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A B S T R A C T

This paper addresses two shortcomings of the data-driven stochastic fundamental diagram for freeway traffic. The
first shortcoming is related to the least-squares methods which have been widely used in establishing traffic flow
fundamental diagrams. We argue that these methods are not suitable to generate the percentile-based stochastic
fundamental diagrams, because the results generated by least-squares methods represent weighted sample mean,
rather than percentile. The second shortcoming is widespread use of independent modeling methodology for a
family of percentile-based fundamental diagrams. Existing methods are inadequate to coordinate the fundamental
diagrams in the same family, and consequently, are not in alignment with the basic rules in probability theory and
statistics. To address these issues, this paper proposes a holistic modeling framework based on the concept of
mean absolute error minimization. The established model is convex, but non-differentiable. To efficiently
implement the proposed methodology, we further reformulate this model as a linear programming problem which
could be solved by the state-of-the-art solvers. Experimental results using real-world traffic flow data validate the
proposed method.
1. Introduction Modeling the stochastic fundamental diagram is an active area of
Traffic fundamental diagram has been considered as the basis of
traffic flow theory (Edie, 1961; Greenberg, 1959; Greenshields, 1935;
Underwood, 1961). It describes the relationship between two of the three
basic traffic flow parameters: traffic flow (veh/h), speed (km/h), and
traffic density (veh/km), and the third one is directly obtained from the
fundamental equation of traffic. The seminal work in this field was
proposed by Greenshields (1935), who first established a linear model to
describe the macroscopic relationship between speed and density. Since
then, numerous extensions have been made to better reflect the traffic
flow features, e.g., Greenberg (1959), Underwood (1961), Newell
(1961), Kerner and Konh€auser (1994), Castillo and Benítez (1995a),
Castillo and Benítez (1995b), Li and Zhang (2011), Wu et al. (2011),
Keyvan-Ekbatani et al. (2012), Keyvan-Ekbatani et al. (2013), Wang et al.
(2011), Wang et al. (2013), Qu et al. (2015), and Ni et al. (2016). The
main purpose of these studies is to develop an empirically accurate
single-regime model with a small number of meaningful variables for the
sake of mathematical elegance and analytical simplicity.
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research. Stochastic fundamental diagrams can better depict the traffic
flow relations which are essential to develop advanced traffic flow
models and traffic management strategies (Zhou and Zhu, 2020). In
existing studies, the stochasticity is mainly modeled by adding noise to
existing deterministic relations (Wang et al., 2013; Muralidharan et al.,
2011) or deriving the probabilistic macroscopic relations from micro-
scopic car-following models (Jabari et al., 2014). Recently, data-driven
approaches have attracted attention (Fan and Seibold, 2013; Nikoli�c
et al., 2016, 2019; Qu et al., 2017). Compared to other approaches,
data-driven approaches can better exploit the features of traffic flow from
real-world data which is obtainable through a variety of facilities, e.g.,
sensors, and probe vehicles. Nikoli�c et al. (2016) and Nikoli�c et al. (2019)
study the data-driven probabilistic modeling approach for pedestrian
speed-density relations. Fan and Seibold (2013) and Qu et al. (2017) are
only published research works that use data-driven approaches to
generate percentile-based speed-density relations for freeway traffic. Fan
and Seibold (2013) propose two data fitted models based on a specific
traffic flow model. Qu et al. (2017) propose a general percentile-based
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Fig. 1. GA400 speed-density sample.
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data-driven approach to establish stochastic speed-density relations that
applies to a class of traffic flow models. The percentile-based funda-
mental diagrams are generated through a weighted least-squares pro-
gramming problem by assigning different weights to the squared errors
in the objective function. Then, for any given density, the corresponding
percentile-based speeds can be calculated through the calibrated
percentile-based fundamental diagrams. Based on the percentile-based
speeds, the cumulative distribution function (CDF) and probability den-
sity function (PDF) of speeds at any given density are obtainable.
2

In this study, we identify two major limitations in existing percentile-
based approaches for freeway traffic. First, using least-squares technique
leads to less accurate percentile-based fundamental diagrams. The least-
squares technique is widely used in transportation studies to reflect a
central tendency of a probability distribution. However, the results
estimated by the least-squares technique represent the weighted sample
mean, rather than sample percentile (details will be described in Section
2.1), and therefore, conflict with the pursuit of the percentile-based
fundamental diagrams. Moreover, although sample mean could reflect



