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Abstract
In the presence of uncertainties in the parameters of a mathematical model, optimal solu-
tions using nominal or expected parameter values can be misleading. In practice, robust 
solutions to an optimization problem are desired. Although robustness is a key research 
topic within single-objective optimization, little attention is received within multi-objec-
tive optimization, i.e. robust multi-objective optimization.This work builds on recent work 
within robust multi-objective optimization and presents a new robust efficiency concept 
for bi-objective optimization problems with one uncertain objective. Our proposed concept 
and algorithmic contribution are tested on a real-world multi-item capacitated resource 
planning problem, appearing at a large aerospace company manufacturing high precision 
engine parts. Our algorithm finds all the robust efficient solutions required by the deci-
sion-makers in significantly less time than the approach of Kuhn et  al. (Eur J Oper Res 
252(2):418–431, 2016) on 28 of the 30 industrial instances.
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1 Introduction

Two common challenges while dealing with complex real-world decision-making prob-
lems are (i) uncertain input parameters and (ii) multiple conflicting goals. The former may 
be a consequence of measurement errors, imprecise forecasts, unwanted disturbances, and 
a lack of historical data. The latter can be due to the involvement of multiple stakehold-
ers/agents with competing goals. This work deals with bi-objective discrete optimization 
problems where one of the objective functions contains uncertain parameters. Few appli-
cations of uncertain bi-objective optimization are considered in the literature. Kuhn et al. 
[21, Sect. 8.1], consider a flight route planning problem (first presented in [20]), the two 
objectives being route efficiency—in terms of minimizing travel time—and risk—in terms 
of minimizing exposure to weather conditions; the latter (weather condition) is considered 
uncertain. A hazardous materials transportation problem is studied by Kuhn et  al. [21, 
Sect. 8.2], with the objectives to minimize travel times and the number of people exposed 
in case of an accident, the travel times being considered uncertain, especially in urban 
areas.

One such application is presented in this work: it is focused on the planning of machin-
ing capacity for a large aerospace tier-1 [5, p. 64] engine system manufacturer with uncer-
tain qualification costs, i.e. non-recurring fixed costs for verifying or assisting a machine in 
performing a specific task. The problem is the so-called tactical resource allocation prob-
lem (TRAP), a multi-item capacitated resource planning problem with a medium–to–long 
term planning horizon. A corresponding model is discussed in detail in [14, Chap. 2] and 
[13]. A solution to the TRAP is the allocation of tasks to machines and a schedule for the 
qualifications to be performed. The two objectives considered are minimizing the maxi-
mum excess resource loading above a given threshold and minimizing the total qualifica-
tion costs incurred due to man-hours needed to verify machines for tasks or buying new 
fixtures/tools to adjust the machine for a given task. The uncertainty of the coefficients of 
latter objective function is not considered in [13]. In this work, we assess the impact of 
uncertainty in the qualification costs on the efficient frontier for 30 industrial instances.

Various methods have been proposed for solving uncertain multi-objective optimization 
problems (MOOPs) using stochastic programming and robust optimization. Stochastic pro-
gramming for MOOP (see [16]) is used when enough data is available. A drawback of the 
stochastic approach is that for some problems so-called long-run optimality is not relevant, 
as the repeatability element of the decisions is missing; the decision-maker has to live with 
the consequences of the decisions made once. Since in the TRAP, qualification costs are 
incurred only once, it is evident that combining robust optimization and multi-objective 
optimization has certain benefits over other approaches. Moreover, the absence of histori-
cal data or expert opinions as bases for assumptions about the underlying probability distri-
butions does not encourage us to use stochastic programming. Although a lot of work has 
been done in the field of single-objective robust optimization, its generalization to MOOP 
is relatively new. [1, 3] present some basic concepts for single-objective robust optimiza-
tion which have been used for MOOPs (e.g. [15, 29, 30]). Each of these relies, however, 
on some form of a priori scalarization and does not assess the impact of uncertainty on 
the efficient frontier in different scenarios. Consequently, so-called robust efficiency con-
cepts for generalizing efficiency in MOOPs to uncertain MOOPs have been developed (see 
the discussion in Sect.  2). Most of the main concepts are described in the survey [18]. 
Our focus in this work is on bi-objective optimization problems with one uncertain objec-
tive function and a deterministic feasible set. Specifically, we build on the contribution of 
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[21] by suggesting a new robust efficiency concept and an algorithm that shows improved 
results on the industrial instances considered.

1.1  Relevance to multi‑objective multi‑agent decision problems

A multi-agent system (MAS) contains multiple agents deployed in a shared environment. 
Even though several multi-agent systems have multiple objectives, they are commonly 
(often erroneously) modeled as a single-objective decision problem. There has been some 
interest in using multi-objective approaches for MAS. [26] present several multi-objective 
approaches used for decision problems in MAS. To establish a relation between our contri-
bution—on a bi-objective optimization problem with an uncertain objective function—to 
multi-objective MAS, we present an example of the Multi-Objective Normal Form Game 
(MONFG).1 Suppose two agents wish to commute from an origin to a final destination. 
There are two modes of transportation: taxi and train. When both agents take a taxi, they 
split the cost. However, if both choose to take a train, they pay for their individual tickets. 
The exact costs of the train tickets and the taxi fare are available, but the travel time is 
uncertain for both modes of transportation. We assume two scenarios: expected/nominal 
(nom) and a worst-case (wc). The costs and travel times are given by 

(
cost time(nom) time(wc)

taxi 20 10 15

train 5 30 32

)
 

and a corresponding individual payoff matrix for the commuting MONFG is given in 
Table 1 (the negative values representing costs).2

The actions of the two agents result in a reward vector, representing cost and travel time. 
For instance, if agent X takes a taxi and agent Y takes a train, the reward received by the two 
agents in the nominal scenario is (−20,−10) and (−5,−30) , respectively. In the worst-case 
scenario, the two agents receive the reward (−20,−15) and (−5,−32) , respectively. Assum-
ing that the two agents are cooperating (considering a team reward) and that there is no pre-
defined utility function, it would make sense to identify actions that are equally good. How-
ever, if the two agents choose different modes of transportation the individual reward vectors 
of both agents have lower values than if both agents take a taxi, in the nominal as well as the 
worst-case scenarios. Hence, the actions of both agents choosing the same mode of transporta-
tion are of interest to the system planner. This type of problem can be modeled as bi-objective 
optimization problems with one uncertain objective (here, the team reward for travel time is 
uncertain), which is the topic of our work. Since we assume that the two agents are cooperat-
ing, the rewards for the two agents should be combined, e.g. summing costs and travel times, 
respectively. For instance, when both agents take a taxi, the total reward is (−20,−20) in the 

Table 1  Payoff matrix of the commuting MONFG with uncertain travel times

{(reward(X)), (reward(Y))} Scenario agent Y: taxi agent Y: train

agent X: taxi nom {(−10,−10), (−10,−10)} {(−20,−10), (−5,−30)}

wc {(−10,−15), (−10,−15)} {(−20,−15), (−5,−32)}

agent X: train nom {(−5,−30), (−20,−10)} {(−5,−30), (−5,−30)}

wc {(−5,−32), (−20,−15)} {(−5,−32), (−5,−32)}

1 A modification of the example presented in [26, Sect. 1.1]
2 Table 1 differs from [26, Tab. 3] as we consider two travel time scenarios
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nominal scenario and (−20,−30) in the worst-case scenario. In real-world problems there are 
often several possible actions (or feasible solutions); hence, an explicit payoff matrix cannot 
be established, which calls for a combination of multi-objective and robust optimization.

1.2  Contributions and outline

The contribution of this work is in the field of bi-objective optimization with one uncertain 
objective function with well-defined nominal (most likely) and worst-case scenarios. Our first 
contribution is the new robust efficient (RE) concept of positive robustness  �-representative 
lightly RE solutions and a measure to evaluate the net gain by the inclusion of a worst-case 
scenario to the optimization problem. Our second contribution is the suggestion of a new 
approach to identify relevant RE solutions to the so-called tactical resource allocation prob-
lem (TRAP), leading to computational gains over existing approaches such as the algorithm 
presented in [21].

In Sect. 1.3, we present a mathematical model for the TRAP. In Sect. 2 we present some of 
the existing robust efficiency concepts from the literature. In Sect. 3, we present a new robust 
efficiency concept for bi-objective robust optimization problems with one uncertain objective 
function. Further, we present a measure for assessing the net gain by the inclusion of a worst-
case scenario. In Sect. 4, we present a so-called 3-stage method and perform numerical tests 
on 30 industrial instances of the TRAP.

1.3  Problem description

Formally, the TRAP is defined as follows (see Table 2 for notations).

Definition 1 (TRAP) Given a set J  of job types (tasks) and a set K of machines, let pjk 
be the average processing time (including set-up time) of job type j ∈ J  when performed 
in a compatible machine k ∈ Kj ⊆ K . Each machine k ∈ K has the capacity Ckt (time units) 
in time period t ∈ T  and a relative loading threshold �k ∈ [0, 1] . The demand ajt of each 
job type j ∈ J  in time period t ∈ T  must be met. The number of machines allocated to the 
same job type in each time period must not exceed the value of the parameter � ∈ ℤ+ . For 
assignments (j, k), such that k ∈ Nj ⊆ Kj and j ∈ J  , so-called qualifications are required 
which generate additional one-time costs ( �q

jk
 , where q ∈ Q is the index of a scenario). For 

a job type j ∈ J  , the machines in the set Kj ⧵Nj do not require any qualifications. The 
total number of qualifications performed per time period t must not exceed the value of the 
parameter � ∈ ℤ+.

