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Cramér-Rao Bound Analysis of Radars for Extended
Vehicular Targets with Known and Unknown Shape
Nil Garcia, Alessio Fascista, Member, IEEE, Angelo Coluccia, Senior Member, IEEE, Henk Wymeersch, Senior
Member, IEEE, Canan Aydogdu, Rico Mendrzik, Member, IEEE, Gonzalo Seco-Granados, Senior Member, IEEE

Abstract—Due to their shorter operating range and large
bandwidth, automotive radars can resolve many reflections from
their targets of interest, mainly vehicles. This calls for the use
of extended-target models in place of simpler and more widely-
adopted point-like target models. However, despite some pre-
liminary work, the fundamental connection between the radar’s
accuracy as a function of the target vehicle state (range, orienta-
tion, shape) and radar properties remains largely unknown for
extended targets. In this work, we first devise a mathematically
tractable analytical model for a vehicle with arbitrary shape,
modeled as an extended target parameterized by the center
position, the orientation (heading) and the perimeter contour. We
show that the derived expressions of the backscatter signal are
tractable and correctly capture the effects of the extended-vehicle
shape. Analytical derivations of the exact and approximate hybrid
Cramér-Rao bounds for the position, orientation and contour
are provided, which reveal connections with the case of point-
like target and uncover the main dependencies with the received
energy, bandwidth, and array size. The theoretical investigation
is performed on the two different cases of known and unknown
vehicle shape. Insightful simulation results are finally presented
to validate the theoretical findings, including an analysis of the
diversity effect of multiple radars sensing the extended target.

Index Terms—Automotive, radar, extended target, Cramér-Rao
bound (CRB)

I. INTRODUCTION

Automotive radars are becoming the norm in modern cars
thanks to their capability to estimate the speed and position of
objects in the vicinity [1]–[4]. Today, most automotive radar
systems operate between 76 GHz to 81 GHz which is part
of the so-called millimeter-wave (mmWave) spectrum. They
are used in many applications of advanced driver assistance
systems (ADAS) such as lane change assistance, automatic
park control, cruise control, and are expected to become one
of the leading technology for autonomous driving [5]–[7].
Beyond the direct applications of radars on single vehicles,
radars are also enablers for some forthcoming functionalities
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of vehicular networks, such as cooperative positioning [8]–
[10] or platooning [11]. Thus, it is in the best interest of
researchers/engineers to develop good models for analyzing
radars’ sensing accuracy in a vehicular environment.

In the classical radar literature, the target is often assumed
so distant that its reflection appears to come effectively from
a single point in space, and as such it can be modeled by
just four parameters: range, direction, radar cross-section and
velocity. For instance, a typical military search radar detects
aircraft at ranges in excess of 400 km [12], using adaptive
techniques [13]–[16]. In agreement with well known principles
of radars [17, Ch. 11.3], the Cramér-Rao bound (CRB) on
the point-target model shows that the range and direction
variance are inversely proportional to the square of the signal
bandwidth and the array aperture, respectively [18], [19]. The
same dependencies have been observed in the context of
non-radar based cooperative wireless localization [20], also
considering the effects of multipath propagation [21]. On the
other hand, automotive radars with high range/angle accuracy
operate much closer to their targets (e.g., vehicles) and can
resolve many reflections around the objects [5]. Such targets
can no longer be described as single points in the space and are
referred to as extended targets. In the literature on automotive
radars, there are studies that propose novel extended-target
models [22], [23], advanced tracking algorithms [24], and
measure the variance bounds on some parameters of interest
such as range and direction [25]. However, the fundamental
connection between the radar’s accuracy as a function of the
vehicle state (range, orientation, shape, velocity) and radar
properties (emitted power, bandwidth, waveform) for extended
targets remains largely unknown.

A simple approach is to avoid modelling the target contour,
and then infer the extended-target kinematic properties directly
from the radar measurements. For instance, in [26] it has been
shown that the main target parameters can still be estimated
without modelling its shape, but only when the target is small
enough. In [27], the main reflection points of a vehicle (includ-
ing the wheels) are modeled based on real world observations.
Although this approach is quite flexible, the achieved accuracy
is often very limited and, moreover, it cannot capture important
information related to the turning maneuvers of the target.
By introducing a model for the shape of the extended target,
it becomes possible to capture rigid rotations and in turn to
infer more accurate position and kinematic information. To
describe an extended target, different contour models exist
in the radar literature. A common approach is to assume
a specific basic geometric contour for the target, such as a
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rectangle [28]–[31], a circle [32], [33], or an ellipse [23],
[34], [35]. While such models allow for an elegant formulation
and resolution of tracking problems, typical vehicular targets
cannot be accurately represented by a simple geometric shape.
When it comes to modelling targets with arbitrary shapes,
the problem becomes significantly more complex and the
approaches available in literature follow two main strategies.
A first type of methods models the target contour through
deterministic or stochastic curves parameterized by a set of
chosen parameters. For instance, in [36] deformations from the
basic geometric shapes are considered to model the extended-
target contours, while in [37]–[40] probabilistic contour mod-
els based on Gaussian processes are considered. Random
hypersurfaces [41] and B-spline curves [42], [43] have been
also considered valid options for modelling extended targets
with arbitrary shapes. On the other hand, the second type
of approaches considers a combination of multiple ellipses
to obtain a more accurate and detailed representation of the
target contour [44], [45]. The adoption of these extended-target
models in vehicular tracking tasks allows to capture useful
details such as the rounded corners of targets, but typically
comes at the price of a significantly increased complexity and
lack of interpretability in terms of the main radar parameters.

In this work, we build on the approach used in [46] and
derive a model that is able to capture the backscatter effects
generated by a waveform impinging on an extended target with
arbitrary shape, while keeping the number of parameters used
to describe the contour tractable. Specifically, we introduce
a two-dimensional geometrical contour model whose compo-
nents are parameterized by a truncated Fourier series with a
small number of coefficients, which naturally incorporates the
prior knowledge that vehicular targets are symmetric, allowing
to correctly infer their main parameters even when the radar
does not illuminate the whole contour. The derived expressions
of the backscatter signals are then used to carry out a Fisher
information analysis aimed at investigating the theoretical
accuracy achievable in the estimation of the parameters of
interest (namely range, direction and orientation), using the
mathematically tractable tool of the hybrid CRB (HCRB).
In [47], a HCRB is proposed for tracking ground-moving
targets; however, the vehicle contour is assumed to be perfectly
known a priori and is described by a simple rectangular shape.
Furthermore, the considered signal model does not take into
account the radar characteristics such as the signal bandwidth
and the number of receive antennas. Other studies compute
the posterior CRB with recursive observations [48]–[50] but
their formulas end up being too complex to extract any type
of intuition.

This work aims at partially closing the knowledge gap
between the simplicity of point-like target models and the
unbearable complexity of extended-target models. Specifically,
it provides a novel framework for analyzing the performance
of an automotive radar sensing the range, direction and
orientation information. The main idea consists in modeling
the vehicle as an extended target parameterized by a set of
unknown parameters: the position of its center, the orientation
(heading) and the perimeter contour (as shown in Fig. 1). For
tractability, we consider a sufficiently short observation time
over which the vehicle can be considered static. We address

the more general scenario in which the vehicle contour can
be arbitrary and unknown, and generates multiple reflections
according to the specific portion that has been illuminated.

The main contributions of this work are as follows.

• A novel mathematically tractable analytical model for an
extended target with arbitrary shape is proposed, param-
eterized by the center position, the orientation (heading)
and the perimeter contour. Remarkably, it is shown that
the model is sufficiently rich to capture the backscatter
effects of the extended-vehicle shape, despite the quite
complex scenario at hand.

• A fundamental Fisher information analysis based on
the HCRB is conducted, which allows to uncover the
main dependencies of range, direction, and orientation
estimation upon received energy, effective bandwidth,
array’s effective aperture, and reflection coefficient.

• The impact of lack of knowledge of the target contour
onto the achievable radar localization performance is
investigated, by deriving the HCRB for the two different
cases of known and unknown contour. Based on such
an analysis, interesting connections are drawn between
extended and point-like targets.

• The diversity effect of having multiple radars sensing
the extended target is finally investigated, which turns
out to improve significantly the localization accuracy,
especially when the target contour is unknown and should
be inferred from scratch.

The rest of the paper is organized as follows. In Section II,
we derive the models for the vehicle contour and the received
signal. From the models, the general HCRB is obtained in
Section III. In Section IV, we provide approximate closed-
form expressions for the HCRB in case of known and unknown
target shape, together with a thorough analysis including a
comparison with the CRB of a point-like target. In Section V
we provide numerical results that show the correctness of the
derived expressions. Conclusions are given in Section VI.

