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A B S T R A C T

Human driven vehicles (HDVs) with selfish objectives cause low traffic efficiency in an un-signalized intersection.
On the other hand, autonomous vehicles can overcome this inefficiency through perfect coordination. In this
paper, we propose an intermediate solution, where we use vehicular communication and a small number of
autonomous vehicles to improve the transportation system efficiency in such intersections. In our solution, two
connected autonomous vehicles (CAVs) lead multiple HDVs in a double-lane intersection in order to avoid
congestion in front of the intersection. The CAVs are able to communicate and coordinate their behavior, which is
controlled by a deep reinforcement learning (DRL) agent. We design an altruistic reward function which enables
CAVs to adjust their velocities flexibly in order to avoid queuing in front of the intersection. The proximal policy
optimization (PPO) algorithm is applied to train the policy and the generalized advantage estimation (GAE) is
used to estimate state values. Training results show that two CAVs are able to achieve significantly better traffic
efficiency compared to similar scenarios without and with one altruistic autonomous vehicle.
1. Introduction

The connected autonomous vehicle (CAV) with the ability of
communication, coordination and autonomous driving has shown sig-
nificant potentials of improving transportation systems (Rios-Torres and
Malikopoulos, 2016; Li et al., 2017). In recent years, it has been applied
to longitudinal velocity and lane changing maneuvers (Bahram, 2017),
car-following (Wei et al., 2019), traffic smoothing (Kamal et al., 2016;
Keskin et al., 2020), bottleneck decongestion (Vinitsky et al., 2018b),
roundabout (Zhao et al., 2018), unsignalized intersection with only CAVs
(Ahn and Del Vecchio, 2016; Azimi et al., 2014; Guney and Raptis, 2020;
Campos et al., 2014; Hafner et al., 2013; Zhang et al., 2017) and
un-signalized intersection with mixed traffics (both CAVs and human
driven vehicles (HDVs)) (Vinitsky et al., 2018a). The objective of traffic
efficiency optimization is realized by combinatorial optimization (Bah-
ram, 2017), analytical control (Zhao et al., 2018; Malikopoulos et al.,
2018; Hafner et al., 2013; Zhang et al., 2017), mixed integer linear
programming (Ahn and Del Vecchio, 2016), protocol-based control
(Azimi et al., 2014), scheduling-based optimization (Guney and Raptis,
2020), model predictive control (MPC) (Kamal et al., 2016; Keskin et al.,
2020; Wei et al., 2019) and deep reinforcement learning (DRL) (Vinitsky
et al., 2018a,b). DRL makes a series of decisions based on the observation
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of environment states, in order to maximize the expected long-term
reward, and has been applied to games (Silver et al., 2018), robotics
(Kober et al., 2013) and resource allocation for wireless networks (Ye
et al., 2019; Lee et al., 2019). Relevant to our context, DRL has also been
applied to CAV control in a signalized intersection (Yang et al., 2017), an
unsignalized single-lane intersection with desired speed as objective
(Kheterpal et al., 2018) lane changing behavior (Wang et al., 2018),
roundabout (Jang et al., 2019).

In this paper, we consider the application of CAVs in mixed traffics,
i.e., the traffic flow comprises both CAVs and HDVs, which is more
plausible in the foreseeable future than pure CAV traffic flow. Unlike
autonomous vehicles that maximize its own benefit (e.g., safety, effi-
ciency and comfort), CAVs with altruistic objectives influence adjacent
HDVs with their behavior in order to optimize the overall traffic flow. In
particular, we consider a two-lane unsignalized intersection with mixed
traffic. Two fleets are placed on the two lanes and each fleet is led by a
CAV. The objective is to avoid queuing in front of the intersection by
cooperation of the two CAVs. Since there are two CAVs leading the two
fleets, cooperation between the two CAVs is required to achieve the
objective and the approaches in the existing literature (e.g., desired
speed) do not apply to this scenario. In this study, we expand the figure-
eight scenario presented in (Vinitsky et al., 2018a) to two lanes and the
21 November 2021
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Fig. 1. Considered scenario and the initial vehicle positions. Red vehicles are
CAVs whereas white ones are HDVs. We denote the bottom red car CAV 0 and
the right red car CAV 1. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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coordinated behaviors of the two CAVs are evaluated with respect to the
overall traffic efficiency. To the authors' best knowledge, multi-lane
traffic optimization with cooperation between the CAVs in an unsignal-
ized intersection with mixed traffic has not been studied before. We
expect that this work would be another step towards efficient
mixed-autonomy urban traffic optimized by CAVs with altruistic control
strategy. DRL is applied to determine the CAVs’ behavior. We show that
DRL works for our scenario as well with properly defined state, action
and reward that eliminate local optima during the training.

2. Scenario description

We consider a two-lane unsignalized intersection (one lane in each
direction) as shown in Fig. 1, which appears frequently in reality. In order
to make the scenario close such that vehicles stay in the scenario and pass
through the intersection again and again, entries and exits are connected
with ring-shaped roads, such that vehicles can cross the intersection
multiple times.

