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Our understanding of strong gravity near supermassive compact objects has recently improved thanks to
the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer
constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we
show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged
dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we
are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the
Sen black holes.

DOI: 10.1103/PhysRevD.103.104047

I. INTRODUCTION

General relativity (GR) was formulated to consistently
account for the interaction of dynamical gravitational fields
with matter and energy, the central idea of which is that the
former manifests itself through modifications of spacetime
geometry and is fully characterized by a metric tensor.
While the physical axioms that GR is founded on are
contained in the equivalence principle [1,2], the Einstein-
Hilbert action further postulates that the associated
equations of motion involve no more than second-order
derivatives of the metric tensor.
The strength of the gravitational field outside an object of

mass M and characteristic size R, in geometrized units
(G ¼ c ¼ 1), is related to its compactness C ≔ M=R,
which is ∼10−6 for the Sun, and takes values ∼0.2–1 for
compact objects such as neutron stars and black holes.
Predictions from GR have been tested and validated by
various solar-system experiments to very high precision
[2,3], setting it on firm footing as the best-tested theory of
classical gravity in the weak-field regime. It is important,
however, to consider whether signatures of deviations from
the Einstein-Hilbert action, e.g., due to higher derivative
terms [4–6], could appear in measurements of phenomena
occurring in strong-field regimes where C is large.
Similarly, tests are needed to assess whether generic

violations of the equivalence principle occur in strong-
fields due, e.g., to the presence of additional dynamical
fields, such as scalar [7,8] or vector fields [9–13], that may
fall off asymptotically. Agreement with the predictions of
GR coming from observations of binary pulsars [14–16],
and of the gravitational redshift [17] and geodetic orbit-
precession [18] of the star S2 near our galaxy’s central
supermassive compact object Sgr A⋆ by the GRAVITY
collaboration, all indicate the success of GR in describing
strong-field physics as well. In addition, with the gravita-
tional-wave detections of coalescing binaries of compact
objects by the LIGO/Virgo collaboration [19,20] and the
first images of black holes produced by EHT, it is now
possible to envision testing GR at the strongest field
strengths possible.
While the inferred size of the shadow from the recently

obtained horizon-scale images of the supermassive com-
pact object in M87 galaxy by the EHT collaboration [21–
26] was found to be consistent to within 17% for a
68% confidence interval of the size predicted from GR
for a Schwarzschild black hole using the a priori known
estimates for the mass and distance of M87* based on
stellar dynamics [27], this measurement admits other
possibilities, as do various weak-field tests [2,28]. Since
the number of alternative theories to be tested using this
measurement is large, a systematic study of the constraints
set by a strong-field measurement is naturally more
tractable within a theory-agnostic framework, and various
such systems have recently been explored [29–36]. This
approach allows for tests of a broad range of possibilities
that may not be captured in the limited set of known
solutions. This was exploited in Ref. [28], where
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constraints on two deformed metrics were obtained when
determining how different M87* could be from a Kerr
black hole while remaining consistent with the EHT
measurements.
However, because such parametric tests cannot be

connected directly to an underlying property of the alter-
native theory, here we use instead the EHT measurements
to set bounds on the physical parameters, i.e., angular
momentum, electric charge, scalar charge, etc.—and which
we will generically refer to as “charges” (or hairs)—that
various well-known black-hole solutions depend upon.
Such analyses can be very instructive [37–51] since they
can shed light on which underlying theories are promising
candidates and which must be discarded or modified. At the
same time, they may provide insight into the types of
additional dynamical fields that may be necessary for a
complete theoretical description of physical phenomena,
and whether associated violations of the equivalence
principle occur.
More specifically, since the bending of light in the

presence of curvature—either in static or in stationary
spacetimes—is assured in any metric theory of gravity, and
the presence of large amounts of mass in very small
volumes can allow for the existence of a region where
null geodesics move on spherical orbits, an examination of
the characteristics of such photon regions, when they exist,
is a useful first step. The projected asymptotic collection of
the photons trajectories that are captured by the black hole
—namely, all of the photon trajectories falling within the
value of the impact parameter at the unstable circular orbit
in the case of nonrotating black holes—will appear as a
dark area to a distant observer and thus represents the
“shadow” of the capturing compact object. This shadow—
which can obviously be associated with black holes [52–
57], but also more exotic compact objects such as grav-
astars [58,59] or naked singularities [60,61]—is determined
entirely by the underlying spacetime metric. Therefore, the
properties of the shadow—and at lowest order its size—
represent valuable observables common to all metric
theories of gravity, and can be used to test them for their
agreement with EHT measurements.
While the EHT measurement contains far more informa-