Notation: Boldface lower-case and upper-case letters refer
to vectors and matrices, respectively, while roman letters (both
lower- and upper-case) are used for scalar variables. x̊ and x̊/X̊
are scalar or vector/matrix quantities referred to the center of
the target contour, relative to the corresponding variables x
and x/X on each point along the contour. R is the set of
real numbers, and Rn×m is the Euclidean space of (n×m)-
dimensional real matrices (or vectors if m = 1). j =

√
−1

is the imaginary unit. <(·) and =(·) denote the real and
imaginary parts of the complex argument (with parentheses
often omitted). |z| and z∗ denote the modulus and the complex
conjugate of the complex number z, respectively. ‖ · ‖ is the
Euclidean norm of a vector and � denotes the Hadamard
(element-wise) product between two vectors. (·)T, (·)H, and
(·)−1 denote the transpose, transpose conjugate (Hermitian),
and inverse of a matrix, respectively. The Little-O notation
[51] X+o(x) applies entry-wise to the matrix X. The identity
matrix is indicated by I, and diag(d1, . . . , dn) represents a di-
agonal matrix with elements given by the argument variables.
A < B indicates that the matrix A − B is positive semi-
definite. 4x2

x1
f , ∂

∂x1

∂
∂xT

2
f with x1 and x2 two arbitrary

vectors. x⊥ =
(

0 −1
1 0

)
x for any x ∈ R2×1. E[·] is the
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TABLE I
TABLE OF MAIN SYMBOLS

Symbol Description
C Extended-target contour
Q Number of Fourier series coefficients
aq Contour coefficients along the x-axis
bq Contour coefficients along the y-axis
m Vector of aq coefficients
n Vector of bq coefficients
σ Vector of cosine harmonics
ς Vector of sine harmonics
p Position of the center of target, eq. (2)
d̊ Distance from center of target
φ̊ Direction of the center of target
ϕ Orientation (heading) of target
u Variable spanning the contour for 0 ≤ u < 2π
ρ(u) Single point of contour in local coordinates, eq. (1)
r(u) Single point of contour in global coordinates, eq. (3)
d(u) Distance from point r(u) on target contour, eq. (6a)
φ(u) Direction of point r(u) on target contour in (6b)
ψ(u) Angle between contour normal and LOS, eq. (6c)
R Rotation matrix of the reference frame, eq. (4)
s(t) Radar transmitted waveform

dP (t) Differential received power, eq. (5)
B Signal bandwidth

BRMS Effective bandwidth
fc Carrier frequency
λ Signal wavelength

Υ(φ) Radar antenna directivity
α Target surface roughness
G Receiver gain
P (t) Aggregated power at the radar
`T Total target perimeter
K Number of disjoint segments of target contour
`R Length of each disjoint contour segment

Ck, dk, . . . Parameters related to the k-th disjoint segment
hk Channel coefficient along the k-th path
N Number of antenna elements

a(φ) Array response vector
e(t) Signal across antenna elements
y(t) Received signal
w(t) Additive white Gaussian noise
T Observation interval
E Received energy
N0 Noise power spectral density
h Unknown random channel parameters in (15)
g Deterministic nuisance channel parameter
γ Vector of deterministic parameters of interest in (16)
θ Vector containing all unknown parameters h, g,γ
C Hybrid Cramér-Rao bound matrix, eq. (19)

J(θ) Fisher information matrix, eq. (20)
J(γ) Effective Fisher information matrix, eq. (28)
Sn Upper-left block of J(γ), eq. (23)
Sp Lower-right block of J(γ), eq. (23)
Kr Number of radars

Jr(γ) Fisher information matrix of r-th radar, eq. (35)
pr, d̊r, . . . Parameters related to the r-th radar
T,Ti,j Matrices of the approximated EFIM, eq. (37)

statistical expectation operator and x ∼ CN (µ, σ2) defines a
circularly symmetric complex normal random variable x with
mean µ and variance σ2. The function arctan(y, x) denotes
the four-quadrant inverse tangent. A bar over a function
denotes the rectifier operator defined as f = max(f, 0).
A dot over a scalar or vector variable, i.e., ẋ/ẋ, refers

 Contour function

Fig. 1. Top view of an extended-target vehicle with
orientation ϕ = 120◦ and contour parameters m =
[2.05,−0.02, 0.17, 0.05,−0.03,−0.01,−0.02, 0.03,−0.01,−0.01]T and
n = [1.12, 0.005, 0.24,−0.01, 0.05, 0.01,−0.01,−0.02,−0.02, 0.014]T.
Colors indicate the average strength of the backscattered signal, from red
(maximum strength) to blue (no energy reflected) based on (cosψ)2(α+1)

and α = 2. The radar is at the origin of the global coordinate system.

to the derivative (or gradient) with respect to the inherent
scalar independent variable (time or angle). We also define
(see Sec. III-B) the star product as a suitable inner product
〈f1, f2〉? between two L2([0, 2π]) functions, with induced
norm ‖f‖? and orthogonal projection of f1 over f2 defined
as Pf2(f1) , 〈f1, f2〉?〈f2, f2〉−1

? f2, while the projection on
the complement space is P⊥f2(f1) , f1 −Pf2(f1). For conve-
nience, the star product, norm, and projections are also over-
loaded for vector functions. Furthermore, in Sec. IV-C the star
product is extended over the space L2([0, 2π]) × L2([0, 2π])
as 〈(f1, f2), (g1, g2)〉? , 〈f1, g1〉? + 〈f2, g2〉?, and similarly
overloaded to vector functions. In Table I, we report a list of
the main symbols used throughout the paper.

II. SIGNAL MODEL

A. Extended-Target Contour Model

We preliminarily introduce an analytical model to describe
a generic vehicle contour C. As depicted in Fig. 1, we consider
a birds-eye-view in a target local coordinate system where the
vehicle position is assumed in the origin and the heading of the
vehicle is aligned with the local x-axis. The two components
of the contour are parameterized by a truncated Fourier
series with Q coefficients [46]. Specifically, the contour curve
projected on the x-axis only includes cosine harmonics and the
projection on the y-axis only includes sine harmonics because
the vehicle’s heading is in the direction of the positive x-axis
and the contour is assumed symmetric with respect to the x-
axis. Hence the perimeter is generated, for 0 ≤ u < 2π, by

ρ(u) =

Q∑
q=1

[
aq cos(qu)
bq sin(qu)

]
=

[
σTm
ςTn

]
, (1)

where σ , [cos(u) · · · cos(Qu)]T, ς ,
[sin(u) · · · sin(Qu)]T, m , [a1 · · · aQ]T and
n , [b1 · · · bQ]T. The 0-th order harmonics have been
omitted because the center of the vehicle is assumed to lie
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at the origin of the vehicle’s local reference frame. Without
loss of generality, the first order harmonics are assumed to
satisfy a1, b1 > 0 so that the contour cycles anti-clockwise.
We highlight that the proposed model, through the use of a
truncated Fourier series, naturally incorporates a symmetric
structure for a target, and can be thus used to describe
arbitrary (symmetric) vehicle shapes with only a small set of
coefficients according to (1). The number of coefficients Q
determines the granularity of the target contour description.
If one is interested in capturing even the finest details, then
Q should be large enough. Conversely, when fine-grained
details are not of interest, or the available bandwidth is not
large enough to observe them, Q can be reasonably small.

By assuming that the radar is centered in the origin of the
global coordinate system Oxy as in Fig. 1, a displacement of
the vehicle to a given position p can be expressed as

p = [d̊ cos φ̊ d̊ sin φ̊]T (2)

where d̊ is the distance between the radar and the center of the
vehicle while φ̊ is the corresponding direction (ref. Fig. 1).
Considering a heading (orientation) ϕ with respect to the x-
axis, the contour model is modified as

r(u) = p + Rρ(u), (3)

where r(u) = [rx(u) ry(u)]T as a function of u describes the
vehicle perimeter in the global coordinate system, and

R =

[
cosϕ − sinϕ
sinϕ cosϕ

]
(4)

is the rotation matrix. As a consequence, we finally define the
vehicle contour as C = {r(u) : 0 ≤ u < 2π}.

B. Power Profile
We consider a radar broadcasting a signal (e.g., a chirp

sequence) through a single antenna, whose returns are captured
by a generic receive antenna array and digitally processed. In
the following, in order to derive a model for the received signal
based on the I/Q samples, we preliminarily devise analytical
expressions for the received power. Let

√
Etxs(t) denote the

transmitted waveform and, without loss of generality, let∫
|s(t)|2dt = 1. Let Υ(φ) be the radar antenna directivity

towards the azimuth direction φ, and let ψ be the angle
between the normal vector to the vehicle surface and the line-
of-sight (LOS) direction of the radar as shown in Fig. 1. Notice
that Υ(φ) is not specifically linked to a given type/model of
automotive radar, but is used as a generic function representing
any possible antenna directivity. The radar illuminates the
entire target vehicle but, for the sake of the analysis, we focus
on the azimuthal domain only1. Moreover, the transmitter an-
tenna and receiver array are assumed co-located and perfectly

1We address the problem in 2D, a common simplifying choice in the
automotive radar literature that is tantamount to considering waves that
propagate horizontally. This is realistic when the radar-target distance is
large compared to the height of the antennas. Moreover, automotive radars
are typically designed with a sufficiently wide fan beam so as to capture
backscatter signals coming from targets with different elevations in their field
of view. Though the 3D case is outside the scope of the present contribution,
nonetheless the proposed methodology can be extended to deal with such a
case, provided that a 2D array is used in place of a ULA and the elevation
angle is introduced in addition to the azimuth in the considered models.

decoupled, so that the receiver does not suffer from self-
interference due to full-duplex operation. Then, the differential
received power dP (t) reflected by an infinitesimal part of the
vehicle’s contour C is given by [52]

dP (t) ∝ Etx

∣∣∣∣s(t− 2d(u)

c

)∣∣∣∣2 Υ2(φ(u))

× cosψ(u)

d2(u)

du cosψ(u)

d2(u)

(1 + cos 2ψ(u))α

2α(α+ 1)
(5)

where we have introduced the modified cosine function
cosx , max(cosx, 0) to enforce the assumption that no
reflection occurs on the non-visible parts of the vehicle. It
is worth noting that some of the parameters are a function of
the reflection point r, and consequently a function of u, i.e.

d(u) = ‖r(u)‖ (6a)
φ(u) = arctan(ry(u), rx(u)) (6b)
ψ(u) = 3π/2 + φ(u)− β(u), (6c)

where β(u) = arctan(ṙy(u), ṙx(u)) and ṙ(u) =
[ṙx(u) ṙy(u)]T with ṙx(u) = σ̇Tm cosϕ − ς̇Tn sinϕ and
ṙy(u) = σ̇Tm sinϕ + ς̇Tn cosϕ (where the dot operator
denotes in this case the derivative with respect to u). For
brevity, the dependency on u will be often omitted.

