the
3D sound field. The numerical approach is validated by comparison to a stan-
dard 2.5D BEM calculation and an analytical model. Pre-calculated transfer
functions to calculate the sound radiation from railway track are presented and
made available online.

Keywords: 2.5D BE, Acoustic sound field, Acoustic transfer functions,
Numerical methods, Railway track

*Corresponding author
Email address: jannik.theyssen@gmail.se (Jannik S. Theyssen)

Manuscript October 26, 2022



1. Introduction

With growing transport needs and the intended shift towards more sustain-
able modes of transport, noise from railroad operations is expected to grow [1].
Rolling noise due to the vibrations in the track and the wheels dominates the
total noise in a wide range of vehicle speeds [2]. Estimating the noise radiated
from operations on new tracks or the effect of introducing abatement measures
on existing tracks has been of interest to both the scientific community and
railway operators for several decades. Starting with analytical models, as for
example presented by Remington [3], the requirements on and the complexity
of such predictive models has continuously grown in parallel to the computa-
tional possibilities. Thompson et al. [4] used point-dipole sources to represent
the radiation of a rail in free space and researched its directivity. This approach
was continued by Zhang et al. [5], where the effect of the discrete support and
the proximity to the ground was included using basic line-multipole sources and
quadrupoles in each sleeper span.

A prevalent numerical approach for calculating the radiation from the rail
is the Wavenumber domain Boundary Element method (WBEM), an adapted
Boundary Element method in which one dimension is discretised in wavenumber
domain [6] [7, [8] [9, 10} [1T]. This has a computational advantage as the large,
3D BE geometries are reduced to 2D BE geometries. These 2D BE problems are
then solved for each wavenumber in a spectrum, at each desired frequency. The
computational cost rises proportional to the number of 2D BE calculations,
which itself depends on the resolution and the upper limit of both spectra.
The upper limit is set by the required temporal- and spatial resolution. Nils-
son et al. [§] point out that in case of radiation from a rail, whose vibration is
typically dominated by few, propagating waves, the wavenumbers can be spaced
more closely to these waves to increase the efficiency in the calculation. However
still, for other applications and for a desired high spatial and temporal resolu-
tion of the sound field, the computational cost of the standard 2.5D method can
be infeasible. A high spatial and temporal resolution is necessary when aiming
for a time-domain calculation of the sound field quantities. A time-domain ap-
proach allows, among others, the calculation of peak-levels, an auralisation of
the signal, the calculation of squealing noise amplitudes, and the acoustic effect
of a wheel flat or a rail joint or other transients in the rolling noise. The need
for developing a time-domain model for the prediction of transient noise has
been pointed out by Torstensson et al. [12] and Nielsen et al. [13].

Here, we describe an extension to the WBEM for calculating the 3D sound
field generated by the vibrations of railway tracks. This sound field is calculated
efficiently in a resolution adequate to for instance modelling a pass-by of a mov-
ing force in time-domain. Note that a similar method is used by Li et al. [14]
for predicting the low-frequency radiation from concrete bridges. There, the
radiation is instead precalculated per bridge mode instead of per BE node, and
the analysis is limited to the frequency range up to 1000 Hz. The computa-
tional efficiency is addressed in two ways. Firstly, a geometric relation between
the wavenumber in air and the wavenumber along the track is used to circum-



vent the need for solving the BE-problem for each combination of wavenumber
and frequency. Instead, the BE-problem only needs to be solved for the lowest
wavenumber in the spectrum. Then, the BE-result at any higher wavenumber
can be derived by an interpolation operation. Essentially, the 3D sound field can
be calculated for the cost of a 2D sound field, plus an interpolation operation.
This massively reduces the computational cost when using the WBEM. And
secondly, acoustic transfer functions are pre-calculated for common acoustic ge-
ometries such as a rail in free space and half-space, a rail above a track surface,
and a track and train combination. Once accomplished, this replaces the need
for solving the BE-problem with a simple multiplication and summation oper-
ation. These two approaches are presented in Section 2 and 3, respectively. A
validation of the first approach is presented in In section four acous-
tic geometries are introduced for which the transfer functions have been pre-
calculated. An example of these transfer functions is discussed for illustration.
The calculation procedure is made available online in an open-source Python
package [15], allowing the calculation of the sound pressure in several points
as well as the total radiated sound power for given surface velocity data. The
corresponding acoustic transfer functions are available online [16].