tion related to the flow of magnetized plasma nearM87*, we
will consider only the measurement of the size of the bright
ring. Here we consider various spherically symmetric black-
hole solutions, from GR that are either singular (see, e.g.,
[62]) or non-singular [63–65], and string theory [66–70].
Additionally, we also consider the Reissner-Nordström (RN)
and the Janis-Newman-Winicour (JNW) [71] naked singu-
larity solutions, the latter being a solution of the Einstein-
Klein-Gordon system. Many of these solutions have been
recently summarized in Ref. [36], where they were cast in a
generalized expansion of static and spherically symmetric
metrics. Since angular momentum plays a key role in
astrophysical scenarios, we also consider various rotating

black-hole solutions [72–75] which can be expressed in the
Newman-Janis form [76] to facilitate straightforward ana-
lytical computations. It is to be noted that this study is meant
to be a proof of principle and thatwhile the constraintswe can
set here are limited, the analytical procedure outlined below
for this large class of metrics is general, so that as future
observations become available,we expect the constraints that
can be imposed following the approach proposed here to be
much stronger.

II. SPHERICAL NULL GEODESICS AND
SHADOWS

For all the static, spherically symmetric spacetimes we
consider here, the definition of the shadow can be cast in
rather general terms. In particular, for all the solutions
considered, the line element expressed in areal-radial polar
coordinates ðt; r̃; θ;ϕÞ has the form1

ds2 ¼ gμνdxμdxν ¼ −fðr̃Þdt2 þ gðr̃Þ
fðr̃Þ dr̃

2 þ r̃2dΩ2
2; ð1Þ

and the photon region, which degenerates into a photon
sphere, is located at r̃≕ r̃ps, which can be obtained by
solving [28]

r̃ −
2fðr̃Þ
∂ r̃fðr̃Þ

¼ 0: ð2Þ

The boundary of this photon sphere when observed from
the frame of an asymptotic observer, due to gravitational
lensing, appears to be a circle of size [28]

r̃sh ¼
r̃psffiffiffiffiffiffiffiffiffiffiffiffi
fðr̃psÞ

p : ð3Þ

On the other hand, the class of Newman-Janis stationary,
axisymmetric spacetimes we consider here [76], which are
geodesically integrable (see, e.g., [55,77,78]), can be
expressed in Boyer-Lindquist coordinates (t; r; θ;ϕ) as

ds2 ¼ −fdt2 − 2asin2θð1 − fÞdtdϕ

þ ½Σþ a2sin2θð2 − fÞ�sin2θdϕ2 þ Σ
Δ
dr2 þ Σdθ2;

ð4Þ

where f ¼ fðr; θÞ and Σðr; θÞ ≔ r2 þ a2 cos2 θ and
ΔðrÞ ≔ Σðr; θÞfðr; θÞ þ a2 sin2 θ. In particular, these are

1We use the tilde on the radial coordinate of static spacetimes
to distinguish it from the corresponding radial coordinate of
axisymmetric spacetimes.
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the stationary generalizations obtained by employing the
Newman-Janis algorithm [76]) for “seed” metrics of the
form (1) with gðr̃Þ ¼ 1.2

The Lagrangian L for geodesic motion in the spacetime
(4) is given as 2L ≔ gμν _xμ _xν, where an overdot represents a
derivative with respect to the affine parameter, and 2L ¼
−1 for timelike geodesics and 2L ¼ 0 for null geodesics.
The two Killing vectors ∂t and ∂ϕ yield two constants of
motion

−E ¼ −f_t − a sin2 θð1 − fÞ _ϕ;
L ¼ −a sin2 θð1 − fÞ_tþ ½Σþ a2 sin2 θð2 − fÞ� sin2 θ _ϕ;

ð5Þ

in terms of which the geodesic equation for photons can be
separated into

Σ2 _r2 ¼ ðr2 þ a2 − aξÞ2 − ΔI ≕RðrÞ; ð6Þ

Σ2 _θ2 ¼ I − ða sin θ − ξ csc θÞ2 ≕ΘðθÞ; ð7Þ

where we have introduced first ξ ≔ L=E, and then
I ≔ ηþ ða − ξÞ2. Also, η is the Carter constant, and the
existence of this fourth constant of motion is typically
associated with the existence of an additional Killing-Yano
tensor (see for example [56,80]).
In particular, we are interested here in spherical null

geodesics (SNGs), which satisfy _r ¼ 0 and ̈r ¼ 0 and are
not necessarily planar; equivalently, SNGs can exist at
locations where RðrÞ ¼ 0 and dRðrÞ=dr ¼ 0. Since these
are only two equations in three variables (r, ξ, η), it is
convenient, for reasons that will become evident below, to
obtain the associated conserved quantities along such
SNGs in terms of their radii r as (see also [81]),