Fig. 2. Loss function.ρτðuÞ
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the central tendency, its performance is not good under a skewed dis-
tribution. The value of sample mean can be easily skewed by the outliers,
which results in an unrealistic estimation of central tendency. We note
that the distributions of speed are generally skewed. Fig. 1(a) shows the
speed-density sample collected by loop detectors from 76 stations on
Georgia State Route 400 for continuous observation of one year (referred
to as GA400 dataset hereafter). This dataset has been widely used in
calibrating and validating traffic flow fundamental diagrams (Wang
et al., 2011, 2013; Qu et al., 2015, 2017; Zhang et al., 2018). Given a
density, the empirical distribution of speed is obtainable. Fig. 1(b)–(e)
show four specific empirical distributions of speed when density equals
10, 20, 30, and 40 (veh/km), which demonstrate the distributions of
speed are typically left-skewed. Under this situation, median, i.e., 50th
percentile, is a better measurement of the central tendency, because the
value of percentile does not depend on all the values in the sample and is
unlikely to be skewed by the outliers. When some of the values are more
extreme, the effect on the median is smaller. Therefore, to generate the
percentile-based fundamental diagrams, a new mathematical modeling
approach is needed to replace the conventionally adopted least-squares
methods.

Second, the proposed percentile-based calibration approach may
generate unrealistic probability estimations. The purpose of percentile-
based calibration is to generate the distribution of the random variable
of speed. A natural way is to set percentile as 5th, 10th, 15th,… 95th, and
for each specific percentile, to solve one optimization model to generate a
speed-density curve. However, due to scattering features of speed-density
plots, the generated speed-density curves can intersect with each other,
e.g., the generated 5th percentile of speed is larger than the generated
10th percentile. This phenomenon violates the basic rule defined in
probability theory and statistics, i.e., the generated 5th percentile speed
should be no larger than the 10th percentile speed.

1.1. Objectives and contributions

The objective of this study is to propose a new methodology to address
these two shortcomings that exist in the aforementioned data-driven sto-
chastic fundamental diagram modeling approaches. In particular, to
overcome the first issue, we apply the percentile regression technique in
statistics to generate sample percentiles from a given empirical distribu-
tion. Then, we proceed to propose a basic model to generate the percentile-
based speed-density relations. To address the second issue, the basic model
is further extended to a holistic model that coordinates a family of speed-
density curves. A transformation is proposed to transform the proposed
holistic model into the linear program so that it can be addressed effi-
ciently by the state-of-the-art solvers. Numerical experiments based on
GA400 data validate the proposed methodology.

The rest of the paper is organized as follows. In Section 2, we present a
new data-driven methodology to establish the percentile-based stochas-
tic fundamental diagrams. A new general modeling framework is pre-
sented which is generalizable to deal with the stochasticity of traffic flow
using a variety of traffic flow models. This is followed by a case study in
Section 3 to demonstrate the applicability and validity of the proposed
methodology. Section 4 concludes this study.

2. Methodology

2.1. Percentile via weighted mean absolute error minimization

The percentile-based speed-density model has been proposed to offer
a comprehensive picture of the speed-density relationship and reflect the
stochasticity of fundamental diagrams. Conventionally, the percentile-
based speed-density curves are calculated based on the concept of
least-squares. In this study, we note that the least-squares method could
result in biased estimations for percentile-based speed-density models.
This is because in least-squares methods, the expected loss function is
defined by squared errors. Then, the solution of these methods is the
3

weighted sample mean, rather than the sample percentile. We take the
samplemean andmedian as an example to illustrate this issue. It has been
shown in statistics (Davino et al., 2013) that the sample mean is gener-
ated from the mean squared error (MSE) minimization problem, while
the sample median is calculated from the mean absolute error (MAE)
minimization problem. To make the paper self-contained, we briefly
introduce the relevant theories below.

