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Abstract: The deep-learning revolution is providing entic-
ing new opportunities to manipulate and harness light
at all scales. By building models of light–matter interac-
tions from large experimental or simulated datasets, deep
learning has already improved the design of nanophotonic
devices and the acquisition and analysis of experimental
data, even in situations where the underlying theory is not
sufficiently established or too complex to be of practical
use. Beyond these early success stories, deep learning also
poses several challenges. Most importantly, deep learning
works as a black box,making it difficult to understand and
interpret its results and reliability, especiallywhen training
on incomplete datasets or dealing with data generated
by adversarial approaches. Here, after an overview of
how deep learning is currently employed in photonics,
we discuss the emerging opportunities and challenges,
shining light on how deep learning advances photonics.

Keywords: deep learning; neural networks; optics; pho-
tonics.

1 Introduction
The interaction of light with matter at the subwavelength
scale constitutes the foundation for many applications,
ranging frommicroscopy and nanosensors to data storage
and optical communications [1–3]. To optimize the per-
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formance of such applications, the ability to predict and
analyze light–matter interactions is crucial. Traditionally,
these tasks have been based on algorithmically solving
Maxwell’s equations for a given setup geometry, whose
parameters need to be determined from experimental
measurements. However, this approach is often time-
consuming, applicable only to relatively simple geome-
tries, and very sensitive to measurement noise [4].

Recently, there has been a surge of interest in employ-
ing machine learning, especially deep learning, to tackle
the limitations of traditional approaches [5]. Briefly, a
deep-learning model is an artificial neural network that
converts vectors of input data into vectors of output data
through a series of transformations characterized by a
large number of trainable parameters [6]. The choice
of the structure of the network, i.e., its architecture, is
still mostly a matter of taste and experience rather than
a result of clearly established principles. The network
must be sufficiently complex to encode the problem at
hand but not so complex as to resist training. Once the
architecture is defined, the network is typically trained by
employing a set of input data with corresponding desired
outputs. Networkswith thousands of trainable parameters
can be systematically optimized using algorithms such as
stochastic steepest descent and error backpropagation [7]
in a reasonable amount of time using commonly available
computing resources.

The design of photonic devices by machine learn-
ing started back in the 1990s with the optimization of
microwave circuit components [8], starting with recurrent
neural networks [9] and then transitioning to feed-forward
neural networks [10]. Later, in the early 2000s, neural
networks were used to design photonic crystal fibers
[11, 12]. In the last decade, there has been a tremendous
rise of attention to neural networks for the inverse design
of photonic andplasmonic components [8], includingpho-
tonic crystals [13–17], layered photonic structures [18–22],
radiation cloaks [23–25], diffractive optical elements
[26, 27], metasurface-based devices working in different
bandwidths [28–47], and nanoparticles [48–50]. Apart
from designing photonic structures, deep learning has
also been successfully deployed to interpret light–matter
interactions, e.g., for microscopy [51] and optical data
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storage [52]. Beyond this, recent works have demonstrated
all-optical implementations of deep-learning networks,
enabling even faster execution times [53].

Despite this widespread interest, successfully deploy-
ing a deep-learning solution is still non-trivial. The
strength, and weakness, of deep learning is that the user
does not provide the rules connecting the input data to
the desired outputs. Instead, the system learns these rules
by being fed with ground truth input/output pairs and
iteratively adjusting its internal trainable parameters until
it reliably provides the intended outputs for the training
cases. This enables deep-learning-powered approaches to
learn to solve specific problems with the utmost efficiency.
However, the lack of user-specified rules also makes it
difficult to assess the robustness of the performance of a
deep-learning model when presented with data that differ
significantly from the training set.

This reviewprovides an overview of the recent success
stories and opportunities for applying deep learning in
photonicswhile highlighting themost common challenges
and pitfalls encountered when solving a problem using
deep learning. In Section 2, we will review some of
the most common building blocks and architectures for
deep-learning-enabled optics and photonics, as well as
the most commonly encountered concepts when working
with deep learning. In Section 3, we will review some
of the main success stories in applying deep learning to
optics and photonics. In Section 4, we will provide an

overview of the areas where we believe that photonics
and deep learning can work synergistically to offer novel
opportunities. In Section 5, we will review the essential
challenges and provide simple guidelines for effective
deployment of deep-learning-based techniques to study
light–matter interactions.

2 Current approaches in
deep-learning-enhanced optics
and photonics

The basic building block of a neural network is an arti-
ficial neuron (Figure 1A). The artificial neuron performs a
weighted sum of inputs and returns a (typically) nonlinear
transformation (activation function) of the resulting sum.
Theweights are trainable parameters that are tunedduring
the learning process to optimize the output [54].

A variant of the artificial neuron is the memory gate
(Figure 1B). In contrast to the standard artificial neuron,
which transforms and feeds forward the information it
receives without keeping any memory of it, the memory
gate adapts its internal state in response to previous data
[55],which isuseful, especiallywhenanalysing timeseries.
Neural networks containing multiple memory gates are
collectively known as recurrent neural networks (RNNs).

The attention gates provide a more general way to
encode dependencies in the input data (Figure 1C), which

A B

C

Figure 1: Building blocks of artificial neural networks.
A The basic unit of a neural network is the artificial neuron, which performs the sum of its inputs (xi) weighted by trainable parameters (𝑤i)
and applies an activation function to get its output (y). B Temporal information can be encoded by introducingmemory gates, which retain
memory of their history of inputs. The output yt at the time step t depends on both the current input xt and the hidden state Ht−1 obtained in
the previous step. Neural networks containing one or multiple memory gates are called recurrent neural networks (RNNs). C Attention gates
provide a way to detect long-range temporal or spatial dependencies within the data by guiding the network towards the most relevant parts
of the input data.
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is often superior to alternative approaches such as RNNs
for temporal series and convolutional neural networks
for images, particularly for long-range dependencies [56].
The gate receives an input signal x and a gating signal g.
These two signals undergo several transformations, which
produce the attention coefficients 𝛼 ∈ [0, 1] representing
the relevance of the elements (e.g., pixels in an image) of
the input signal. Then, the resampler associates a unique
attention coefficient to each element of the input signal.
Finally, theattentiongateoutputs anelement-wiseproduct
of the attention coefficients and the input signal. This
guides the network to interesting areas of the input data
(the neural network pays attention to specific regions).

Dense neural networks (DNNs) consist of connected
layers of artificial neurons (Figure 2A). All the nodes in

each layer are connected toall thenodes in theneighboring
layers (fully connected network, also referred to in the
literature as a feed-forward neural network or multilayer
perceptron-basednetworks [57]). Usually,DNNsareutilized
for data of small dimension. One could also successfully
use DNNs in recognition tasks for small images (e.g., 28 ×
28 pixel with 10 predicted classes in the MNIST dataset
of handwritten digits [57]). However, when it comes to
large images containing thousands of pixels, the number
of connections between theneuron layers (and thenumber
of learnable parameters) increases drastically, leading to
overfitting. Due to the limited number of neurons in the
first hidden layer (which is smaller than the number of
pixels in a large input image), the amount of data passed
from the input through the ANN is limited.