The first part of (5) accounts for the transmitted power at
a given instant t and the directivity of the antenna, with d(u)
given in (6a) denoting the distance between the radar and the
point r(u) on the vehicle contour. The second part models the
vehicle scattering as a function of the angles and the known
surface roughness α [52], and 2α(α + 1) is a normalizing
factor that makes the total reflected power independent of α,
i.e., [2α(α + 1)]−1

∫ π/2
−π/2(1 + cos 2ψ)αdψ is a constant. As

an example, if the vehicle surface is completely reflective
(α → ∞), the term (1 + cos 2ψ)α/(2α(α + 1)) becomes
proportional to δ(ψ) meaning that all the power is reflected
back, and if α = 0, the term implies isotropic scattering.
Using the trigonometric identity cos 2ψ = 2 cos2 ψ − 1 and
2 cos2 ψ = 2 cos2 ψ for ψ ∈ [−π/2, π/2] (outside this interval
the value of 1+cos 2ψ is irrelevant being the two terms cosψ
in (5) zero), we can rewrite (5) in a more compact form as

dP (t) ∝ Υ2(φ)
Etx

d4

(cosψ)2(α+1)

(α+ 1)

∣∣∣∣s(t− 2d

c

)∣∣∣∣2 du (7)

which will be exploited and developed in the next sections.

C. Received Signal

To develop a coherent yet tractable signal model, we make
the assumptions that i) the target vehicle is in the field-of-
view of the radar, and ii) the target vehicle is in the far-
field of the radar’s array because the near-field at mmWave
frequencies is usually less than a meter.2 The aggregated
power at the radar’s antenna, due to the reflections along
the vehicle contour, is assumed to be the superposition of

2The Fraunhofer distance [53] defines the beginning of the far field and
its formula is dF = 2(array diameter)2/λ. For instance, the Fraunhofer
distance for a ULA of 10 antennas with half-wavelength inter-antenna spacing
operating at 122 GHz [54] is 12 cm.
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independent paths originated from each infinitesimal element
dr, i.e., P (t) ,

∫
C dP can be written as a line integral

P (t) = G̃

∫
C

Υ2(φ)
Etx

d4
(cosψ)2(α+1)

∣∣∣∣s(t− 2d

c

)∣∣∣∣2 dr (8)

where G̃ accounts for the receiver’s unknown gain and other
constants not included in (5) or (7). If the vehicle size is
small compared to its range, then range and antenna el-
ement gain are approximately constant along the contour,
i.e., ∀u1, u2 ∈ [0, 2π], d−4(u1) ≈ d−4(u2) ≈ d̊−4 and
Υ2(φ(u1)) ≈ Υ2(φ(u2)), meaning that the specific shape
of the radiation pattern does not have a significant impact.
Conversely, we do not apply such an approximation to the
delay of the baseband waveform in order to keep considering
the dependency between the distance d and each point along
the target contour. Indeed, the variations experienced by the
delay of the baseband waveform as a function of d along C
bring the necessary information for estimating the distance.
Accordingly, the aggregated power (8) from reflections along
the contour simplifies to

P (t) =
G

d̊4

∫
C
(cosψ)2(α+1)

∣∣∣∣s(t− 2d

c

)∣∣∣∣2 dr (9)

where the unknown gain G absorbed all the constants that act
as scaling factors, hence are irrelevant to our analysis.

Let `T be the total perimeter of the vehicle contour and
for simplicity assume `R is a divisor of `T. Upon split-
ting the vehicle contour into K , `T/`R disjoint continu-
ous sections of length `R, i.e., C =

⊔K
k=1 Ck with Ck ,

{r(uk) : ũk−1 ≤ uk < ũk} and 0 = ũ0, ũ1, . . . , ũK = 2π
defining a partition of the interval [0, 2π], the instantaneous
power (9) can be approximated as a sum

P (t) =
G

d̊4

K∑
k=1

∫
Ck

(cosψ)2(α+1)

∣∣∣∣s(t− 2d

c

)∣∣∣∣2 drk

≈ G`R

d̊4

K∑
k=1

Pk(t) (10)

where rk , r(uk) ∈ Ck for all k and by treating the
arguments of each integral over the contour sections Ck in the
above expression as approximately constant with respect to the
integration variable u, namely (cosψ)2(α+1) ≈ (cosψk)2(α+1)

and s(t− 2d
c ) ≈ s(t− 2dk

c ), we have that

Pk(t) = (cosψk)2(α+1)

∣∣∣∣s(t− 2dk
c

)∣∣∣∣2 (11)

where we abbreviated dk = d(uk) and ψk = ψ(uk). No-
tice that in general

∫
C(·)dr =

∫ 2π

0
(·)‖ṙ‖du hence likewise∫

Ck(·)drk =
∫ ũk

ũk−1
(·)‖ṙk‖duk.

Starting from the instantaneous power, our goal is now to
provide a model of the signal received at the radar. If the
electrical signal were modeled deterministically as a function
of u, then one would simply take the square root of (10), but
this would result in an intractable model. Exploiting the fact
that signals originated from sufficiently far apart points (i.e.,
`R � λ, where λ is the signal wavelength) on the vehicle can
be approximately treated as uncorrelated, a more convenient

choice is to model the electrical signal e(t) as a sum of
independently random Rayleigh paths ek(t), i.e.,

e(t) =

√
G`R

d̊2

K∑
k=1

ek(t) (12)

where ek(t) is obtained from (11) as

ek(t) = hk(sin (φk − βk))α+1s

(
t− 2dk

c

)
(13)

with hk ∼ CN (0, 1) and E[|ek(t)|2] = Pk(t), upon defining
sinx , max(sinx, 0) so, by (6c), cos(ψk) = cos(3π/2+φk−
βk) = sin(φk − βk).

All the derivations provided so far are valid for any ar-
bitrary receive antenna at the radar side. The same expres-
sions can be extended to the case of a radar receiving the
backscattered signal with an antenna array. Specifically, if
the target vehicle is in the far field and we assume that
the radar is equipped with a uniform linear array (ULA)
whose broadside points towards the positive x-axis, the array
response to an incoming signal from azimuth φ is given by
a(φ) = [1 exp(−jπ sinφ) · · · exp(−jπ(N − 1) sinφ)]T,
where N is the number of antenna elements spaced a half-
wavelength apart, and we have used the usual narrowband
assumption (i.e., B � fc) which is reasonable due to the
high carrier frequencies adopted by high-resolution automotive
radars. Assuming that reflections originated within the same
section result in approximately the same array response, then,
the signal across the antenna elements of the phased array can
be expressed as

e(t) = g
√
`R

K∑
k=1

hka(φk)(sin (φk − βk))α+1s

(
t− 2dk

c

)
(14)

where g ,
√
G/d̊2 and `R are left explicit for the convenience

of the next section.

III. HYBRID CRAMÉR-RAO BOUND

A. Fisher Information Matrix
The received signal can be expressed as y(t) = e(t,θ) +

w(t), with w(t) denoting the additive white Gaussian noise
having power spectral density N0 and e(t,θ) from (14) having
effective bandwidth BRMS, where the explicit dependence on
the unknown vector θ has been highlighted. The unknown
vector can be split into three parts as θ , [hT g γT]T,
where h ∈ R2K×1 is a vector of nuisance random channel
parameters, g is a deterministic nuisance channel parameter
(ignoring its dependency on d̊), and γ ∈ R(2Q+3)×1 is the
vector containing the deterministic parameters of interest, i.e.

h ,
[
<h1 =h1 · · · <hK =hK

]T
(15)

γ ,
[
d̊ φ̊ ϕ a1 · · · aQ b1 · · · bQ

]T
. (16)

Ignoring terms that do not depend on θ, the log-likelihood
function of the measurements is given (up to irrelevant additive
constant terms) by

log p(y|θ) =
2

N0
<
∫
T

yH(t)e(t,θ) dt− 1

N0

∫
T

‖e(t,θ)‖2 dt

(17)
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where T is the observation interval. The HCRB on all
parameters is obtained by inverting the Fisher information
matrix (FIM) [48]

Cov (θ) < C (18)

C , J−1 (θ) (19)

and the FIM is given by

J (θ) = −E
[
4θ

θ log p (y,h|g,γ)
]

(20)

where p(y,h|g,γ) is the joint a posteriori probability density
function of the radar measurement.

By resorting to the Bayes theorem, we get [55, Ch. 2.4.3]

J (θ) = −E
[
4θ

θ log p (y|h, g,γ)
]
− E

[
4θ

θ log p (h|g,γ)
]

= −E
[
4θ

θ log p (y|θ)
]
− E

[
4θ

θ log p (h)
]
. (21)

For Gaussian observations, the expected second-order deriva-
tives of the log-likelihood function are

− E
[
4x2

x1
log p(y|θ)

]
=

2

N0
<
∫
T

E
[
∂eH

∂x1

∂e

∂xT
2

]
dt. (22)

We find that E
[
4h
g log p(y|θ)

]
= 0 and E

[
4h

γ log p(y|θ)
]

=
0 because E [hk] = 0; moreover, 4h

g p(h) = 0 and 4h
γp(h) =

0 since h is the only random vector of parameters. Thus, the
FIM can be partitioned as

J (θ) =

Sn 0 0
0 s11 sT21

0 s21 S22

 (23)

where the upper-left block Sn depends solely on the nuisance
parameters, while the lower-right block of size (2Q + 4) ×
(2Q + 4), which refers to all the nonzero terms except for
the Sn block, is related to the parameters of interest γ. In
the following, we denote such a lower-right block as Sp and
focus on the part of C related to γ. We start by overloading
the notation in (19) and refer to such a submatrix as C(γ).
By the block matrix inversion formula:

C(γ) , J−1(γ) (24)

J(γ) = S22 −
1

s11
s21s

T
21 (25)

where S22 is a matrix of size (2Q + 3) × (2Q + 3), and
J(γ) is the effective Fisher information matrix (EFIM), whose
expression arises naturally in the process of inverting the block
matrix as the Schur’s complement of s11 over Sp.