Consider a random speed V with cumulative distribution function
FV ðvÞ ¼ PðV � vÞ. The mean v of random speed V can be calculated by
solving the following MSE minimization problem.

min vEðvÞ¼ min v

Z
ℝ
ðv� vÞ2dFV ðvÞ: (1)

The objective function EðvÞ is defined as a Lebesgue integral of
squared errors with respect to (w.r.t.) the cumulative distribution func-
tion FVðvÞ. Differentiating problem (1) w.r.t. v, we have:

0¼
Z
R

ðv� vÞdFV ðvÞ¼
Z
R

vdFV ðvÞ� v
Z
R

dFV ðvÞ¼
Z
R

vdFV ðvÞ � v: (2)

Re-arranging Eq. (2) gives:

v¼
Z
ℝ
vdFV ðvÞ: (3)

Eq. (3) is exactly the definition of the mean of random variable V . Let
ðV1…VnÞ be independent, identically distributed real random variables
with the common cumulative distribution function FVðvÞ, and 1A be the
indicator of event A. Let the cumulative distribution function FV ðvÞ be

replaced by the empirical distribution function bFnðvÞ:

bFnðvÞ¼ 1
n

Xn
i¼1

1Vi�v (4)

where n denotes the total number of observations in the sample. The
corresponding MSE minimization problem (1) becomes:

min vbEðvÞ¼ min v
1
n

Xn
i¼1

ðvi � vÞ2 (5)

where vi is the observation of random variable Vi. The objective function

of (5), denoted as bEðvÞ, becomes the sum of squared errors divided by the
size of sample. The optimization problem (5) meets the definition of
ordinary least squares problem. The optimal solution of (5) is also equal
to the definition of the sample mean 1

n

Pn
i¼1vi. Therefore, the least-

squares methods are suitable to estimate the mean speed.
Toestimatethepercentiles,theMAEminimizationisneeded.Let~vbethe

100τth percentile of the random speedV ,~v ¼ F�1
V ðτÞ ¼ inffv : FV ðvÞ� τg,

τ 2 ð0;1Þ. Define the loss functionasρτðuÞ ¼u �ðτ �1ðu<0ÞÞ,where u is any
realnumberand1ðu<0Þ is an indicator:



Fig. 3. An illustrative example (unit of speed: km/h).
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1ðu<0Þ :¼ 1; if u < 0
0; if u � 0:

(6)
1 Note that although we call them “outliers”, they are not wrong records and
should not be simply deleted. For instance, in transportation engineering, these
“outliers” may represent extremely congested situations and should not be
removed.
�
As shown in Fig. 2, ρτðuÞ is a piecewise linear function. In this study, u

is the residual between v and ~v, u ¼ v� ~v. Given any τ 2 ð0;1Þ, the
positive orthant part of ρτðuÞ is described by a linear function with the
slope of τ and intercept of 0, and the negative orthant part of ρτðuÞ is
described by another linear function with the slope of τ� 1 and intercept
of 0.

A specific 100τth percentile ~v can be obtained by minimizing the MAE
of u.

min
u
EτðρτðuÞÞ¼min

~v

Z
ℝ
ρτðv�~vÞdFV ðvÞ

¼ min
~v

�
ðτ� 1Þ

Z
�∞

~vðv�~vÞdFV ðvÞþ τ
Z

~v
þ∞ðv�~vÞdFV ðvÞ

�
(7)

where EτðρτðuÞÞ is a Lebesgue integral of ρτðuÞ w.r.t. the cumulative
distribution function FV ðvÞ. Differentiating model (7) w.r.t. ~v, we have:

0¼ð1� τÞ
Z
�∞

~vdFV ðvÞ� τ
Z

~v
þ∞dFV ðvÞ¼FV ð~vÞ � τ: (8)

Re-arranging Eq. (8) gives:

τ¼FV ð~vÞ: (9)

Hence, ~v ¼ F�1
V ðτÞ which meets the definition of 100τth percentile of

random speed V . When the FV ðvÞ is replaced by the empirical distribution
function (4), The MAE minimization problem (7) becomes:

min
u
bEτðρτðuÞÞ¼min

u

1
n

Xn
i¼1

ρτðuÞ ¼ min
~v

1
n

"
ðτ� 1Þ

X
vi<~v

ðvi �~vÞþ τ
X
vi�~v

ðvi �~vÞ
#
:

(10)

The objective function bE τðρτðuÞÞ becomes the sum of ρτðuÞ divided by
the size of sample. The optimal solution ~v of the MAE minimization
problem (10) is the sample 100τth percentile. The intuition is the same as
for the population quantile. Given that τ is taken as weight w.r.t. the
positive part of errors and τ � 1 is the weight w.r.t. the negative part of
errors, the optimization problem (10) is actually a weighted mean ab-
solute error, i.e. WMAE, minimization problem. In this regard, the notion
of an ordering of the sample observations or the problem of finding the
sample 100τth percentile is equivalent to the WMAE minimization
problem. Therefore, we can conclude that the WMAE is suitable to esti-
mate the percentiles.

