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A B S T R A C T

Developed in this paper is a traffic flow model parametrised to describe abnormal traffic behaviour. In large traffic
networks, the immediate detection and categorisation of traffic incidents/accidents is of capital importance to
avoid breakdowns, further accidents. First, this claims for traffic flow models capable to capture abnormal traffic
condition like accidents. Second, by means of proper real-time estimation technique, observing accident related
parameters, one may even categorize the severity of accidents. Hence, in this paper, we suggest to modify the
nominal Aw-Rascle (AR) traffic model by a proper incident related parametrisation. The proposed Incident Traffic
Flow (ITF) model is defined by introducing the incident parameters modifying the anticipation and the dynamic
speed relaxation terms in the speed equation of the AR model. These modifications are proven to have physical
meaning. Furthermore, the characteristic properties of the ITF model is discussed in the paper. A multi stage
numerical scheme is suggested to discretise in space and time the resulting non-homogeneous system of PDEs. The
resulting systems of ODE is then combined with receding horizon estimation methods to reconstruct the incident
parameters. Finally, the viability of the suggested incident parametrisation is validated in a simulation
environment.
1. Introduction

The unpredictable nature of human behavior as well as the temporal
changes in the road geometry due to the constructions, accidents or
weather conditions can bring unexpected changes in the traffic systems’
dynamics. Although the current traffic flow models have been success-
fully used in various model-based traffic estimation and control problems
such as Luspay et al. (2011); Dabiri et al. (2017); Dabiri and Kulcs�ar
(2017); Hajiahmadi et al. (2016); Hegyi et al. (2005b,2005a, 2006), in
the presence of the abnormal conditions, these models are not adequate
for model-based traffic management. These nominal models are not able
to capture the changes in the dynamics of the traffic when, e.g., an ac-
cident happens in the road or when the drivers are experiencing hard
weather condition or fog.

With such motivation, some researches have been conducted in the
past years to investigate how to properly model the abnormality in the
traffic situation caused by an incident. The main idea in these research is
to modify the nominal traffic model METANET Cremer and Papageorgiou
(1981) such that the modified model be able to take the incident effect
into account. Along this line, Sanwal et al. (1996) has proposed to model
the accident as a lane drop and add a modification term in the speed
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equation of theMETANETmodel to reflect the effect of an accident on the
traffic mean speed. However, this modified model neglects the fact that
naturally, drivers may change their driving behaviour in the presence of
an accident. By means of analysing real traffic incidents, it has been
found in Knoop et al. (2009) and Knoop (2009) that distribution of
drivers reaction time increases at incident locations. In Wang et al.
(2009), an Extended Kalman Filter is used to estimate abrupt changes in
the core model parameters of the equilibrium speed due to an incident.
By means of the online monitoring of these parameters, it was possible to
capture the effect of incidents on the real sites. As a consequence, due to
changing equilibrium speed profile, the relaxation term is modified, i.e.
whenever incident happens, the average drivers relax their speed
differently. In Dabiri and Kulcs�ar (2015), a bi-parameter approach is
provided in order to separate drivers’ behaviour and road geometry
related effects of incidents within the framework of discretised
Payne-Whitham (PW) second order traffic flow models.

The PW model suffers from few drawbacks Daganzo (1995): 1) The
anisotropy condition is not preserved in the PWmodel. More specifically,
vehicles in PW model could be effected by the stimuli from behind. This
is due to the fact that one of the characteristic speed of the resulting
hyperbolic system is higher than the traffic mean speed itself. This
).
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implies the unrealistic situation in which information travel faster than
the vehicles. 2) PW model may generate negative speed in some condi-
tions where the spacial derivative of the density is large. These draw-
backs were addressed in the ARmodel developed by Aw and Rascle in Aw
and Rascle (2000). The Aw-Rascle-Zhang (ARZ) model which belongs to
the family of AR model is an alternative to the PW model which was
criticised by Daganzo in Daganzo (1995) for the mentioned inadequacy.
Within the similar line of thought as in Dabiri and Kulcs�ar (2015), in this
paper, we aim at parametrising the ARZ macroscopic traffic flow model.
This model is parametrised in this paper to generate the corresponding
Incident Traffic Flow (ITF) model. This parametrisation will introduce
some degree of freedom for modeling the abnormal traffic conditions.
Within this macroscopic framework, we also aim at analysing these pa-
rameters. The suggested methodology consists (i) of using dynamic
relaxation of traffic speed with time and space dependent incident
parameter and (ii) of modifying the anticipation term in the speed
equation of the AR model. We also show that the ITF model suggested in
this paper inherits the same favourable properties of the nominal AR
model. Moreover, analysis and discretisation of the proposed
continuous-time macroscopic model is accompanied with proposing an
online incident parameter estimation routine (nonlinear and constrained
receding horizon estimation). A microscopic traffic simulator is used to
show the viability of traffic incident reconstruction by online monitoring
the incident parameter of the macroscopic ITF model.