A C

DB

Figure 2: Commonly employed neural networks.
A Artificial neurons can be combined in a dense neural network (DNN), where the input layer is connected to the output layer via a set of
hidden layers. All the nodes in each layer are connected to all the nodes in the subsequent layer, hence the name ‘‘dense.’’ There are also
bias neurons that add a constant to the weighted sum. B Spatial information can be preserved using a convolutional neural network (CNN)
with convolutional kernels whose weights are trainable parameters. C Generative adversarial networks (GANs) provide a framework to
generate synthetic data. Synthetic data is generated by passing input data through a neural network (the generator), while a second neural
network (the discriminator) tries to determine whether the data is real or synthetic. The discriminator’s output is used during training to
guide the generator to produce more realistic data. D Graph neural networks (GNNs) provide a powerful method to analyze complex
dependencies in the input data using the framework of graph theory.
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To circumvent these problems, convolutional neural
networks (CNNs) [58]usepartiallyconnected layersmadeof
2Darraysofneurons (Figure 2B). Eachconvolutional kernel
(filter) uses the sameweights across different regions of the
image, meaning that the weights are shared. The limited
number of connections and weight sharing reduces the
number of parameters to be trained, thus, lowering the
computational load and the chance of overfitting.

A CNN transforms the input image through a large
number of filters [57]. Each filter corresponds to a fea-
ture map. Typically, one filter detects one feature in the
picture, and several filters are used in each convolutional
layer to detect multiple features. The image is typically
downsampled several times to access the information at
multiple lengthscalesandreduces thecomputational load,
as schematically shown in Figure 2B. Thus, the image gets
smaller while passing through the various layers of a CNN
[57]. Sometimes,adensenetwork isappended to theoutput
of the CNN (called a dense top) to produce a final output
representing the global information related to the input
image, e.g., the coordinates of the position of a particle to
be tracked [59].

Deep learning has recently been shown to be able
also to generate synthetic data of high quality. Generally,
such approaches are helpful to generate outputs that are
easily interpretable by humans. Deep-learning-enabled
generation of synthetic data is typically achieved through
generative adversarial networks (GANs) [60] (Figure 2C).
GANs are deep-learning models with a unique training
scheme called adversarial training (training competing
ANNs), which is one of the most important recent ideas
in machine learning [57]. The idea is that the input data
(e.g., a noisy microscopy image) is passed through one
neural network called the generator, which creates the
synthetic data (e.g., the corresponding noise-free image).
While training the generator, its output is passed through
a second network called the discriminator, whose task
is to determine whether its input is fake or real data.
Usually, both thegenerator and thediscriminator comprise
several types of ANN architectures, such as dense neural
networks, convolutionalneural networks, recurrentneural
networks, and graph neural networks. At each training
step, the generator’s parameters are updated to fool the
discriminator. The GAN training consists of many itera-
tions in which the discriminator and generator are both
updated in tandem. Within a single training iteration, the
GAN update is carried out in two phases [57]. First, the
discriminator is trainedwith the generator’s weights fixed.
The fake images (labeled as 0, produced by the generator)
and the real images (labeled as 1) constitute the training

set in this phase. Second, the generator is trained with the
discriminator’s weights fixed. The real images are absent
in that training phase. Again, the generator creates fake
images. In this case, the generator aims to produce data
that the discriminator classifies as true images (all 1s).
The error vector is being backpropagated through the
discriminator to the generator to update its weights. By
iterating these two phases multiple times, the generator
learns to fool the discriminator, while the discriminator
learns to distinguish true images from fake images. In this
way, the output of the generator will look more and more
realistic.

As a final example, graph neural networks (GNNs) pro-
vide a powerful method to analyze complex dependencies
in the input data in various physics systems where it is
necessary to deal with graph data [61] (Figure 2D). A graph
is represented by a set of nodes (the data points) intercon-
nectedvia edges (corresponding to thedependencies in the
input data). Depending on the settings, the task of a GNN
canbe toclassifynodes in thegraph,predict edgesbetween
nodes from incomplete graphs, or generate entire graphs
by training on representative data [62]. For example,
GNNs have been actively used in the neural science for
classification of the neurological disorders (Figure 2D),
where they exhibit greater performance than alternative
functional magnetic resonance imaging (fMRI) analysis
methods [63, 64], and to trackmicroscopic particles,where
they have been able to accurately estimate dynamical
properties in various biologically-relevant scenarios [65].

3 Success stories
In the past decade, deep learning has found many suc-
cessful applications within optics and photonics. For most
of these applications, the underlying theory connecting
the input to the output is unknown or too complex
to be of practical use. In such cases, deep learning
provides a means to automatize processes that otherwise
would require human intervention or large computational
resources. In the following sections, we will explore three
applications where deep learning has been particularly
successful: inverse design of photonic devices, analysis
of microscopic and nanoscopic data, and enhancement of
microscopy techniques.

3.1 Inverse design
The geometry of a nanostructure corresponding to a
desired optical response can be optimized by brute-force
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parameter sweeping. For example, in Refs. [66, 67],
cylinder-shaped meta-atoms were optimized by sweep-
ing the cylinder diameter D with a fixed height H and
recording the optical response as a function of the vacuum
wavelength 𝜆 to determine the maximum quality factor
(Q factor) at the desired wavelength. This was required
to lower the lasing threshold and to realize lasing in the
smallestnanoparticlepossible [67].Suchabrute-forceopti-
mization method takes advantage of the scale invariance
ofMaxwell’s equations (i.e., multiplying𝜆,D, andH by the
same constant retains the optical response, permitting the
authors to employ dimensionless parameters in sweeping
the parameter space). A similar optimization method was
implemented in Ref. [68], where a pixelated dielectric
metasurface was used to record the absorption fingerprint
of a protein. The metasurface was made of meta-atoms
arrays (pixels). The geometrical parameters of the meta-
atom were linearly scaled by a constant factor to get a
different reflectance peak position for each pixel. One hun-
dred pixels were stacked to form a metasurface covering
the required bandwidth to map the protein absorption.
The brute-force sweeping of the parameter space imposes
strict constraints and can easily become computationally
cumbersome, especially for geometries with many (>3)
parameters.

A powerful alternative is provided by inverse design.
Inverse design imposes fewer constraints on the inves-
tigated geometries [69], which broadens the solution
space and results in more efficient devices. However,
the larger design space makes numerical simulations
more time-consuming. This demands an efficient method
for solution space exploration to lower the simulation
time. Such methods can be distinguished into traditional
inverse design approaches and inverse design with neural
networks.

Traditional inverse design methods explore the solu-
tion space iteratively, based on a set of rules. The target
is to maximize the fitness function (usually a single
number), which is evaluated at every step, after which the
system’s parameters are adjusted. Stochastic search rules
of traditional inverse design methods limit the solution
space and the efficiency of the produced devices [69–71].
For example, in Ref. [72], a polarization beam splitter
was designed using one of the topology optimization
methods known as the direct-binary search algorithm. The
polarization beam splitter had a square shape (2.4 μm ×
2.4 μm), discretized into 20 × 20 square pixels. Thus, each
pixel had an area 120 × 120 nm2 filled either with silicon
or air (1 or 0). An initial binary pattern was randomly
generated. The state of a random pixel was switched

(perturbed), and the fitness function was computed. The
fitness function was defined as the average transmission
efficiency for TE- and TM-polarized waves. The perturbed
pixel state was kept (retracted) if the fitness function
increased (decreased). Then, the state of another pixel was
perturbed. One iteration consisted of toggling all the pixels
sequentially. The procedure was repeated until the fitness
function saturated. Since the outcome is sensitive to the
initial guess, several initial patterns were considered to
achieve the best design. It took more than five days to
obtain one design.