2.1.1. An illustrative example
We use a small example in Fig. 3 to illustrate the difference between

the mean squares and absolute error minimizations. Suppose x is a set of
speed (km/h) observed from the same density level, that is x ¼
f30;96;100;100;103;103;103; 110; 112g. We take the sample mean
and median as an example to obtain some insights. The corresponding
mean squares minimization problem can be written as:
4

minx
1
9

�ðx�30Þ2þðx�96Þ2þ2ðx�100Þ2þ3ðx�103Þ2þðx�110Þ2þðx�112Þ2�:

(11)

The optimal solution of (11) is x¼ 95.2, which equals the sample
mean of x. The mean absolute error minimization problem is written as:

min
~x

1
9
½j~x� 30j þ j~x� 96j þ 2j~x� 100j þ 3j~x� 103j þ j~x� 110j þ j~x� 112j�:

(12)

The optimal solution of (12) is ~x ¼ 103, which equals the sample
median of x. The results demonstrate the least-squares method reports
the mean, rather than the percentile of a given distribution. More
importantly, Fig. 3 reveals that the mean could be skewed significantly
by the outliers.1 The mean x is lower than all of the speed points except
for one since the outlier is so far from the rest of the distribution that has
skewed the mean. We note that this phenomenon is common in practice,
as shown in Fig. 1. In this situation, median is more robust to estimate the
central tendency with a skewed distribution. The outliers would not
change the median, since the median is not related to the specific value of
outliers. Therefore, a new percentile-based stochastic fundamental dia-
gram should be established based on the WMAE.
2.2. Percentile-based stochastic speed-density models

2.2.1. Basic percentile-based stochastic speed-density model
Section 2.1 shows that the percentiles can be expressed as the solution

of a WMAE minimization problem. In this section, we apply this idea to
calibrate a family of percentile-based speed-density curves. We use
Greenshield's linear model as an example to explain this new model.
Suppose the observed data is ðkdata; vdataÞ ¼ fðki; viÞ; i¼ 1;…; ng and ~vτðkÞ
is the calibrated 100τth percentile of speed when density equals k. The
free-flow speed vτf and the jam density kτjam are two type parameters to be
calibrated. The objective of the new model is to calibrate the 100τth
percentile-based speed-density curve. Mathematically, τ is defined as:

τ¼
Pn

i¼1gτðki; viÞPn
i¼1gτðki; viÞ þ

Pn
i¼1hτðki; viÞ

(13)

and

gτðki; viÞ¼
�
~vτðkiÞ � vi;~vτðkiÞ > vi
0; otherwise

(14)

hτðki; viÞ¼
�
vi � ~vτðkiÞ;~vi � vτðkiÞ
0; otherwise:

(15)



Fig. 4. Family of speed-density curves.
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The 100τth percentile-based speed-density calibration model can be
formulated as follows:

[M1]

min
kjam ;vf

bE�ρτ�kjam; vf ��¼ min
kjam ;vf

1
n

"
ð1� τÞ

Xn
i¼1

ϖigτðki; viÞþ τ
Xn
i¼1

ϖihτðki; viÞ
#
(16)

subject to

~vτðkiÞ¼ vτf

 
1� ki

kτjam

!
; i¼ 1;…; n (17)

vτf ; k
τ
jam > 0 (18)

and constraints (14), (15), where ϖi is the weight for observation ðvi; kiÞ
which can handle the sample selection bias and improve the calibration
accuracy for some models (see Qu et al., 2015 for a method of deter-
mining ϖi). The objective (16) minimizes the WMAE of vi � ~vτðkiÞ.
Constraints (17) define the Greenshield's model. Constraints (14) and
(15) represent the absolute error between vi and ~vτðkiÞ. Constraints (18)
are non-negative constraints.