As a final remark, it is worth noting that the use of the
HCRB tool together with a prior information on channel
parameters (i.e., hk, k = 1, . . . ,K are i.i.d. complex normal
variables with zero mean and unit variance) leads to the more
convenient partitioning of the FIM matrix in (23), where the
cross-correlation (off-diagonal) terms are zero and J(γ) does
not depend on the specific realization of the random variables
hk.3 Moreover, the peculiar structure of the FIM provided in

3The division of the whole target contour into K disjoint segments is
actually a convenient mathematical expedient that is used, together with the
prior information on the channel parameters hk and the definition of HCRB, to
obtain the block-diagonal structure of the FIM in (23). As shown in Appendix
I-A, the advantage brought by this equivalent representation is the possibility
of being reverted during the derivations, allowing us to retrieve the initial
representation in terms of the entire target contour C.

(23) remains valid for any choice of the statistical distribution
of the random channel parameters (including the case of
arbitrarily correlated parameters), with the only condition that
E [hk] = 0 ∀k.

B. Effective Fisher Information Matrix
In the following, we derive a closed-form expression of

J(γ). Recalling that
∫
C(·)dr =

∫ 2π

0
(·)‖ṙ‖du, we define the

star product as the inner product

〈f1, f2〉? ,
∫ 2π

0

f1(u)f2(u) ‖ṙ(u)‖ du (26)

over the L2([0, 2π]) space of real square-integrable func-
tions on the interval [0, 2π]. The star product induces the
norm ‖f‖? , 〈f, f〉1/2? = (

∫ 2π

0
f2‖ṙ(u)‖du)1/2, and subse-

quently the orthogonal projection of f1 over f2 is Pf2(f1) ,
〈f1, f2〉?〈f2, f2〉−1

? f2, while the projection on the complement
space is P⊥f2(f1) , f1 − Pf2(f1). For convenience, the
star product is overloaded such that for two vector functions
f1(u) and f2(u), 〈f1, f2〉? ,

∫ 2π

0
f1(u)fT2 (u)‖ṙ(u)‖du, where

the (m,n) component of the resulting matrix is the inner
star product between the m-th entry of f1 and the n-th
entry of f2. The projection operators are also overloaded:
Pf2(f1) , 〈f1, f2〉?〈f2, f2〉−1

? f2 and P⊥f2(f1) , f1 − Pf2(f1).
Moreover, we define

w , (sin(φ− β))α+1 (27a)

v , (sin(φ− β))α cos(φ− β). (27b)

The following Theorem provides a general EFIM expression.

Theorem 1. A closed-form formula of the EFIM (25) is

J(γ) =
2

‖w‖2?
2E

N0

[
L〈wµ, wµ〉? +M〈w cosφη, w cosφη〉?

+ (α+ 1)2〈P⊥w (v ξ) ,P⊥w (v ξ)〉?
]

(28)

where the received energy

E ,
∫
T

‖e(t)‖2dt ≈ g2N‖w‖2? (29)

calculated from (14) has been recognized, the constants

L , (4πBRMS/c)
2 (30)

M , π2(N2 − 1)/12, (31)

are related to the signal bandwidth and ULA length, respec-
tively, and the expressions of the vectors µ, η and ξ are found
in (68), (69) and (71), respectively.

Proof. See Appendix I.

Theorem 1 provides a closed-form expression of the EFIM
(28), composed of three terms which are functions of u and
are integrated over the vehicle contour through the star norm
operator. In particular, the first term L〈wµ, wµ〉? conveys
information on the vehicle state from the terms related to
the distance between the radar and the target in the observed
signal y(t), and increases proportionally with the square of
the signal bandwidth, being L ∝ B2

RMS. The second term
M〈w cosφη, w cosφη〉? represents information related to the
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directions from which the backscatter signals, generated by
reflections on the target contour, are received by the radar, and
increases proportionally to the square of the array aperture,
being M ∝ (N2− 1) where (N − 1)λ/2 is the array physical
length. The third and last term (α + 1)2〈P⊥w(vξ),P⊥w(vξ)〉?
contributes to the information on the vehicle state via the
signal-strength information associated to the energy reflected
back from the target in the observation y(t), and depends
explicitly on α, the reflectivity of the surface. The latter
parameter also impacts on the constant multiplying the EFIM
in (28) through the squared star norm ‖w‖2? at the denominator.

C. CRB for a Point-like Target

A point-like target is a theoretical approximation of a target
in which the received signal is modeled as coming from a
point in space with zero extent. They are considered in the
literature as valid approximations for very distant targets [17].
Mathematically, keeping the notation consistent with (14), the
noise-free baseband signal model is

e(t) = gp.t. a(φ̊)s
(
t− 2d̊/c

)
. (32)

The gain gp.t. models the radar cross-section of the target at the
moment of the measurement and it is unpredictable in general.
Parameters φ̊ and d̊ are the direction and range, respectively,
to the point-like target. The CRB for them is given by

Cp.t.(d̊, φ̊) , J−1
p.t. (d̊, φ̊) =

(
2
E

N0

)−1(
L−1 0

0 Z−1

)
(33)

where Jp.t.(d̊, φ̊) is the EFIM of a point-like target and

Z ,M cos2(φ̊) (34)

where M is given in (31). The derivation of (33) is a much
simpler version of that leading to (28) for the case of an
extended target and is omitted for conciseness. It is very
similar to that of the extended target but assuming only a
single reflection point which greatly reduces the derivation.

D. Bounds for Multiple Radars

A common problem when dealing with extended targets
is that the positioning accuracy is degraded since, from the
radar’s perspective, only a part of the target vehicle is visible.
This problem is exacerbated when the contour is unknown
because the radar has to infer it from scratch, also including the
non-visible parts. Theoretically, it is possible to estimate the
contour because targets are usually symmetric and the contour
model is limited to 2Q coefficients. To further investigate
the accuracy in sensing the extended-target parameters, we
extend our previous derivations to the case in which multiple
radars are collaboratively available around the target. Since the
direction and range of the target vehicle are relative to each
radar, we derive the EFIM on the location of the vehicle in
Cartesian coordinates. Let pr = [px,r py,r]

T and κr be the
location and orientation, respectively, of radar r. Then, radar
r and the parameters of the target vehicle are related through
p = pr + d̊r[cos(φ̊r + κr) sin(φ̊r + κr)]

T. By the chain rule

and taking into account that the noise terms at the different
radars are statistically independent, we obtain

J(px, py,ϕ,m
T,nT) =

Kr∑
r=1

MrJr(γ)MT
r (35)

Mr =

[
∂d̊r
∂p

∂φ̊r

∂p 0

0 0 I

]

=

d̊−1
r (px − px,r) d̊−2

r (py,r − py) 0

d̊−1
r (py − py,r) d̊−2

r (px − px,r) 0
0 0 I

 , (36)

where Jr(γ) is the EFIM in (28) for radar r. Denoting by
C(px, py, ϕ,m

T,nT) the inverse of (35) and C(px), C(py)
the scalar elements corresponding to the position coordinates
(by the usual overloaded notation), the position error bound is
defined as PEB = [C(px) + C(py)]1/2; it represents a lower
bound for the positioning accuracy of any unbiased estimator.

IV. ASYMPTOTIC ANALYSIS OF THE HCRB

The expression of the exact HCRB computed in the previous
section requires computing the inverse of matrix (28), render-
ing its theoretical analysis and interpretation very challenging.
In this section, an approximate expression of the HCRB for
long range d̊ is presented. Then, the expression is further
developed for the two cases of known and unknown shapes.
Finally, some relationships are derived that link such results
with the CRB of a point-like target.

A. General result on long-range HCRB

We first give a general Theorem on the approximation of
the EFIM, useful for the subsequent derivation of the HCRB
for both cases of known and unknown vehicle contour.

Theorem 2. For increasing ranges, the EFIM in (28) can be
approximated as

J(γ) = 2
E

N0 ︸ ︷︷ ︸
T

[
T11 TT

21

T21 T22

]
+ o

(
d̊−4

)
(37)

where

T11 =

 L A −A
A Z +B −B
−A −B B

 ∈ R3×3 (38)

A = L〈w̄, w̄ p̄T
⊥Rρ〉? (39)

B = L
∥∥w̄ p̄T

⊥Rρ
∥∥2

?
+ (α+ 1)2

∥∥∥P⊥w(v)
∥∥∥2

?
/ ‖w‖2? (40)

where w̄ = w/‖w‖? with w given in (27a), p̄⊥ = p⊥/‖p⊥‖?
with p⊥ =

(
0 −1
1 0

)
p, L given in (30), Z given in (34), while

T21 ∈ R2Q×3 and T22 ∈ R2Q×2Q depend on the extended-
target contour and are given in (104) and (105), respectively.

Proof. See Appendix II.

Theorem 2 provides a closed-form approximate version of
the EFIM for long ranges, which admits a convenient block-
structure representation in terms of three matrices T11, T12,
and T22. The entries of such matrices still depend on the
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extended-target contour, being some of the involved terms
functions of the variable u, as well as on the signal bandwidth
(through L), array aperture (through Z), and target reflectivity
(through B). Moreover, all the entries of the EFIM increase
proportionally to the received energy E, which depends on
g2 ∝ d̊−4. Thus, the entries of the EFIM decay as the
fourth power of the range, and as we will demonstrate in
the following propositions, the HCRB increases as the fourth
power of the range as in the case of a point-like target in free
space [17, Eq. (1.6)]. Next, explicit expressions for the HCRB
of the range, direction and orientation are provided. Following
the nomenclature of the previous section, we overload the
notation and denote the HCRB related to the three parameter
of interest as C(d̊, φ̊, ϕ).