ξSNGðrÞ ¼
r2 þ a2

a
−

4rΔ
a∂rΔ

;

ηSNGðrÞ ¼
r2

a2ð∂rΔÞ2
½16a2Δ − ðr∂rΔ − 4ΔÞ2�: ð8Þ

The condition that ΘðθÞ ≥ 0, which must necessarily hold
as can be seen from Eq. (7), restricts the radial range for
which SNGs exist, and it is evident that this range depends
on θ. This region, which is filled by such SNGs, is called
the photon region (see, e.g., Fig. 3.3 of [52]).
The equality ΘðθÞ ¼ 0 determines the boundaries of the

photon region, and the (disconnected) piece which lies in
the exterior of the outermost horizon is of primary interest

since its image, as seen by an asymptotic observer, is the
shadow. We denote the inner and outer surfaces of this
photon region by rp−ðθÞ and rpþðθÞ respectively, with the
former (smaller) SNG corresponding to the location of a
prograde photon orbit (i.e., ξSNGðrp−Þ > 0), and the latter to
a retrograde orbit.
It can be shown that all of the SNGs that are

admitted in the photon region, for both the spherically
symmetric and axisymmetric solutions considered here,
are unstable to radial perturbations. In particular, for
the stationary solutions, the stability of SNGs at a
radius r ¼ rSNG with respect to radial perturbations is
determined by the sign of ∂2

rR, and when ∂2
rRðrSNGÞ >

0, SNGs at that radius are unstable. The expression for
∂2
rR reads

∂2
rR ¼ 8r

ð∂rΔÞ2
½rð∂rΔÞ2 − 2rΔ∂2

rΔþ 2Δ∂rΔ�: ð9Þ

To determine the appearance of the photon region and
the associated shadow, as seen by asymptotic observers,
we can introduce the usual notion of celestial coordinates
ðα; βÞ, which for any photon with constants of the motion
ðξ; ηÞ can be obtained, for an asymptotic observer present
at an inclination angle i with respect to the spin-axis of
the compact object as in [82]. For photons on an SNG,
we can set the conserved quantities (ξ, η) to the values
given in Eq. (8) above to obtain [80,81]

αsh ¼ −ξSNG csc i; ð10Þ

βsh ¼ �ðηSNG þ a2cos2i − ξ2SNGcot
2iÞ1=2: ð11Þ

Recognizing that β ¼ � ffiffiffiffiffiffiffiffiffi
ΘðiÞp

, it becomes clear that only
the SNGs with ΘðiÞ ≥ 0 determine the apparent shadow
shape. Since the photon region is not spherically symmetric
in rotating spacetimes, the associated shadow is also not
circular in general. It can be shown that the band of radii for
which SNGs can exist narrows as we move away from the
equatorial plane, and reduces to a singlevalue at the pole, i.e.,
in the limit θ → π=2, we have rpþ ¼ rp− (see e.g., Fig. 3.3
of [52]). As a result, the parametric curve of the shadow
boundary as seen by an asymptotic observer lying along the
pole is perfectly circular, α2sh þ β2sh ¼ ηSNGðrp�;π=2Þþ
ξ2SNGðrp�;π=2Þ.
We can now define the characteristic areal-radius of the

shadow curve as [83]

rsh;A ≔
�
2

π

Z
rpþ

rp−

drβshðrÞ∂rαshðrÞ
�

1=2
: ð12Þ

2Note that while the Sen solution can be obtained via the
Newman-Janis algorithm [79], the starting point is the static
EMd-1 metric written in a non-areal-radial coordinate ρ such that
gttgρρ ¼ −1.
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III. SHADOW SIZE CONSTRAINTS FROM THE
2017 EHT OBSERVATIONS OF M87*