It can be shown according to quantile regression theory (Davino et al.,
2013) that Eq. (13) is satisfied at the optimal solution to the model
(14)–(18) and therefore we can solve themodel (14)–(18) to calibrate the
100τth percentile-based speed-density curve. This means that the
fundamental diagram calibrated by model (16)–(18) is the 100τth
percentile-based speed-density curve based on Greenshield's model. By
changing τ between 0 and 1, the stochastic fundamental diagram is
obtainable. Similarly, if we replace Eq. (17) by other functions, the cor-
responding optimization models can be established to generate the
100τth percentile-based speed-density curve w.r.t. other speed-density
models.

2.2.2. Holistic percentile-based stochastic speed-density model
The basic percentile-based stochastic speed-density model can obtain

the distribution of speed. However, different curves may intersect at
some points (unless all the lines are parallel), which means for a partic-
ular density k, the predicted lower, e.g., the 5th percentile of ~v, is larger
than the predicted higher, e.g. 10th percentile, which is logically wrong.
To overcome this problem, we set a domain of interest ½kmin; kmax� a priori
and propose a new holistic percentile-based stochastic speed-density
model. Within the domain of interest, a set of constraints is imposed on
the percentile-based curves to ensure the predicted lower percentile
value is no larger than that of the predicted higher percentile. For the
freeway traffic, the traffic states we aim to study range from the free flow
to the traffic jam. Therefore, the lower bound of the domain equals zero,
kmin ¼ 0 and the upper bound of the domain is the jam density, kmax ¼
kjam, which can be determined empirically from the speed-density plots.
Let m be the number of percentiles to be calibrated, τ ¼ ðτ1;…τmÞ be the
vector of τi, and ~v ¼ ð~vτ1 ;…;~vτm Þ be the vector of calibrated percentile-
based speed-density models. For arbitrary i 2 f1;…; mg, ~vτi represents
100τith percentile-based speed-density model. The vectors of jam density
kjam ¼ ðk1jam;…; kmjamÞ and free-flow speed vf ¼ ðv1f ;…; vmf Þ are the pa-
rameters to be calibrated. Then, the holistic percentile-based stochastic
speed-density model can be formulated as follows:

[M2]

min
kjam ;vf

Z
�
kjam; vf

�¼ min
kjam ;vf

(
1
n

"Xm
j¼1

 �
1� τj

�Xn
i¼1

ϖigτj ðki; viÞ
!

þ
Xm
j¼1

 
τj
Xn
i¼1

ϖihτj ðki; viÞ
!#) (19)

subject to
6

~vτj ðkminÞ�~vτjþ1 ðkminÞ;8j ¼ 1;…m� 1 (20)
~vτj ðkmaxÞ�~vτjþ1 ðkmaxÞ; 8j ¼ 1;…m� 1 (21)

~vτj ðkiÞ¼ vjf

 
1� ki

kjjam

!
;8i¼ 1;…; n; j¼ 1;…;m (22)

gτj ðki; viÞ¼
�
~vτj ðkiÞ � vi;~vτj ðkiÞ > vi
0; otherwise

;8i¼ 1;…; n; j¼ 1;…;m (23)

hτj ðki; viÞ¼
�
vi � ~vτj ðkiÞ; vi � ~vτj ðkiÞ
0; otherwise

;8i¼ 1;…; n; j¼ 1;…;m (24)

vf ;kjam > 0: (25)

The objective (19) integrates a family of speed-density models ~vτj ;8j ¼
1;…;m. Constraints (20) and (21) ensure the calibrated speed-density
model vτj is smaller than vτjþ1 on the interval ½kmin; kmax�. Constraints
(22) represent a family of speed-density model with unknown parame-
ters. Constraints (23) and (24) define the absolute error function. Con-
straints (25) are non-negative constraints.