2. Calculating the 3D sound field from a 2D solution

This section introduces the first approach of reducing the numerical effort
when predicting the 3D sound field generated by track surface vibrations. After
introducing the method, a validation is presented.

2.1. Method

The approach to calculating the 3D sound field is based on the WBEM [g].
WBEM is well suited for geometries which are approximately constant in one
dimension. The constant geometry in the cross-section allows discretizing the
sound field in the wavenumber domain and reduces the 3D BE problem to 2D
problems at each wavenumber.

Figure [1] shows the cross-section of a rail located in the y,z-plane, which
is assumed to be constant along the x-direction. A wavenumber K, in air
is indicated by the orange arrow. It can be expressed as the vector sum of
the in-plane component « and the component in x-direction kg. A second
wavenumber K, is indicated in green, with the same projection on the y,z-plane
and a component along the x-direction &,,. Each combination of frequency (and
thus, K) and wavenumber x in z-direction leads to one 2D BE problem to be
solved.

The two-dimensional Helmholtz integral equation for an unbounded exterior
problem is

cepr)-- [ (jwpvnw +pg‘5) ar 1)

in which the integral is evaluated over the boundary I', with the density in
air p, the surface normal velocity v,, the surface pressure p, and the angular
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Figure 1: Projection of two wavenumbers Ky and K, in air on the y,z-plane and the corre-
sponding longitudinal components kg and Ky, respectively.

frequency w = 27 f. The variable ¥ represents the fundamental solution to the
2D Helmholtz equation at the point P, with

_ 1o
V= —7Hq (ar) (2)

and its derivative in the surface normal direction n,

ov ja or
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where Hé2) is the Hankel function of the second kind and order zero and HgQ) is
of first order. The coefficient C' (P) is equal to 1 for P in the acoustic domain
and 1/2 on a smooth boundary. The integral equation is solved on an element-
by-element basis by discretization and collocation. A detailed derivation and
implementation strategies are, e.g., presented by Wu [17] and left out here for
brevity.

The two terms in the Helmholtz integral equation, evaluated on a element-
by-element basis, eventually form two matrices (H) and (G) with one column
per element and one row per collocation point. These form the global system
of equations, .

Cp+Hp=GV, (4)

which is sorted according to the known and unknown boundary conditions and
solved using a least-square solver if Chief-points are present.

In the standard implementation of this method, this 2D BE problem is be
solved for each combination of frequency f and wavenumber k. The resolution
and limits for both the f- and k-spectrum are chosen based on the desired
temporal and spatial limits and resolution. However, this requires solving many
2D BE problems, which is inefficient and, for large geometries, infeasible at
high frequencies. Using the relationship between the wavenumber in air and its



projection on the 2D plane for each wavenumber and frequency, this need can
be eliminated. For each frequency f there exists one wavenumber in air K

2 f
K=—= 5
- 5)
which is inversely proportional to the wave speed in air ¢. As shown in Fig-
ure[I] for each wavenumber along the track s, this wavenumber in air K can be
projected on the 2D plane (here, the y,z-plane) by

a? = K? - &? (6)

which corresponds to projecting K on a component x along the waveguide and
a component « in the 2D cross-section. Notice that the wavenumber in air K
and the longitudinal wavenumber k are independent, as they are a consequence
of the chosen discretisation of frequency- and wavenumber domain, respectively.
Eq. [6] can instead be written as

o’ = (27(‘:f>2 - K’ (7)

For each combination of x and wavenumber in air K there is exactly one
« in the 2D plane. However, a given « can be the result of infinitely many
combinations of x and K. Figure [1| shows two combinations of x and K (ko,
Ky and K, K,,) which share the same «. This is true if

K§ — kg = K; —xp, (8)

or, using Eq. |5| and rearranging for fo,

B s (KE— K2) c2
fo= \/fn 7(%)8 : (9)