In the case of a machine learning-based inverse
design, a neural network is trained using many structures
with different geometrical parameters (outputs) and the
corresponding computed optical responses (inputs). The
trained neural network can then be used to obtain the
geometry corresponding to a desired optical response.
Inverse design with neural networks has the advantage
that it is more time-efficient than traditional methods as it
does not require case-by-case simulations [70] (once the
neural network is trained). Thanks to this feature, the
design of new devices is orders of magnitude faster for
neural-network-based approaches than for conventional
inverse design methods (Figure 3A) [38, 50, 73, 74]. On the
other hand, the computational complexity is moved to the
generation of the training set. In fact, the quality and size
of the trainingdatasetultimatelydetermine thequality and
accuracy of the neural network output [57, 75, 76].

Another advantage of inverse design with neural
networks is that it has fewer restrictions on the consid-
ered device geometries [78], as compared to conventional
methods (e.g., limitation by pre-defined stochastic search
rules [72]). Thus, devices and efficiencies unachievable
by traditional inverse design approaches can be obtained
(Figure 3A and B) [73, 79, 80].

In recent years, neural networks architectures such
as DNNs (Figure 2A), CNNs (Figure 2B), GANs (Figure 2C),
and hybrid models have been heavily utilized in photonic
inverse design [5, 8, 70, 71, 76, 81–86] (Ref. [8] provides
an interesting historical perspective). In photonic inverse
design, DNNs can be utilized to predict a finite sequence
of values. For example, predicting five values of shell
thickness in a multilayer particle, given many points of its
scattering cross-section spectrum [50]. Besides,DNNshave
been successfully used for inverse design of nanoantennas
[50,86,87],metasurfaces [25,88–90],andgratingcouplers
[91, 92].

CNNs have been heavily used as parts of generative
models for the inverse design of photonic structures [70].
CNNs with a dense top have also been used for inverse
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Figure 3: Inverse design of photonic devices by neural networks.
A, B Advantages of neural networks with respect to some conventional simulation methods, namely topology optimization (TO), and particle
swarm optimization (PSO). TO is used to generate the training set. TO and adversarial autoencoder (AAE) are compared in the inverse design
of the metasurface thermal emitter. TO and CNN VGGnet are employed for structure refinement. A Computational time versus number of
highly efficient designs. Inset: Schematics of the thermophotovoltaic engine. B Efficiencies for the best designs obtained via different
simulation methods. Left inset: Normalized spectrum of the black-body radiation; the grey region highlights the photovoltaic cell working
band; only the in-band radiation is transformed into electrical power; the blue line depicts the ideal emitter emissivity. Right insets: Finest
meta-atom patterns. C, D Inverse design of a photonic crystal slab. C Band structure (left) used for the inverse design of the 1D photonic
crystal slab (right). D Architecture of the neural networks implemented in the inverse design. E Generative model handling the inverse design
of the metasurface thermal emitter. Panels A, B, E are adapted with permission from Ref. [73] (Copyright 2020 American Institute of Physics),
and panels C, D from Ref. [77] (Copyright 2020 Optical Society of America).
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design [13, 77]. However, DNNs could have been utilized
for the latter systems due to moderate number of degrees
of freedom. The advantage of using CNNs here is in the
detection ofmore complex patterns in the optical response
data,which increases the efficiencyof theobtaineddevices
[77]. CNNs in photonics are also utilized for other purposes
[70], some of which are discussed later in the text.

In Ref. [77], a CNN with a dense top was used to
design a 1D photonic crystal slab, obtaining the geomet-
rical parameters corresponding to a given band structure
(Figure 3C). That inverse design has a one-to-many map-
ping nature, where, e.g., several photonic crystal geome-
tries correspond to a single given band structure (raising
some inconsistency issues). This is why some machine
learning algorithms fail to convergewhenhandling inverse
designproblems. Thepre-trained forwardmodelwithfixed
weights was connected to the inverse model to resolve this
difficulty (Figure 3D) and the learnable parameters of the
inverse model were trained to minimize the cost function
defined as an error between the input band structure data
Bi and the prediction of the forward model Bj. Training
the tandem neural network in such a way circumvents
the nonuniqueness issue because the inverse model is not
restricted to the production of prior specified designs from
the training set [89]. Such an approach has been actively
used in photonic inverse design to overcome inconsistency
issues [19, 25, 89, 93, 94].

When the degrees of freedom in the design is thou-
sands or greater, it is computationally more efficient to
encode the input data to a reduced-dimensional space
and reconstruct new designs from it [84]. Deep generative
models are capable of doing so and creating new designs
similar to the training set but with greater efficiencies.
Deep generative models that have been actively used in
the design of photonic devices include GANs (Figure 2C)
[95–99], variationautoencoders [96, 100–103], andglobal-
topology-optimization networks [8, 104]. For example, in
Ref. [73], an adversarial autoencoder was implemented to
design a metasurface gap plasmon-based thermal emitter,
which was a part of a thermophotovoltaic engine (see
inset in Figure 3A), aiming to approach the limit of an
ideal emitter (for which the emissivity is equal to one in
the desired wavelength range and zero outside, left inset
in Figure 3B), essential to reduce the unwanted heating
of the photovoltaic cell occurring due to out-of-band
radiation. The adversarial autoencoder consisted of three
neural networks: an encoder, a decoder/generator, and
a discriminator (Figure 3E). The encoder compressed the

input 2D meta-atom pattern (64 × 64 binary image corre-
sponding to a 4096-dimensional vector) into a reduced-
dimensional space (15-dimensional latent space) using
a DNNs with two hidden layers (512 neurons each). The
discriminator was implemented to obtain the latent space
within a pre-defined model distribution. The latter was
made to represent the solution space continuously by
a latent variable (specifically, a continuous Gaussian
variable [105]). The decoder generated a 2D binary image
of the meta-atom (4096-dimensional vector) out of its
input 15-dimensional latent vector. The neural networks
learned to obtain a continuous representation of the
training data in the reduced-dimensional latent space.
After training the adversarial autoencoder, new designs
were generated by decoding the sampled latent vector.
Then, the generated designs were refined using topology
optimization and a CNN VGGnet (Figure 3A and B). The
structure refinement smoothed the meta-atom patterns by
ruling out sub-30-nm features and keeping the designs
with the highest estimated efficiencies. The training set
consisted of 8400 samples. Such a large dataset is typically
required for adversarial autoencoder training. Generating
a training set of such size using topology optimization is
time-consuming. Thus, a set of 200 samples was obtained
by topology optimization, and the actual training set
of 8400 samples was generated by data augmentation.
Specifically, the training set of 200 samples was expanded
by 20 random lateral translations and a single 90◦ rotation
of themeta-atoms. Thanks to theperiodicity and symmetry
of the metasurface thermal emitter structure, these pertur-
bationsdidnot affect theemissivity spectra. Suchamethod
allowed for augmentation of the training dataset without
additional full-wave simulations.

3.2 Image analysis in microscopy and
nanoscopy

The analysis of experimental data is another area where
deep learning has been successfully deployed. Such anal-
ysis is often time-consuming, requiring human input.
With modern data acquisition techniques, the amount of
experimental data can easily exceed what is feasible to
analyzeusingconventionalmethods,makingdataanalysis
the limiting factor inmanyexperiments.This isparticularly
true in microscopy. Every microscopy image may contain
millions of pixels, and the designation of a simple rule
connecting the individualpixelvalues to thedesiredoutput
is non-trivial. Unsurprisingly, in the past decade, deep
learning has created a new paradigm for the analysis
of microscopy images, making precise, automatized, and
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objective data analysis possible at speeds orders of mag-
nitude faster than for conventional methods. In addition,
deep-learning-powered approaches have recently demon-
strated the capability to extract information beyond the
limits of traditionalmethods,making it possible to analyze
data with unprecedented details.