B. HCRB for Known Shape

The result of Theorem 2 is now further developed for the
case of known vehicle contour.

Proposition 1. For an extended target with known contour,
i.e., vectors m and n known,

C(d̊, φ̊, ϕ) =

(
2
E

N0

)−1

T−1
11 + o

(
d̊4
)

(41)

where

T−1
11 =


(
L− A2

B

)−1

0 −
(
A− LB

A

)−1

0 Z−1 Z−1

−
(
A− LB

A

)−1
Z−1 Z−1 +

(
B − A2

L

)−1

 .
(42)

Proof. See Appendix III.

Proposition 1 provides a closed-form expression for the
HCRB in case of known target contour, which mainly depends
on the inverse of the matrix T11. More specifically, the
elements in the main diagonal of T−1

11 unveil the main connec-
tions between the accuracy in the estimation of d̊, φ̊, and ϕ and
the fundamental radar parameters. By comparing the CRB of
the point-like target (33) and the HCRB of the extended target
with known contour in Proposition 1 for the same received
energy, we discover that C(φ̊) ≈ Cp.t.(φ̊) = (2E/N0)−1Z−1

for a sufficiently large range. On the other hand, the HCRB on
the range for an extended target is larger than the CRB of the
point-like target because C(d̊) ≈ (2E/N0)−1(L−A2/B)−1 ≥
Cp.t.(d̊). By using the explicit expressions of A and B, we find
that C(d̊) = (2E/N0)−1(L−A2/B)−1 is bounded as

N0

2E
L−1≤ C(d̊)<

N0

2E
L−1

(
1−

[
〈w,w pT

⊥Rρ〉?
‖w‖?‖w pT

⊥Rρ‖?

]2
)−1

≈ L−1

(43)
because 〈w,w pT

⊥Rρ〉?‖w‖−1
? ‖w pT

⊥Rρ‖−1
? ≈ 0. The reason

is that w is positive by definition whereas w pT
⊥Rρ is an odd

function around some point u, and so for most contours the
star-product is close to zero. Thus, C(d̊) ≈ Cp.t.(d̊). The orien-
tation is not defined for the case of a point-like target. For the
extended target, we can rewrite C(ϕ) ≈ (2E/N0)−1[Z−1 +
(B−A2/L)−1] ≈ (2E/N0)−1[Z−1 + (L/B)(L−A2/B)−1],
and by the same approximation, C(ϕ) ≈ (2E/N0)−1[Z−1 +

B−1]. Hence, C(ϕ) ≈ C(φ̊) + (2E/N0)−1B−1, whereas if
we were to compute the HCRB of the relative orientation4

(related to ϕ through ϕ = ϕrel. + φ̊), we would obtain
C(ϕrel.) ≈ (2E/N0)−1B−1. This indicates that the variance
of the absolute orientation is the sum of two variances: the
direction variance and the relative orientation variance. In
summary, we have proven the following result.

Proposition 2. For an extended target with known contour at
a sufficiently long range, the following approximate relation-
ships hold true

C(d̊) ≈ Cp.t.(d̊) (44)

C(φ̊) ≈ Cp.t.(φ̊) (45)

C(ϕ) ≈ Cp.t.(φ̊) + (2E/N0)−1B−1. (46)

C. HCRB for Unknown Shape

The result of Theorem 2 is now further developed for the
case of unknown vehicle contour.

Proposition 3. For an extended target with unknown contour,
i.e., vectors m and n unknown,

C(d̊, φ̊, ϕ) =

(
2
E

N0

)−1

U + o
(
d̊4
)

(47)

where

U =

 C−1 0 −D−1

0 Z−1 Z−1

−D−1 Z−1 Z−1 + F−1

 (48)

C = L−H − (A− J)2

B − I
(49)

D = −A− J − (L−H)(B − I)

A− J
(50)

F = B − I − (A− J)2

L−H
, (51)

H = ‖T−1/2
22 c‖2, I = ‖T−1/2

22 d‖2, J = cTT−1
22 d, and T22 is

provided in (105), while c and d are given in (106) and (107).

Proof. See Appendix IV.

As for the case of known contour, the HCRB on the direc-
tion converges to the CRB of the point-like target as the range
tends to infinity, namely C(φ̊) ≈ Cp.t.(φ̊) = (2E/N0)−1Z−1.
The expressions of the HCRB on the range and orienta-
tion are considerably more complicated. To this end, we
first define the new inner product: 〈(f1, f2), (g1, g2)〉? ,
〈f1, g1〉? + 〈f2, g2〉? over the space F × F where F =
L2([0, 2π]). For convenience, the new inner product is also
overloaded such that 〈(f1, f2), (g1,g2)〉? , 〈f1,g1〉? +
〈f2,g2〉?. The associated projection operator is PA(f1, f2) ,
〈(f1, f2), (g1,g2)〉?〈(g1,g2), (g1,g2)〉−1

? (g1,g2) where the

4We define the relative orientation as the heading angle of the target with
respect to the line connecting the radar and the target; the absolute orientation
(or simply orientation) is instead the heading angle with respect to the x-axis.
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TABLE II
SUMMARY OF CRAMÉR-RAO BOUND EXPRESSIONS FOR POINT-LIKE AND EXTENDED TARGETS

Exact HCRB ‖w‖2?
2

(
2E
N0

)−1 [
L〈wµ, wµ〉? +M〈w cosφη, w cosφη〉? + (α+ 1)2〈P⊥w (v ξ) ,P⊥w (v ξ)〉?

]−1

CRB for point-like target Cp.t.(d̊, φ̊) =

[
Cp.t.(d̊) 0

0 Cp.t.(φ̊)

]
with Cp.t.(d̊) =

(
2E
N0

)−1
L−1, Cp.t.(φ̊) =

(
2E
N0

)−1
Z−1

Approximate HCRB, known shape

(for long range) C(d̊, φ̊, ϕ) ≈
(

2 E
N0

)−1


(
L− A2

B

)−1
0 −

(
A− LB

A

)−1

0 Z−1 Z−1

−
(
A− LB

A

)−1
Z−1 Z−1 +

(
B − A2

L

)−1


C(d̊) ≈ Cp.t.(d̊), C(φ̊) ≈ Cp.t.(φ̊)

C(ϕ) ≈ Cp.t.(φ̊) +
(

2 E
N0

)−1
B−1

Approximate HCRB, unknown shape

(for long range) C(d̊, φ̊, ϕ) ≈
(

2 E
N0

)−1

 C−1 0 −D−1

0 Z−1 Z−1

−D−1 Z−1 Z−1 + F−1


C(d̊) ≈ Cp.t.(d̊) ‖w‖2?/

∥∥P⊥B (w, 0)
∥∥2
?

, C(φ̊) ≈ Cp.t.(φ̊)

C(ϕ) ≈ Cp.t.(φ̊) +
(

2 E
N0

)−1
‖w‖2?/

∥∥∥P⊥D

(√
Lw p̄T

⊥Rρ, (α+ 1) P⊥w(v)
)∥∥∥2
?

rows of (g1,g2) form a basis spanning A ⊂ F × F , and
P⊥A(f1, f2) , (f1, f2)− PA(f1, f2). Then, we obtain

L−H = ‖w‖−2
?

∥∥∥P⊥A(
√
Lw, 0)

∥∥∥2

?
(52)

B − I = ‖w‖−2
?

∥∥∥P⊥A

(√
Lw p̄T

⊥Rρ, (α+ 1) P⊥w(v)
)∥∥∥2

?
(53)

A− J = ‖w‖−2
?

×
〈

P⊥A(
√
Lw, 0),P⊥A

(√
Lw p̄T

⊥Rρ, (α+ 1) P⊥w(v)
)〉

?
(54)

where A = span
{
{(
√
Lwsq, (1 +α)tq)}2Qq=1

}
, and sq and tq

are the components of vectors (108) and (109), respectively.
We have therefore proven the following result.

Proposition 4. For an extended target with unknown contour
at a sufficiently long range, the following approximate rela-
tionships hold true

C(d̊) ≈ Cp.t.(d̊)

(
‖w‖−2

?

∥∥∥P⊥B (w, 0)
∥∥∥2

?

)−1

(55)

C(φ̊) ≈ Cp.t.(φ̊) (56)

C(ϕ) ≈ Cp.t.(φ̊) +

(
2
E

N0

)−1

×
(
‖w‖−2

?

∥∥∥P⊥D

(√
Lw p̄T

⊥Rρ, (α+ 1) P⊥w(v)
)∥∥∥2

?

)−1

(57)

where B = span{A, (
√
Lwp̄T

⊥Rρ, (1 +α) P⊥w(v))} and D =
span{A, (

√
Lw, 0)}.

The results of the whole section are summarized in Table II,
from which a few remarks follow. First, we notice that in
the approximate HCRB for known and unknown shapes, the
bound on the direction φ̊ is always equal to that of the point-
like target case since for long ranges this parameter becomes
independent of the shape. Finally, as to the distance d̊, there
is a difference between known and unknown shape, with the
former exhibiting the same bound of the point-like target case
while the latter showing an amplification factor that increases
the value of the bound. These observations reveal how the
lack of knowledge on the vehicle contour impacts onto the
achievable estimation performance.