The paper is organized as follows: first by defining incident related
parameters, the incident traffic flowmodel (ITF) is defined and explained
in the next section. It follows by a discussion on the mathematical
properties of the model, its characteristics and bounds for the incident
parameters in Section 3. In order to discretise the ITF model, Godunov
scheme with splitting method is used in Section 4. An incident parameter
estimation method is presented in Section 5. In Section 6, the proposed
ITF model is validated using a simulation dataset for a hypothetical
incident corrupted freeway. Remarks and future works are concluded in
Section 7.

2. Incident affected Aw-Rascle-Zhang model

We build the incident traffic flow (ITF) model suggested in this paper
upon the nominal Aw-Rascle-Zhang (ARZ) model. The ARZ model is a
macroscopic traffic flow model which is used to describe the average
traffic behaviour in normal condition. But as we see in the sequel, the
ARZ model is unable to capture the traffic dynamics in abnormal con-
ditions like accident. To fill the gap, the extension of the ARZ model
which we call the ITF model is proposed in this section.
2.1. Aw-Rascle-Zhang model

Let us start with the description of the Aw-Rascle (AR) model pre-
sented in Rascle (2002) and get a general overview on the properties of
this model. Based on the AR model, traffic dynamics can be described by
use of two partial differential equations, namely conservation and mo-
mentum equations as

ρt þ ðρvÞx ¼ 0; (1)

ϕ ¼ ðvþ PðρÞÞt þ vðvþ PðρÞÞx ¼
VeðρÞ � v

τ
: (2)

where ρ and v are the density and the mean speed and subscripts (⋅)t
and (⋅)x account for the partial derivatives with respect to time and space
respectively. P(ρ), which is a non-decreasing function of the density,
stands for the pressure term in analogy to gas dynamics. The relaxation
term in the right hand side of Eq. (2) with Ve(ρ) is the equilibrium speed.
Equilibrium speed which is a function of density stands for a speed value
that according to the traffic conditions, drivers may feel safe to choose. In
this paper, taken from Mammar et al. (2009), the following equilibrium
2

speed–density relationship is chosen:

VeðρÞ ¼

8><
>:

Vmax � ρ
ρcr

ðVmax � VcrÞ case 1

1
ρ

�
Wmaxðρmax � ρcrÞ þ φðρmax � ρÞ2� case 2

φ ¼ Qmax

ðρmax � ρcrÞ2
� Wmax

ðρmax � ρcrÞ
; (3)

with Wmax as the model parameter and Vmax and ρmax are the free speed
and jam density, respectively. If ρcr stands for the density in which the
traffic flow is maximum, case 1 in the equilibrium speed description
happens when 0 � ρ � ρcrit while case 2 is valid if ρcrit � ρ � ρmax.

To describe the pressure term P(ρ) introduced in the AR model, let us
rewrite the momentum Eq. (2) as

vt þ
�
v� ρðPðρÞÞρ

�
vx ¼ VeðρÞ � v

τ
; (4)

where (⋅)ρ accounts for the partial derivative with respect to ρ. This
representation is consistent with the following momentum equation
suggested in Zhang (2002):

vt þ
�
vþ ρðVeðρÞÞρ

�
vx ¼ VeðρÞ � v

τ
: (5)

The representations Eqs. (4) and (5) are equivalent with Mammar
et al. (2009) if the traffic pressure term be defined as

PðρÞ ¼ Vmax � VeðρÞ: (6)

Substituting Eq. (6) in Eq. (2) results in a reformulation of the AR
model which is known in the literature as the Aw-Rascle-Zhang (ARZ)
model. As seen in Eq. (6), the pressure term in the ARZ is defined as
function of speed; the difference between the maximum speed that
drivers can take and the equilibrium speed. In other words, traffic pres-
sure is the amount of speed offset that drivers should have from the
maximum speed due to the interaction with other vehicles in the road.
The more intense this interaction, the larger the pressure term.