This relation can be utilised by first evaluating Eq. [4| for a dense frequency
spectrum in combination with a small wavenumber kq. Then, for higher wavenum-
bers £, Eq.[9maps any frequency to a frequency in the dense original spectrum
at which the « in the 2D plane is identical. The calculated frequency fj is likely
not part of the pre-calculated dense spectrum, and an interpolation operation
in frequency domain is necessary. In other words, at each wavenumber except
the lowest wavenumber, the operation of solving the 2D BE problem for each
frequency in the spectrum can be replaced by a complex interpolation operation.
Note that a dense original frequency spectrum is always recommended using this
method, even when evaluating only at a few frequency lines per octave band,
as Eq. [9 non-linearly maps to frequency lines in between the original ones. A
standard implementation of the complex quadratic interpolation is used, inter-
polating the real and imaginary part seperately (see, e.g., interpl in MATLAB
or interp in Numpy).



To avoid extrapolation, any query point at which to evaluate the interpo-
lation needs to lie between the limits of the original spectrum. Luckily, this
requirement is already fulfilled by the method itself. Figure [2| visualises the
relation between f, and fy for whole wavenumbers from 0 rad/m to 10 rad/m
in the frequency range 0 Hz to 1000 Hz. From Eq. [9] follows that for s, > ko,
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Figure 2: Mapping between f, and fo for selected whole wavenumbers k, 0 rad/m to
10 rad/m.

the frequency fy is strictly smaller than a frequency f,, with the same « in the
2D plane. Therefore, a frequency spectrum at any higher wavenumber maps to
smaller frequency lines and thus the upper bound is fulfilled. The lower bound
is limited by the physical properties of sound radiation. Figure [2|shows that for
increasing wavenumbers, increasing frequencies get mapped to 0 Hz in the fy
spectrum. Physically, this is because for these combinations of k,, and K,,, the
wavenumber in air is smaller than the wavenumber along the track, and so no
projection on the 2D plane is possible. Mathematically, this is a consequence of
the expression under the root in Eq. [9] which becomes negative for

2
(27”“> <K 2 (10)

c

which for k3 < k2 can not be fulfilled for real . For imaginary wavenumbers
k, only radiation into near-field occurs, and no sound power is radiated. These
wavenumbers are excluded from further calculations.

The method described above establishes a relationship between a given o and
combinations of k and K. For a given «, the phase relation between all source
elements and receiver points in the BE formulation is set. However, there is a
relevant frequency dependent scaling of the magnitude in the two-dimensional
Helmholtz integral equation (Eq. , as the first term in the integral contains
the factor jw and the normal velocity v,. A scaling of the boundary element
equation E| is proposed,

L G-
Cij+ Hjj= GV = =V je (11)



such that the frequency dependency is instead included in the normal velocity.

The scaling of ‘77:‘ can be introduced before or after the solution of the BE
problem. The scaling does not affect the type of boundary conditions that can
be used. If boundary conditions other than the Neumann boundary condition
are used, the elements in the result vector corresponding to a normal velocity
need to be scaled accordingly.

In summary, the 3D sound field of a structure with constant cross-section
can be calculated in frequency-wavenumber domain by

1. describing the acoustic boundaries and -domain by standard 2D boundary
elements
2. selecting an appropriate discretization of the wavenumber and frequency
domain
3. solving the 2D BE problem for each frequency in the selected spectrum at
the lowest wavenumber in the spectrum kg
4. for each larger wavenumber k,,
(a) calculating the frequency fy in the original spectrum that shares the
projection of K on the cross-section according to Eq. [9]
(b) interpolating the original spectrum at fy
(c) scaling the result according to Eq.

To conclude, this first approach makes it possible to solve the 2D BE problem
for only one wavenumber at every frequency in a dense frequency spectrum, and
then generates solutions at higher wavenumbers by interpolation and frequency-
dependent magnitude scaling of the result.

2.2. Validation of the method

To investigate the validity of the described modelling approach, comparisons
to the standard WBEM and an analytical solution for the case of a breathing
cylinder are carried out. Figure |3| presents the cross-section of the geometry.
The analytical model is based on a breathing line source, located at (0.5,0.5) m.
Assuming a unit presure excitation, the pressure produced by this source at any
location in the field is given by

p=—1pHg" (ar) (12)

where 7 describes the distance between source and receiver and p =1 Pa.