1.3.1  Model description

The two objectives considered and the constraints defining the feasible set for the TRAP is 
expressed as (the index q ∈ Q denotes a scenario) 

(1a)minimize
�,�,�,�

g1(�, s, n, z) ∶=
∑
t∈T

nt,
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 subject to 

(1b)minimize
�,�,�,�

g2(�, s, n, z, q) ∶=
∑
t∈T

∑
j∈J

∑
k∈Nj

�
q

jk
zjkt, q ∈ Q,

(2a)
∑
k∈Kj

xjkt = ajt, j ∈ J, t ∈ T,

(2b)xjkt ≤ min
{
ajt ,

⌊
Ckt

pjk

⌋}
sjkt, k ∈ Kj, j ∈ J, t ∈ T,

(2c)
∑
k∈Kj

sjkt ≤ �, j ∈ J, t ∈ T,

(2d)
1

Ckt

∑
j∈J

pjkxjkt ≤ nt + �k ≤ 1, k ∈ K, t ∈ T,

(2e)
∑

t∈T∶t≤l

zjkt ≥ sjkl, k ∈ Nj, j ∈ J, l ∈ T,

Table 2  Notations for the tactical resource allocation model

Sets Description

J = {1,… , J} Set of job types to be performed on the products/parts
K = {1,… ,K} Set of machines
Kj ⊆ K Set of machines feasible for job type j ∈ J

Nj ⊆ Kj Set of machines feasible, but not qualified for job type j ∈ J

T = {1,… ,T} Set of time periods
Q = {q̂, q̃} Set of indices of scenarios (nominal and worst-case) for the qualification costs

 Variables Description

xjkt ∈ ℤ+ Number of orders of job type j ∈ J  performed in machine k ∈ Kj in time period t ∈ T

sjkt ∈ {0, 1} = 1 if an order of job type j ∈ J  is allocated to machine k ∈ Kj in time period t ∈ T

zjkt ∈ {0, 1} = 1 if machine k ∈ Nj is qualified for job type j ∈ J  in time period t ∈ T

nt ∈ ℝ+ Maximum resource loading above thresholds �k , k ∈ K , in time period t ∈ T

� = (�, �, �, �) Bold notations representing vectors of the corresponding indexed variables

 Parameters Description

ajt ∈ ℤ+ Demand of orders of job type j ∈ J  in time period t ∈ T

pjk ∈ ℚ+ Average machining time in machine k ∈ Kj for job type j ∈ J

Ckt ∈ ℤ+ Capacity (hours) available in machine k ∈ K in time period t ∈ T

�
q

jk
∈ ℤ+ Qualification cost in scenario q ∈ Q , for machine k ∈ Nj for job type j ∈ J

� ∈ ℤ+ Upper limit on the number of qualifications in a single time period
� ∈ ℤ+ Upper limit on number of alternative machines for each job type in a single time period
�k ∈ [0, 1] Loading threshold for machine k ∈ K
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 We denote the set of feasible solutions as

The set of job types ( J  ) contains unique tasks (operations such as milling, turning, and 
grinding) to be performed on parts/products. Each job type j ∈ J  has the demand ajt in 
time period t ∈ T  , and the production should equal this demand, as expressed in (2a). The 
constraints (2b) ensure that no job is performed in any machine and time period to which it 
is not allocated. The constraints (2c) limit, for each job type and time period, the number of 
alternative machines to � , the value of which is given as an input by the user; a too small 
value of � may result in an empty set of feasible solutions and a too high value may be 
inconvenient for the production planners due to a resulting increased complexity of the 
product route. The constraints (2d) and (2j) make sure that the allocated machining hours 
do not exceed the capacity of the machines at any time period. The constraints (2d) are also 
used to define the objective function (1a), which is to minimize the sum over the time peri-
ods t ∈ T  of the excess resource loading of the machines (i.e. nt ≥ 0 ), which is defined as 
the maximum (over the machines) ratio between the allocated machining hours and the 
available hours (i.e. 1

Ckt

∑
j∈J pjkxjkt ) minus the loading threshold �k ∈ [0, 1] for the machine. 

The constraints (2e) implies that if a job type j is scheduled in machine k during time 
period t, then qualification of the machine for this job type must be done once during the 
time periods {1,… , t} . The constraints (2f) limit the number of qualifications allowed to be 
scheduled in each time period to � ; this is due to a limited number of skilled professionals 
for completing new qualifications. The constraints (2g)–(2j) define the allowed values of 
the variables.

1.3.2  Qualification cost

The qualification cost is the one-time cost incurred by the company to qualify a machine 
for a job type. Once qualified, the new allocation can be used in all the subsequent time 
periods. For each allocation (j,  k), j ∈ J  , k ∈ Nj , in scenario q, the qualification cost 
parameter �q

jk
 is represented by a natural number; hence, the uncertainty set is finite. It is 

common in the robust optimization literature to assume a nominal or most-likely scenario 
(see [3]). We denote the uncertainty set by Q ∶= {q̂, q̃} , where the indices q̂ and q̃ repre-
sent the nominal and worst-case scenario, respectively; for each j ∈ J  and k ∈ Nj it holds 
that 𝛽 q̂

jk
≤ 𝛽

q̃

jk
 . Since the qualification costs of any two allocations (j�, k�) and (j, k) are inde-

pendent, the nominal and worst-case values, � q̂ and � q̃ , respectively, are well-defined. For 

(2f)
∑
j∈J

∑
k∈Nj

zjkt ≤ � , t ∈ T,

(2g)xjkt ∈ ℤ+, k ∈ Kj, j ∈ J, t ∈ T,

(2h)sjkt ∈ {0, 1}, k ∈ Kj, j ∈ J, t ∈ T,

(2i)zjkt ∈ {0, 1}, k ∈ Nj, j ∈ J, t ∈ T,

(2j)nt ≥ 0, t ∈ T.

(3)Y ∶=
{
� = (�, �,�, �) ∶ the constraints (2a)–(2j) hold

}
.



Autonomous Agents and Multi-Agent Systems           (2022) 36:36  

1 3

Page 7 of 31    36 

uncertainty sets with more than two scenarios, most of the robust efficiency concepts to be 
defined will be retained, unless otherwise mentioned.

2  Preliminaries and an example to highlight robust efficiency concepts

Both robust and multi-objective optimization have, respectively, rich sets of literature. We 
introduce most of the key concepts in robust multi-objective optimization, aided by an 
instance of the TRAP, starting with some necessary notations ( [10]). For any two vectors 
�,� ∈ ℝ

b it holds that 

In a robust counterpart to a deterministic version of the TRAP, the objective function 
is defined as � ∶ Y ×Q ↦ ℝ

2
+
 , i.e. the scenarios corresponding to the indices in Q affect 

the objective values. An uncertain bi-objective TRAP is defined as a set of parametrized 
problems, as 

where P(q) denotes the instance (corresponding to scenario q)

of a bi-objective optimization problem, and the functions g1 ∶ Y ↦ ℝ+ and 
g2 ∶ Y ×Q ↦ ℤ+ are defined by

 Note that the feasible set Y is independent of the scenario q. As compared to the cases of 
single-objective robust optimization3 (SO-RO) and single-scenario (hence, deterministic) 
multi-objective optimization4 (SS-MOOP), it is not evident what properties characterize 
good solutions. Consequently, we evaluate some of the key concepts mentioned in [18, 21], 
and [11], and relate these to our model. However, most of the concepts apply to general 
cases as well i.e. for robust multi-objective optimization problems (robust MOOPs) with 
more than two objective functions. All set notations defined are listed in Table 4.

(4a)� ≦ � ⟺ wi ∈ [zi,∞) ∀i ∈ {1,… , b};

(4b)� ⪯ � ⟺ wi ∈ [zi,∞) ∀i ∈ {1,… , b} and � ≠ �;

(4c)� < � ⟺ wi ∈ (zi,∞) ∀i ∈ {1,… , b}.

(5a)P(Q) ∶= {P(q) ∶ q ∈ Q},

(5b)min
�∈Y

�(�, q) ∶= min
�∈Y

(
g1(�), g2(�, q)

)

(5c)g1(�) ∶=
∑
t∈T

nt;

(5d)g2(�, q) ∶=
∑
t∈T

∑
j∈J

∑
k∈Nj

�
q

jk
zjkt, q ∈ Q.

3 A field of optimization theory that requires a certain measure of solution robustness against uncertainty in 
parameters with a single objective function
4 A multi-objective optimization problem with no uncertain parameters
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Definition 2 (Efficient solutions for P(q) ) A point �̄ ∈ Y  is an efficient solution to the 
TRAP with scenario q, i.e. P(q) as defined in (5b), if ∄ � ∈ Y  such that �(�, q) ⪯ �(�̄, q) 
holds. If �̄ is efficient in the solution space Y w.r.t. P(q) , then �(�̄, q) is a non-dominated 
point in the criterion space corresponding to the objective functions g1(⋅) and g2(⋅, q) . The 
set of efficient solutions to the bi-objective optimization problem P(q) is denoted as Y�

eff
(q) , 

for the objective functions �(⋅, q) = (g1(⋅), g2(⋅, q)).