The most well-known example of deep-learning-
enhanced image analysis is that of image classification.
The task is to classify objects in an image into predefined
classes. The input is typically a cropped version of the
whole input image, containing only a single object. The
neural-network architecture is typically a CNN, which
enables extracting object features at multiple scales with
reasonable computational cost. As an example, Ref. [106]
used a specific CNNarchitecture called Inceptionv3 to clas-
sify and predict mutations from lung cell histopathology
slides. The neural network analyses nonoverlapping tiles
in the image, providing a single classification score for
each tile. The result is a downsampled image where every
pixel corresponds to the classification of a specific tile.

As another example, Ref. [107] proposed a deep-learning
framework forwhole-slide classification for cervical cancer
screening. There, each slide can contain tens of thousands
of cells. Therefore, themanual identification of lesion cells
can be highly time-consuming. The authors propose a
three-stage classification scheme: first, a CNN analyses
a low-resolution image of the entire slide, indicating
suspicious regions. After that, a second CNN analyses
high-resolution images of the areas proposed by the first
CNN and outputs a probability that the region contains
a lesion cell. Finally, the ten highest-scoring regions are
analysed by an RNN that provides a final score for the
whole slide (Figure 4).

Classification can also be performed on a pixel-by-
pixel basis. One such example is image segmentation,
where the task is to classify each pixel as either belonging
to an object or to the background. This task is challenging
usingconventional imageanalysis techniques if theobjects
do not strongly contrast with the background, which
is often the case for biological imaging. In such cases,

Figure 4: Image analysis for a coarse-grained classification of histopathology slides using a CNN.
A low-resolution image of the entire slide is divided into non-overlapping tiles, which are independently passed through a low-resolution
model that locates suspicious lesion regions. These regions are identified at high resolution by the high-resolution model that outputs a
probability of the presence of a lesion cell in a tile. This high-resolution model outputs the ten most suspicious lesion tiles. Finally, these ten
highest-scoring tiles are analyzed by an RNN to produce a final score for the entire slide. Image reproduced with permission from Ref. [107]
(Copyright 2018 Springer-Nature).
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the standard approach is the manual segmentation of
the images. In 2015, Ref. [108] introduced the U-Net
architecture, which enables efficient classification of each
pixel in the image andautomated segmentationof biomed-
ical images [109] (Figure 5A). The U-Net architecture is
a special type of CNN that takes an image as input
and transforms it into another image. The segmentation
of biomedical tissue images [109]) is achieved by first
downsampling and then upsampling the image through
a series of convolutional layers. Again, downsampling is
performed to detect the features in the image and reduce
the computational load, while upsampling is used to
reconstruct thepictureandcarryout thesegmentation.The
downsampled images at the contracting part of the U-Net
are concatenated with the images at the corresponding
levels of the expanding part. This is performed to pre-
serve local, high-resolution information about the picture.
Another study employed a multichannel U-Net model to
segment fluorescence images with heterogeneous marker
combinations [110]. In particular, it showed that using an
attention module makes the resulting model robust to the
missing module problem, where only a limited subset of
the marker combinations are available.

A further step in the analysis of microscopy images
is to quantify the properties of the objects in the field of
view. Examples include precisely identifying the location
of objects in an image [59, 112], quantification of the
scattering properties of objects from microscopic images
[51, 113], and analysis of particle motion from sequences
of images for characterizing anomalous diffusion [114]
or the underlying force field [115]. A prime example of
data regression is in object localization. Localizing objects
in microscopic images has traditionally been based on
thresholding techniques, in which adjacent pixels sharing
similar intensities are grouped to form an assessment of
where the objects are located in an image. The success of
such pixel-by-pixel-based techniques requires the pixel-
wise intensity of the objects to be well separated from that
of the background. In many cases, such as in brightfield
imaging or in the presence of noise, that assumption
may not hold, making particle localization challenging.
In contrast to the pixel-by-pixel-based thresholding anal-
ysis, CNNs instead extract features of images at multiple
length scales. This enables the network to identify spatial
correlations in the image data and to learn to exploit
these correlations to classify the presence or absence of
objects. This approach has been employed in various
experimental situations and has enabled automated par-
ticle localization in challenging conditions. For example,

in Ref. [59], the authors use a CNN to accurately determine
the location of a single particle within a small image
region (101 × 101 pixels). This approachwas demonstrated
to achieve higher localization accuracy than traditional
algorithmic approaches, particularly under poor signal-
to-noise ratios (SNR) (Figure 5B). This approach can be
helpful for prediction refinement, assuming that some
othermethod has already identified potentially interesting
regions in the image. In Ref. [111], the authors instead
used a U-Net to directly localize single-molecule emitters
in an entire field of view, providing 3D localization as
well as an estimate of emitter intensity in a single shot
(Figure 5C).

3.3 Multimodal and transfer microscopy
Image classification and regression seek to reduce the
information content of an image into a list of numbers.
Beyond this, deep learning has proven effective in image-
to-image transformation, in which the objective is to trans-
form the input image into another image for further data
processing. Examples include super-resolution imaging
[116, 117], 3D volumetric imaging [118, 119], cross-modality
transformation [120–122], and speckle pattern deconstruc-
tion [123]. As an example, in Ref. [116], a GAN (Figure 2C)
was utilized to artificially enhance the resolution of optical
microscopy images. The authors collected low- and high-
resolution images of cells and nanoparticles. Notably, the
low- and high-resolution images were obtained sequen-
tially on the same field of view of each sample. The task of
theneuralnetworkwas tooutput thehigh-resolution image
given the low-resolution one as an input. The network
outperformed standard image deconvolution algorithms
and matched the resolution of the optical method used
to acquire the ground truth data. Furthermore, in Ref.
[124], the authors demonstrated that by including network
layers that analyze the Fourier spectrum of the input
images, thedetails in theobtainedsuper-resolution images
were improved (Figure 6A). Deep learning can also be
used to transform between different imaging modalities
[120–122, 125, 126]. As an example, Ref. [120] used a GAN
to transform holographic images into brightfield images,
enabling volumetric imaging without the speckle noise
typically associated with coherent imaging techniques
(Figure 6B).

At this point, a word of caution is required. While
deep-learning models can be trained to perform seem-
ingly impossible transformations of the input data, these
models cannot learn beyond the information content of
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Figure 5: Image analysis by neural networks.
A Pixel-wise classification to segment objects in microscopy images. The method is based on the U-Net architecture and outputs a binary
image corresponding to cells (white) and background (black). B Particle localization using a CNN. The CNN is trained using simulated images
of microscopic particles. The neural network outputs the position of a particle within a region of fixed size. This model (orange lines)
outperforms traditional approaches (gray lines) in terms of accuracy, in particular for noisy images (lower panels). C Particle localization
using a U-Net to identify the position and intensity of particles pixel by pixel. For each pixel, the network predicts the probability that an
emitter exists near that pixel, the intensity of that pixel, the three-dimensional vector connecting the pixel to the closest emitter, as well as
an estimate of the localization uncertainty. Panel A is reproduced with permission from Ref. [109] (Copyright 2019 Springer-Nature), panel B
from Ref. [59] (Copyright 2019 Optica), and panel C from Ref. [111] (Copyright 2021 Springer-Nature).
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Figure 6: Multimodal and transfer microscopy.
A Deep learning can be used to enhance the resolution of microscopy images. The core idea is to record sets of low-resolution images (the
wide-field (WF) image exemplified in the leftmost panel) and high-resolution images (ground truth structured illumination microscopy
(GT-SIM) image exemplified in the panel second to the left) of the same field of view, on the same optical setup. The neural network, often a
GAN, is then trained to reconstruct the high-resolution image from the low-resolution image as input. The output examples are shown in the
two rightmost panels, F-actins inferred by residual channel attention network (RCAN) and deep Fourier channel attention network (DFCAN).
B A different way to utilize deep learning is by training models to convert between different microscopy modalities. In this example, a GAN
was trained to predict brightfield images using inline holographic images as input. Panel A is reproduced with permission from Ref. [124]
(Copyright 2021 Springer-Nature), and panel B from Ref. [120] (Copyright 2019 Springer-Nature).

the training data. In other words, deep-learning models
can be trained to transform microscopy images from a
high-information content image to a low-information con-
tent representation, while going in the opposite direction
requires the model to extrapolate information based on
knowledge it acquires from information in the training
data. Utilizing such extrapolated data for further analysis
and decision-making is risky, as it relies on information
not present in the input data. Depending on the purpose
of the analysis, it may be more robust to train a model
to explicitly extract relevant features from the input image

directly insteadoffirstperformingapotentially error-prone
modality transformation.