2.3. Model transformation

The proposed [M2] cannot be directly addressed. Therefore, we
proceed to reformulate it as a linear programming problem so that it can
be efficiently solved. We introduce 2nm artificial variables
p ¼ ðpij; i¼ 1;…; n; j¼ 1;…;mÞ and q ¼ ðqij; i¼ 1;…; n; j¼ 1;…;mÞ to
represent the positive and negative parts of the vector of errors. Then,
[M2] is equivalent to:

[M3]

min
kjam ;vf ;p;q

¼
(
1
n

"Xm
j¼1

 �
1� τj

�Xn
i¼1

ϖipij

!
þ
Xm
j¼1

 
τj
Xn
i¼1

ϖiqij

!#)
(26)

subject to

~vτj ðkiÞ� pij þ qij ¼ vi;8i ¼ 1;…; n; j ¼ 1;…;m (27)

pij; qij � 0;8i ¼ 1;…; n; j ¼ 1;…;m (28)

and constraints (20), (21), (22), and (25). Constraints (27) are the
complementary slackness condition. Constraints (28) are non-negative
constraints. [M3] is a linear programming problem, and therefore, can
be solved by state-of-the-art solvers.

We note that [M3] is a general modeling framework that can be
extended to various cases, such as the nonlinear models by some line-
arization methods (Qu et al., 2017).

3. Case study

The GA400 data has been widely used in the research of traffic flow
fundamental diagram, e.g., Wang et al. (2011), Wang et al. (2013), Qu
et al. (2015), Qu et al. (2017), and Zhang et al. (2018). As a follow up
research, we use the same data set as these studies. By selecting different
percentile values α, a family of percentile-based speed-density curves can
be generated through [M1]. Fig. 4 shows the curves w.r.t. the Green-
shields model (1935), Greenberg model (1959), Underwood model
(1961), and Northwestern model (1967). Weights are considered during
the calibration of Greenberg model to improve the performance (Qu
et al., 2015). The red dots are the GA400 data. The thick solid curve
represents the models which percentile value α is equal to 50. The other
dash curves represent speed-density models with respect to α ¼ 2, 5, 10,
15, 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 98.

Based on these percentile-based curves, the stochastic fundamental



Fig. 5. Generated CDF of Underwood model.

Fig. 6. Family of speed-density curves.
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diagrams can be established accordingly for the entire range of traffic
conditions. For any given density k, we can obtain the corresponding
percentile-based speeds. Then, the CDF and PDF of speeds at a given
density k can be derived. However, as mentioned above, the drawback of
the basic percentile-based stochastic speed-density model is also obvious.
7

Fig. 4 shows that the predicted speed-density curves of Greenshields,
Greenberg, Underwood, and Northwestern model intersect at some
points on the density interval [0, 145]. These intersections are high-
lighted in the right-side figures. For a particular density k within this
interval, the predicted lower percentile of speed is larger than the



Fig. 7. Generated CDF of integrated Underwood model.
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predicted higher percentile, which is logically wrong. Let us take the
Underwood model as an example. Fig. 5 shows the generated CDF graph
turns around as speed increases. This phenomenon implies that the
generated PDF graph is negative (less than zero) within this range.

To address this issue, we proceed to apply the holistic percentile-
based stochastic speed-density model to generate the speed-density
curves. The domain of interest is set on the interval [0, 145] to ensure
the generated CDF is monotonically increasing at any given density.
Fig. 6 presents the generated curves w.r.t. the Greenshields, Greenberg,
Underwood, and Northwestern model. The results show that the inte-
grated model can reasonably solve this issue, the generated curves no
longer interact with each other. Fig. 7 further shows that the generated
CDF of Underwood curves becomes monotonically increasing, which
implies this issue has been solved.

4. Conclusions

In this paper, we propose a new methodology to calibrate stochastic
traffic flow fundamental diagrams. We first develop a basic model to
generate the percentile-based speed-density relations, and then propose a
holistic modeling framework to overcome unrealistic quantities gener-
ated by the basic model. A set of constraints are imposed on the
percentile-based fundamental diagrams to ensure the generated CDF at
any given density is monotonically increasing. The proposed model is
then transformed into a linear programming problem by introducing the
artificial variables. By selecting different percentile values, the speed
distribution at any given density can be generated. The proposed meth-
odology is validated in the numerical experiment. Compared with pre-
vious methods, the proposed modeling approach is more accurate and
reasonable. The family of percentile-based fundamental diagrams is able
to depict a variety of traffic phenomena, such as the diversity among
drivers with different perceptions, responses, and driving habits, and
transportation problems (Wang and Meng, 2012; Qi et al., 2021).
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