Measurements of stellar dynamics near M87* were
previously used to produce a posterior distribution function
of the angular gravitational radius θg ≔ M=D, where M is
the mass of and D the distance to M87*. The 2017 EHT
observations of M87* can be similarly used to determine
such a posterior [26]. These observations were used to
determine the angular diameter d̂ of the bright emission
ring that surrounds the shadow [26]. In Sec. 5.3 there, using
synthetic images from general-relativistic magnetohydro-
dynamics (GRMHD) simulations of accreting Kerr black
holes for a wide range of physical scenarios, the scaling
factor α ¼ d̂=θg was calibrated. For emission from the
outermost boundary of the photon region of a Kerr black
hole, α should lie in the range ≃9.6–10.4.
The EHT measurement picks out a class of best-fit

images (“top-set”) from the image library, with a mean
value for α of 11.55 (for the “xs-ring” model) and 11.50
(for the “xs-ringauss” model), when using two different
geometric crescent models for the images, implying that the
geometric models were accounting for emission in the top-
set GRMHD images that preferentially fell outside of the
photon ring. Using the distribution of α for these top-set
images then enabled the determination of the posterior in
the angular gravitational radius PobsðθgÞ for the EHT data.
It is to be noted that this posterior was also determined
using direct GRMHD fitting, and image domain feature
extraction procedures, as described in Sec. 9.2 there, and a
high level of consistency was found across all measurement
methods. Finally, in Sec. 9.5 of [26], the fractional
deviation in the angular gravitational radius δ was intro-
duced as

δ ≔
θg
θdyn

− 1; ð13Þ

where θg and θdyn were used to denote the EHT and the
stellar-dynamics inferences of the angular gravitational
radius, respectively. The posterior on δ—as defined in
Eq. (32) of [26]—was then obtained (see Fig. 21 there), and
its width was found to be δ ¼ −0.01� 0.17, for a 68%
credible interval. This agreement of the 2017 EHT meas-
urement of the angular gravitational radius for M87* with a
previously existing estimate for the same, at much larger
distances, constitutes a validation of the null hypothesis of
the EHT, and in particular that M87* can be described by
the Kerr black-hole solution.
Since the stellar dynamics measurements [27] are sensi-

tive only to the monopole of the metric (i.e., the mass) due
to negligible spin-dependent effects at the distances
involved in that analysis, modeling M87* conservatively
using the Schwarzschild solution is reasonable with their
obtained posterior. Then, using the angular gravitational

radius estimate from stellar dynamics yields a prediction for
the angular shadow radius θsh ¼ rsh=D as being θsh ¼
3

ffiffiffi
3

p
θdyn. The 2017 EHT measurement, which includes

spin-dependent effects as described above and which
probes near-horizon scales, then determines the allowed
spread in the angular shadow diameter as, θsh≈
3

ffiffiffi
3

p ð1� 0.17Þθg, at 68% confidence levels [28]. Finally,
since both angular estimates θsh and θg make use of the
same distance estimate to M87*, it is possible to convert the
1-σ bounds on θsh to bounds on the allowed shadow size
for M87*.
That is, independently of whether the underlying sol-

ution be spherically symmetric (in which case we will
consider r̃sh) or axisymmetric ðrsh;AÞ, the shadow size of
M87* must lie in the range 3

ffiffiffi
3

p ð1� 0.17ÞM [28], i.e.,
(see gray-shaded region in Fig. 2)

4.31M ≈ rsh;EHT-min ≤ r̃sh; rsh;A ≤ rsh;EHT-max ≈ 6.08M;

ð14Þ

where we have introduced the maximum/minimum
shadow radii rsh;EHT-max=rsh;EHT-min inferred by the EHT,
at 68% confidence levels.
Note that the bounds thus derived are consistent with

compact objects that cast shadows that are both signifi-
cantly smaller and larger than the minimum and maximum
shadow sizes that a Kerr black hole could cast, which lie in
the range, 4.83M − 5.20M (see, e.g., [28,84]).
An important caveat here is that the EHT posterior

distribution on θg was obtained after a comparison with a
large library of synthetic images built from GRMHD
simulations of accreting Kerr black holes [25]. Ideally, a
rigorous comparison with non-Kerr solutions would require
a similar analysis and posterior distributions built from
equivalent libraries obtained from GRMHD simulations of
such non-Kerr solutions. Besides being computationally
unfeasible, this approach is arguably not necessary in
practice. For example, the recent comparative analysis of
Ref. [50] has shown that the image libraries produced in
this way would be very similar and essentially indistin-
guishable, given the present quality of the observations. As
a result, we adopt here the working assumption that the 1-σ
uncertainty in the shadow angular size for non-Kerr
solutions is very similar to that for Kerr black holes, and
hence employ the constraints (14) for all of the solutions
considered here.