As an illustrative example, we assume eight feasible solutions to a given instance 
of the TRAP denoted as �i = (�i, �i, �i, �i) ∈ Y  , i ∈ {1,… , 8} , and two scenarios 
Q ∶= {q̂, q̃} . The corresponding objective vectors are listed in Table 3 and visualized—
in the criterion space—in Fig. 1.

Since in a bi-objective problem with one uncertain objective function with two sce-
narios each solution maps to two points in the criterion space, the concept of efficiency 
is not well-defined (see Fig. 1). We next present the main concepts of robust efficiency, 
the counterparts of efficiency for SS-MOOP.

Definition 3 (Flimsily Robust Efficient (FRE); [4]) A point � ∈ � is called flimsily RE 
(FRE) if it is an efficient solution to the deterministic MOOP P(q) , for at least one scenario 
q ∈ Q . The set of FRE solutions is defined as

where Y�

eff
(q) is the set of efficient solutions for the SS-MOOP P(q) (see (5b)).

(6)YFRE ∶=
⋃
q∈Q

Y
�

eff
(q),

Table 3  The objective vectors 
�(�i, q) for i ∈ {1,… , 8} and 
q ∈ {q̂, q̃}

q �1 �2 �3 �4 �5 �6 �7 �8

q̂
(
0

30

) (
0.05

32

) (
0.21

28

) (
0.3

25

) (
0.33

27

) (
0.35

26

) (
0.4

25

) (
0.4

27

)

q̃
(
0

58

) (
0.05

55

) (
0.21

53

) (
0.3

54

) (
0.33

56

) (
0.35

53

) (
0.4

48

) (
0.4

48

)

Fig. 1  Objective vectors �(�i, q) , 
i ∈ {1,… , 8} , q ∈ {q̂, q̃} , in the 
criterion space. Each solution 
represented by a specific color; 
cross- and square-markers denote 
the nominal ( ̂q ) and worst-
case ( ̃q ) scenario, respectively. 
The sets of efficient solutions 
are Y�

eff
(q̂) = {�1, �3, �4} and 

Y
�

eff
(q̃) = {�1, �2, �3, �7, �8}

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

25

30

35

40

45

50

55

60
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In our recurring example, YFRE = {�1, �2, �3, �4, �7, �8} (cf. Fig. 1).

Definition 4 (Highly Robust Efficient (HRE); [18]) A point � ∈ � is called highly RE 
(HRE) if it is an efficient solution to each of the deterministic MOOPs P(q) , q ∈ Q . The set 
of HRE solutions is defined as

Unless some necessary conditions are satisfied [18, Le.  9], it is not guaranteed that 
every instance of a robust MOOP possesses HRE solutions.

In our recurring example, YHRE = {�1, �3} (cf. Fig. 1). We next present a concept that 
mitigates the conservativeness of choosing the best solutions for the worst-case scenario. It 
is based on the light robustness concept for SO-RO problems ( [12]). It characterizes solu-
tions that, w.r.t. an �-neighbourhood (in the criterion space) of an efficient solution in the 
nominal scenario, are efficient in the worst-case scenario.

Definition 5 (�-lightly RE; [27]) For a parameterized uncertain MOOP P(Q) with pre-
defined nominal scenario ( ̂q ), and � ∈ ℝ

2
+
 , the set Ylight (�̂, �) of �-lightly robust efficient 

solutions w.r.t. an efficient solution �̂ ∈ Y
�

eff
(q̂) to the deterministic MOOP P(q̂) is defined 

as the set of efficient solutions to

where the equivalence holds when the worst-case scenario q̃ is well-defined, and

defines a neighborhood of �̂.
The set of all �-lightly RE solutions is defined as

In our recurring example, Ylight (Y
�

eff
(q̂), �) = {�1, �2, �3, �4, �6} , where � = (.05, 2)⊤ 

(dashed rectangles); see Fig. 1. By Def. 5, it holds that �̂ ∈ Ylight (�̂, �) for all �̂ ∈ Y
�

eff
(q̂) 

and � ∈ ℝ
2
+
 . Note that even though �5 ∈ Ynb(�

4, �) holds, �5 ∉ Ylight (�
4, �) because 

�(�4, q̃) ⪯ �(�5, q̃).
For each efficient solution in the nominal scenario, there may exist multiple �-lightly RE 

solutions. Hence, the number of solutions to be evaluated by the DM may be quite large if 
the entire set Ylight (Y

�

eff
(q̂), �) is considered. To reduce this number, the following definition 

identifies a representative set of �-lightly robust efficient solutions.

Definition 6 (�-representative lightly RE; [21]) For a parameterized uncertain MOOP 
P(Q) with pre-defined nominal ( ̂q ) and worst-case ( ̃q ) scenarios, and � ∈ ℝ

2
+
 , the set of �

-representative lightly robust efficient solutions w.r.t. an efficient solution �̂ ∈ Y
�

eff
(q̂) to the 

deterministic MOOP P(q̂) is defined as

(7)YHRE ∶=
⋂
q∈Q

Y
�

eff
(q)

(8)min
�∈Ynb(�̂,�)

(
g1(�) , max

q∈Q
g2(�, q)

)
≡ min

�∈Ynb(�̂,�)
�(�, q̃),

(9)Ynb(�̂, �) ∶={ � ∈ Y ∶ �(�̂, q̂) ≦ �(�, q̂) ≦ �(�̂, q̂) + � }, �̂ ∈ Y
�

eff
(q̂), � ∈ ℝ

2
+
,

(10)Ylight (Y
�

eff
(q̂), �) ∶=

⋃
�̂∈Y

�

eff
(q̂)

Ylight (�̂, �).

(11)Yr−light (�̂�, �) ∶= argmin
𝐲∈𝐘nb(�̂�,�)

g2(𝐲, q̃).
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The set of all the �-representative lightly RE solutions is defined as

In our recurring example (Fig.  1), Yr−light (�
1, �)=�2 , Yr−light (�

3, �)=�3 , Yr−light (�
4, �)=�6 ; 

Yr−light (Y
�

eff
(q̂), �)={�2, �3, �6} . Note that the inequality |Yr−light (Y�

eff
(q̂), �)| ≤ |Ylight (Y�

eff
(q̂), �)| 

holds.
[17] prove that the solutions obtained using only the traditional concept of strict robust-

ness for SO-RO,5 which focuses solely on the worst-case scenario can be dominated; 
instead, they introduce the concept of Pareto Robust Optimal (PRO) solutions for SO-RO 
problems. [21] suggest a generalization of PRO solutions from SO-RO to robust MOOPs, 
called PRO Robust Efficient (PRO-RE) solutions.

Defining a vector valued function � ∶ Y ↦ ℝ
|Q|+1
+  for TRAP as 

�(�) ∶= (g1(�), g2(�, q)q∈Q) [21, p. 423], PRO-RE is defined next.

Definition 7 (Pareto robust optimal robust efficient (PRO-RE)) The set of PRO-RE solu-
tions to the TRAP (5) with a vector valued function � is defined as

By Def. 7, Y�

eff
 contains solutions that are non-dominated in the criterion space corre-

sponding to � and the solution space Y; it can thus be used to filter out dominated solutions. 
For instance, in our recurring example, �7 and �8 are both FRE solutions as they belong 
to the set Y�

eff
(q̃) (see Def. 2). Since 𝜓(�7) = (0.4, 25, 48)⊤ and 𝜓(�8) = (0.4, 27, 48)⊤ (see 

Table 3), it holds that �(�7) ⪯ �(�8) . Hence, �8 is not a PRO-RE solution. HRE solutions 
are, however, PRO-RE, since they are efficient in all scenarios.

The RE concepts presented in [17, 21, 1, 11, 27, 7], and [18] provide a sufficient basis 
for our contributions. Furthermore, as per [21, Def.  9]—for bi-objective—and [7]—for 
general multi-objective— robust optimization problems, flimsily, highly, �-lightly, and �
-representative lightly RE solutions must be PRO-RE, (cf. Def. 7). The sets corresponding 
to each type of RE while satisfying the constraints (12) are defined as 

 Similarly, the corresponding set of PRO solutions that are efficient in scenario q is defined 
as

Yr−light (Y
�

eff
(q̂), �) ∶=

⋃
�̂∈Y

�

eff
(q̂)

Yr−light (�̂, �).

(12)Y
�

eff
∶= {�̄ ∈ Y ∶ ∄� ∈ Y s.t. �(�) ⪯ �(�̄)}.

(13a)YPRO
FRE

∶= YFRE ∩ Y
�

eff
,

(13b)YPRO
HRE

∶= YHRE ∩ Y
�

eff
,

(13c)YPRO
light

(Y
�

eff
(q̂), �) ∶= Ylight (Y

�

eff
(q̂), �) ∩ Y

�

eff
,

(13d)YPRO
r−light

(Y
�

eff
(q̂), �) ∶= Yr−light (Y

�

eff
(q̂), �) ∩ Y

�

eff
.