4 Opportunities
Going beyond the success stories presented in the previous
sections, deep learning remains underutilized in several
areas. This section provides an overviewof the areaswhere
we believe that photonics and deep learning can still work
synergistically to offer novel opportunities.



3200 | D. Midtvedt et al.: Deep learning in light–matter interactions

4.1 Quantitative data analysis
Deep-learning models can quantitatively measure the
properties of their input data. This becomes particularly
useful with several microscopy techniques that are today
considered qualitative due to the difficulty of extracting
quantitative information from light scattering data. For
example, brightfield microscopy is arguably the most
widely used microscopy technique found in essentially
every scientific laboratory. However, due to the low image
contrast and incoherent illumination, it is extremely chal-
lenging toextract quantitative information frombrightfield
images, so brightfield microscopy is commonly used as
a qualitative technique. However, brightfield images are
superpositions of scattering patterns formed by multiple
wavelengths of light and contain vast amounts of informa-
tion. For example, virtual staining of quantitative phase
images [126] and brightfield images [122] has recently been
demonstrated, transforming such images into synthetic
fluorescence images where specific structures have been
stained. Importantly, for brightfield imaging, the resulting
structures have been shown to quantitatively reproduce
both the morphologies and fluorescence intensities of
the corresponding structures (Figure 7A–C) [122]. This
procedure circumvents the limitations of brightfield imag-
ing, namely its low image contrast and challenging data
interpretation. Besides, it overcomes the limitations of
fluorescence staining, namely potential toxicity, fluores-
cence bleaching effects, and variability in results between
different professionals performing the stain, in this way
transforming brightfield into a quantitative microscopy
technique.

In other instances, the data itself may be quantitative,
but the complexity of the data might make quantitative
analysis challenging. For example, in hyperspectral imag-
ing, each pixel contains a wide spectral profile that can
be used to characterize an object. The vast amount of data
available in each imagemakes it difficult to analyze it using
conventional techniques. Ref. [129] uses a U-Net to predict
the location of multiple drugs in a mouse liver from mass
spectroscopic images, showing the potential of deep learn-
ing for the analysis of such complex data. Furthermore,
Ref. [127] demonstrates stimulated Raman spectroscopic
imaging of biological samples in the fingerprint region
(400–1800 cm−1). Raman scattering in this spectral region
provides “fingerprints” of the chemical composition of a
sample and is, therefore, a highly useful characterization
technique for many materials. For biological materials,
the Raman scattering in this region is very weak, and
it has been challenging to perform fingerprint Raman
imaging on such samples. Using a U-Net architecture, the

authors demonstrate an enhancement of the contrast of
Raman spectroscopic images, which enables quantitative
measurements of the lipid and protein contents of living
cells (Figure 7D–F).

As a different example, the scattering patterns of
nano- and microparticles contain information about their
size, refractive index, and shapes. However, extracting
these properties from experimental scattering patterns is
challenging, as it requires solving the inverse problem
for Maxwell’s equations. Instead, deep learning-powered
solutions, which fit the Mie theory to the experimentally
obtained scattering patterns, have enabled direct sizing
and refractive index determination of particles with radii
from about 100 nm to 𝜇m [113, 128] (Figure 7G–I).

As a final example, surface plasmon resonance is an
optical effect occurring in metallic nanoparticles when
they are irradiated. By measuring the absorbance of such
nanoparticles as a function of the angle of incidence,
the refractive index of the immediate surrounding of the
nanoparticles can be determined. That is often used to
characterize nanofilms and surfaces. However, when used
asan imagingmodality, theangleof incidence iskeptfixed.
The method is then used for qualitative investigations
of surfaces rather than as a quantitative characterization
tool. Ref. [130] demonstrates quantitative refractive index
measurements for surface plasmon resonance imaging
through the development of a deep learning-powered
phase retrieval algorithm.

4.2 Nanophotonics for deep learning
Various systems are potential platforms for practical neu-
romorphic computing [53]. Someof thedesirable aspects of
using photonic-based systems instead of silicon floating-
point units are their speed and low power consumption
[131, 132]. Furthermore, photonic information processing
systems are highly configurable and canprocess in parallel
with amplitude, phase, polarization, and frequency [133],
which naturally leads to a wide array of useable tech-
niques. In this section, we will take a closer look at deep
learning developments in photonics systems with a focus
on systems that have been experimentally realized. They
offer a good prospect for implementing neural networks,
particularly with photonic chips and 3D printing [62,
134–141]. Our discussion will start with how non-linear
activation functions are achieved in photonic systems, fol-
lowed by the construction of fundamental neural network
units such as perceptrons and multiply-and-accumulate
(MAC) units, and finally, how these systems can be
cascaded (layered) to implement deep learning.
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Figure 7: Quantitative imaging with deep learning.
A–C Brightfield images of adipocytes A converted into virtually stained fluorescent images B and comparison with the relative
chemically-stained ground truth C. The GAN was trained to reproduce images where lipid droplets (green), cytoplasm (red), and nuclei
(violet) were separately stained. The resulting virtually stained structures were shown to quantitatively match the fluorescently stained
structures in size and morphology, demonstrating that the network learns to distinguish different cellular structures in brightfield images
based on their interaction with the illuminating light. D–F Raw Raman scattering signals from biological samples D retain quantitative
information about the Raman spectrum of the sample, enabling the quantification of lipids and proteins in living cells using a U-Net E.
F Structural similarity (SSIM) index for raw and spatial-spectral residual net (SS-ResNet) normalized by the ground truth of the three
chemical channels. G–I Holographic images of nanoparticles contain quantitative information about the size and refractive index of the
particles. This information can be decoded using deep neural networks to provide much-improved characterization accuracy compared to
traditional methods. Panels A–D are adapted with permission from Ref. [122] (Copyright 2021 AIP), panels D–F from Ref. [127] (CC-BY), and
panels G–I from Ref. [128] (Copyright 2021 ACS).
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A key element of sophisticated classical computing
systems is stable andcoherent switchingbehavior between
two definite states. Neural networks are a model which
incorporates non-linear switching behavior with linear
interconnects. The choice of non-linear transfer functions
changes from implementation to implementationand from
application to application. One of the most common
examples is the sigmoid function, which can be realized
optically using a deeply saturated differentially biased
semiconductor optical amplifier [142]. The pulse train in
natural neural networks can be mimicked in systems that
resemble the Hodgkin–Huxley circuit model [143]. In this
model, the injected current is considered a phase-space
parameter. Below the threshold current, the potential
difference remains small, and no pulsing behavior is
observed. At the threshold current, the dynamics of the
circuit switches through a Hopf bifurcation, and peri-
odic solutions can chaotically emerge. Passive optical
amplifiers and cavities with parametric instability can
also follow this behavior [144]. In general, any kind of
bifurcationcanbeused [145]. Thesesystemsareconsidered
for use in artificial neural networks because of support
for Hebbian learning models (changes in neuron–neuron
association with stimulation in time) in living organisms
[146, 147].

