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Abstract — In this paper, we propose a real-valued multi-input
memory polynomial (MP) for behavioral modeling of a mixer,
which considers nonlinearity introduced by in-phase , quadrature
and the local oscillator (LO) inputs. By splitting the I and Q data
of the stimulus and LO signal, we use a 4-input 2-output structure
of the real-valued MP model. The experimental validation based
on data measured from a real mixer confirms the effectiveness
of our proposed model. Compared with the Volterra series in
the literature, the real-valued MP has similar modeling accuracy
with much lower complexity.
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I. INTRODUCTION

Mixers are fundamental parts of any wireless
communication link. Their performance can highly influence
the overall performance of the system. In the ideal case, one
may expect that mixer works as a perfect multiplier followed
by a band-pass filter, which means getting the products
of the input signals of a mixer at its output. However, in
most practical mixers the actual output signal diverges from
the expected signal, which is mainly caused by non-ideal
behaviour of the mixer. Thus, developing a comprehensive
model for a mixer that can predict its non-ideal behaviour is
a crucial step in designing communication links.

There are two main approaches in mixer modeling,
circuit-level modeling [1], [2] and behavioral system modeling.
Behavioral modeling is more imperative from communication
system design point of view, so in this paper we focus on this
kind of model. In behavioral modeling procedure, the internal
structure of the mixer is disregarded, and the model is created
based on the mixer’s external parameters and measured data
[3].

There have been many previous works and researches on
mixer modeling. In [4] a model for single-frequency standard
and image mixers is provided, but no non-linear effect is
considered in their model. A model for the non-linear behavior
of a mixer is given in [5], where the possible non-linear effects
of the local oscillator signal is ignored. In [6] an approach
based on Volterra series is presented to model the non-linear
behavior of a mixer for a simplified structure of the input
signal, however the provided model does not represent the
effect of memory in the mixer. It is remarkable that according
to the study provided in [7], the memory effect of a mixer can
influence the overall performance of the mixer considerably

at some frequencies, so including memory in a mixer model
is important. In [8] a general real model is provided for
I/Q modulators and demodulators based on Volterra series
expansion, which covers both the non-linear effect and memory
effect, but since the presented model is more an I/Q modulator
model rather than mixer model, it does not include the effects
of local oscillator signal. In a recent work, Ozgun et al.
have proposed a multi-box mixer model in [9], where the
non-linear effect of different inputs and their memory effect
are considered in different boxes. Although the model provided
in [9] is more general, but it still does not include the memory
effect of the local oscillator signal and the possible leakages
from local oscillator signal to the mixer output.

In this paper we propose a real-valued model for a mixer
based on a 4-dimensional memory polynomial. The main
benefits of the proposed mixer model to the previous models,
which are also the main contributions of this paper, can be
listed as follows:

• It includes all the possible non-linearity effects and
memory effects of all input signals on the mixer output
signal. Specifically, it can model all the possible effects
of the local oscillator signal on the mixer output signal.

• It is based on the memory polynomial algorithm, which
makes it computationally less complex than models
using Volterra structure.

The remaining of the paper is structured as follows: our
proposed model is introduced in section II, the simulation
results based on a set of measured data are presented in section
III, and finally in section IV we conclude our work.

II. PROPOSED MODEL

First of all, we know that mixer is a 3-port block with
two input signals and one output signal [1], where one of the
input signals is always the local oscillator (LO) signal (an RF
signal). Based on the working regime of a mixer, the other
input signal and the output signal can be IF or RF signals.
Based on the analysis in [10], we can consider the base-band
equivalent signals of the input and output signals without any
loss of generality, which means that we can observe all kinds
of non-linear behaviours in the performance of a mixer.

Our proposed mixer model structure is depicted in Figure
1. In Fig. 1 the base-band input signal , the LO signal
and the output signal of the mixer are denoted by x[n],
s[n] and y[n], respectively. As illustrated in Fig. 1, yI [n]
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Fig. 1. Proposed structure for modeling a mixer.

and yQ[n] are the in-phase and quadrature components of
y[n], which means that y[n] = yI [n] + jyQ[n]. It is worth
re-mentioning that x[n], s[n] and y[n] are all complex-valued
base-band signals which are the base-band equivalents of
corresponding input and output signals of the mixer. FI and FQ

are independent non-linear blocks which are implemented to
model the non-linear behaviours in the in-phase and quadrature
branches, respectively. Both FI and FQ are real-valued
functions with 4 arguments. Note that the LO signal is included
as an input to the non-linear blocks, thus they would be able
to model the non-linearity in the mixer output signal caused
by the LO signal.