By defining U ¼ (ρ, v), it is easy to see that Eq. (1) along with Eq. (4)
can be formulated as:

Ut þ AðUÞUx ¼ SðUÞ: (7)

It is known that the eigenvalues of A(U) called characteristic speed
determine how the traffic disturbance propagates in a traffic stream. It is
easy to verify that the characteristic speed of (7) are equal to

λ1 ¼ v� ρPρ � λ2 ¼ v: (8)

Since both of the eigenvalues are less or equal than the traffic speed,
we can conclude that the anisotropic property of the traffic flow is
respected in the ARZmodel. This means that the propagation speed of the
information can not be higher than traffic speed itself. In other words,
drivers are not influenced by the traffic condition behind them Rascle
(2002). This property is counted as one of the strength point of the AR
(and ARZ) model compared to PW Daganzo (1995).

Having introduced the ARZ model, we are now ready to use this
description for traffic incident parametrisation. It should be emphasized
that incident is a general term we use to refer to any abnormal traffic
condition. Hence, the focus of this paper is not only on the accidents but
also on any possible reason (e.g., unusual harsh weather condition or
rubbernecking) which may diverge the traffic behaviour from its normal.
2.2. Incident traffic flow (ITF) model

To have a better understanding of the change that an incident may
cause in the traffic behaviour, let us start with the following example.



Fig. 1. Density and speed variation in segment i. At t ¼ 90 min, incident hap-
pens in segment i þ 1.

A. Dabiri, B. Kulcs�ar Communications in Transportation Research 2 (2022) 100060
Example 1. Using the simulation environment, speed and density
profile of an incident free traffic flow in a freeway segment i is compared
with the incident affected flow and the results are depicted in Fig. 1. In
this scenario, two different types of congestion are created; the first one
which occurs at t ¼ 40 min and due to the increased demand volume and
the second one at t ¼ 90 min and due to the occurrence of a traffic
incident in the upstream segment iþ 1 (see the case study in Section 6 for
further details). It is observed from Fig. 1 that around a selected density,
mean speed in incident-corrupted data can be significantly lower than
the corresponding incident-free average speed. Moreover, the maximum
flow under traffic incident can be reached at a relatively low density.

In line with the above observations, a generic method in this section is
proposed to extend the nominal ARZ model in order to capture the effect
of an incident in the traffic behaviour. Our intention is to relate the traffic
incident to the traffic pressure term in the ARZ models, i.e., instead of
recursively identifying changes in the equilibrium speed Ve(ρ) as sug-
gested in Wang et al. (2009), we propose to shape it through an incident
parameter.

As explained in Section 2, the pressure term P(ρ) describes the mean
speed reduction due to the interaction among cars. Whenever an incident
occurs, drivers may differently react to it compared to regular traffic
condition. Drivers may reduce their speed faster and sooner to feel safe,
to be more vigilant and/or to select their headways more carefully Knoop
et al. (2009); Knoop (2009). We describe theses differences in the
drivers’ interaction by appropriately parametrising the traffic pressure
term. We therefore introduce an incident parameter called α*(s) resulting
in a modified incident pressure term P*(ρ) as

P*ðρÞ ¼ Vmax �
�
1þ α*

τ

�
VeðρÞ: (9)

As it is seen in Eq. (9), the relative change due to an incident is
3

expressed in the pressure term. To see its connection with the changes in
the equilibrium speed, let us equivalently write Eq. (9) as follows:

P*ðρÞ ¼ Vmax �
�
1þ α

τ

�
V*
e ðρÞ; (10)

with α* and V*
e ðρÞ defined as:

α* ¼ αβ þ βτ � τ (11)

V*
e ðρÞ ¼ βVeðρÞ (12)

Both α and β can depend on space and time. The meaning of these
parameters and the values they are allowed to take are detailed in Section
3.2. Note that if there is no incident, α* is equal to zero which means that
α ¼ 0 and β ¼ 1.