Without traffic light, the human driving behavior would result in a
low efficiency, as will be shown later. In this paper, we aim to improve
the traffic efficiency with CAVs powered by the DRL algorithm. Unlike
the “selfish” autonomous vehicles, the objective of the CAVs is to opti-
mize the whole traffic flow instead of their own benefit. Two CAVs are
available in the considered scenario. They are assumed to be able to
communicate with each other and coordinate their behaviors, which are
shown as the red vehicles in Fig. 1. The HDVs are depicted as white
vehicles, which imitate the human driving behavior with the intelligent
driver model (IDM) Treiber et al. (2000).

The scenario, vehicle dynamics, and the reinforcement learning (RL)
algorithms are implemented based on the Flow project Wu et al. (2017).
In our configuration, the Flow project uses simulation of urban mobility
(SUMO) Behrisch et al. (2011) as traffic simulator and RLlib Liang et al.
(2017) as DRL algorithm implementation.

3. Algorithm

3.1. Review of RL

DRL addresses the problem of optimal actions in a dynamic envi-
ronment with the objective of maximizing the cumulative reward of all
time steps. Formally, the RL problem can therefore be formulated as

max
θ

E

�PH
t¼0 γ

trt

!

subject to rt ¼ rðst; atÞ;
stþ1 ¼ f ðst ; atÞ;
at ¼ πθðstÞ;

(1)

where γ 2 [0, 1] is a discounting factor, rt is the reward at time step t and
is decided by state st and action at at the same time step (the first
constraint), action at updates state st to state stþ1 at the next time step (the
second constraint), at is decided by policy π parameterized by θ given
state st and H is the horizon, i.e., the number of time steps in an episode.

If reward function and system dynamics are unknown to the agent,
the problem is model-free RL. We choose the state-of-the-art stochastic
policy optimization algorithms proximal policy optimization (PPO) and
value estimation algorithm generalized advantage estimation (GAE) for
actor and critic, respectively. The reason to choose PPO is that it realizes
a stable training process with the trust region and requires reasonable
computation effort. GAE is applied because of its flexible bias-variance
tradeoff.

PPO Schulman et al. (2017) optimizes the policy in an iterative
manner. In each iteration, data samples are collected with the old policy
and the new policy is improved in the proximal region of the old policy
(called trust region). It is proved that the expected reward is guaranteed
2

to improve if the Kullback-Leibler (KL) divergence between the old and
new policies is smaller than a certain threshold Schulman et al. (2015a).
Based on this, trust region policy optimization (TRPO) Schulman et al.
(2015a) uses Lagrange multiplier to optimize the policy subject to the KL
divergence constraint to realize a stable training. On the other hand, PPO
introduces a loss function, which has a nonzero gradient only in the
proximal region and hence confines the optimization region. It achieves
similar performance with lower computational complexity and is there-
fore chosen in this paper.

The GAE Schulman et al. (2015b) is applied as critic to estimate state
value. The state value Vπ(s) is the expected (discounted) sum of rewards
given current state s and assuming the agent behaves according to policy
π. Furthermore, the Q-value Qπ(s, a) is the expected (discounted) sum of
rewards given current state s and corresponding action a and assuming
the agent behaves according to policy π thereafter. The difference be-
tween Qπ(s, a) and vπ(s) is defined as advantage Aπ(s, a), which is used to
compare action a and policy π. In this paper, we apply GAE Schulman
et al. (2015b) to estimate the advantage.

3.2. Definitions of state and action

The state definition should contain all information needed to make
the optimal decision. Besides, it should be directly correlated with the
reward, making the learning process easier. Intuitively, the CAVs need
their own positions and velocities as well as positions and velocities of
vehicles in front of the intersection in both entries (from bottom and from
right in Fig. 1). Other vehicles are far away from the intersection and
have little impact on the CAVs’ decision. Based on these considerations,
we define the state as

s ¼ �
xA0 ; x

A
1 ; v

A
0 ; v

A
1 ; x

B
first; x

B
last; v

B
first; v

B
last;

xRfirst; x
R
last; v

R
first; v

R
last

� (2)

where xAa and vAa are longitudinal coordinate and velocity of CAV a,
respectively, with a 2 {0, 1}; xBm and vBm are longitudinal coordinate and
velocity of vehiclem 2 {first, last} within 30 m on the bottom entry of the
intersection, respectively, with m ¼ first, the first vehicle (closest to the
intersection) and m ¼ last, the last vehicle (farthest to the intersection
within 30 m); xRn and vRn are state description of the right entry with
similar meaning to xBn and vBn , respectively. If there is no vehicle within
30 m in front of the intersection, the coordinate is set to 30 m in front of
the intersection and the velocity is set to 0. In this way, the state includes
information on the CAVs (with superscript “A”) and on vehicles
approaching the two entries of the intersection (with superscripts “B” for
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bottom and “R” for right). Hence the scenario state is represented in a
compact manner.