5 as presented in [18, Def. 11]
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3  Significance of uncertainty

As the numbers of uncertain objective functions or scenarios increase, the number of objec-
tive functions in the corresponding deterministic MOOP increases [17], hence increasing 
the computational effort needed to find all PRO-RE solutions. E.g., the bi-objective TRAP 
with one uncertain objective and two scenarios results in solving a tri-objective determin-
istic MOOP to find all PRO-RE solutions (see Def. 7). [8] established theoretically that the 
number of non-dominated points grows exponentially with the number of objective func-
tions. Hence, restricting the number of uncertain objective functions or scenarios make the 
problem more tractable. However, ignoring uncertainties may also result in sub-optimal or 
too sensitive solutions. Consequently, it is important to understand whether the inclusion of 
scenarios reveals any deficiency caused by only using the nominal scenario for instances of 
a given problem class.

3.1  Motivation

To assess the gain from the inclusion of a worst-case scenario one should perform numeri-
cal tests (over a fairly large number of numerical instances representing various possible 
realizations of the TRAP). We consider two instances of the TRAP, illustrated6 in Fig. 2.

In Fig.  2 (left), all the efficient solutions � ∈ YPRO
eff

(q̂) are highly PRO-RE (i.e. 
YPRO
eff

(q̂) ⊆ YPRO
HRE

 ). Thus, nothing is gained by including the worst-case scenario for this 
particular instance. However, for the instance #18 (see Sect.  5.1 and  7.2 for details on 
instances) in Fig.2 (right), none of the efficient solutions (i.e. YPRO

eff
(q̂) ) are in YPRO

HRE
 . Figure 2 

considers �̂ ∈ YPRO
eff

(q̂) and �̃ ∈ YPRO
eff

(q̃) , corresponding to the vectors �(�̂) = (0, 14, 54)⊤ 
and �(�̃) = (0, 17, 43)⊤ , respectively (see Def.  7). Hence, the solution �̂ maps to the 

(14)YPRO
eff

(q) ∶= Y
�

eff
(q) ∩ Y

�

eff
,q ∈ Q.

Fig. 2  Nominal and worst-
case PRO-RE solutions 
for instance #19 (left) and 
#18 (right). Green-cross: 
�(�, q̂) ∶ � ∈ YPRO

eff
(q̂) ; green-

square: �(�, q̃) ∶ � ∈ YPRO
eff

(q̂) ; 
red-cross: �(�, q̂) ∶ � ∈ YPRO

eff
(q̃) ; 

red-square: �(�, q̃) ∶ � ∈ YPRO
eff

(q̃)

6 In all forthcoming bi-objective illustrations, solutions from the sets YPRO
eff

(q̂) (green) and YPRO
eff

(q̃) (red) 
are plotted. Each solution � ∈ YPRO

eff
(q̂) ∪ YPRO

eff
(q̃) yields the two points �(�, q̂) (cross-marker) and �(�, q̃) 

(square-marker).
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two points �(�̂, q̂) = (0, 14)⊤ (left-most green-cross) and �(�̂, q̃) = (0, 54)⊤ (left-most 
green-square), while the solution �̃ yields �(�̃, q̂) = (0, 17)⊤ (left-most red cross) and 
�(�̃, q̃) = (0, 43)⊤ (left-most red square). It follows that three units of qualification cost are 
lost in the nominal scenario, while in the worst-case, the qualification cost is reduced by 
eleven units. Hence, a total net reduction of eight units of qualification cost is obtained by 
this swap. A DM relying on its tolerance for loss of nominal quality may find this swap 
useful. We formalize this idea in the next section.

3.2  Positive robustness

We next present a new RE concept for the TRAP to identify solutions having a positive 
effect on mitigating risks due to the worst-case scenario.

Definition 8 (positive robustness �-representative lightly RE solution) For a parameter-
ized uncertain bi-objective MOOP P(Q) with one uncertain objective function g2 , pre-
defined nominal ( ̂q ) and worst-case ( ̃q ) scenarios, � ∈ ℝ

2
+
 , and 0 < 𝜅 ≪ 1 , the set of posi-

tive robustness  �-representative lightly robust efficient solutions for the solution �̂ ∈ Y
�

eff
(q̂) 

is defined as

where v(�, �̂) = [g2(�̂, q̃) − g2(�, q̃)] − [g2(�, q̂) − g2(�̂, q̂)] . The set of all positive robust-
ness �-representative lightly RE solutions is defined as

Positive robustness refers to the expression v(�, �̂) > 0 , measuring the net reduc-
tion of qualification costs from swapping �̂ ∈ Y

�

eff
(q̂) and � ∈ Ynb(�̂, �) . The constraint 

� ∈ Ynb(�̂, �) limits the loss of nominal value while also yielding a representative set for 
each efficient solution in the nominal scenario, which holds also for �-representative lightly 
RE solutions (cf. Def. 6).

A corresponding PRO-RE set is denoted as

Note that for � = 0 , it holds that YPRO
r−light

(Y
�

eff
(q̂, 0), �, 0) = YPRO

r−light
(Y

�

eff
(q̂), �).

Remark 1 The set YPRO
r−light

(Y
�

eff
(q̂), �, 𝜅) can be considered by the DM instead of the �-repre-

sentative lightly PRO-RE set YPRO
r−light

(Y
�

eff
(q̂), �) , as solutions with positive robustness are 

not guaranteed to exist in the latter. In Fig. 3, three solutions are in the set YPRO
eff

(q̃) ⧵ YPRO
eff

(q̂) 
(corresponding points in the criterion space are distinct red-cross and -square marks) two 
of which belong to Yr−light (YPRO

eff
(q̂), �) ; � marked by black-dashed rectangles. None of these 

two solutions, however, possess the so-called positive robustness as compared with the 
respective closest nominal PRO-RE solutions (marked by a green cross at the lower-left 
vertex of the respective rectangle). Hence, solutions without positive robustness have a 
limited utility for the DM.

(15)Yr−light (�̂�, �, 𝜅) ∶= argmin𝐲∈𝐘nb(�̂�,�)
{g2(𝐲, q̃) ∶ v(𝐲, �̂�) ≥ 𝜅 },

Yr−light (Y
�

eff
(q̂), �, 𝜅) ∶=

⋃
�̂∈Y

�

eff
(q̂)

Yr−light (�̂, �, 𝜅).

(16)YPRO
r−light

(Y
�

eff
(q̂), �, 𝜅) ∶= Yr−light (Y

�

eff
(q̂), �, 𝜅) ∩ Y

�

eff
.
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3.3  Inclusion of a worst‑case scenario

The topic of assessing the importance of including a worst-case scenario for an uncertain 
MOOP, over a fairly large number of numerical instances has, to the best of our knowledge, 
not been discussed in the existing literature. While the positive robustness �-representative 
lightly RE solutions rely on the values of � , we next present a measure that does not require 
specifying �.

A worst-case scenario and the corresponding efficient solutions in YPRO
eff

(q̃) add a signifi-
cant value to a robust bi-objective optimization problem if the set ∪𝐲∈𝐘P𝐑𝐎

eff
(�̃�){𝐠(𝐲, q̂)} is a 

good approximation7 of the efficient frontier ∪𝐲∈𝐘P𝐑𝐎
eff

(�̂�){𝐠(𝐲, q̂)} . Further, ∪�∈YPRO
eff

(q̂){�(�, q̃)} 
is not a good approximation of the efficient frontier ∪�∈YPRO

eff
(q̃){�(�, q̃)} for the worst-case 

scenario.

Definition 9 (Scenario approximation) For each r, q ∈ {q̂, q̃} , the region in the criterion 
space of (g1(⋅), g2(⋅, r)) , defined by the set

where 

 is dominated by the worst-case ( r = q̃ ) or nominal ( r = q̂ ) objective vectors correspond-
ing to PRO-RE solutions that are efficient in the worst-case ( q = q̃ ) and nominal ( q = q̂ ) 
scenario, respectively.

The nominal  ( ̂q ) and worst-case  ( ̃q ) scenario approximation area is defined as  
����(A(q̂, q̂) ⧵ A(q̂, q̃)) and ����(A(q̃, q̃) ⧵ A(q̃, q̂)) , respectively, where ����(B) measures 
the area covered by a set B ⊂ ℝ

2.

In Fig. 4 the grey shaded area illustrates the set A(q̂, q̂) ⧵ A(q̂, q̃) , i.e. the region in the 
criterion space that is not dominated by any non-dominated point in the worst-case sce-
nario (the set ∪𝐲∈𝐘P𝐑𝐎

eff
(�̃�){𝐠(𝐲, q̂)} ), but is dominated by non-dominated points in the nomi-

nal scenario (the set ∪𝐲∈𝐘P𝐑𝐎
eff

(�̂�){𝐠(𝐲, q̂)} ). Analogously, the red shaded area illustrates the 
set A(q̃, q̃) ⧵ A(q̃, q̂) , i.e. the region that is not dominated by any non-dominated point in the 
nominal scenario (the set ∪𝐲∈𝐘P𝐑𝐎

eff
(�̂�){𝐠(𝐲, q̃)} ), but is dominated by non-dominated points in 

the worst-case scenario (the set ∪𝐲∈𝐘P𝐑𝐎
eff

(�̃�){𝐠(𝐲, q̃)}).