IV. NOTABLE PROPERTIES OF VARIOUS
SPACETIMES

As mentioned above, a rigorous comparison with non-
Kerr black holes would require constructing a series of
exhaustive libraries of synthetic images obtained from
GRMHD simulations on such non-Kerr black holes. In
turn, this would provide consistent posterior distributions
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of angular gravitational radii for the various black holes and
hence determine how δ varies across different non-Kerr
black holes, e.g., for Sen black holes. Because this is
computationally unfeasible—the construction of only the
Kerr library has required the joint effort of several groups
with the EHTC over a good fraction of a year—we briefly
discuss below qualitative arguments to support our use of
the bounds given in Eq. (14) above as an approximate, yet
indicative, measure.
To this end, we summarize in Table I the relevant

properties of the various solutions used here. First, we
have considered here solutions from three types
of theories, i.e., the underlying actions are either
(a) Einstein-Hilbert-Maxwell-matter [62–66,71,72,75],
(b) Einstein-Hilbert-Maxwell-dilaton-axion [67,68,74], or
(c) Einstein-Hilbert-Maxwell-Maxwell-dilaton [70]. This
careful choice implies that the gravitational piece of the
action is always given by the Einstein-Hilbert term and that
matter is minimally coupled to gravity. As a result, the
dynamical evolution of the accreting plasma is expected to
be very similar to that in GR, as indeed found in Ref. [50].
Second, since a microphysical description that allows one
to describe the interaction of the exotic matter present in
some of the regular black-hole spacetimes used here
[63,64]—which typically do not satisfy some form of
the energy conditions [75,85]—with the ordinary matter
is thus far lacking, it is reasonable to assume that the
interaction between these two types of fluids is gravita-
tional only. This is indeed what is done in standard
numerical simulations, either in dynamical spacetimes
(see, e.g., [86]), or in fixed ones [49,87]. Third, since
the mass-energy in the matter and electromagnetic fields for

the non-vacuum spacetimes used here is of the order of the
mass of the central compact object M, while the total mass
of the accreting plasma in the GRMHD simulations is only
a tiny fraction of the same, it is reasonable to treat the
spacetime geometry and the stationary fields as unaffected
by the plasma. Fourth, we have also been careful not to use
solutions from theories with modified electrodynamics
(such as nonlinear electrodynamics). As a result, the
electromagnetic Lagrangian in all of the theories consid-
ered here is the Maxwell Lagrangian (see, e.g., the
discussion in [36] and compare with [53]). This ensures
that in these spacetimes light moves along the null geo-
desics of the metric tensor (see, e.g., Sec. 4.3 of [62] and
compare against Sec. 2 of [88]). Therefore, we are also
assured that ray-tracing the radiation emitted from the
accreting matter in these spacetimes can be handled
similarly as in the Kerr spacetime.
Finally, under the assumption that the dominant effects

in determining the angular gravitational radii come from
variations in the location of the photon region and in
location of the inner edge of the accretion disk in these
spacetimes, it is instructive to learn how these two physical
quantities vary when changing physical charges, and, in
particular, to demonstrate that they are quantitatively
comparable to the corresponding values for the Kerr
spacetime.
For this purpose, we study the single-charge solutions

used here and report in Fig. 1 the variation in the location of
the photon spheres (left panel) and innermost stable circular
orbit (ISCO) radii (right panel) as a function of the relevant
physical charge (cf. left panel of Fig. 1 in the main text).
Note that both the photon-sphere and the ISCO radii

TABLE I. Summary of properties of spacetimes used here. For easy access, we show whether the spacetime
contains a rotating compact object or not, whether it contains a spacetime singularity, and what type of stationary
nongravitational fields are present in the spacetime. Starred spacetimes contain naked singularities and daggers
indicate a violation of the equivalence principle (see, e.g., [36]); In particular, these indicate violations of the weak
equivalence principle due to a varying fine structure constant, a result of the coupling of the dilaton to the EM
Lagrangian [36,89].