V. NUMERICAL RESULTS

A. Accuracy Vs. Range

This section analyzes the HCRB for the studied cases of
known and unknown contour, as a function of the range.
The exact HCRB for the three parameters of interest (range,
direction and orientation) is numerically computed by invert-
ing the EFIM (28). For comparison purposes, we also plot
the CRB of a point-like target for the range and direction
assuming equal received energy, together with the long-range
approximations of the HCRB for known contour (44)–(46) and
unknown contour (55)–(57). For all plots, the radar is kept at
the origin of the global reference system with its broadside
pointing the positive x-axis and the vehicle’s heading is
pointing towards the positive half-plane of the y-axis, so
that ϕ = π/2. The contour of the vehicle is the same as
in Fig. 1 and has a length of approximately 11.2 m, with a
reflectivity coefficient set to α = 5, and it is parameterized by
Q = 10 harmonics. The radar transmits a standard chirp signal
s(t) = 1√

T
rect( tT )ejπ

B
T t

2

, with rect(·) the rectangular pulse
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(a)

(b)

(c)

Fig. 2. HCRBs of the parameters of interest (range, direction and orientation)
versus distance.

in the interval [−1/2, 1/2], having bandwidth B = 1 GHz and
duration T = 10 µs, and is equipped with a ULA composed of
N = 30 antennas with half-wavelength spacing. The carrier
frequency has thus no impact on the baseband signal, hence
is left unspecified.

In Fig. 2, we report the HCRB on the parameters of interest
as a function of the target vehicle’s position p ranging from
[6 3]T to [89 45]T. For the sake of the analysis, the energy is
kept fixed5 (and set set such that E/N0 = 40 dB at p = [6 3]T)
irrespective of the distance between the radar and the target,
so that any change of the HCRBs can be attributed to the

5The dependence of the HCRBs on the energy E is quite intuitive since
all the bounds will scale accordingly.

(a)

(b)

Fig. 3. Variance of the MF-based estimator compared to the HCRBs of range
and direction parameters as a function of the distance between target and radar.

sole range. In case of known contour, we find that for the
range and direction parameters, the approximate expressions
of the HCRBs practically match the exact HCRBs over all
the considered ranges, confirming the validity of the results
obtained in Section IV-B. Moreover, since the approximate
HCRBs equal the CRBs of a point-like target, this analysis
reveals that the latter can be considered a good lower bound for
the variance of any unbiased estimator of range and direction
when the contour of the extended target is known.

When the contour of the target is unknown, the HCRB on
all parameters of interest is around three orders of magnitude
worse, with a subtle difference for the direction parameter
φ̊, whose HCRBs for known and unknown contour become
closer as the range increases (not observable in Fig. 2b).
This behavior is linked to the fact that, for large distances,
the extended target practically degenerates into a point-like
target regardless of its contour. The HCRBs on the range and
orientation for unknown contour converge to their asymptotic
approximations at about 40 m of distance. Nonetheless, it is
clear from the figure that knowing the contour of the extended
target is critically important for its accurate localization. The
HCRB on the orientation is always larger than the HCRB
on the direction, confirming the validity of (46) and (57).
The range at which the asymptotic HCRB of the range and
orientation converge to the true HCRB is smaller for a reduced
number of coefficients Q in the vehicle contour: in the extreme
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case of Q = 1 (not reported here) such a range is as small
as 5 m for all the three parameters. Notice that Q = 1
is tantamount to considering a target contour approximated
by an ellipse with unknown semi-axes; intuitively, it can be
interpreted as a “high-level” model to be adopted when the
fine-grained details of the target are not of strict interest, or if
the available bandwidth is not large enough to observe them.

The next two sections study (i) the validity of the HCRB
as a tight lower bound, and (ii) the benefits of multiple radars
sensing the same target. The simulation parameters are the
same described in the first paragraph of this section.

B. Validation of the HCRB

Although the HCRB is a lower bound on the variance of any
unbiased estimator, it is not necessarily tight asymptotically at
high E/N0 as is the marginal CRB [56]. Developing an opti-
mal unbiased estimator of the range, direction and orientation
for extended targets is an open-ended problem to the best of
our knowledge. For comparison purposes, a simple estimator
of the range and direction is presented next and applied to the
extended and point targets. Let Y = [y(0) · · · y((W−1)/fs)]
be the baseband signal at the receiver (14) plus noise after low-
pass filtering and sampling, with W the number of samples
and fs the sampling frequency. Then, the proposed estimator
of the direction is

φ̂ = arg max
φ

∥∥aH(φ)Y
∥∥ . (58)

Once the direction is estimated, we perform coherent inte-
gration of the received signals z = aH(φ̂)Y and apply the
standard de-chirping plus FFT estimator in FMCW radars [57].
More specifically, we first multiply the known transmitted
waveform s(t) with the received signals (matched filtering).
Denoting with s = [s(0) · · · s((W − 1)/fs)]

T the vector
containing W samples of the transmitted pulse, the mixed
received signals can be thus obtained as zmix(φ̂) = s∗�z(φ̂),
with � denoting the Hadamard element-wise product operator.
To obtain an estimate of the range d, we exploit the fact
that the elements of zmix(φ̂) can be interpreted as discrete
samples of a complex exponential with frequency ν = 2Bd

Tfsc
.

Accordingly, an estimate of d can be obtained by searching
for the frequency ν̂ corresponding to the dominant peak in the
FFT of the vector zmix(φ̂) and by reversing the relationship as

d̂ =
ν̂fsTc

2B
. (59)

Given its structure, in the following we denote (58) and (59)
as a matched-filter (MF) based estimator.

The variance of the estimators is estimated via a Monte
Carlo simulation based on 100 independent trials and it is
plotted in Fig. 3 together with the HCRB of the extended target
and the CRB of the point-like target. It is worth noting that
the estimator of the direction (58) does not exploit a priori
knowledge of neither the waveform nor the target contour,
while the estimator of the range assumes a single return
with the same waveform of the transmitted signal. Despite
being suboptimal approaches, the proposed estimators work
remarkably well for the case of a point-like target. When
applied to the extended target, a gap is observed with the

Fig. 4. PEB as a function of the number of radars sensing the target.

theoretical lower bounds, which however reduces as the range
between the radar and the target increases, confirming the
validity of the derived HCRBs. More sophisticated estimators
(which are beyond the scope of the present contribution) would
probably help bridging the gap towards the HCRB.

C. Radar Diversity
In this section, we evaluate the HCRB when multiple radars

are uniformly located around the target vehicle at a fixed
range of 7 m, all of them with the broadside of the array
pointing towards the vehicle. To keep the analysis fair, the
aggregated received energy by all radars remains constant, i.e.,
KrE/N0 = 40 dB where Kr is the number of radars, so that
any change in terms of HCRB can be solely attributed to the
radar diversity. Fig. 4 plots the PEB for an increasing number
of radars. For the case of known contour, the positioning
accuracy (PEB) improves slightly and saturates already for
3 radars. On the other hand, when the contour is unknown,
the positioning accuracy significantly improves as the number
of radars increases. This behavior is linked to the fact that the
vehicle is sensed from different angles, and consequently the
contour can be more accurately estimated. Indeed, by simply
passing from 1 to 2 radars, the PEB decreases by about one
order of magnitude. When 4 or more radars sense the vehicle,
the PEB for unknown contour reduces to about twice the value
of the PEB in case of known contour.

VI. CONCLUSIONS

This paper investigated the theoretical accuracy achievable
in the estimation of range, direction and orientation informa-
tion of a radar sensing a vehicle modeled as an extended target.
We have developed analytical models that correctly capture
the behavior of an extended target and lend themselves to
be used for analyzing the impact of the different signal and
scenario parameters. The exact HCRB provided in Theorem 1
revealed that the ultimate accuracy depends on three different
terms related to the square of the signal effective bandwidth,
the square of the array aperture, and to the reflectivity of the
target surface. To extract further insights, we have also derived
valid approximate expressions of the HCRBs for relatively
distant targets, considering the two different cases of known
and known contours.
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The obtained results showed that, if the contour of the
target is known, the achievable accuracy in range and direction
estimation is the same as in case of a point-like target given
equal received energy. Thus, the variance of range estimation
decreases linearly with the received energy and quadratically
with the effective bandwidth; similarly, the variance of direc-
tion estimation decreases linearly with the received energy and
quadratically with the array’s effective aperture.

A key outcome of the developed analysis is that knowledge
of the contour has an enormous impact on the estimation
accuracy of the range and orientation information. In Fig. 2 we
observed that the difference in accuracy between known and
unknown contour is up to three orders of magnitude. Nonethe-
less, the behavior of the direction accuracy is somewhat
different compared to the range and orientation because as the
vehicle moves farther away the accuracy for known/unknown
contour converges. This is consistent with the intuition that,
as the vehicle moves far away from the radar, it occupies a
narrower range of angles and, consequently, the shape plays a
less important role. Moreover, the parameter that is unique to
the extended target — the orientation — turns out to depend
on many parameters: received energy, bandwidth, array size,
and even the reflection coefficient.

Finally, we have shown that lack of knowledge of the
extended-target contour can be partially compensated by in-
creasing the number of radars sensing the target vehicle from
different angles as outlined in Fig. 4: for the considered
parameters, four or more radars yield an average positioning
error that is only twice as larger as for known contour.

Some interesting directions of future work are now outlined.
First, in this work we treated the surface roughness α as a
known parameter for the sake of decoupling the effect of
having some a priori knowledge of the vehicle contour and
investigating its impact on the resulting HCRBs. As the two
analytical results presented in Sec. IV-B and Sec. IV-C show,
the lack of knowledge of the target contour already makes
the derivation of the corresponding HCRBs and their analysis
significantly more complex compared to the case of known
contour. However, since α is generally unknown for the radar,
an interesting future direction of research may be to extend the
present analysis also to the case where the target reflectivity is
unknown. In this sense, the HCRBs derived in this manuscript
can be considered as more optimistic lower bounds.