Having all the ingredients, we are now ready to define the suggested
incident traffic flow (ITF) model used to describe the traffic behaviour in
the presence of an incident.

Definition 1. Incident traffic flow (ITF) model is defined as follows:

ρt þ ðρvÞx ¼ 0; (13)

vt þ
�
v� ρ

dP*ðρÞ
dρ

�
vx ¼ 1

τ

�
V*
e ðρÞ � v

�
; (14)

where

P*ðρÞ ¼ PðρÞ � α*

τ
VeðρÞ: (15)

Comparing Eqs. (4) and (14), which are respectively the momentum
equation of the incident free (nominal ARZ) model and that of the ITF
model, makes it clear that in the latter, the incident has been charac-
terised by modifying the relaxation and traffic pressure terms. It is
interesting to observe that we can see this connection better by rewriting
the momentum equation of the ITF model in the form of Eq. (5). To see
this, consider the momentum equation of the ITF model Eq. (14). Using
Eqs. (10) and (12) we have:

vt þ vvx þ dV*
e

dρ
ρvx þ α

τ
d
�
V*
e ðρÞ

�
dρ

ρvx ¼ 1
τ

�
V*
e ðρÞ � v

�
: (16)

Equivalently, we can write:

vt þ vvx þ dV*
e

dρ
ρvx

¼ 1
τ

�
V*
e ðρÞ �

d
�
V*
e ðρÞ

�
dρ

αρvx � v
�

ffi 1
τ

�
V*
e ðρ� αρvxÞ � v

�
¼ 1

τ

�
V*
e ðρþ αρt þ αvρxÞ � v

�
¼ 1

τ

�
V*
e ðρþ αDtðρÞÞ � v

�
¼ 1

τ

�
V*
e ðρ*Þ � v

�
;

(17)

where Dt(.) stands for the material derivative. Note that the third line in
Eq. (17) is derived by means of Taylor expansion, while the forth one is
through the vehicle conservation law in Eq. (1). Having the momentum
equation of the ITF model in the form of Eq. (17), it is easier to make the
comparison with the momentum equation of the nominal ARZ model
formed in Eq. (5). The main difference between Eqs. (17) and (5) is in the
equilibrium speed, i.e., with the presence of an incident, drivers relax
their speed based on a modified equilibrium speed V*

e rather than Ve.
Moreover, inspired by De Angelis (1999), in the presence of an incident,
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drivers may feel the fictitious density ρ* ¼ ρ þ αDt(ρ) rather than the
actual density ρ in the upstream of the incident. Note that the parameter α
in ρ*, represents a scaling factor for density variation. The larger the
value of α, the larger the difference between ρ and ρ*. Accordingly, there
is a more severe abnormal traffic condition expected by the driver.

3. Mathematical properties of the ITF model

As it is perceived in Eq. (8), the pressure term makes a direct effect on
the eigenvalues of the matrix A(.) (the Jacobian of the flux in Eq. (7)) and
consequently on the structural properties of the ITF model. In this sec-
tion, we first investigate whether the modification in the pressure term
makes any change in the characteristical properties of the ITF model
compare to the nominal ARZ model. More specifically, we answer the
question that whether the ITF model respects the anisotropy property of
the traffic flow. Furthermore, in this section, we also discuss on the
accepted bounds that the incident parameters α*, α, and β in the ITF
model can take.