Definition 10 The difference between the worst-case and nominal scenario approxi-
mations indicates the utility of including the worst-case scenario. We suggest a measure 

(17)A(r, q) ∶=

⎧⎪⎨⎪⎩

�
�∈YPRO

eff
(q)

�
�(�, r)

�
+ℝ

2

+

⎫⎪⎬⎪⎭

���
gBOT
1

(r)

gTOP
2

(r)

�
−ℝ

2

+

�
,

(18a)gBOT
1

(r) = max
{
g1(�, r) ∶ � ∈ ∪u∈{q̂,q̃}Y

PRO
eff

(u)
}
;

(18b)gTOP
2

(r) = max
{
g2(�, r) ∶ � ∈ ∪u∈{q̂,q̃}Y

PRO
eff

(u)
}
,

7 The concept of approximations is also used to benchmark performance of in-exact methods for approxi-
mating the efficient frontier in MOOPs; see [32] for details



 Autonomous Agents and Multi-Agent Systems           (2022) 36:36 

1 3

   36  Page 14 of 31

defined as the ratio of the difference in the areas of the worst-case and nominal scenario 
approximations and the maximum of these two values, as8

If Δdiff ≤ 0 , the worst-case scenario is not expected to add significant gains, whereas if 
Δdiff > 0 , it is expected to result in solutions that provide significant gain. We validate this 
claim empirically in Sect. 5.3.

4  Solution approaches for bi‑objective robust optimization with one 
uncertain objective function

From the definitions in (13), RE solutions are required to be PRO-RE. To the best of our 
knowledge, the only fully autonomous algorithm suggested for robust bi-objective optimi-
zation problems with one uncertain objective function is the one presented in [21, Sect. 6]. 
Some interactive methods—relying on users providing their preferences—are, however, 
suggested in [23, 28], and [24, pp. 27–57].

The algorithm by [21] first finds a minimal set9 of efficient solutions in Y�

eff
 to a deter-

ministic tri-objective (for |Q| = 2 ) optimization problem (cf. Def.  7). Then, it filters the 
resulting minimal subset of Y�

eff
 for flimsily/highly/�-representative lightly PRO-RE 

solutions.
Note that it requires computationally expensive tri-objective optimization to identify all 

the PRO-RE solutions. Further, the set Y�

eff
 may contain more solutions than required by 

the DMs (typically the ones in (13)).

4.1  A new approach to find required PRO‑RE solutions

We propose a 3-stage method (Alg. 1): (i) compute YPRO
eff

(q̃) and YPRO
eff

(q̂) ; (ii) identify YPRO
HRE

 
and YPRO

FRE
 from solutions identified in (i); (iii) for a given � , compute Yr−light (YPRO

eff
(q̂), �, 𝜅) . 

The set Yr−light (YPRO
eff

(q̂), �, 𝜅) obtained is not guaranteed to be PRO-RE.10 For instance, in 
Fig.  5 the second worst-case efficient solution from the left (marked red-cross and red-
square) dominates the solution corresponding to the second positive robustness �-rep-
resentative lightly RE solution from the left (marked blue-cross and blue-square).11 In 
Sect. 4.3 we suggest a procedure to prevent this issue.

Δdiff ∶=
����(A(q̃, q̃) ⧵ A(q̃, q̂)) − ����(A(q̂, q̂) ⧵ A(q̂, q̃))

max{ ����(A(q̃, q̃) ⧵ A(q̃, q̂)) ;����(A(q̂, q̂) ⧵ A(q̂, q̃)) }
.

9 A set {�i}i∈I is minimal w.r.t. a vector valued function � if for any two indices i, j ∈ I  such that i ≠ j , 
�(�i) ≠ �(�j) holds
10 Note that YPRO

eff
(q̂) ∪ YPRO

eff
(q̃) ⊆ Y

�

eff
11 i.e. (0.48, 18, 40) ⪯ (0.81, 18, 40)

8 For the case when both areas are 0, Δdiff ∶= 0
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4.2  Finding nominal and worst‑case PRO‑RE solutions: Lex‑BiObjective

In the first stage of Alg.  1 two bi-objective optimization problems are solved, to find 
YPRO
eff

(q̂) and YPRO
eff

(q̃) , respectively. The corresponding bi-objective optimization problem is 
denoted as PPRO(q) and is defined as

The two minimization problems in (19) corresponding to q̂ and q̃ are bi-objective mixed-
integer programming problems;12 any efficient solution to the two is PRO-RE, as per 
Def. 7. Thus, a non-dominated point must possess a minimal value w.r.t. the other objective 
(i.e. g2(., q̃) for PPRO(q̂) and g2(., q̂) for PPRO(q̃)).

A scalarized problem within an �-constraint method to solve an instance of PPRO(r) , for 
r ∈ Q , is given by

where u ∈ Q ⧵ r , the constant � is an upper bound used to explore the criterion space dur-
ing each iteration of the �-constraint method (updated in each iteration), and w(r) > 0 is 
appropriately small to ensure at least a weakly efficient solution w.r.t. g1 and g2(�, r) (see 
[22]). Lexicographic minimization (lexmin) is performed to obtain a PRO-RE solution (for 
details on lexicographic minimization, see [10, Sect. 5.1]).

(19)min
�∈�

�

eff

(
g1(�), g2(�, q)

)
, q ∈ Q.

(20)�(r) ∈ lexmin
�∈Y

{
g1(�) + w(r) g2(�, r), g2(�, u) ∶ g2(�, r) ≤ �

}
,

12 Since � , � , and � are integral, in an efficient solution, the variables � will take a finite number of discrete 
values. Hence, the efficient frontier contains a finite number of non-dominated points and no continuous 
line segments
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4.3  Stage 3: Search for positive robustness "‑representative lightly PRO‑RE 
solutions

Stage 3 of Alg. 1 searches for solutions in the set YPRO
r−light

(�̂, �, 𝜅) , where �̂ ∈ YPRO
eff

(q̂) . The 
details of stage 3 are mentioned in Alg. 1. It starts by checking if any of the solutions in 
YPRO
eff

(q̃) (already computed in stage 1) have positive robustness; such solutions are stored. 
Figure 6 shows an instance for which some of the efficient solutions for the worst-case are 
in the set YPRO

r−light
(�̂, �, 𝜅) . Further, two solutions in YPRO

eff
(q̃) are not in the set 

YPRO
r−light

(YPRO
eff

(q̂), �, 𝜅) , due to not having positive robustness.
For a given �̂ ∈ YPRO

eff
(q̂) (identified in stage 1 of Alg.  1) if none of the solutions in 

YPRO
eff

(q̃) ∩ Ynb(ŷ, �) have positive robustness, the following optimization problem is solved:

where 0 < 𝜅 ≪ 1 and v(�, �̂) corresponds to positive robustness (see Def. 8). If the model 
(21) is feasible, the optimal solution �∗ can be used to identify an efficient solution (a result 
of [6, Prop. 5]) in the set Ynb(�̂, �) w.r.t. �(⋅) = (g1(⋅), g2(⋅, q̂), g2(⋅, q̃)) by solving

Constraint generation. To check if the optimal solution to (22) is indeed PRO-RE, i.e. 
non-dominated w.r.t. � but in the entire feasible set Y, the following optimization model is 
solved (a result of [2]) for the first iteration (of the while loop in Alg. 2; i.e.  f = 1).

If the solution to (23) from the first iteration of constraint generation is such that �1 = 0
3 , 

then the solution �̄ is PRO-RE; otherwise, the solution �1 (for f = 1 ) fulfills �(�1) ⪯ �(�̄) . 
In the latter case, the variables mif ∈ {0, 1} and the constraints (24) are added to the mod-
els (21) and (22), for the kth iteration of the constraint generation: 

 where �1 = 0.005 , �2 = �3 = 1 , and �f  is the optimal solution to (23) in the f th iteration.13 
This ensures that a feasible/optimal solution of (21) and (22) is neither weakly nor strictly 
dominated by any point corresponding to {�f }f=1,…,k . The constraint generation continues 
until the model (21) becomes infeasible or (23) yields a solution with �k+1 = 0

3 . 

(21)𝐲∗ ∈ argmin
𝐲∈𝐘nb(�̂�,�)

{g2(𝐲, q̃) | v(𝐲, �̂�) ≥ 𝜅},

(22)�̄�∈ argmin
𝐲∈𝐘nb(�̂�,�)

{ 3∑
i=1

𝜓i(𝐲)
||||𝜓3(𝐲) ≤ 𝜓3(𝐲

∗), v(𝐲, �̂�) ≥ 𝜅

}
.

(23)(�1, �1) ∈ argmax
�∈ℝ3

+, �∈Y

{
1
⊤
� | 𝜓i(�̄) − �i − 𝜓i(�) = 0, i ∈ {1, 2, 3}}.

(24a)�i(�) + �i ≤ mif�i(�
f ), i ∈ {1, 2, 3},f ∈ {1,… , k},

(24b)
3∑
i=1

mif ≥ 1, f ∈ {1,… , k},

(24c)mif ∈ {0, 1}, i ∈ {1, 2, 3},f ∈ {1,… , k},

13 (a) The function g1(⋅) (or �1(⋅) ) is real valued; smallest decrease can be safely approximated by 
�1 = .005 , since other two functions are integer valued, and �2 = �3 = 1 ; (b) at iteration k + 1 , it implies that 
�
f ≠ 0

3 holds for f ∈ {1,… , k} in the constraint generation procedure.
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5  Tests and results

To investigate the computational efficiency of our proposed approach, we generated 30 
instances, which are expected to represent some of the possible realizations of actual data 
that the model might encounter. Hence, allowing for confident conclusions about the ben-
efits of including worst-case scenarios and computational performance of our proposed 
approach.