Another important aspect concerns the correct choice of the
level of detail (i.e., number of coefficients Q) to be used in
the geometric contour model presented in Sec. II-A. In this re-
spect, methodologies similar to those used for the selection of
an appropriate model order in traditional estimation problems
(e.g., AOA estimation) can be considered, taking into account
the existing trade-off between accuracy in the representation
of the extended target and number of measurements required
to get a reasonable contour estimate.

Lastly, a complete characterization of the theoretical local-
ization accuracy in a 3D scenario can be of interest outside the
automotive context, e.g., in presence of aerial targets such as
UAVs, and as such it deserves further investigation. Therefore,
extending the proposed methodology and analyses to other
application contexts represents a possible future research di-
rection.

APPENDIX I
PROOF OF THEOREM 1

A. General proof

Define dk , a(φk)(sin(φk − βk))α+1 s(t − 2dk/c), then
(14) rewrites as e = g

√
`R
∑K
k=1 hkdk. From (22) and using

the definition of S22 = −E
[
4γ

γ log p(y|θ)
]
,

S22 =
2g2

N0
`R<

∫
T

K∑
k=1

K∑
k′=1

E [h∗khk′ ]
∂dH

k

∂γ

∂dk′

∂γT
dt

=
2g2

N0
`R

K∑
k=1

<
∫
T

∂dH
k

∂γ

∂dk
∂γT

dt (60)

where we used the fact that E [h∗khk′ ] = 0 for k 6= k′ and
E
[
|hk|2

]
= 1. Calculation of ∂dH

k/∂γ is complicated because
it depends on {uk}Kk=1, whose values in turn depend on the
vehicle contour (i.e., {aq, bq}Qq=1). To proceed further, we
approximate the sum by an integral similarly to what was
done in (9)–(10) where, on the contrary, the integral was
approximated by a sum:

S22 ≈
2g2

N0

∫
C
<
∫
T

∂dH(u)

∂γ

∂d(u)

∂γT
dt dr

=
2g2

N0

∫ 2π

0

(
<
∫
T

∂d(u)H

∂γ

∂d(u)

∂γT
dt

)
‖ṙ(u)‖du (61)

where for notation brevity

d(u) = d(r(u)) = a(φ)(sin(φ− β))α+1 s(t− 2d/c)

and as usual we have omitted the dependency on u of the
vector of intermediate variables Θ = [d φ β]T. By applying
the chain rule ∂dH

∂γ = ∂ΘT

∂γ
∂dH

∂Θ , S22 takes the form

S22 =
2g2

N0

∫ 2π

0

∂ΘT

∂γ

(
<
∫
T

∂dH

∂Θ

∂d

∂ΘT
dt

)
∂Θ

∂γT
‖ṙ(u)‖ du

(62)
where the dependency on u was omitted for brevity. Using the
fact that ∂ΘT

∂γ = [ ∂d∂γ
∂φ
∂γ

∂β
∂γ ], whose entries are computed in

Appendix I-B, and by expanding <
∫
T
∂dH

∂Θ
∂d
∂ΘT dt using the

formulas in Appendix I-C, we find that (62) becomes

S22 =
2g2N

N0

∫ 2π

0

w2

[(
4π
BRMS

c

)2

µµT

+
π2

12
(N2−1) cos2(φ)ηηT +

1

w2
(α+1)2v2ξξT

]
‖ṙ(u)‖du

(63)

where w and v are defined in (27), µ = ∂d/∂γ, η = ∂φ/∂γ
and ξ = η − ∂β/∂γ.
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Similarly to the steps (60)–(62), the following expressions
for s11 and s21 in (25) are also obtained:

s11 =
2

N0
`R<

∫
T

E

∥∥∥∥∥
K∑
k=1

hkdk

∥∥∥∥∥
2
dt

≈ 2

N0

∫ 2π

0

(∫
T

‖d‖2 dt

)
‖ṙ(u)‖ du (64)

s21 =
2g

N0
`R<

∫
T

K∑
k=1

K∑
k′=1

E [h∗khk′ ]
∂dH

k

∂γ
dk′ dt

≈ 2g

N0

∫ 2π

0

∂ΘT

∂γ

(
<
∫
T

∂dH

∂Θ
d dt

)
‖ṙ(u)‖ du. (65)

Combining the above expressions with the identities of Ap-
pendix I-D and Appendix I-E,

s11 =
2N

N0

∫ 2π

0

w2 ‖ṙ(u)‖ du (66)

s21 =
2g

N0

∫ 2π

0

∂ΘT

∂γ

(
<
∫
T

∂dH

∂Θ
d dt

)
‖ṙ(u)‖du

=
2gN

N0

∫ 2π

0

w(α+ 1)v ξ‖ṙ(u)‖ du. (67)

Finally, by plugging (63), (66) and (67) into the EFIM (25),
and using the star product (26), the final formula (28) follows.

B. Derivation of ∂ΘT/∂γ

Explicit formulas for ∂ΘT/∂γ = [∂d/∂γ ∂φ/∂γ ∂β/∂γ]
are listed next (we recall the functional dependencies ρ(m,n),
R(ϕ), p(d̊, φ̊), r(d̊, φ̊, ϕ,m,n)):

µ ,
∂d

∂γ
=


∂d/∂d̊

∂d/∂φ̊
∂d/∂ϕ
∂d/∂m
∂d/∂n

 =
1

d


d̊+ d̊−1ρTRTp
ρTRTp⊥
−ρTRTp⊥

(
[
1 0

]
RTr)σ

(
[
0 1

]
RTr)ς

 (68)

η ,
∂φ

∂γ
=


∂φ/∂d̊

∂φ/∂φ̊
∂φ/∂ϕ
∂φ/∂m
∂φ/∂n

 =
1

d2


d̊−1ρTRTp⊥
d̊2 + ρTRTp
ρTRTr

(
[
1 0

]
RTr⊥)σ

(
[
0 1

]
RTr⊥)ς

 (69)

∂β

∂γ
=


∂β/∂d̊

∂β/∂φ̊
∂β/∂ϕ
∂β/∂m
∂β/∂n

 =
1

‖ρ̇‖2


0
0

‖ρ̇‖2

−(ς̇Tn)σ̇

(σ̇Tm)ς̇

 (70)

where x⊥ =
(

0 −1
1 0

)
x for any arbitrary vector x, σ̇ = ∂σ/∂u,

ς̇ = ∂ς/∂u, ρ̇ = ∂ρ/∂u, and we recall from Appendix I-A

ξ = η − ∂β/∂γ. (71)

C. Derivation of <
∫
T
∂dH

∂Θ
∂d
∂ΘT dt

First, compute ∂d
∂ΘT :

∂d

∂d
=− 2

c
(sin(φ− β))α+1a(φ)ṡ

(
t− 2d

c

)
(72)

∂d

∂φ
=(sin(φ− β))α

[
(α+ 1) cos(φ− β)a(φ)

+ sin(φ− β)ȧ(φ)
]
s

(
t− 2d

c

) (73)

∂d

∂β
=− (α+ 1)(sin(φ− β))α cos(φ− β)a(φ)s

(
t− 2d

c

)
(74)

where ṡ(t) = ∂s(t)/∂t and ȧ(φ) = ∂a(φ)/∂φ. In combination
with the identities of Appendix I-D, the expressions for all
entries in <

∫
T
∂dH

∂Θ
∂d
∂ΘT dt are

<
∫
T

∂dH

∂d

∂d

∂d
dt = 4(sin(φ− β))2(α+1)N

(
2πBRMS

c

)2

<
∫
T

∂dH

∂φ

∂d

∂φ
dt = (sin(φ− β))2αN

[
(α+ 1)2 cos2(φ− β)

+ sin
2
(φ− β) cos2(φ)

π2

12
(N2 − 1)

]
<
∫
T

∂dH

∂β

∂d

∂β
dt = (α+ 1)2(sin(φ− β))2α cos2(φ− β)N

<
∫
T

∂dH

∂φ

∂d

∂β
dt = −(α+ 1)2(sin(φ− β))2α cos2(φ− β)N

<
∫
T

∂dH

∂d

∂d

∂φ
dt = <

∫
T

∂dH

∂d

∂d

∂β
dt = 0.

The matrix form accepts a more succinct form,

<
∫
T

∂dH

∂Θ

∂d

∂ΘT
dt = N(sin(φ− β))2α

(
ggT + G

)
(75)

where

g = (α+ 1) cos(φ− β)
[
0 1 −1

]T
(76)

G = sin
2
(φ− β)

4
(

2πBRMS
c

)2
0 0

0 π2

12 (N2 − 1) cos2(φ) 0
0 0 0

 .
(77)

D. Useful identities

Consider a radar equipped with a ULA parallel to the
ground such that its array response is a(φ) = exp(jπ(N −
1)/2 sinφ)[1 exp(−jπ sinφ) · · · exp(−jπ(N − 1) sinφ)]T.
Here, the reference element with phase 0 is taken at the center
of the ULA because it results in the tightest bound. Then,

‖a(φ)‖2 = N (78)

<
(
aH(φ)ȧ(φ)

)
=

1

2

∂‖a(φ)‖2

∂φ
= 0 (79)

and from ȧ(φ) = jπ cos(φ) diag
(
N−1

2 , . . . ,−N−1
2

)
a(φ)

‖ȧ(φ)‖2 = cos2(φ)π2(N − 1)N(N + 1)/12. (80)
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Regarding the signal waveform, by assumption
∫ +∞
−∞ |s(t −

τ)|2dt = 1, and using the Fourier transform we get∫ +∞

−∞
s∗(t− τ)ṡ(t− τ) dt

=

∫ +∞

−∞

[
S(f)e−j2πτf

]∗
j2πfS(f)e−j2πτfdf

= j2π

∫ +∞

−∞
f |S(f)|2 df = 0 (81)

because by interpreting the integral
∫ +∞
−∞ f |S(f)|2 df as the

center of mass of the signal spectrum |S(f)|2, the latter can
be arbitrarily shifted in frequency in such a way that its center
of mass is located at zero. In the usual case that the spectrum
has even symmetry, the equality condition in (81) is readily
satisfied. Moreover,∫ +∞

−∞
ṡ∗(t− τ)ṡ(t− τ) dt

=

∫ +∞

−∞

[
j2πfS(f)e−j2πτf

]∗
j2πfS(f)e−j2πτfdf=(2π)2B2

RMS

where BRMS , (
∫ +∞
−∞ f2 |S(f)|2 df)1/2 is known as the RMS

or effective bandwidth.