3.1. ITF model: basic characteristics

To inspect the characteristics of the proposed ITF model, let us
consider Eqs. ((13) and (14) without the relaxation term. We can write
this set of equations in the form of Eq. (7) with A(U) defined as

AðUÞ ¼
"
v ρ

0 v� ρP*
ρðρÞ

#
: (18)

Hence, the eigenvalues and the corresponding eigenvectors of the
system can be obtained as

λ1 ¼ v� ρP*
ρðρÞ � λ2 ¼ v; (19)

r1 ¼
�
1

0

	
; r2 ¼

"
1

�P*
ρðρÞ

#
: (20)

Equations (19) and (20) can give us information about the waves
associated to these eigenvalues and also the mathematical properties of
Eq. (18) Mammar et al. (2009). From Eqs. (19) and (20), we can infer that
λ2 is linearly degenerate and therefore the waves corresponding to this
eigenvalue are contact discontinuities, i.e., waves separating two states
with similar speeds but different densities. Assuming the convexity of the
function ρP*

ρðρÞ, Aw and Rascle (2000), the first eigenvalue is genuinely
nonlinear and the associated waves are either rarefaction (corresponding
to acceleration) or shock waves (corresponding to braking). Conse-
quently, in the ITF model, all waves propagate at the speed at most equal
to the velocity of the corresponding state; the anisotropy principle is
preserved.

3.2. Incident parameters

As it is stated in Definition (1), in the ITF model, the effect of an
incident is captured by the parameter α* that is structured by α and β.
While the first term gives a degree of freedom to introduce an incident-
related anticipation time for drivers experiencing the abnormal situa-
tion, the latter describes the difference in the equilibrium speed to which
drivers relax their speed. Obviously, α and β have positive values since
they are respectively associated with the anticipation time and multi-
plication factor in the equilibrium speed. In addition, based on the
meaning of the equilibrium speed V*

e ðρÞ, β should be bounded as follows:

0 � β � 1: (21)

On the other hand, due to the relaxation term in Eq. (14), the so called
sub-characteristic condition needs to be satisfied. Based on Rascle
(2002), to meet the sub-characteristic condition the following inequality
4

needs to be satisfied:

�dP*

dρ
� dV*

e ðρÞ
dρ

; (22)

Assuming V*
e ðρÞ is a decreasing function of ρ, from the above equa-

tion, the following bound for the parameter α can be derived:

α � 0: (23)

In addition, since the traffic pressure term is an offset of the mean
speed from the maximum speed, it is expected that incident makes this
offset larger. As a result, the larger values of pressure induce the
following condition:

P*ðρÞ ¼ PðρÞ � α*

τ
VeðρÞ � PðρÞ; (24)

which results in:

α* � 0: (25)

The previous definition of incident parameters give rise to range in-
cidents from incident-free to complete lane blockage as formulated in the
next Proposition.

Proposition 1. ConsideringEq. (10), β¼ 0 results in maximum pressure
value, i.e., P*(ρ) ¼ Vmax. In this case, the speed offset reaches its
maximum and the speed dynamics asymptotically converges to zero, i.e.,
it corresponds to full lane closure.

The proof can be found in Appendix B. This situation presented in
Proposition 1 corresponds to the complete lane closure resulting in the
convergence of the speed profile to zero.

4. Discretisation of the ITF model

As it is seen in Definition (1), due to the presence of the relaxation
term, the PDEs describing the ITF model is non-homogeneous. Hence, to
discretise the model, we have applied the two steps splitting method Toro
(1999). In the first step, the homogenous system is discretised by the
conventional use of the Godunov method. The second step is then fol-
lowed by solving an ODE with its initial condition obtained from the first
step. To be more precise, consider a non-homogeneous PDE with an
initial value as follows:



Ut þ FxðUÞ ¼ GðUÞ;
Uðx; tnÞ ¼ Un : initial condition

(26)

In order to find the solution Unþ1 from the initial value Un, splitting
method suggests to separate the source term from the original PDE and
start with the following homogeneous PDE:



Ut þ FxðUÞ ¼ 0;
Uðx; tnÞ ¼ Un : initial condition

⇒ U
nþ1 (27)

Afterward, the solution of the above step is used as an initial condi-
tion for solving the following ODE:
8><
>:

d
dt
U ¼ GðUÞ;

U
nþ1

: initial condition

⇒ Unþ1 (28)

4.1. Conservation form of the ITF model

Before applying the splitting method for discretising the ITF, we first
need to rewrite the ITF model in the conservation form of Eq. (26). Let us
first consider the homogeneous ITF model in the following form:

ρt þ ðρvÞx ¼ 0; (29)
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ðvþ P*ðρÞÞt þ vðvþ P*ðρÞÞx ¼ 0 : (30)

In order to write the model as a conservation law of the form:

Ut þ FxðUÞ ¼ 0; (31)

it is enough to multiply the Eq. (29) by v þ P*(ρ) and Eq. (30) by ρ. By
summing them up, the desirable structure can be obtained as

ρt þ ðρvÞx ¼ 0;
ðρðvþ P*ðρÞÞ Þt þ ðρvðvþ P*ðρÞÞ Þx ¼ 0;

(32)

where P*(ρ) is defined as inEq. (9). Consequently,

U ¼
2
4 ρ

ρ
�
v�

�
1þ α*

τ

�
VeðρÞ

�
3
5 ¼

�
ρ
m

	
; (33)

and F(U) in Eq. (31) can be formed as

FðUÞ ¼

2
664

mþ ρ
�
1þ α*

τ

�
VeðρÞ

m2

ρ
þ m

�
1þ α*

τ

�
VeðρÞ

3
775; (34)

or equivalently as

FðUÞ ¼
2
4 q

q
�
v�

�
1þ α*

τ

�
VeðρÞ

�
3
5 ¼

�
q
z

	
; (35)

with q ¼ ρv which is the traffic flow. If the relaxation term is also
considered in the ITF model, the right hand side of the Eq. (31) is a
nonzero term and resulted from simple reordering as

GðUÞ ¼
2
4 0

�m
τ
� σρ

τ2
VeðρÞ

3
5; (36)

where

σ ¼ α* þ τ � βτ ¼ αβ: (37)

Nowwe can start with the discretisation following the two steps of the
splitting method.

4.2. First step: Godunov discretisation of the homogeneous PDE

Consider Eq. (27) where F(U) is the flux matrix. The Godunov scheme
is based on gridding the time and space domain in order to generate cells
and updating Un in each cells for the next time step n þ 1. Godunov
discretisation is based on the conservation law briefed in Appendix B. We
refer the interested readers to Toro (1999) and Mammar et al. (2009) for
more details of the Godunov discretisation.

Defining the conservation form of the ITF model in (32) and consid-
ering Eqs. (33)–(35), a Riemann problem should be solved in each
boundary point to get Fi�1/2 introduced in (50). As a result, with the
initial state of ½ρni ;mn

i �T, the following update equations are obtained
Mammar et al. (2009):

ρnþ1
i ¼ ρni þ

Δt
Δx

�
qni�1 � qni

�
mnþ1

i ¼ mn
i þ

Δt
Δx

�
zni�1 � zni

�
:

(38)

4.3. Second step: ODE discretisation

Recalling G(U) defined in Eq. (36), the ODE formed in Eq. (28) can be
5

expanded as
8>>>>>><
>>>>>>:

dρ
dt

¼ 0

dm
dt

¼ �m
τ
� σρ

τ2
VeðρÞ

Initial data:
�
ρnþ1;mnþ1

�T
:

(39)

Hence, the final move is to solve Eq. (39) by applying the trapezoidal
method to get the following update of ρ and m:

ρnþ1
i ¼ ρnþ1

i ;

mnþ1
i ¼ af mnþ1

i � 2σiΔtρnþ1
i

τð2τ þ ΔtÞVe

�
ρnþ1
i

�
;

(40)

with af defined as below:

af ¼

0
B@1� Δt

2τ

1þ Δt
2τ

1
CA: (41)

5. Incident parameter estimation

In this section, we aim at developing an algorithm in order to estimate
the incident parameters αi and βi. These parameters correspond to the
effect that incident may cause in the segment i. Note that recalling Eqs.
(35)–(37), αi and βi are reflected in the discretised ITF model through the
parameters α*i and σi. Clearly seen from Eqs. (11) and (37), there is a one
to one relation between these two set of parameters. Moreover, the
bounds on α and β for segment i found in Eqs. (21) and (23) can be
transformed in terms of α*i and σi as

0 � α*
i � σi þ τ

τ
� 1; (42)

σiτ

α*
i � σi þ τ

� 0 (43)