The radiating surface in the WBEM model consists of a cylinder with 1 m
radius centred at (0,0) m, enclosing the line source. Its surface normal velocity
at each element of this cylinder V;, is prescribed such that it matches the velocity
in the sound field created by the breathing cylinder.

Vo= g (an (13)

where 7 is the distance from the breathing line source to the element, n is the
unit normal vector on the boundary. This way, the pressure on and outside of the
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Figure 3: Cross-section of the setup for the validation calculation. The thick blue dot marks
the location of the line source. The smaller, orange circle represents the surface of the WBE
structure while the larger, green circle of points are positions at which the sound pressure is
evaluated.

surface of the cylinder should be identical up to numerical accuracy and within
the general limitations of the boundary element method. Finally, the WBE
model is used to solve the 2D BE problem described in Eq. for ko =1 prad/m
and a frequency spectrum from 0 Hz to 1000 Hz and a resolution of 2 Hz. The
sound pressure on the surface and in the field at other wavenumbers is then
calculated using the method introduced above.

Frequency spectra of the sound pressure are calculated for three wavenum-
bers at 120 receiver points which are arranged in a circle with 20 m radius
centred at (—5,0) m. Firstly, the sound pressure at one such receiver is com-
pared for all three methods in Figure |4l The three models produce very similar
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Figure 4: Calculated field point pressure at one field point. The wavenumber x along the
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results. The effect of the cut-on frequency at higher wavenumbers is visible for
k = 3.3 rad/m and k = 6.6 rad/m, as no radiation into the far field occurs
below 182 Hz and 364 Hz, respectively.

In a second step, the WBEM calculation and the presented method are
compared to the analytical model. Figure [5] presents the mean error of each
receiver point. Both methods predict the analytical result with high accuracy. A
decreasing accuracy with increasing frequency is expected due to the resolution
of the BE mesh, which is observed for both methods. Once can conclude that the
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Figure 5: Comparison of the mean difference at all field points.

suggested approach is a suitable extension to the WBEM when dense frequency
and wavenumber spectra are calculated.

3. Pre-calculation of the acoustic transfer functions

This section presents the second of two approaches to increasing the com-
putational efficiency for predicting the sound field radiated from railway track
vibrations. This is achieved by calculating transfer functions that can be reused
in different vibration situations. After this method is introduced below, four ge-
ometries are described for which these transfer functions have been evaluated.

3.1. Method

For solving the BE problem, either the pressure, the velocity, or the impedance
at each boundary node needs to be prescribed. If no back-coupling between the
air and the structure occurs (the radiation impedance in air has a negligible
effect on the vibration of the structure), the surface normal velocity can be cal-
culated independently of the boundary element problem. Using the algorithm in
Section[2.1]to calculate the radiation for one resulting boundary normal velocity
is a significant improvement compared to the standard implementation. How-
ever, often several calculation cases need to be solved that share their acoustic
geometry but use different normal velocities as the input. This is relevant for



example when evaluating the radiation from the track for different excitation
positions on the rail, changing track parameters, or altering the the surface
roughness of the rail in a wheel pass-by simulation. Based on this, the following
discussion is limited to changing the Neumann boundary condition.

Acoustic transfer functions can be pre-calculated by taking advantage of
the integral nature of the boundary element formulation. The linear equation
system [11] becomes

Aj=G*Vr (14)

when combining the C and H matrices into the A matrix. In this discretized
problem formulation, the sound pressure at any receiver position is the sum
of the contributions of each source element. The contribution of each source
element in turn consists of an acoustic transfer function, scaled with the surface
normal velocity of this source element.

The acoustic transfer functions from one source element are calculated by
setting its surface normal velocity to 1 m/s and 0 m/s otherwise in V;f . Solving
Eq. [14] for one such case produces transfer functions to all receiver points. How-
ever, a complete solution requires solving the large, potentially over-determined
and dense matrix system once for every source element. This is a significant
initial computational effort. Especially when investigating the radiation from a
railway track, the total number of elements can be large when including a train
or noise barriers in the geometry. Nonetheless, often only a small part of the
geometry actually contributes to the radiation in the calculation, such as the
rail and parts of the track surface. These are described by just a fraction of the
total number of boundary nodes, and so the pre-calculation can be limited to
these areas. Examples for which acoustic transfer functions have been evaluated
are described below.