Spacetime Rotation Singularity Spacetime content

KN [73] Yes Yes EM fields
Kerr [72] Yes Yes vacuum
RN [62] No Yes EM fields
RN* [62] No Yes EM fields
Schwarzschild [62] No Yes vacuum
Rot. Bardeen [75] Yes No matter
Bardeen [63] No No matter
Rot. Hayward [75] Yes No matter
Frolov [65] No No EM fields, matter
Hayward [64] No No matter
JNW* [71] No Yes scalar field
KS [66] No Yes vacuum
Sen† [74] Yes Yes EM, dilaton, axion fields
EMd-1† [67,68] No Yes EM, dilaton fields
EMd-2† [70] No Yes EM, EM, dilaton fields
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depend exclusively on the gtt component of the metric
when expressed using an areal radial coordinate r̃ (see, e.g.,
[28,36]). To gauge the effect of spin, we also show the
variation in the locations of the equatorial prograde and
retrograde circular photon orbits and the ISCOs in the Kerr
black-hole spacetime, expressed in terms of the Cartesian
Kerr-Schild radial coordinate rCKS, which, in the equatorial
plane, is related to the Boyer-Lindquist radial coordinate
used elsewhere in this work r simply via [90]

rCKS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
: ð15Þ

It is apparent from Fig. 1 that the maximum deviation in
the photon-sphere size from the Schwarzschild solution
occurs for the EMd-1 black hole and is ≈75%, while the
size of the prograde equatorial circular photon orbit for
Kerr deviates by at most ≈50%. Similarly, the maximum
variation in the ISCO size also occurs for the EMd-1
solution and is ≈73%, while the prograde equatorial ISCO
for Kerr can differ by ≈66%.

V. CHARGE CONSTRAINTS FROM THE EHT
M87* OBSERVATIONS

We first consider compact objects with a single “charge,”
and report in the left panel of Fig. 2 the variation in the
shadow radius for various spherically symmetric black hole
solutions, as well as for the RN and JNW naked singular-
ities.3 More specifically, we consider the black-hole

solutions given by Reissner-Nordström (RN) [62],
Bardeen [63,75], Hayward [64,91], Kazakov-Solodhukin
(KS) [66], and also the asymptotically-flat Einstein-
Maxwell-dilaton (EMd-1) with ϕ∞ ¼ 0 and α1 ¼ 1
[67,68,88] solution (see Sec. IV of [36] for further details
on these solutions). For each of these solutions we vary
the corresponding charge (in units of M) in the allowed
range, i.e., RN: 0 < q̄ ≤ 1; Bardeen: 0 < q̄m ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
;

Hayward: 0 < l̄ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
; Frolov: 0 < l̄ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
,

0 < q̄ ≤ 1; KS: 0 < l̄; EMd-1: 0 < q̄ <
ffiffiffi
2

p
, but report

the normalized value in the figure so that all curves are in a
range between 0 and 1. The figure shows the variation in
the shadow size of KS black holes over the parameter range
0 < l̄ <

ffiffiffi
2

p
. Note that the shadow radii tend to become

smaller with increasing physical charge, but also that this is
not universal behavior, since the KS black holes have
increasing shadow radii (the singularity is smeared out on a
surface for this solution, which increases in size with
increasing l̄).
Overall, it is apparent that the regular Bardeen, Hayward,

and Frolov black-hole solutions are compatible with the
present constraints. At the same time, the Reissner-
Nordström and Einstein-Maxwell-dilaton 1 black-hole solu-
tions, for certain values of the physical charge, produce
shadow radii that lie outside the 1-σ region allowed by the
2017 EHTobservations, and we find that these solutions are
now constrained to take values in, 0 < q̄≲ 0.90 and 0 <
q̄≲ 0.95 respectively. Furthermore, the Reissner-Nordström
naked singularity is entirely eliminated as a viable model for
M87* and the Janis-Newman-Winicour naked singularity
parameter space is restricted further by this measurement to
0 < ˆ̄ν≲ 0.47. Finally, we also find that the KS black hole is
also restricted to have charges in the range l̄ < 1.53. In
addition, note that the nonrotating Einstein-Maxwell-
dilaton 2 (EMd-2) solution [70]—which depends on two

FIG. 1. Left: variation in the photon sphere radii for the single-charge nonrotating solutions as a function of the normalized physical
charge. Right: The same as in the left panel but for the ISCO radii. We include also, for comparison, the variation in the Kerr equatorial
prograde and retrograde photon sphere and ISCO radii in the left and right panels respectively.