The photonics-based schemes can be all-optical [137,
148–151] or electro-optical [140, 152–156] (see also reviews
[157–159] for more details). The optical and electro-optical
implementations of the activation functions in actual
neural networks include phase changematerials [137, 160,
161], Fano resonances in nanostructures [162], non-linear
states (bifurcation) [145], wavelength-division multiplex-
ingusingoptical amplifiers [142], electric-opticmodulators
[152–154], vertical-cavity surface-emitting lasers (VCSELs)
[163, 164], passive mode locking with quantum dot [165],
chip-based electro-optic feedback circuit [155], and Kerr
non-linearity [139].Onlya fewof thesemethodswill survive
in products in the future due to limits to the level of
miniaturization that canbeachieved for the corresponding
physical process. Compared to the all-optical methods,
electro-optical methods can be advantageous due to their
relative simplicity in creating activation functions such as
rectified linear units (ReLUs). Alas, this comes at the cost
of additional waste heat production, limiting miniaturiza-
tion. A comprehensive and more technical review of these
different technologies can be found in Ref. [141].

Summation is an important part of data manipulation
and transformation. The core functionality of a perceptron
is to calculate an output that is a function of a weighted
sum of its inputs. In CNNs [166], the data is multiplied

element-wise with some kernel and summed. In RNNs
[167], there is an implicit integration in the feedback.
The details of how physical implementations of these
data structures are made are important because they
ultimately determine the speed, accuracy, and efficiency
thatmake a computing system operate. In the single-mode
domain, the summation of photons can be performed
either by intensity or complex phase (vector/scalar field)
[168]. For example, chip-based Mach–Zehnder interfer-
ometers have been used for vowel recognition [136]
and could conceivably be adapted for general CNN and
RNN tasks.

Integrated photonics has the potential to perform vast
parallel matrix multiplications. Currently, over a trillion
(1012) MACs have been demonstrated with integrated
photonics [140, 169]. By virtue of it being based on light
(photons), which exhibits weak coupling in dielectrics,
and the ease at which different frequency components can
be separated, it has two potential advantages over elec-
tronic counterparts: such a system can use wavelength-
divisionmultiplexing toseparatedata intodiscrete streams
of information, and it potentially exhibits much lower
dispersion than electron-only systems,which enables high
modulation rates. The wavelength-division multiplexing
scheme and comparison with traditional computing for
the same data is shown in Figure 8A–C.

Although neuromorphic computing has been shown
to greatly accelerate and reduce the energy requirements
of the inference stage of deep learning models, the actual
training of such computing systems has proven to be a
challenge. One reason for this is that the backpropagation
algorithm, which is the pervasive algorithm for training
neuralnetworks, cannotbe implementeddirectly inaphys-
ical system. This challenge has been recently overcome by
combiningphysical systemswithanumericalmodelwhich
emulates the behavior of the physical system, demonstrat-
ing efficient training of physical neural networks using
backpropagation [170] (Figure 8D).

In a free-space optical system, convolutions come nat-
urally out of considering the equationsof lightpropagation
where the propagation kernel itself is a convolution. This
provides an opportunity to produce a deep neural network
based on the printing of successive complex amplitude
filters, such as demonstrated for a diffractive deep neural
network (D2NN) [134] (Figure 8E–G). In this work, a
machine learning model of a physical system was first
modeledona computer, and the resulting stacked complex
filtering structures were printed using lithographic tech-
niques. This neural network was able to identify objects
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Figure 8: Deep learning with physical systems.
A Digital electronics requires many sequential processing steps distributed across multiple cores to compute convolutional operations on an
image. B In contrast, an entire matrix-vector multiplication (MVM) can be performed in a single step using analogue electronic in-memory
computing. C Finally, in photonic in-memory computing, wavelength multiplexing is used to introduce an additional degree of freedom,
enabling multiple MVM operations in a single time step (parallel convolutional processing using an integrated photonic tensor core).
D Recently, it has been demonstrated that efficient training can be achieved by implementing error backpropagation using physics-aware
training, where the forward pass in the training step is performed by the physical system, while error backpropagation is performed in a
numerical system designed to mimic the response of the physical system. E Diffractive Deep Neural Networks comprise multiple
transmissive layers, where each point on a given layer acts as a neuron with a complex-valued transmission coefficient. Here, a handwritten
digit classifier that classifies F input digits (0, 1,… ,9) based on G 10 different detector regions at the output plane of the network, each
corresponding to one digit. H Design and I SEM micrograph of a 3D-printed Haar filter with a kernel of width three. J Schematic illustration of
the input–output mapping of nine Haar filters (F1–F9). K Optical characterization of the filter’s connection topology, injection at the output
port, and recording the input ports emission. Panels A–C are adapted with permission from Ref. [169] (Copyright 2021 Springer-Nature),
panel D from Ref. [170] (Copyright 2022 Springer-Nature), panels E–G from Ref. [134] (Copyright 2018 AAAS), and panels H–K from Ref. [135]
(Copyright 2020 Optica).
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within images encodedon light projected through the com-
plex photonic structure [134]. Furthermore, convolutional
image processing, including classification using deep
neuralnetworks,hasbeendemonstrated,e.g., inRefs. [134,
169, 171].

Micro 3D printing can create Cantor-set-like photonic
circuits with a 3D structure that allows deeply connected
networks to occupy less space than a traditional printed
photonic circuit [135] (Figure 8H–K). These structureswere
shown to exhibit a high degree of convolution in a small
space, which provides a potential avenue for extremely
compact CNNs.

4.3 Microscopic particles with embodied
intelligence

Natural systems have evolved powerful sensing capabil-
ities to gain information about their environments and
to communicate [172, 173]. For example, in swarms of
midges, schools of fish, and flocks of birds, individuals
exchange information as part of their behavior to self-
organize into a collective state [174]. Microorganisms have
also developed complex strategies to survive and thrive
in their environment by integrating sensors, actuators,
and information processing. Their biochemical networks
and sensory systems are optimized to excel at specific
tasks, such as climbing chemical gradients [175], coping
with ocean turbulence [176], and efficiently foraging for
food [177, 178]. They have also acquired complex strate-
gies to interact with their environment and with other
microorganisms, leading to the emergence of macroscopic
collective patterns. These patterns are driven by energy
conversion from the smallest to the largest scales and
permit microorganisms to break free of some of their
physical limits. For example, dense systems of bacteria
develop “active turbulence” at length scales where only
laminar flows are expected from the underlying physical
laws [179, 180]. As another example, dense filaments and
motor proteins, which are the structural building blocks of
cells, develop active nematic structures with new physical
properties [181, 182].

On the other hand, synthetic microscopic systems
that try to emulate living systems still present many
fewer possibilities. Most experimental studies have been
constrained to steric, electrostatic, phoretic, or hydro-
dynamic interactions, which are readily available from
physical interactions [5]. Even these simple interactions
can lead to interesting complex behaviors and self-
organization whose onset is often observed in artificial
systems where increased energy input above a threshold
density drives a phase transition to an aggregated state.

An example of such behaviors is the formation of “living
crystals,” which are metastable clusters of active particles
[183, 184].