E. Derivation of <
∫
T

dH ∂d
∂ΘT dt

With the help of the identities in Appendix I-D, we find that

<
∫
T

dH ∂d

∂d
dt = 0 (82)

<
∫
T

dH ∂d

∂φ
dt = (α+ 1)N(sin(φ− β))2α+1 cos(φ− β)

(83)

<
∫
T

dH ∂d

∂β
dt = −(α+ 1)N(sin(φ− β))2α+1 cos(φ− β).

(84)

Putting them together,

<
∫
T

dH ∂d

∂ΘT
dt = N(sin(φ− β))2α+1gT. (85)

APPENDIX II
PROOF OF THEOREM 2

Theorem 2 equivalently is limd̊→∞ d̊4[J(γ)−(2E/N0)T] =

0, or alternatively, limd̊→∞ d̊4J(γ) = limd̊→∞ d̊42 E
N0

T if
both limits exist. First, define the partition

J(γ) =

[
J11 J12

JT
12 J22

]
(86)

with the same block sizes than the partition of T in Theorem 2,
and also partition the following vectors: µ = [µT

1 µT
2 ]T,

η = [ηT
1 ηT

2 ]T, ξ = [ξT1 ξT2 ]T, whose definition was given
in Appendix I-B and we recall that ξ = η − ∂β/∂γ. The
matrix equality is split into three matrix equalities:

lim
d̊→∞

d̊4Jnm = lim
d̊→∞

d̊42
E

N0
Tnm (87)

where (n,m) ∈ {(1, 1), (2, 1), (2, 2)}. For (m,n) = (1, 1) the
left-hand side of (87) is

lim
d̊→∞

d̊4 J11 =
2NG

N0

∫ 2π

0

lim
d̊→∞

[
w2µ1µ

T
1

+w2M cos2(φ)η1η
T
1 +(α+1)2 P⊥w (v ξ1) P⊥w

(
v ξT1

) ]
‖ṙ‖ du

(88)

where the limit was passed inside the integral by the
monotone convergence theorem and we used the fact
that g2d̊4 = G is a constant. The limits are com-
puted by applying them to each component that de-
pends on d̊ separately, for instance, limd̊→∞ w2µ1µ

T
1 =

(limd̊→∞ w)2(limd̊→∞ µ1)(limd̊→∞ µ1)T, resulting in

∫ 2π

0

lim
d̊→∞

w2µ1µ
T
1 ‖ṙ‖du=‖ẘ‖2?

 L Å −Å
Å B̊1 −B̊1

−Å −B̊1 B̊1

 (89)

∫ 2π

0

lim
d̊→∞

w2M cos2(φ)η1η
T
1 ‖ṙ‖du = ‖ẘ‖2?

0 0 0
0 Z 0
0 0 0


(90)∫ 2π

0

lim
d̊→∞

(α+ 1)2 P⊥w (v ξ1) P⊥w

(
v ξT1

)
‖ṙ‖du

= ‖ẘ‖2?

0 0 0

0 B̊2 −B̊2

0 −B̊2 B̊2

 (91)

where

ẘ = (sin(φ̊− β))α+1 (92)

Å = ‖ẘ‖−2
? 〈ẘ, ẘ p̄T

⊥Rρ〉? (93)

B̊1 = ‖ẘ‖−2
? ‖ẘ p̄T

⊥Rρ‖2? (94)

B̊2 = ‖ẘ‖−2
? (α+ 1)‖P⊥ẘ (̊v)‖2? (95)

v̊ = (sin(φ̊− β))α cos(φ̊− β) (96)

Summing up (89)–(91) produces

lim
d̊→∞

d̊4 J11 =
2NG‖ẘ‖2?

N0

 L Å −Å
Å B̊ + Z̊ −B̊
−Å −B̊ B̊

 (97)

where B̊ = B̊1 +B̊2. Since limd̊→∞A = Å and limd̊→∞B =

B̊, the right-hand side of (87) for (m,n) = (1, 1) results in
(97) too, thus proving the proof for (m,n) = (1, 1).

For (m,n) ∈ {(2, 1), (2, 2)}, we follow the same procedure
to prove that the left and right-hand side of (87) is

lim
d̊→∞

d̊4J21 =
2NG‖ẘ‖2?

N0

[̊
c q̊ −q̊

]
(98)

lim
d̊→∞

d̊4J22 =
2NG‖ẘ‖2?

N0
T̊22, (99)
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where

c̊ = L〈ẘ s, ẘ〉?/‖ẘ‖2? (100)

q̊ = L
〈ẘ s, ẘ p̄T

⊥Rρ〉?
‖ẘ‖2?

+ (α+ 1)2 〈̊t,P
⊥
ẘ (̊v)〉?
‖ẘ‖2?

(101)

T̊22 =
(
L〈ẘ s, ẘ s〉? + (α+ 1)2〈̊t, t̊〉?

)
/‖ẘ‖2? (102)

t̊ = P⊥ẘ

(
v̊ ‖ρ̇‖−2 [

(ς̇Tn)σ̇T −(σ̇Tm)ς̇T
]T)

. (103)

The expressions for T21 and T22 then follow:

T21 =
[
c q −q

]
(104)

T22 = L〈w̄ s, w̄ s〉? + (α+ 1)2〈t, t〉?/‖w‖2? (105)

with

c = L〈w̄ s, w̄〉? (106)

q = L〈w̄ s, w̄ p̄T
⊥Rρ〉? + (α+ 1)2〈t,P⊥w(v)〉?/‖w‖2? (107)

and, in addition to the symbols defined in the statement of the
theorem,

s =
[
[1 0]RTp̄σT [0 1]RTp̄ ςT

]T
(108)

t = P⊥w

(
v ‖ρ̇‖−2 [

(ς̇Tn)σ̇T −(σ̇Tm)ς̇T
]T)

. (109)

APPENDIX III
PROOF OF PROPOSITION 1

The proof is articulated in two parts. First, we prove T11 is
invertible, then we show that (41) holds true. The determinant
of T11 must satisfy Z(BL−A2) 6= 0, which decomposes into
Z 6= 0 and A2 6= BL. Regarding the first condition, Z > 0
unless the vehicle is at the ULA endfire (φ̊ = ±π/2). Regard-
ing the second condition, observe that A2 = L2〈w̄, w̄ p̄T

⊥Rρ〉2?
which is strictly smaller than ‖w̄ p̄T

⊥Rρ‖2? unless pT
⊥Rρ(u)

is constant for all u in the illuminated part of the contour.
But pT

⊥Rρ(u) constant would imply a vehicle with no width,
thus A2 < ‖w̄ p̄T

⊥Rρ‖2? ≤ BL, concluding the first part of
the proof.

The EFIM in Theorem 2 reduces to the 3 × 3 matrix
J11 = 2(E/N0)T11 + o(d̊−4) as d̊→∞ because the vehicle
contour is known, and proving (41) is equivalent to verifying
limd̊→∞ d̊−4[C − (2E/N0)−1T−1

11 ] = 0 [51, eq. (2)], where
we use the shorthand notation C = C(d̊, φ̊, ϕ). The left-hand
side of the latter condition can be expressed as

lim
d̊→∞

d̊−4

[
C−

(
2
E

N0

)−1

T−1
11

]
=

lim
d̊→∞

(
d̊4J11

)−1
[
d̊42

E

N0
T11 − d̊4J11

](
d̊42

E

N0
T11

)−1

(110)

because C = J−1
11 . The limit of a matrix product

is the product of the limits if they are finite. Being
the inverse a continuous function, limd̊→∞(d̊4J11)−1 =

(limd̊→∞ d̊4J11)−1, the latter computed in (97). Same applies
to limd̊→∞(d̊42EN−1

0 T11)−1 = (limd̊→∞ d̊42EN−1
0 T11)−1.

All inverses can be proved to exist because T11 is invertible.
Lastly, limd̊→∞[d̊42EN−1

0 T11 − d̊4J11] = 0 by Theorem 2.

APPENDIX IV
PROOF OF PROPOSITION 3

Eq. (47) is equivalent to [C(γ)]1:3,1:3 =
(2EN−1

0 )−1[T−1]1:3,1:3 + o(d̊4) because [C(γ)]1:3,1:3 =
C(d̊, φ̊, ϕ) and it is easily verified that [T−1]1:3,1:3 = U by
the block inversion formula. Therefore, it suffices to prove the
more general statement C(γ) = (2EN−1

0 )−1T−1 + o(d̊4),
which is equivalent to limd̊→∞ d̊−4[C−(2E/N0)−1T−1] = 0.
The left-hand side can be expressed as

lim
d̊→∞

d̊−4

[
C−

(
2
E

N0

)−1

T−1

]
=

lim
d̊→∞

(
d̊4J
)−1

[
d̊42

E

N0
T− d̊4J

](
d̊42

E

N0
T

)−1

(111)

since C = J−1. As in the proof of Proposition 1, we can
prove that limd̊→∞ d̊−4(d̊4J)−1 and limd̊→∞(d̊42EN−1

0 T)−1

exist, and that limd̊→∞[d̊42EN−1
0 T−d̊4J] = 0 by Theorem 2,

concluding the proof. The existence of the matrix inverses has
been verified numerically.
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