All the computations are done in Python 3.7 using Gurobi 9 on a system with 
1.70GHz processor, 16 GB RAM, and 4 cores. We set a time limit of 5000 seconds for 
each scalarized optimization problem, and a global time limit on the algorithm is set to 
20000 seconds for the entire process. We also terminate if the MIP duality gap is less than 
0.05% . Another termination criterion records and updates the best incumbent solution 
after every 200 node explorations; if there is no improvement in the optimality gap, the 
solver terminates the process. However, this termination criterion is only activated after 
1500 seconds. For a fair comparison these termination criteria are implemented for all the 
algorithms used to benchmark against our proposed approach. Moreover, all computed sets 
reported are minimal sets.

5.1  Industrial instances

We have used real industrial data for most of the parameters and sets indicated in Table 2. 
However, processing times pjk of job type j ∈ J  in machines k ∈ Nj (qualification 
required), and the qualification cost parameters �q

jk
 , j ∈ J  , k ∈ Nj, q ∈ Q , were not avail-

able. In order to generate instances which represent possible realizations of the actual data 
we introduce the following distributions, which are based on knowledge of the managers.
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Skewness of processing times. The skew normal distribution is a generalized nor-
mal distribution allowing for non-zero skewness; [31]. We generate processing times 
pjk , k ∈ Nj , j ∈ J  , for newly qualified machines from three differently skewed nor-
mal distributions with mean � and skewness/shape parameter � : positive skew ( 𝛼 > 0 ), 
negative skew ( 𝛼 < 0 ), and zero skew ( � = 0 ). A location parameter/mean � is based 
on the expected processing time of a given job type j on an already qualified machine 
k ∈ Kj ⧵Nj and which is similar to that of the machine being qualified. For all these 
distributions, we set � ∶= 0.1� ; according to the internal statistical process control 
data (and managerial experience) processing times of newly qualified allocations have 
a standard deviation of 10% of the expected value.

Range of values for the qualification cost: The exact cost for qualifying a machine 
for a job type is not known a priori, and for prediction the engineering team has to 
spend time on simulations. Hence, the input received is the so-called cost levels, 
assigned to each qualification. For testing our model and proposed modifications, we 
use two sets of cost levels: H = {1,… , �max} , with �max ∈ {20, 50} . The qualification 
costs are selected from different discrete distributions over the discrete domain H.

Nominal qualification cost. Letting �h be the frequency of cost level h ∈ H , its rela-
tive frequency is �̂�h ∶= (

∑
i∈H 𝜋i)

−1𝜋h ; we also define �̂�0 = 0 . To determine a cost 𝛽 q̂
jk

 , a 
sample � is drawn from the interval [0, 1]. Then,

The frequency distributions are defined as follows. For each h ∈ H , �h = 1 (Uniform), 
�h = h (Right), �h = |H| − (h − 1) (Left), �h = min{h;|H| − (h − 1)} (Symmetric), 
and �h = min{h;�H� − (h − 1); max{h − ⌈ �H�−1

2
⌉;⌊ �H�+1

2
⌋ − (h − 1)}} (Bimodal). For the 

worst-case values 𝛽 q̃
jk

 a random integer value is drawn from a uniform discrete distribution 
over the domain [0,10], and added to the nominal qualification cost 𝛽 q̂

jk
.

5.2  Constant data for the 30 instances

The demand is from quarterly forecasts made at GKN Aerospace in January 2015 ( J15 ) 
for the period 2016–2017. The minimum, maximum, and median values of the demand 
are 1, 172, and 11, respectively. For processing times pjk, j ∈ J, k ∈ Kj , the minimum, 
maximum, and median are 0.1, 89.7, and 5.63 hours, respectively. Each machine has a 
yearly capacity of 5000 hours which can be equally divided among four quarters in a 
year. The planning period of two years with quarterly time buckets yields T = 8 time 
periods. There are K = 125 machines, and about J = 510 unique job types, each having 
integral demand per time period. The number of possible assignments of job types to 
machines during the entire planning period thus amounts to ∼105 . The parameter val-
ues � = 3 , � = 4 , and �k = 0.7 , k ∈ K , are used for all 30 instances. The instances are 
denoted as ( 𝛽  , p̄ , �max ), where 𝛽 ∈ {Lef t,Right, Symmetric,Uniform,Bimodal} (repre-
senting distributions for the qualification costs), p̄ ∈ {skew+, skew−, skew0} (repre-
senting distributions for processing times pjk , k ∈ Nj ), and lastly, �max ∈ {20, 50} . The 
details of each instance are indicated in the captions of the subfigures of Fig. 11. All 
30 public instances are available at https:// www. short url. at/ uGVX3.

𝛽
q̂

jk
∶=

�
h ∈ H ∶

∑h−1
i=0

�̂�i ≤ 𝛼 <
∑h

i=0
�̂�i, 𝛼 ∈ [0, 1),

�H�, 𝛼 = 1.

https://www.shorturl.at/uGVX3
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5.3  Results

We present two main results, the first regarding the difference of the areas of the worst-case 
and nominal scenario approximations (Def. 9). The second result concerns the benefits of 
using the 3-stage method as opposed to the approach of [21] for identifying relevant PRO-
RE solutions.

5.3.1  Difference between worst‑case and nominal scenario approximations

Figure 7 shows the values of the differences ( Δdiff , cf. Def. 10) on the left axis, while the 
right axis (orange) indicates the number of positive robustness �-representative lightly 
PRO-RE solutions. There are two main conclusions to be drawn: (a) among the 18 
instances possessing a positive Δdiff > 0 (instances 21, 17, 6, 2, 14, 18, 30, 29, 4, 10, 23, 
20, 26, 5, 14, 15, 27, and 22), 17 instances have |YPRO

r−light
(YPRO

eff
(q̂), �, 𝜅)| > 0 , and only 

instance 14 has |YPRO
r−light

(YPRO
eff

(q̂), �, 𝜅)| = 0 . Hence, Δdiff > 0 indicates that there may exist 
solutions that are good replacements for some of the efficient solutions in the nominal sce-
nario (i.e. |YPRO

r−light
(YPRO

eff
(q̂), �, 𝜅)| > 0 ); (b) when Δdiff ≤ 0 , which is the case for remaining 

twelve instances (the twelve left-most in Fig. 7), only four instances (16, 11, 1, and 7) have 
solutions with positive robustness values ( |YPRO

r−light
(YPRO

eff
(q̂), �, 𝜅)| > 0 ). A possible explana-

tion is that Δdiff is an aggregate measure, hence these instances have positive robustness 
values even though Δdiff ≤ 0 (see Fig. 11). Hence, Fig. 7 indicates that the worst-case sce-
nario does have an effect for a significant proportion of the instances of the TRAP. Note 
that the values of � influence the value of |YPRO

r−light
(Y

�

eff
(q̂), �, 𝜅)| . For our problem it is based 

on the range of values for the two objective functions ( 𝜀1 = 0.12 ⋅ (gBOT
1

(q̂) − gTOP
1

(q̂)) and 
𝜀2 = 0.12 ⋅ (gTOP

2
(q̂) − gBOT

2
(q̂))).

5.3.2  Solution time comparisons

We compare the solution times obtained from using 3-stage method (Alg.  1) with the 
results obtained if algorithm from [21] is used for the 30 instances. As mentioned in Sect. 4 
§2 the first step in [21] requires a tri-objective optimization. For this purpose a tri-objective 
criterion space search method called Quadrant Shrinking Method (QSM) [6] is used. We 
implemented the QSM [6, Alg. 1, p. 877] in Python 3.7 using the data structures sug-
gested in [6].14 The QSM generates all the PRO-RE solutions, whereas our 3-stage method 
identifies only the PRO-RE solutions required by the DMs (i.e. YPRO

FRE
 , YPRO

r−light
(YPRO

eff
(q̂), �, 𝜅) , 

and YPRO
HRE

 ). Both algorithms identify the same number of solutions in the sets YPRO
FRE

 , YPRO
HRE

 , 
and—most importantly—YPRO

r−light
(YPRO

eff
(q̂), �, 𝜅).

Figure  8 highlights two conclusions. (a) For 17 out of the 30 instances the number 
|Y�

eff
| of PRO-RE solutions identified by the two methods are equal. For 15 out of these 17 

instances our 3-stage method is computationally superior. This validates (empirically) that 
solving two bi-objective optimization problems is faster than solving one tri-objective opti-
mization problem for the given instances of the TRAP. (b) For the remaining 13 instances 
the two methods found different numbers of PRO-RE solutions; only for instance 11 the 

14 Numerous modern implementations of tri-objective criterion space search methods are proposed in the 
literature, but we confine ourselves with just one of the good ones, others to be found in, e.g. [25] and [19]
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QSM (tri-objective) method found fewer PRO-RE solutions than the 3-stage method.15 Our 
approach does not find all the PRO-RE solutions, but manages to find all those that are 
required by the DMs in significantly less time than the solution approach mentioned in [21] 
(using the QSM in [6] for tri-objective optimization).

5.4  Computational complexity

We compare the computational complexity of the algorithm in [21, Sect. 6] with that of our 
3-stage method Alg. 1;16 see Table 5 for a summary.