8.2. Description of the pre-calculated transfer functions

The second approach introduced above relies on pre-calculated transfer func-
tions which describe the sound pressure produced in a set of receiver points for
a unit normal velocity at the vibrating surface nodes of the structure. These
transfer functions have been pre-calculated for four geometries, sketched in Fig-
ure[6] The geometries are (a) a UIC 60 rail in free space, (b) the same rail 5 cm
above an infinite, acoustically hard surface, (c) the same rail 5 cm above a flat
structure which itself is positioned above an infinite, acoustically hard surface,
and (d) the rail and track structure below the simplified hull of a passenger
train. The track surface is centred laterally while the rail located at the posi-
tion of the right rail for a standard gauge of 1.435 m. Figure |7|shows the setup
used in geometry (d). The other geometries can be derived by removing the
respective components. All surface nodes, field points and CHIEF-points used
in the calculation are presented in the figure. The surface nodes for which the
transfer functions have been calculated are indicated in green. Other (passive)
surface nodes are colored blue. All surface nodes are spaced with 7.5 mm to
achieve 6 elements per wavelength up to 7.5 kHz. Figure [/t shows the surface
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Figure 6: Boundary element geometries for which the acoustic transfer-functions were pre-
calculated.

normal direction for each active surface node on the rail and on the surface
below.

A total of 21 CHIEF-points are distributed in the rail-, the track- and the
train-cross section. Chief points are marked with a red *X’. The black dots repre-
sent receiver positions or ’field points’. In addition to the pass-by measurement
positions defined in the standard ISO 3095, four half-circles of points around
the track centre with radii 2.5 m, 5 m, 10 m and 20 m and one half-circle with
radius 1.2 m centered at the rail. Additional points are included depending on
the geometry. More detailed information can be found in the online resources
[15, [16]. The additional positions are included to provide a higher flexibility
for microphone positioning when for example using the transfer functions for a
comparison to measurements.

The pre-calculated transfer functions describe the sound pressure created
by each source element on all surface and field nodes, for wavenumber kg =
1075 rad/m and a frequency spectrum with 1 Hz resolution up to 7.5 kHz. As an
example, the transfer functions corresponding to geometry (a) are investigated
in the following, focussing specifically on the transfer functions from the 92
source nodes on the rail surface to 100 receiver points located in a circle with
20 m radius around the rail. The data is three-dimensional (92 x 100 x ny),
where n¢ is the number of frequency lines in the pre-calculated spectrum. The
transfer functions are therefore only visualised for selected frequencies. Figure
demonstrates how the transfer functions are visualised in the following. Each
row in the surface plot describes the contribution of a unit normal velocity at one
source node to all receiver points. The position of the source nodes on the rail
surface is indicated by the gray lines. Analogously, the position of the receivers
is indicated by the gray lines below the 2D plot. The color range is adjusted
to cover a 20 dB sound pressure level range, normalized with the largest sound
pressure level at any receiver node at that frequency. In the selected example,
a diagonal trend is visible, indicating that in general, a surface velocity on the
left side of the rail contributes mainly to the receiver points on its left side,
and so on. At the vertical line marking 90 °, the radiation is almost entirely
dominated by the right side of the rail. Large parts of the rail surface, with the
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Figure 7: Setup (iv) for which the acoustic transfer functions were evaluated.

exception of the rail foot and the part below the rail head, contribute to the
sound pressure in vertical direction.

Figure [0 shows analogous 2D plots for five other frequencies. A distinct
interference pattern is visible. Note that the pattern does not arise from the
interaction of several sources but instead from the wave field created by a single
source and the reflections on the acoustically hard rail surface. Below 500 Hz,
the wavelength in air is large compared to the dimensions of the rail. Therefore,
the rail geometry does not significantly influence the radiation pattern, and the
transfer function of all surface nodes to all receiver points is similar, i.e., the
dynamic range of the 2D plot is low. With increasing frequency, the geometry
of the rail becomes more influential and the dynamic range gets larger. Distinct
squares are visible at locations corresponding to the side of the rail. This can be
interpreted such that a vibration in any part of this concave rail section focusses
the radiation towards lateral receiver positions. A lateral bending wave would
thus produce a dipole-characteristic, in which each lobe is produced by the
vibration on the corresponding side of the rail.