The action is the accelerations of the two CAVs. Therefore, the action
space is a two dimensional continuous space ½�3 m=s2;3 m=s2�2
considering the realistic acceleration and deceleration.
Fig. 2. Episode return in training showing monotonic improvement due to the
selected reward shaping.

Fig. 3. Nine screenshots of the testing results when one CAV is approaching the
intersection. It can be observed that the two CAVs gradually synchronize their
longitudinal positions to avoid congestion.
3.3. Reward shaping

The objective is to reduce the queues in front of the intersection,
similar to the one-lane, one CAV scenario from Vinitsky et al. (2018a).
We cannot apply the same reward as Vinitsky et al. (2018a), to encourage
vehicles to approach a desired velocity vdes because the initial distances
from the two CAVs to the intersection are similar (see Fig. 1). A CAV
needs to adapt its velocity such that there is enough time difference be-
tween the other CAV and itself to pass the intersection in order to avoid
congestion. Once the proper time difference is created, the CAVs should
maintain the time difference such that there is no congestion every time
thereafter they pass through the intersection. Therefore, constant ve-
locities can not realize the goal to avoid congestion. Based on the above
consideration, the reward is defined as sum of the three terms with the
following objectives: (i) maintaining desired velocity; (ii) minimizing
queues; (iii) avoiding local optima. Based on this, we proposed the
following rewards:

1) CAV 0 should keep its desired velocity. Therefore, the first term is
defined as

r1 ¼ �kvA0 � vdesk (3)

where k ⋅k is the Euclidean distance operator. CAV 1 does not have a
desired velocity.

2) The number of queuing vehicles should be minimized. A slow
threshold velocity vth is defined and vehicles moving slower than the
threshold velocity are considered as queuing vehicles. The second
term of the reward is thus defined as

r2 ¼ �jfijvi < vthgj (4)

where vi is the velocity of vehicle i (the vehicle is either a CAV or an HDV,
the set {i|vi< vth} is therefore the set of vehicles that has a speed less than
vth) and |⋅| is the cardinality operator.

3) Training according r1 and r2 tends to suffer from a local optimum,1

where CAV 1 tries to accelerate to its maximum velocity in order to
reduce the queuing time of the fleet led by CAV 0 rather than slowing
down to let the fleet led by CAV 0 pass the intersection first. To avoid
this local optimum, we add a small correction term to discourage high
velocities:

r3 ¼ �kvk (5)

where v is the vector of all vehicles' velocities.
The total reward is defined as

r ¼ αr1 þ βr2 þ κr3; (6)

where α, β, and κ are non-negative tuning parameters.

4. Selected results

The training process and testing results are presented in this section.
We choose ADAM as the optimizer with the learning rate of 5� 10�4, the
1 Due to the expectation operation of PPO, convergence to poor local optima
is possible.

3

clip of PPO ε is set to 0.2. The discounting factor γ is set to 0.999 where as
the tradeoff coefficient of GAE δ is 0.99. In each iteration, 60 rollouts are
run and the policy is optimized based on the sampled data. In our setup,
desired velocity vdes is defined as 3 m/s, threshold velocity vth is chosen
as 1.1 m/s. Factors α, β, and κ are set to 10, 1, and 0.1, respectively.



Fig. 4. Cumulative numbers of stopped vehicles in front of the intersection.
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Fig. 2 shows the episode reward (sum of rewards in an episode)
during training. It can be observed that the performance has been
improved constantly during training. It was observed that without the r3
term, the return was much lower (results not shown).

Fig. 3 shows nine screenshots of the testing result when one CAV is
approaching the intersection. While CAV 0 remains a constant velocity,
CAV 1 adjusts its velocity to reach similar longitudinal position of CAV
0 and thus avoid congestion of the intersection.

Fig. 4 shows the cumulative numbers of stopped vehicles (numbers
stopped vehicles up to that time) during the testing without CAV, where
we define vehicles slower than 0.01 m/s as stopped, with 1 CAV and with
2 CAVs. The unique differences between the three setups are the numbers
of CAVs. It is clear that 2 CAVs significantly reduce the stopped vehicles
in front of the intersection and improve the traffic efficiency.

5. Conclusions

In this paper, DRL is applied to CAVs, which have an altruistic
objective to optimize the traffic flow and the ability to communicate and
coordinate their behaviors. The proposed algorithm uses the actor-critic
framework with PPO as policy optimizer and GAE as value estimator.
After the training, two CAVs are able to lead multiple HDVs in a closed
scenario with an intersection. One CAV keeps a constant velocity whereas
the other CAV adjusts its velocity to avoid congestion. A designed reward
function is able to avoid local optima such that the policy converges in
the desired behavior. Testing results show that the number of waiting
vehicles in front of the intersection is considerably less with 2 CAVs than
without and with 1 CAV. This work proves the potential of the altruistic
CAVs in improving traffic efficiency. In future works, more general traffic
behaviors (e.g., lane changing and turning) and situations (e.g., different
numbers of HDVs) should be considered in order to make the approach
closer to reality.
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