Photonics has the opportunity of making microscopic
particles intelligent, providing the tools for artificialmicro-
scopic particles to acquire, elaborate, and respond to
information from their environment [5]. This can be made
by different means. For example, Ref. [185] has recently
developed a lithographic fabrication-and-release protocol
to build microscopic walking robots activated by light,
which provide a new class of voltage-controllable electro-
chemical actuators that operate at low voltages (200 μV),
low power (10 nW) and are completely compatible with
silicon processing (Figure 9A). This permits the authors
to realize microscopic particles that can be actuated by
shining a beam of light on them, as shown in Figure 9B.
Also, Figure 9C shows another recent example where
microscopic particles are enhancedwithmetasurfaces that
alter the linear and angular momentum of the incident
light, therefore, permitting steer the particles [186]. How-
ever, these approaches only provide photonic-actuated
microrobots, which still require some external control and
feedback.

In this context, machine learning can provide new
approaches to realize these possibilities. In fact, the
early studies presented above have mainly relied on
designs based on human intuition, which is now leading
to diminishing returns. Designs obtained by machine
learning can go beyond what can be simply imagined
by human intuition and therefore open new possibili-
ties. For example, machine learning can help to achieve
onboard sensing and decision-making, as opposed to
external computer-controlled feedback loops. This has
been recently demonstrated in a proof-of-principle study
by designing reconfigurable organisms [187], as shown
in Figure 9D–G. In this work, artificial intelligence
methods were employed to automatically design diverse
candidate lifeforms in silico to perform some desired
function, and transferable designs were then created
using a cell-based construction toolkit to realize living
systems with the predicted behaviors. In the future, these
reconfigurable living organisms can be further enhanced
with photonic capabilities such as lasing [188] and light
guidance [189].

5 Challenges
In the previous sections, we have shown the potential of
deep learning to enhance the study of light–matter inter-
actions beyond the capabilities of conventional methods,
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Figure 9: Toward embodied intelligence in microscopic particles.
A Optical image of a microscopic robot. It has two parts: a body with internal electronics and legs that actuate. The electronics are simple
circuits made from silicon p–n junctions and metal interconnects, encapsulated between a layer of silicon dioxide and a layer of SU-8
photoresist. The legs are made from a new class of voltage-controlled surface electrochemical actuators (SEAs) and rigid photoresist panels.
The panels control the folded shape of the leg while the SEAs produce motion. B By directing laser light to photovoltaics that alternately
biases the front and back legs, the robot walks along patterned surfaces. C By incorporating an engineered metasurface into a microparticle,
the changes in linear and angular momentum of the incident light can be employed to propel and steer the microparticle across a surface,
realizing a metavehicle. D–G Advanced in silico design using artificial intelligence is employed to generate multicellular microorganisms
with specific behaviors. Panels A–B are reproduced with permission from Ref. [185] (Copyright 2020 Springer-Nature), panel C from Ref.
[186] (Copyright 2021 Springer-Nature), and panels D–G from Ref. [187] (Copyright 2020 NAS).

providing a fast, automatized, and noise-resilient route
to optimize the output of optics and photonics experi-
ments. However, in designing, executing, and validating
the performance of deep-learning-based methods, one is
faced with several considerations and challenges distinct
from those experienced when employing conventional
methods. This section will review the essential challenges
and provide simple guidelines for the effective deploy-
ment of deep-learning-based techniques in the study of
light–matter interactions.

5.1 Training data augmentation and
simulation

The first challenge is to obtain high-quality training
data. This is a challenge common to all supervised
machine-learning methods and involves the generation of
matching input/output pairs. For thenetwork to generalize
to unseen data, the network must learn to recognize
relevant features of the input data. This requires that the
input data represent the full range of expected caseswhere
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the trained network will be applied. Determining whether
the input data is sufficiently general can be non-trivial,
particularly in cases where the physical rules connecting
input and output are unknown. In addition to acquiring a
representative set of network inputs for the training, the
corresponding target outputs need to be constructed. For
example, for image classification and segmentation, the
target outputs are often built through manual labeling,
which is a time-consuming process, limiting the amount of
training data that can be constructed within a reasonable
amount of time and effort. Further, the use of user-labeled
data for network training makes the network output
subjective, as it reflects the biases of the user constructing
the labels.

Data normalization and augmentation are often
employed to reduce the amount of data required for
network training. Data normalization aims at making
the data easily interpretable by a neural network. While
data normalization does speed up the learning process
of neural networks, it also implies a loss of data, which
might be of relevance, particularly for regression tasks.
Therefore, choosing the right type of data normalization,
which quantitatively retains the information of interest, is
crucial for successful deep learningdeployment in science.
A trivial but sometimes overlooked example is that the
sample-to-sample variability within a dataset is lost when
individual samples from that dataset are independently
normalized. In cases where such variability is expected
to be important, e.g., for quantitative applications, a
global normalization across the entire dataset is to be
preferred.

The purpose of data augmentation is to perform
multiple transformations to the input, which have a
predictable effect on the expected network output. For
example, it is possible to generatemultiple training images
from a single input image, thereby extending the available
training set by image rotations, scaling, and cropping.
However, one should be wary of transformations that do
notnecessarilyconserve therelationbetweenthe inputand
output, particularly in cases where the underlying theory
connecting input and output is unknown. For example, in
most cases, the analysis of microscopy images is invariant
under translations and rotations. However, depending on
the context, transformations that alter the pixels them-
selves, such as scaling or elastic transformations, may
introduce unpredictable artifacts in the analysis. As a
general rule, one should only employ augmentations that
have a predictable effect on the analysis.

One way to partially overcome these challenges is
to use simulated data for training neural networks. This

approach can generate data on the fly during training,
enabling essentially unlimited training data. Nonetheless,
verifying that the training data represents the experiment
realistically is still non-trivial. Essentially, the simulation
must be sufficiently exact to capture the relevant features
in the experimental data accurately. As an illustrative
example, in Ref. [59], simulated microscopy images of
single particles were used to train a network to estimate
the position of particles within an image. Since the experi-
mental data consisted of particles whose intensity profiles
could be well described by Bessel functions, training
the network on combinations of two-dimensional Bessel
functions with varying width, position, and intensity
was sufficient to provide good localization accuracy. In
contrast, in Ref. [128], simulated data were used to train
a network to quantify the size and refractive index of
individual nanoparticles from their scattering patterns.
In this case, the relevant information is encoded in the
Fourier spectrum of the scattered field, and in order to
capture the relevant features of the scattering patterns,
the simulated data needed to consist of simulated Mie
scattering patterns of particles passed through a synthetic
replica of the experimental optical system including its
aberrations.

Sufficiently complex deep-learning models can learn
sophisticated correlations in the input data. The models
can also be sensitive to out-of-distribution shifts. Slight
changes in the parameters of the microscope in the last
example would invalidate the trained model and require
retraining. Detecting and making deep learning solutions
robust to such perturbations is an active field of research,
and multiple strategies have been proposed to partially
address this issue [190, 191].

5.2 Architecture and hyperparameter
optimization

The choice of network architecture is currently more of a
form of art than an exact science. In general, if there exist
a transformation connecting the input data to the desired
output, any network architecture with sufficiently many
adjustable parameters will be able to learn an approx-
imation to this transformation. What can vary between
different choices of architectures is the accuracy of the
approximation, the training time, the trainingdataamount
required to reach this approximation, and the execution
speed of the deployed network. What matters the most for
the choice of network architecture and hyperparameters is
the amount and type of available data and the desired
output type. More specifically, inherent symmetries in
the input data can often be used to guide the choice of
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network architecture. For example, when detecting and/or
classifying objects in an image, the spatial location of the
object within the image rarely matters for classification.
Convolutionkernels are intrinsically translationally invari-
ant and are thus routinely used for such tasks. Beyond this,
physically informed neural networks provide a strategy
for imposing physical symmetries and constraints on the
network prediction, typically by penalizing predictions
that do not obey the specified symmetries [192].