A comparable analysis can be carried out using the rail surface nodes them-
selves as the receiver points. This is shown in Figure The source node
is expectedly the main contributor to the sound pressure at its position (thus
the diagonal line) A surface velocity in the concave section produces compara-
tively high pressure at other nodes in the concave section. Again, a frequency
dependent interference pattern can be observed.

To calculate the total radiated sound pressure produced by a vibrating rail,
each transfer function needs to be multiplied with the corresponding surface
vibration. The result is a vector of complex pressures describing the individ-

12



Difference in dB

Figure 8: Transfer function magnitude between each source element on the rail and receiver
point in a circle with 20 m radius around the the rail. The displayed transfer functions are
calculated at 1100 Hz, which is typically close to the pinned-pinned frequency.

ual contributions of each surface section to a receiver point. The sum over
these complex pressures is equivalent to the Rayleigh integral over the radiating
surface. The application of this method is not the focus of this article.

13



Figure 9: Transfer function from surface velocity on each individual node on the rail surface
(y-axis) to the sound pressure in a circle around the rail (x-axis), displayed as the relative
difference to the largest contribution, in dB. Left to right: 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz,
and 7500 Hz. The receiver angle zero degrees corresponds to a position vertically above the
rail and increasing numbers indicate clockwise rotation.

Figure 10: Transfer function from the velocity at each individual surface node (y-axis) to the
sound pressure at each surface nodes (x-axis), displayed as the relative difference to the largest
contribution, in dB. Left to right: 25 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, and 7500 Hz.

4. Results and applications

This section presents a few considerations regarding the computational effi-
ciency and presents some example applications of the modelling approach.

4.1. Efficiency considerations

The first approach addresses the necessary number of 2D BE solutions. The
necessary computing time for one such solution depends on the considered geom-
etry and the available computing resources. Nevertheless, the gained efficiency
can be estimated by considering the number of BE solutions.

To produce impulse responses at regularly spaced positions along the track,
a regular grid in frequency- and wavenumber domain is a consequence of the
discrete Fourier transform. This is illustrated in the following example, in which
impulse responses of T' =1 s length with a sampling frequency of f; = 15 kHz
are desired. Further, the spatial resolution along the track should be such that a
vehicle moving at v = 180 km/h travels one spatial sample in each time step, i.e,
dx = v dt. The resolution in frequency domain is given by df = 1/T = 1 Hz, and
analogously, the resolution in wavenumber domain is given by dx = 27/ Xpax.
The upper limit of the relevant wavenumber grid is either given by ks = 27 /dx,
or by Kair, the wavenumber in air. Such a regular grid is presented in Figure [LT]
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Figure 11: Illustration of combinations of wavenumber and frequency at which a 2D BE
solution is necessary to produce a regular grid in time- and spatial domain.

in which also k,;; and ky are indicated. The presented grid is sparser than
necessary to aid in presentation.

In the presented case and the standard approach, every black dot in Figure[T1]
represents a 2D BE solution. The approach presented in Section[2.1]requires the
calculation of the cases along the red line with a high frequency resolution, after
which all other cases can be derived via interpolation. This gain in efficiency
is largest if many such 2D BE solutions are necessary, i.e., if the wavenumber
resolution is high. This, in turn, is the case if the maximum required distance
Xmax 18 large. Figure presents the count of the necessary 2D BE solutions
over this distance X .. All other parameters are as described above. The 1 Hz
resolution of the frequency spectrum leads to 7501 BE problems to be solved
in the new approach. If all combinations were to be solved, the computational
effort would be several magnitudes higher for X . > 10.
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Figure 12: Number of computations necessary when evaluating all grid points or only the
dense frequency spectrum at ko, depending on the maximum distance of interest.

The benefit of pre-calculating the acoustic transfer functions as described in
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the second approach is easier to estimate. Initially, a 2D BE problem needs to
be solved for each source node (and each frequency and wavenumber!). Once
these transfer functions are available, the sound field can be calculated at a
comparatively small cost. The pre-calculation is worth the effort as soon as the
transfer functions are re-used more often than the number of source nodes in
the geometry.

4.2. Application examples

To exemplify possible applications of the presented calculation approach,
the sound field radiated by one railway rail is briefly demonstrated in in the
following. The transfer functions calculated for setup ¢ (rail above a track, see
Figure @ are used in this example.