3While the electromagnetic and scalar charge parameters for
the RN and JNW spacetimes are allowed to take values q̄ > 1 and
0 < ˆ̄ν ≔ 1 − ν̄ < 1 respectively, they do not cast shadows for q̄ >ffiffiffiffiffiffiffiffi

9=8
p

and 0.5 ≤ ˆ̄ν < 1 (see, e.g., Sec. IV D of [36] and
references therein).
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independent charges—can also produce shadow radii that are
incompatiblewith the EHTobservations; wewill discuss this
further below. The two EMd black-hole solutions (1 and 2)
correspond to fundamentally different field contents, as
discussed in [70].
We report in the right panel of Fig. 2 the shadow

areal radius rsh;A for a number of stationary black holes,
such as Kerr [72], Kerr-Newman (KN) [73], Sen [74],
and the rotating versions of the Bardeen and Hayward
black holes [75]. The data refers to an observer
inclination angle of i ¼ π=2, and we find that the
variation in the shadow size with spin at higher
inclinations (of up to i ¼ π=100) is at most about
7.1% (for i ¼ π=2, this is 5%); of course, at zero-spin
the shadow size does not change with inclination. The
shadow areal radii are shown as a function of the
dimensionless spin of the black hole a ≔ J=M2, where
J is its angular momentum, and for representative values
of the additional parameters that characterize the solu-
tions. Note that—similar to the angular momentum for a
Kerr black hole—the role of an electric charge or the
presence of a de Sitter core (as in the case of the
Hayward black holes) is to reduce the apparent size of
the shadow. Furthermore, on increasing the spin para-
meter, we recover the typical trend that the shadow
becomes increasingly noncircular, as encoded, e.g., in
the distortion parameter δsh defined in [57,83] (see
Appendix). Also in this case, while the regular rotating
Bardeen and Hayward solutions are compatible with the
present constraints set by the 2017 EHT observations,
the Kerr-Newman and Sen families of black holes can
produce shadow areal radii that lie outside of the 1-σ
region allowed by the observations.

To further explore the constraints on the excluded
regions for the Einstein-Maxwell-dilaton 2 and the Sen
black holes, we report in Fig. 3 the relevant ranges for these
two solutions. The Einstein-Maxwell-dilaton 2 black holes
are nonrotating but have two physical charges expressed by
the coefficients 0 < q̄e <

ffiffiffi
2

p
and 0 < q̄m <

ffiffiffi
2

p
, while the

Sen black holes spin (a) and have an additional electro-
magnetic charge q̄m. Also in this case, the gray/red shaded
regions refer to the areas that are consistent/inconsistent
with the 2017 EHT observations. The figure shows rather
easily that for these two black-hole families there are large

FIG. 3. Constraints set by the 2017 EHT observations on the
nonrotating Einstein-Maxwell-dilaton 2 and on the rotating Sen
black holes. Also in this case, the gray/red shaded regions refer to
the areas that are 1-σ consistent/inconsistent with the 2017 EHT
observations).

FIG. 2. Left: shadow radii r̃sh for various spherically symmetric black-hole solutions, as well as for the JNW and RN naked
singularities (marked with an asterisk), as a function of the physical charge normalized to its maximum value. The gray/red shaded
regions refer to the areas that are 1-σ consistent/inconsistent with the 2017 EHT observations and highlight that the latter set constraints
on the physical charges (see also Fig. 3 for the EMd-2 black hole). Right: shadow areal radii rsh;A as a function of the dimensionless spin
a for four families of black-hole solutions when viewed on the equatorial plane (i ¼ π=2). Also in this case, the observations restrict the
ranges of the physical charges of the Kerr-Newman and the Sen black holes (see also Fig. 3).
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areas of the space of parameters that are excluded at the 1-σ
level. Not surprisingly, these areas are those where the
physical charges take their largest values and hence the
corresponding black-hole solutions are furthest away from
the corresponding Schwarzschild or Kerr solutions. The
obvious prospect is of course that as the EHT increases the
precision of its measurements, increasingly larger portions
of the space of parameters of these black holes will be
excluded. Furthermore, other solutions that are presently
still compatible with the observations may see their
corresponding physical charges restricted.

VI. CONCLUSIONS

As our understanding of gravity under extreme regimes
improves, and as physical measurements of these regimes
are now becoming available—either through the imaging of
supermassive black holes or the detection of gravitational
waves from stellar-mass black holes—we are finally in the
position of setting some constraints to the large landscape
of non-Kerr black holes that have been proposed over the
years. We have used here the recent 2017 EHTobservations
of M87* to set constraints, at the 1-σ-level, on the physical
charges—either electric, scalar, or angular momentum—of
a large variety of static (nonrotating) or stationary (rotating)
black holes.
In this way, when considering nonrotating black holes