In thisway, thearchitectureofaneuralnetworkcarries
an inductive bias, which determines what relations and
featuresof thedataaremost easily learnt andprioritizedby
the network [193]. Being aware of these biases can aid the
development of efficient network architectures for solving
a specific problem.

Regarding the choice of hyperparameters, such as
the depth of the network and the number of adjustable
parameters, this will typically depend on the amount of
available data and the type of transformation the network
is to learn. The deeper the network, the more complex
changes the network can learn. On the other hand, if the
available data is limited, there is a chance of overfitting the
training data. Choosing the right balance requires iterative
training with varying hyperparameters while carefully
validating thenetwork results ona large test set. It is oftena
good practice to start by training a relatively small network
and keep increasing its size as long as its performance
increases without overfitting the training data.

Anopenchallenge isautomaticallydeterminingmech-
anisms to define the best architecture and hyperparam-
eters. For example, that has been done using some
evolutionary architecture such as the neuroevolution of
augmenting topologies (NEAT) genetic algorithm devel-
oped in 2002 [194] and its subsequent derivations [195].
However, such approaches have turned out to be quite
slow in convergence and require many computational
resources.

5.3 Performance benchmarking, validation,
and reproducibility

Any use of deep learning in science needs to be motivated
by a superior performance compared to standard methods
by some predefinedmetric. Depending on the application,
such metrics may include analysis speed, accuracy, or
robustness to noise.

In some cases, such benchmarking is straightforward.
For instance, for the inverse problem solvers, the viability
of the obtained solution can be checked by explicitly
solving the forward problem with the obtained solution as
an input. However, inmany cases, deep learning solutions

are applied to situationsbeyond the capabilities of existing
techniques and where no theory exists that maps the
network prediction to the targeted output. Validating the
output of the network in such cases poses a considerable
challenge. To our knowledge, the best practice is to gen-
erate an experimental data set that can be analyzed using
some traditional method. Once the deep learning solution
has been validated against the traditional method on this
data set, thenext step is togenerateasyntheticdata set that
simulates the experimental setup and where the ground
truth is known perfectly. The quality of the synthetic
data set can be evaluated by comparing the output of
the traditional method and deep learning solution to
the simulated ground truth for a range of parameters
where the conventional method is known to perform well.
Once the simulation quality has been validated, the final
step is to tune the parameters in the synthetic data set
to the instances where the traditional method fails and
again validate the deep learning solution against the
simulated ground truth for the updated data set. In this
way, the deep learning solution can be shown to perform
comparably to a traditionalmethod for the caseswhere the
traditional method is expected to work. Furthermore, the
deep learning solution should outperform the traditional
method on the synthetic data sets as well.

Such careful benchmarking and validation become
particularly important when adversarial approaches are
used to manipulate the data [196]. As we have seen in
the previous sections, adversarial networks are trained
to generate synthetic data based on some input and are
designed to look realistic rather than to represent the
ground truth fairly. Therefore, adversarial approaches are
at risk of extrapolating the input data, effectively making
up non-existing data [196]. There is an increasing aware-
ness of these issues in the machine learning community,
and several recent studies demonstrate that advances in
image reconstruction and image analysis, provided by the
use of GANs, can also be achieved without adversarial
learning [118, 124, 197].

Finally, a related issue is the result reproducibility
by the deep learning-powered analysis. In particular, the
published deep learning solutions are typically made for
specific data sets; therefore, they are unlikely to provide
valid resultswhendirectlyemployedbyadifferent research
group on a similar, but not statistically identical, data
set. Thus, there has lately been a surge of interest toward
the development of publicly accessible software for cus-
tomizing deep learning solutions without the steep learn-
ing curve commonly associated with machine learning
[51, 198]. A set of guidelines were recently proposed
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for enhancing the reproducibility of the deep learning
techniques [199]. As a minimal requirement, the data,
model, and analysis code should be made publicly avail-
able (bronze standard). To meet the silver standard,
authors should make the dependencies of the analysis
installable with a single command, with the code properly
documented. Further, all random components of the
analysis should be made deterministic for reproducibil-
ity. Finally, the authors should make the full analysis
reproducible with a single command to meet the gold
standard.

6 Conclusions and guidelines
In this review, we have presented the current state and
future perspectives for the application of deep learning
in the fields of optics and photonics. Owing to the chal-
lenges related to validating and reproducing deep learning
results, a set of community-wide recommendations for
deep learning reporting and validation in biology was
recently published [200], with the acronym DOME (Data,
Optimization, Model, Evaluation). The recommendations
are summarized as a checklist of questions that should
be addressed when reporting deep learning results. These
recommendations largely apply to the fields of optics
and photonics as well; namely, every deep learning
application should be able to provide answers to these
questions:
– Data: How large is the data set used for training the

model? How large is the validation set? Are validation
and training set independent? Is the distribution of
data different in the training and validation sets?
Has the data set been used previously? Are the data
publicly available?

– Optimization:What type of deep learning algorithm
was used? Is the algorithm new? If so, why was it
chosen over existing algorithms? Does the model use
output from other deep learning algorithms as input?
How were the data encoded and preprocessed prior
to prediction? How many parameters does the model
consist of? Was the feature selection performed? If
so, how? Are the number of parameters much larger
than the number of data points in the training set?
If so, how was the overfitting ruled out? If not, how
was underfitting ruled out? Are the hyperparameter
configurations, optimization schedule, model files,
and optimization parameters reported?

– Model: Is the model black box or interpretable? If the
model is interpretable, can you give clear examples of
this? Is the model classification or regression? What

is the typical execution time? Is the software publicly
available?

– Evaluation: How was the method evaluated? Which
metrics were used for the evaluation? Was a
comparison to standard algorithms made on bench-
markdata sets?Wasacomparison to simplerbaselines
performed? Are the raw evaluation files available?

Finally, we remark that, beyond a large range of appli-
cations that have already been successful, there are still
many fields where deep learning can have a large impact
and, therefore, need to be explored. First, the execution
speed of trained deep learning models provides new
possibilities for experiments through the automatization
of current setups. This can free these experiments from
the need for continuous human intervention and super-
vision, permitting the acquisition of large-scale statistics
that currently would be prohibitively work-intensive. In
turn, this will allow scientists to study also relatively
rare events that human operators on small sample sizes
might disregard as outliers (e.g., in biomolecule pulling
experiments using optical tweezers). Second, there is a
great drive towards understanding not only what deep
learning can do but also how it achieves it. This means
gaining insights into the understanding and interpreting
theblackbox thatdeep learningoften represents.Once this
work advances, it will open new possibilities to discover
the theory underlying various phenomena by observing
what the network learns. Third, nanophotonics can pro-
vide essential tools to make physical implementations of
neural networks, which have remarkable advantages in
terms of increasing computational speed and minimizing
power consumption. In fact, as we have seen in the
previous sections, there are already several proposals
along these lines. One of the critical issues in this field
is integrating these new neuromorphic computing tech-
nologies with current computational technologies based
on Boolean electronic circuits. Fourth, arguably the holy
grail of the field would be to employ machine learning
concepts and techniques to realize microscopic particles
capable of real intelligent behavior by autonomously
processing and responding to information from their
environment.
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