The method of [21] (see Sect. 4 §2) involves two main steps: (i) compute Y�

eff
 ; (ii) filter 

solutions into the sets of flimsily, highly, and �-representative lightly PRO-RE solutions. 
Computing Y�

eff
 requires the solution of O(3|Y�

eff
| + 1) single-objective scalarized MILPs17 

[6, Thm. 24]; the filtering requires O(|Y�

eff
|⋅|Q|⋅(log |Y�

eff
| + 1) + |Y�

eff
|2) elementary oper-

ations [21, Sect. 6].

Table 4  Summary of set notations

Set Description Ref.

Y Feasible set corresponding to the TRAP (3)
Y
�

eff
(q) Set of efficient solutions in scenario q for objective functions Def. 2

�(⋅, q) ∶= (g1, g2(⋅, q)),
YFRE =

⋃
q∈QY

�

eff
(q) ; set of flimsily robust efficient solutions Def. 3

YHRE = 
⋂

q∈Q Y
�

eff
(q) ; set of highly robust efficient solutions Def. 4

Ynb(�̂, �) = { � ∈ Y ∶ �(�̂, q̂) ≦ �(�, q̂) ≦ �(�̂, q̂) + �}; (9)
�-neighborhood of �̂ ∈ Y

�

eff
(q̂) ; � ∈ ℝ

2
+

Ylight (�̂, �) Set of efficient solutions to min�∈Ynb(�̂,�)�(�, q̃) Def. 5
Ylight (Y

�

eff
(q̂), �) =

⋃
�̂∈Y

�

eff
(q̂) Ylight (�̂, �) ; set of all �-lightly RE solutions Def. 5

Yr−light (�̂, �) = argmin𝐲∈𝐘nb(�̂�,�)
g2(𝐲, q̃) Def. 6

Yr−light (Y
�

eff
(q̂), �) =

⋃
�̂∈Y

�

eff
(q̂) Yr−light (�̂, �) ; set of �-representative lightly Def. 6

RE solutions
Y
�

eff
set of efficient solutions with objective functions Def. 7
� ∶= (g1(⋅), g2(⋅, q̂), g2(⋅, q̃)) ; also called PRO-RE solutions

YPRO
i

= Yi ∩ Y
�

eff
 ; i ∈ {FRE,HRE} (13)

YPRO
j

(Y
�

eff
(q̂), �) = Yj(Y

�

eff
(q̂), �) ∩ Y

�

eff
 ; j ∈ {light, r-light} (13)

YPRO
eff

(q) = Y
�

eff
(q) ∩ Y

�

eff
(14)

Yr−light (�̂, �, 𝜅) = argmin𝐲∈𝐘nb(�̂�,�)
{g2(𝐲, q̃) ∶ v(𝐲, �̂�) ≥ 𝜅 } ; �̂ ∈ Y

�

eff
(q); (15)

v(�, �̂) = [g2(�̂, q̃) − g2(�, q̃)] − [g2(�, q̂) − g2(�̂, q̂)]

Yr−light (Y
�

eff
(q̂), �, 𝜅) = 

⋃
�̂∈Y

�

eff
(q̂) Yr−light (�̂, �, 𝜅) ; set of positive robustness Def. 8

�-representative lightly RE solutions
YPRO
r−light

(Y
�

eff
(q̂), �, 𝜅) = Yr−light (Y

�

eff
(q̂), �, 𝜅) ∩ Y

�

eff
(16)

15 The solution time limit of 20000 seconds was reached for instance 11
16 For the set notations, see Table 4
17 Using the QSM method



Autonomous Agents and Multi-Agent Systems           (2022) 36:36  

1 3

Page 21 of 31    36 

Alg. 1 involves three stages: In stage 1 the sets YPRO
eff

(q) , q ∈ Q , are computed, i.e. |Q| 
bi-objective optimization problems are solved; the use of an �-constraint method then leads 
to solving O(2

∑
q∈Q �YPRO

eff
(q)� + �Q�) single-objective MILPs.18 (see [9]). Stage  2 filters 

the sets YPRO
FRE

 and YPRO
HRE

 , by identifying the intersection and union, respectively, of the sets 
YPRO
eff

(q) , q ∈ Q ; since both procedures utilize a sorting step, the total number of elementary 
operations is O(

∑
q∈Q(�YPRO

eff
(q)�⋅log �YPRO

eff
(q)�)) . Stage 3 makes, say b, calls to Alg. 2, each 

of which comprising an iterative algorithm that requires solving 𝜙 ∈ [1, |Ynb(�̂, �)|] MILPs 
(if � ≠ � else � = 0 ), where �̂ ∈ Y

�

eff
(q̂) ; for fairly small values of � , the upper bound on � 

is not expected to be large (see (9)).
Obtaining estimates of b and � (number of calls to Alg. 2 and iterations, respectively) is 

quite tricky. These measures are illustrated for our instances in Fig. 9, with the values of b 
on the left axis, and the share of the total solution time of Alg. 1 spent on stages 1 and 2 on 
the right axis. For 15 out of the 30 instances, there are no calls to Alg. 2 (hence, the share 
equals 1). For 25 instances the share is greater than 0.9. However, for a few instances (6, 
11, 18, 23, 28, and 30) the calls to Alg. 2 (i.e. stage 3) constitute a significant portion of the 
solution time. E.g. for instance #11, stages 1 and 2 use only 56.55% of the total time, the 
remaining 43.45% being spent on calls to Alg. 2 (stage 3).

6  Conclusion

We propose an approach for solving robust bi-objective optimization problems, with one 
uncertain objective function including two well-defined scenarios; a nominal (most likely) 
and a worst-case scenario. We present a new measure to assess the net gain from the inclu-
sion of the worst-case scenario.

For understanding the general applicability, we discuss the two ideas separately. We first 
consider the positive robustness �-representative lightly robust efficient (RE) concept, 
which is similar to that of �-representative lightly RE, except that the former satisfies an 
additional constraint (cf. (15)). As �-representative lightly RE solutions [21], our proposed 
RE solutions apply to MOOPs with one uncertain objective function and any number of 
scenarios as long as nominal and worst-case scenarios are well-defined. Second, the differ-
ence between worst-case and nominal scenario approximations can be used to filter out 
instances that are expected not to gain significantly from the addition of a worst-case sce-
nario, and thus avoiding the need to find solutions in the set YPRO

r−light
(YPRO

eff
(q̂), �, 𝜅) (Def. 8). 

Our proposed measure Δdiff (Def. 10) is applicable to bi-objective optimization problems, 
with one uncertain objective function having any number of scenarios, provided that the 
worst-case and nominal scenarios are well-defined.

Extensions and future research. For most of our 30 instances, the computation time 
is too long (see details at https:// www. short url. at/ nrIJQ) and may discourage decision-
makers from performing multiple what-if/sensitivity analyses. Hence, in-exact computing 
approaches could be investigated, especially if more scenarios are included. There is also 
a potential for generalizing our concepts to general robust multi-objective problems with 
several uncertain objectives.

18 Note that the inequality 
∑

q∈Q �YPRO
eff

(q)� ≤ �Y�

eff
� follows from (14)

https://www.shorturl.at/nrIJQ
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Appendix

Practical significance

We here investigate the effect of using our proposed positive robustness �-representative 
lightly PRO-RE solutions, instead of nominal PRO-RE or worst-case PRO-RE solutions. 
We assume two scenarios of interest, i.e. Q = {q̂, q̃} , and consider three different policies. 
The nominal (nom) and worst-case (wc) policies use solutions in the sets YPRO

eff
(q̂) and 

YPRO
eff

(q̃) , respectively. The P-� policy uses the set YPRO
r−light

(YPRO
eff

(q̂), �, 𝜅) , 𝜅 > 0 and � > � 
being user-defined.

A summary of the effects of applying the three policies to instance 18 is provided in 
Table 6 (see Fig. 11xvi). First, we assess the effectiveness of wc and P-� policies when the 
realized scenario is q̂ (i.e. nom), and analogously, the nom and P-� policies when the real-
ized scenario is q̃ (i.e. wc). The closest point to �̂ ∈ YPRO

eff
(q̂) in the set YPRO

eff
(q̃) is defined as 

𝐲∗(�̂�) ∶= argmin𝐲∈𝐘P𝐑𝐎
eff

(�̃�) ||�̄(𝐲) − �̄(�̂�)||∞ , where �̄(�) ∶= (ḡ1(�), ḡ2(�, q̂), ḡ2(�, q̃)) , 
ḡ1(�) ∶= g1(�)∕max

{
gBOT
1

(q̂), gBOT
1

(q̃)
}
 , and ḡ2(�, q) ∶= g2(�, q)∕g

TOP
2

(q) , q ∈ {q̂, q̃} (the 
objectives of (18) being normalized). The closest point to �̃ ∈ YPRO

eff
(q̃) in the set YPRO

eff
(q̂) is 

analogously defined as 𝐲∗(�̃�) ∶= argmin𝐲∈𝐘P𝐑𝐎
eff

(�̂�) ||�̄(𝐲) − �̄(�̃�)||∞ . The idea of closest 
point is based on the concept price of robustness [28, Def. 14].