As it is emphasized in Section 4, at each time step n and for each
segment i, two Riemann problems need to be solved in order to calculate
F(Ui�1/2(0)) as well as F(Uiþ1/2(0)). The estimation algorithm used is an
on-line, constrained nonlinear receding horizon algorithm Rao (2000).
At each time step n, an optimization problemwith a specific cost function
is solved to obtain the estimate of α*n

i and σni denoted by α̂*n
i and σ̂ni . These

estimated parameters are then used for solving the Riemann problem in
the ITF model in order to generate Unþ1. The selected objective function
at time step n introduced as

Jn ¼ �
ρni � ρ̂ n

i

�2 þ η
�
vni � v̂ n

i

�2 þ γ
�
α̂ *n

i � α̂ n�1
i

�2 þ ζ
�
σ̂ n

i � σ̂ n�1
i

�2
:

(44)

The parameters η, γ and ζ are constant and pre-selected weighting
parameters and iþ 1 is the segment that incident has been occurred in it.
ρ̂ and v̂ are the measured density and speed respectively. Consequently,
the optimization problem can be formulated as

min α*i ;σi
Jn (45)

subjected to ð38Þ; ð40Þ; ð42Þ; ð43Þ

6. Case study

The capability of the proposed ITF model to reproduce the traffic
dynamics under incident condition is investigated in a hypothetical
freeway with 7 segments. The schematic representation of this hypo-
thetical freeway is depicted in Fig. 2. As it is seen from Fig. 2, each



Fig. 2. Hypothetical freeway in the case study.

Table 1
Nominal parameter identification result.

ρmax (veh/km) 480
Vmax (km/h) 125.2741
ρcr (veh/km) 62.2147
Vcr (km/h) 104.7662
τ (s) 5.4653
Wmax 23.3915

Fig. 3. Speed variation in the forth segment. Dashed line is the simulation data,
solid line is the ITF model with estimated α̂*. Stars are the simulation result

Fig. 4. Density in the forth segment. Dashed line is the simulation data, solid
line is the ITF model with estimated α̂* and star line is the simulation result with

Fig. 5. Estimated α̂* in the forth segment.

Fig. 6. Estimated incident related anticipation time α̂ in the forth segment.
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segment, except for the last one, has three lanes and length of 500 m. The
last segment has two lanes with the length of 100 m. The freeway is
6

assumed to be equippedwith sensors which are indicated by a grey box in
the Figure.

Two datasets of 3 h each, were generated by simulation. The first part
of the simulation scenario (up to time t ¼ 1.5 h) has been used to offline
identify all of the nominal model parameters excluding the incident pa-
rameters (α* and σ are kept zero in this phase). This result are shown in
Table 1. The simulation setup has been chosen in a way that after t ¼ 1.5
h, an incident happens in the beginning of the fifth segment and lasts for
half an hour. During this period, drivers are not allowed to use two out of
three lanes in the fifth segment. This part of simulation scenario has been
used for online estimation of α* and σ.

The speed and density of in the fourth segment form the simulation
data, the suggested ITF model and the nominal ARZ model are shown in
Figs. 3 and 4 respectively. As it is expected, due to the incident in segment
5, there is a sudden change in the speed and density variation of the
upstream segment. Congestion started after 10 min and the segment
becomes fully congested before the incident is resolved at t ¼ 2 h. The
density then starts to decrease with sharp slope because vehicles are
suddenly allowed to use all the three lanes of the fifth segment. As it is
illustrated in Figs. 3 and 4, the ITF model with the estimated incident
parameters is capable to model the incident's effect. Without including
the estimated incident parameter information, the nominal ARZ model is
not successful in properly capture the traffic dynamics in the presence of
an incident.

Values of α̂* are plotted in Fig. 5. At the time when the incident starts,

α̂* diverge from zero and takes nonzero values. The parameter goes back
to zero with some overshoot after the incident is dissolved.

The parameters α and β can be reconstructed from the estimated



Fig. 7. Estimated scaling factor β̂ as a function of time.
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parameters of α* and σ using Eqs. (11) and (37). In Fig. 6, the recon-
structed α̂ which represents the incident related anticipation time is
depicted. From Fig. 6, α̂ takes positive values for 15 min after the inci-
dent. This is the time when the density increased to almost 120 (veh/
km), being twice as high as the critical density. After this interval, α̂
becomes zero until the incident is dissolved. Zero value of α̂ indicates the
equivalence between density ρ and fictitious density ρ*. In other words,
since the road is already fully congested, the density which drivers think
they might experience in the future is the same as the current density.