We propose a real-valued 4 dimensional memory
polynomial (Real 4D MP) for mixer modeling [11]. Therefore,
yI [n] and yQ[n] can be expressed as follows

yI [n] = FI (xr[n], xi[n], sr[n], si[n]) (1)
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The parameters a and b are real coefficients, xr[n] and xi[n]
are real and imaginary parts of input signal x[n], respectively,
sr[n] and si[n] are real and imaginary parts of LO signal
s[n], respectively, and MI and MQ are memory depth in
the in-phase and quadrature branches, P r

x,I and P i
x,I are

non-linearity orders of real and imaginary parts of x[n] in
in-phase branch, P r

s,I and P i
s,I are non-linearity orders of

real and imaginary parts of s[n] in in-phase branch, P r
x,Q

and P i
x,Q are non-linearity orders of real and imaginary

parts of x[n] in quadrature branch, P r
s,Q and P i

s,Q are
non-linearity orders of real and imaginary parts of s[n] in
quadrature branch, respectively. Moreover, we have assumed
that the maximum total non-linearity order of the in-phase
and quadrature branches are equal to PI and PQ, respectively,
hence constraints are placed on the terms under summation in
equations (1) and (2).

In order to characterize the proposed Real 4D MP model
completely, we need to specify its main parameters, including
MI , MQ, P r

x,I , P i
x,I , P r

s,I , P i
s,I , P r

x,Q, P i
x,Q, P r

s,Q, P i
s,Q,

PI , PQ and the real coefficients of a and b in (1) and
(2). First we set the memory depths and the non-linearity
orders equal to some initial values, then after estimating the
a and b coefficients and evaluating the model performance we
can modify the initial values of the parameters to improve
the accuracy of our model. Next, we consider the output
signal of the mixer (ỹ[n]) to the known input signals x̃[n]
and s̃[n] for n = 1, 2, . . . , N . Now, we can rewrite (1)
and (2) in the vector forms of ỹI = Ha and ỹQ = Hb,
where ỹI = [ỹI [1] ỹI [2] . . . ỹI [N ]]T and ỹQ =
[ỹQ[1] ỹQ[2] . . . ỹQ[N ]]T are N × 1 known vectors,
a = [a(1) a(2) . . . a(K)]T and b = [b(1) b(2) . . . b(K)]T

are K×1 unknown coefficient vectors, where K is the number
of coefficients that we want to estimate and is equal to the
number of terms under summation in (1) or (2), and H is a
N×K matrix whose columns are the basis functions of ỹI and
ỹQ in (1) and (2) and since x̃[n] and s̃[n] are known signals,
H would also be a known matrix. Finally, the least squares
(LS) estimates of the coefficient vectors are equal to

â = H†ỹI =
(
HT H

)−1
HT ỹI , (3)

b̂ = H†ỹQ =
(
HT H

)−1
HT ỹQ. (4)

In (3) and (4), H† is the pseudo inverse of the non-squared
matrix H and H†H = IK .

We should notice that the main difference between the
proposed Real 4D MP model and the truncated Volterra model
[12] is that the crossed terms between the terms with different
memories are not included in (1) and (2), so the number
of coefficients required to generate a model in our proposed
structure is considerably lower than the required coefficients in
Volterra structure. Therefore, the complexity of the proposed
structure would be much lower than the structures using
Volterra series.

The other advantage of Real 4D MP model is its robustness
to the further phase distortion that may appear at the output
of a mixer. Since the proposed model is a real-valued model,
it would make it possible to track the non-linearity behaviour
of the mixer even in presence of an unknown source of phase
distortion in the system.

III. ANALYSIS OF MEASURED DATA

In this section we evaluate the performance of Real 4D
MP model with measured data. An E2-band direct conversion



transmitter (Gotmic gTSC0025) was used for the experimental
studies, using the setup illustrated in Fig. 2 [13].

Fig. 2. Experimental setup for characterization of E-band I/Q mixer.

The transmitter’s differential baseband I/Q inputs are
provided by a two-channel arbitrary waveform generator
(Agilent 81180B). In order to characterize the modulated RF
output signal, an E-band receiver was used. Using the receiver,
the RF signal is downconverted to baseband and saved in time
domain with an oscilloscope (LeCroy Waverunner 640Zi). A
carefully selected attenuator, placed between the transmitter
and receiver, is used to guarantee that the receiver operates
in linear mode and its contribution to amplitude and phase
compression is minimal. The non-ideal effects observed at the
the oscilloscope end connected to the differential I/Q outputs
of the receiver are, therefore, an accurate representation of
the transmitter effects. It is important to note that both the
receiver and transmitter use the same LO source (Anritsu
MG3694C) which eliminates the need for phase and frequency
tracking during the measurements. The measurements have
been performed at an RF frequency of 84 GHz using a 192
Mbaud 256-QAM signal.