All the non-dominated points in the nominal scenario are given in the first column of 
Table 6. The wc policy implies a swap of (0, 14, 54) (the first green-cross and square from 
the left) with (0, 17, 43) (the first red-cross and square from the left is the closest point in 
YPRO
eff

(q̃) ). Hence, the net increase from this swap is 0 for g1 and 3 for g2 (as it is known that 
this is a nominal scenario the qualification cost in the nominal scenario is increased). The 
net increase in g1 ( g2(⋅, q̂) ) is presented in column two (three). The policy P- � yields a 
swap if there exists a solution in YPRO

r−light
(�, �, �) , where �(�) = (0, 14, 54) and � = (0.15, 4) . 

The point (0,  17,  43) satisfies (15) for �(�) = (0, 14, 54) . The points corresponding to 
YPRO
eff

(q̃) are presented in the sixth column, for the case when the worst-case scenario is 
realized. Hence, the nom and P-� policies are compared. For the nom policy we conclude 
that (0, 14, 54) is the closest point to (0, 17, 43) in YPRO

eff
(q̂) . The increase in qualification 

cost equals 54 − 43 = 11 (the realized scenario being q̃ ). When the worst-case scenario is 
realized, the P- � policy checks whether the closest point to (0,  17,  43) in YPRO

eff
(q̂) , 

i.e.  (0,  14,  54) can be swapped with a solution from YPRO
r−light

(�, �, �) , where 
�(�) = (0, 14, 54) . The point (0,  17,  43) (first (from left) blue-cross and-square in 
Fig. 11xvi) is such a point (efficient also in the worst-case scenario). Hence, there is no 
increase in g1 and g2 (see the two last columns of the first row). The resulting swaps are 
provided in Table 7. The column sums (cf. Table 6) are plotted in Fig. 10, for 21 of our 30 
instances such that19 YPRO

r−light
(YPRO

eff
(q̂), 𝜅) ≠ � . For 13 (21) of these 21 instances the P-� pol-

icy is superior to the wc policy in the nominal scenario for g1 ( g2(⋅, q̂) ) (Fig. 10i–10ii). For 
16 (21) of the 21 instances the P-� policy is superior to the nom policy in the worst-case 
scenario for g1 ( g2(⋅, q̃) ) (Fig. 10iii–iv).

19 When YPRO
r−light

(YPRO
eff

(q̂), 𝜅) = � the P-� policy is equivalent to using YPRO
eff

(q̂).



Autonomous Agents and Multi-Agent Systems           (2022) 36:36  

1 3

Page 23 of 31    36 

Fig. 3  Objective vectors for 
instance #6. Green/red-cross/
square: see Fig. 2; blue-cross: 
�(�, q̂) ∶ � ∈ YPRO

r−light
(Y

�

eff
(q̂), �, 𝜅) ; 

blue-square: 
�(�, q̃) ∶ � ∈ YPRO

r−light
(YPRO

eff
(q̂), �, 𝜅)

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

Fig. 4  Approximation graph. The grey- and red-shaded region indicates the nominal and worst-case sce-
nario approximation, respectively

Fig. 5  Objective values 
for instance #6; cf. Fig. 3. 
Green/red-cross/square: 
see Fig. 2; blue-cross: 
�(�, q̂) ∶ Yr−light (Y

PRO
eff

(q̂), �, 𝜅) ; 
blue-square: 
�(�, q̃) ∶ Yr−light (Y

PRO
eff

(q̂), �, 𝜅)



 Autonomous Agents and Multi-Agent Systems           (2022) 36:36 

1 3

   36  Page 24 of 31

Instances and summary of all set notations

Results for all 30 instances (#1–30) illustrated in Fig.  11, except #6 ( L, skew0, 50 ), 
#10 ( R, skew−, 50 ), and #19 ( S, skew+, 20 ), which are shown in Fig. 3, 6, and 2 (left), 
respectively. Notations: L: Left, R: Right, S: Symmetric, U: Uniform, M: Bimodal.

Fig. 6  Objective values for 
instance #10. For definitions of 
the markers see the caption of 
Fig. 3

16 28 11 1 24 3 7 8 9 12 19 25 21 17 6 2 14 18 30 29 4 10 23 20 26 5 13 15 27 22

Instance numbers

-40

-20

0

20

40

60

80

100

0

1

2
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4

5

Fig. 7  Left axis: Difference between worst-case and nominal scenario approximations ( Δdiff ). Right axis: 
|YPRO

r−light
(YPRO

eff
(q̂), �, 𝜅)| . For all instances to the left of the black dashed line Δdiff ≤ 0 . All computed sets are 

minimal sets
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7 12 25 11 28 8 19 9 23 29 22 6 24 3 14 21 1 26 20 30 13 27 15 17 5 16 10 4 2 18
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Fig. 8  Left axis: Ratio of solutions times (grey bars; red bars for negative values). Right axis: Difference 
between the number of PRO-RE solutions ( |Y�

eff
| ) identified by the QSM ( NQSM ) and the 3-stage method 

(N3-stage) (orange rhombuses). All computed sets are minimal sets

Table 5  Computational complexity. b: number of calls to Alg. 2; � : number of iterations per call

Algorithm # of Scalarized MILPs Filtering/additional operationss

 [21] O(3|Y�

eff
| + 1) O(|Y�

eff
|⋅|Q|⋅(log(|Y�

eff
|) + 1) + |Y�

eff
|2)

Alg. 1 O(2|Y�

eff
| + |Q|) + 3b� O(

∑
q∈Q(�YPRO

eff
(q)�⋅log �YPRO

eff
(q)�))

Fig. 9  For the 30 instances: the 
number, b, of calls to Alg. 2 
(blue); the ratio of solution times 
of the first two stages and all 
three stages of Alg. 1 (orange). 
Note that the calls to Alg. 2 are 
in stage 3

5 15 27 13 20 26 24 22 29 9 19 8 25 12 7 4 10 30 21 3 28 23 16 17 14 2 6 18 1 11
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Table 6  Effect of the policies on instance 18

Nominal scenario ( ̂q) Worst-case scenario ( ̃q)

�(YPRO
eff

(q̂)) wc policy P-� policy �(YPRO
eff

(q̃)) nom policy P-� policy

Δg1 Δg2 Δg1 Δg2 Δg1 Δg2 Δg1 Δg2

(0, 14, 54) 0 3 0 3 (0, 17, 43) 0 11 0 0
(0.052, 13, 52) −.052 4 0 0 (0.48, 15, 39) 0 4 0 0
(0.48, 12, 43) 0 3 0 3 (1.082, 14, 35) 0 4 0 0
(1.082, 11, 39) .258 2 0 3 (1.34, 13, 31) −.258 8 −.258 4
(1.34, 10, 35) .17 2 0 3 (1.51, 12, 27) −.169 8 −.169 4
sums 0.376 14 0 12 sums −.427 35 −.427 8

Table 7  Swaps in different policies for instance 18

Nominal scenario ( ̂q) Worst-case scenario ( ̃q)

�(YPRO
eff

(q̂)) wc policy P-� policy �(YPRO
eff

(q̃)) nom policy P-� policy

(0, 14, 54) (0, 17, 43) (0, 17, 43) (0, 17, 43) (0, 14, 54) (0, 17, 43)
(0.052, 13, 52) (0, 17, 43) (0.052, 13, 52) (0.48, 15, 39) (0.48, 12, 43) (0.48, 15, 39)
(0.48, 12, 43) (0.48, 15, 39) (0.48, 15, 39) (1.082, 14, 35) (1.082, 11, 39) (1.082, 14, 35)
(1.082, 11, 39) (1.34, 13, 31) (1.082, 14, 35) (1.34, 13, 31) (1.082, 11, 39) (1.082, 14, 35)
(1.34, 10, 35) (1.51, 12, 27) (1.34, 13, 31) (1.51, 12, 27) (1.34, 10, 35) (1.34, 13, 31)



Autonomous Agents and Multi-Agent Systems           (2022) 36:36  

1 3

Page 27 of 31    36 

(i) Effect of policies in the nominal
scenario for g1 (∆g1)

(ii) Effect of policies in the nominal
scenario for g2 (∆g2)

(iii) Effect of policies in the
worst-case scenario for g1 (∆g1)

(iv) Effect of policies in the
worst-case scenario for g2 (∆g2)

Fig. 10  Effect of policies on difference instances



 Autonomous Agents and Multi-Agent Systems           (2022) 36:36 

1 3

   36  Page 28 of 31

(i) #1 (L, skew+, 20) (ii) #2 (L, skew+, 50) (iii) #3 (L, skew−, 20)

(iv) #4 (L, skew−, 50) (v) #5 (L, skew0, 20) (vi) #7 (R, skew+, 20)

(vii) #8 (R, skew+, 50) (viii) #9 (R, skew , 20) (ix) #11 (R, skew0, 20).

(x) #12 (R, skew0, 50) (xi) #13 (U, skew+, 20) (xii) #14 (U, skew+, 50)

Fig. 11  Instances #1–5, #7–9, #11–18, #20–30 (axes and labels as in Fig. 3)
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(xix) #22 (S, skew , 50) (xx) #23 (S, skew0, 20) (xxi) #24 (S, skew0, 50)

(xxii) #25 (M, skew+, 20) (xxiii) #26 (M, skew+, 50) (xxiv) #27 (M, skew−, 20)

(xiii) #15 (U, skew−, 20) (xiv) #16 (U, skew , 50) (xv) #17 (U, skew0, 20)

(xvi) #18 (U, skew0, 50) (xvii) #20 (S, skew+, 50) (xviii) #21 (S, skew−, 20)

Fig. 11  (continued)
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