with a single physical charge, we have been able to rule out,
at 68% confidence levels, the possibility that M87* is a
near-extremal Reissner-Nordström or Einstein-Maxwell-
dilaton 1 black hole and that the corresponding physical
charge must be in the range, RN: 0 < q̄ ≲ 0.90 and EMd-1:
0 < q̄≲ 0.95. We also find that it cannot be a Reissner-
Nordström naked singularity or a JNW naked singularity
with large scalar charge, i.e., only 0 < ˆ̄ν≲ 0.47 is allowed.
Similarly, when considering black holes with two physical
charges (either nonrotating or rotating), we have been able
to exclude, with 68% confidence, considerable regions of
the space of parameters in the case of the Einstein-
Maxwell-dilaton 2, Kerr-Newman and Sen black holes.
Although the idea of setting such constraints is an old one
(see, e.g., [29–36,51,54,55]), and while there have been
recent important developments in the study of other
possible observational signatures of such alternative sol-
utions, such as in X-ray spectra of accreting black holes
(see, e.g., [92]) and in gravitational waves [88,93–97], to
the best of our knowledge, constraints of this type have not
been set before for the spacetimes considered here.
As a final remark, we note that while we have chosen

only a few solutions that can be seen as deviations from the
Schwarzschild/Kerr solutions since they share the same
basic Einstein-Hilbert-Maxwell action of GR, the work
presented here is meant largely as a proof-of-concept
investigation and a methodological example of how to
exploit observations and measurements that impact the
photon region. While a certain degeneracy in the shadow

size induced by mass and spin remains and is inevitable,
when in the future the relative difference in the posterior for
the angular gravitational radius for M87* can be pushed to
≲5%, we should be able to constrain its spin, when
modeling it as a Kerr black hole. Furthermore, since this
posterior implies a spread in the estimated mass, one can
expect small changes in the exact values of the maximum
allowed charges reported here. Hence, as future observa-
tions—either in terms of black-hole imaging or of gravi-
tational-wave detection—will become more precise and
notwithstanding a poor measurement of the black-hole
spin, the methodology presented here can be readily
applied to set even tighter constraints on the physical
charges of non-Einsteinian black holes.
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APPENDIX: DISTORTION PARAMETERS

Since the boundary of the shadow region is a closed curve
as discussed above, one can define various characteristic
features for a quantitative comparison [80,83]. Out of the
many possible measures of distortion of this curve from a
perfect circle discussed inRef. [83], we use here the simplest
one which was originally introduced in Ref. [80], namely

δsh ¼
αl;c − αl
rsh;c

; ðA1Þ

where rsh;c is the radius of the circumcircle passing through
the two points (since the images here are symmetric
about the α-axis) with coordinates ðαr; 0Þ and ðαt; βtÞ, which
are the rightmost and topmost points of the shadow curve,
and is given as [80],

rsh;c ¼
ðαt − αrÞ2 þ β2t

2jαt − αrj
; ðA2Þ

with ðαl; 0Þ and ðαl;c; 0Þ the leftmost points of the shadow
curve and of the circumcircle respectively (see Fig. 3
of [57]).
In Fig. 4 we display the distortion parameter δsh for the

shadow curves of various rotating black holes, for an
equatorial observer, as an additional simple comparable
characteristic. We note also that the deviation of δsh from
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zero is insignificant for observer viewing angles that are
close to the pole of the black hole, as anticipated (not
displayed here).

As a concluding remark we note that the EHT bounds on
the size of the shadow of M87*, as discussed above and
displayed in Eq. (14), do not impose straightforward
bounds on its shape. In particular, we can see from
Fig. 4 that the rotating Bardeen black hole with q̄m ¼
0.25 for high spins can be more distorted from a circle than
a Kerr black hole but still be compatible with the EHT
measurement (see Fig. 2). On the other hand, even though
we are able to exclude Sen black holes with large
electromagnetic charges (see, e.g., the Sen curve for q̄m ¼
1.25 in the right panel of Fig. 2) as viable models for M87*,
its shadow is less distorted from a circle than that of an
extremal Kerr black hole (see Fig. 4). In other words, the
examples just made highlight the importance of using the
appropriate bounds on a sufficiently robust quantity when
using the EHT measurement to test theories of gravity.
Failing to do so may lead to incorrect bounds on the black-
hole properties. For instance, Ref. [54] is able to set bounds
on the parameter space of the uncharged, rotating Hayward
black hole by imposing bounds on the maximum distortion
of the shape of its shadow boundaries, albeit using a
different measure for the distortion from a circle [see
Eq. (58) there], whereas we have shown that this is not
possible, upon using the bounds 4.31M − 6.08M for the
size of their shadows (cf. right panel of Fig. 2).
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