Note that in the experiments we did not have access to
the LO signal, so no validation of the LO input could be
performed. However, we could adapt the Real 4D-MP model
to the measured data to track the non-linear behaviour of the
mixer. In future experiments, we expect to also measure the
LO signal.

In addition to the Real 4D-MP model, we have also
considered a truncated Volterra (TV) model including all the
cross terms between input signals with different memories in
this section.

The results from implementation of the proposed model
to the measured data are presented in Table 1. In order
to develop our models, we have used the first part of the
measured data as training sequence, where we have estimated
the coefficients in (1) and (2) based on the measured x[n] and
y[n], which are denoted by â and b̂. In the evaluation phase
we used the extracted values of the coefficients to generate the
estimated ŷ[n] for the remaining part of the measured data,
which is the evaluating sequence. In the next step, we have
compared measured y[n] and estimated ŷ[n] by calculating the

Table 1. Parameters set for adapting the Real 4D MP model and Truncated
Volterra model to the measured data set.

Real 4D MP
model

Truncated
Volterra model

Length of training sequence 10000 10000
Length of evaluating sequence 6000 6000
Memory depth 3 3
Non-linearity order of s[n] 0 0
Maximum non-linearity order
of in-phase branch

5 5

Maximum non-linearity order
of quadrature branch

5 5

Non-linearity order of xr[n] 5 5
Non-linearity order of xi[n] 5 5
Number of coefficients 2× 84 2× 201
NMSE -35.11 dB -35.68 dB

normalized mean squared error (NMSE) value in dB, which is
defined as follows

NMSE = 10 log10

(
E
[
|y[n]− ŷ[n]|2

]
E [|y[n]|2]

)
. (5)

It’s noteworthy that for a specific signal we have assumed
the same memory depths and non-linearity orders in in-phase
and quadrature branches in Table 1. Furthermore, with the
assumed values of memory depths and non-linearity orders
in Table 1, there will be 84 coefficients for FI block and 84
coefficients for FQ block in the structure of Fig. 1 and the total
number of coefficients would be equal to 2 × 84 in Real 4D
MP model, while the total number of coefficients is 2 × 201
in TV model.
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Fig. 3. NMSE values in dB for Real 4D MP models and Volterra models
with different parameter sets with different number of coefficients.

The amount of memory depth and non-linearity order in
Table 1 are selected according to Fig. 3. In this figure the
value of NMSE in dB for the Real 4D MP model and Volterra
model are plotted versus number of coefficients that is used for
modeling FI in (1) or FQ in (2), for different values of memory
depths and non-linearity orders, which has been generated by
applying Pareto Front algorithm [14]. As illustrated in Fig. 3,
if we use less than 84 coefficients for modeling FI or FQ, we



can not achieve the NMSE value of less than -35 dB, and if
we use more than 84 coefficients we will not get a much better
performance but we will increase the complexity of our model.
Therefore, the optimal number of coefficients for modeling
FI or FQ is 84 coefficients in this case, which is obtained
by setting the memory depth equal to 3 and assuming the
non-linearity order of 5. Moreover, it is clear in Fig. 3 that
the proposed Real 4D MP model has lower complexity than
Volterra model for a fixed target NMSE value.
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Fig. 4. Spectrum of the measured data, the Real 4D MP model and the
Truncated Volterra (TV) model.

The spectrum of the Real 4D MP model and TV model
and also the spectrum of the error for these two models are
represented in Fig. 4 and 5, respectively. It can be observed
from Fig. 4 and 5 that the proposed Real 4D MP model can
achieve the same level of accuracy as truncated Volterra model
with lower complexity level.
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Fig. 5. Spectrum of the error in Real 4D MP model and Truncated Volterra
(TV) model.

IV. CONCLUSION

In this paper, a Real 4D MP model has been proposed
for modeling a mixer, which is able to track the nonlinear

behaviour at the output of a mixer as a function of input signal
and LO signal. It can also model the memory effects of the
mixer. With the same level of modeling accuracy, the Real 4D
MP model has much less basis functions than the conventional
Volterra series, which validates that our proposed contains the
most important basis functions. More studies need to be done
in the future to reduce the model complexity.
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