Parameter β̂ which is the scaling factor of the equilibrium speed is
plotted in Fig. 7 as a function of time. As it is expected, β̂ is 1 before the
7

incident and decreases to almost 0.2 in the incident interval. After the
incident, value of β̂ returns to 1.

7. Conclusions

In this paper, an incident traffic flow (ITF) model has been proposed
to reproduce the traffic dynamics under incident. Within the context of
second order macroscopic flow models, traffic pressure term is
augmented by appropriately structured incident parameters. A multi step
discretisation method is then proposed to approximate the solution of the
PDE by ODEs. Furthermore, the proposed ITF model has been analysed.
To show the importance of incident parameter inclusion, an online
estimation method is used in order to recover the effect of incidents.

Further research attention focuses on validation of the model with
real data. Moreover developing incident tolerant traffic management
solutions on the basis of the ITF model as well as connect ITF to learning
algorithms are among future related research directions.
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Appendix

A

Assume a uniform girding on the domain [xL, xR] to get N subsegments with discrete points at

xi ¼ xL þ
�
iþ 1

2

�
Δx for i ¼ 0; 1;…;N (47)

and boundaries can be regarded as

xi�1=2 ¼ xi � Δx
2

¼ xL þ iΔx for i ¼ 0; 1;…;N þ 1 (48)

If Un
i be regarded as the state in segment i at time step n, Godunov scheme emphasized that the state, which is the conserved variables, is updated for

the next time step by the following conservation equation:

Unþ1
i ¼ Un

i þ
Δt
Δx

�
Fi�1=2 � Fiþ1=2

�
; (49)

where the intercell fluxes Fi�1/2 and Fiþ1/2 are obtained as



Fi�1=2 ¼ F

�
Ui�1=2ð0Þ

�
Fiþ1=2 ¼ F

�
Uiþ1=2ð0Þ

�
;

(50)

and Uiþ1/2(0) refers to the exact solution Uiþ1/2(x/t) of the Riemann problem RPðUn
i ;U

n
iþ1Þ evaluated at x/t ¼ 0; the solution is evaluated along the

intercell boundary, which coincide with the t-axis in the local frame of the Riemann solution.

https://doi.org/10.1016/j.commtr.2022.100060
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Proof 1 In case of β ¼ 0, the pressure term P*(ρ) ¼ Vmax. Consequently from Eqs. (14) and (12), the momentum equation of the ITF model takes the
following form:

vt þ vvx ¼ �v
τ
: (51)

Since vðxðtÞ; tÞ ¼ dxðtÞ
dt , the solution to the Eq. (51) can be obtained as

8>><
>>:

dxðtÞ
dt

¼ vðxðtÞ; tÞ
dvðxðtÞ; tÞ

dt
¼ �vðxðtÞ; tÞ

τ
;

(52)

Introduce z(t) ¼ v(x(t), t), then:

8>><
>>:

dxðtÞ
dt

¼ zðtÞ
dzðtÞ
dt

¼ �zðtÞ
τ
;

(53)

which is a system of coupled ODE in the form of:

dXðtÞ
dt

¼ AXðtÞ; (54)

where

XðtÞ ¼
�
xðtÞ
zðtÞ

	
; (55)

and

A ¼
2
4 0 1

0 �1
τ

3
5: (56)

The generic solution to Eq. (54) can be written as

XðtÞ ¼ C1h1eμ1 t þ C2h2eμ2 t; (57)

with C1 and C2 as some constants. Since with finite τ> 0, the eigenvalues ofA become μ1¼ 0 and μ2 ¼ � 1
τ, we can select the corresponding eigenvectors

as h1 ¼
�
1
0

	
and h2 ¼

��τ
1

	
. Therefore, we obtain the solution as

(
xðtÞ ¼ C1 � τC2e

�t
τ

zðtÞ ¼ C2e
�t
τ ;

(58)

where C1 and C2 depend on the initial values of x(t) and z(t). Equation (58) implies that z(t) asymptotically goes to zero by evolving in time, i.e.,
complete lane closure.
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