The surface vibrations of the rail are calculated using a discretely supported
UIC60 rail based on the waveguide Finite Element (WFE or 2.5D FE) method.
The WFE approach is not further described, but more details can be found in
literature |8, [18] [19]. The WFE method allows calculating the surface normal
velocity in three dimensions. The rail is coupled to a spring-mass-spring system
in each rail seat. A harmonic unit force excitation is applied on the rail at the
location x = 0 m. The force is introduced vertically, but slightly off-cenre on
the rail head, so that lateral and vertical motion is excited in the rail.

SpL in dB

=50

Figure 13: Normalized sound pressure level distribution on a half-cylinder with 5 m radius
around the track created by a vibrating UIC60 rail. The rail is excited vertically by a harmonic
unit force at 120 Hz.

Figure [13| shows the normalized sound pressure level distribution on a half-
cylinder with 5 m radius around the track centre for an excitation at 120 Hz.
It is visible that a section of about 20 m produces the largest sound pressure
levels in the top 10 dB range. The largest pressure levels are located vertically
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above the excitation position, likely due to the mostly vertical motion of the
rail. In lateral direction, there are instead two peaks at a distance of about 5 m
from the excitation position. The different radiation directivity along the rail
is due to the radiation from bending waves. The frequency 120 Hz is below the
cut-on frequency of vertical bending waves for this setup, and so only radiation
into the near field occurs. The bending stiffness in lateral direction is lower, and
so is the cut-on frequency for lateral bending waves. As a result, the sound is
radiated at an angle from the excitation point and arrives on the half-cylinder
at the observed distance.

SpL in dB

Figure 14: Normalized sound pressure level distribution on a half-cylinder with 5 m radius
around the track created by a vibrating UIC60 rail. The rail is excited vertically by a harmonic
unit force at the pinned-pinned resonance 1170 Hz.

Figure [14] presents the same setup, but for a different excitation frequency.
Here, the system is excited at 1070 Hz, which is close to the pinned-pinned
frequency of the rail. The bending waves in the rail can thus travel almost
unobstructed and the sound pressure level is accordingly quite similar over a
long distance. The sound pressure level in lateral direction is comparatively low
as the vertical vibration dominates the sound radiation.

5. Discussion and Conclusion

Two approaches for significantly reducing the effort required to predict the
3D sound field radiated by railway track vibration have been presented, both
based on the WBEM (2.5D BEM). In the standard WBEM, a 2D BE problem
needs to be solved for each combination of wavenumber and frequency for a
given surface velocity.
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The first approach avoids the need to solve this BE problem for every combi-
nation of wavenumber and frequency by employing a geometric relation between
wavenumbers at different frequencies. This effectively creates a 3D description
of the sound field for the cost of solving a 2D solution plus an interpolation.
The first approach is limited to sound radiation into the far field. This approx-
imation is often used, as only the far-field radiation contributes to the radiated
sound power (see, e.g., [8]). A perhaps more significant limitation of the method
is that this far, only acoustically hard surfaces are considered. The inclusion of
possibly direction-dependent absorption as a boundary condition deserves fur-
ther thought but is outside the scope of this work. The primary goal of this
method is to calculate the sound radiation from slab tracks, for which most
surfaces in direct proximity to the rail can be modelled acoustically hard.

The second approach reduces the computational cost when the sound field is
predicted for several different cases of structural vibration. By pre-calculating
acoustic transfer functions for common geometries, these transfer functions can
be re-used. The complex sound pressure at a receiver position can then be
calculated by scaling these transfer functions with the corresponding surface
velocity and summing over all surface nodes. No BE solution is necessary.
The acoustic transfer functions for four such acoustic geometries have been
presented.

Combining the two proposed approaches has the potential to describe the
sound field created by a railway track with arbitrary resolution in spatial do-
main, at a massively reduced computational cost compared to 3D Boundary
Element formulations and even the standard WBEM. An efficient calculation of
the railway track radiation is a prerequisite for physically modelling the pass-by
noise generated by a force moving on a rail. The calculation procedure and
pre-calculated acoustic transfer functions are documented and made available
online in an open-source Python package [15] [16].
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