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Abstract
Recent results on optimization and generalization properties of neural networks showed
that in a simple two-layer network, the alignment of the labels to the eigenvectors of the
corresponding Gram matrix determines the convergence of the optimization during training.
Such analyses also provide upper bounds on the generalization error. We experimentally
investigate the implications of these results to deeper networks via embeddings.We regard the
layers preceding the final hidden layer as producing different representations of the input data
which are then fed to the two-layer model. We show that these representations improve both
optimization and generalization. In particular, we investigate three kernel representations
when fed to the final hidden layer: the Gaussian kernel and its approximation by random
Fourier features, kernels designed to imitate representations produced by neural networks
and finally an optimal kernel designed to align the data with target labels. The approximated
representations induced by these kernels are fed to the neural network and the optimization
and generalization properties of the final model are evaluated and compared.
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1 Introduction

Deep neural network models [3, 9, 13] provide the state-of-art results in several tasks and
applications, although the theory has not been completely understood yet. The well-known
work of [19] highlighted intriguing experimental phenomena about deep network training –
specifically, optimization and generalization – and called for a rethinking of generalization in
statistical learning theory. In particular, two fundamental questions that need to be answered
are:

Optimization. Why do true labels give faster convergence rate than random labels for
gradient descent?

Generalization.What property of properly labeled data controls generalization?
An approach to addressing these questions was recently made by [1] in the context of a

simple two–layer model by conducting a spectral analysis of the associated Gram matrix.
They show that training improves if the label vector aligns with the top eigenvectors of
the associated Gram matrix (H∞ in Sect. 2). In addition, they provide a data-dependent
complexity measure which could be used to upper bound the generalization error of the
neural network. This measure is also related to the Gram matrix.

However, their analysis applies only to a simple two layer network. How could their
insights be extended to deeper networks?

A widely held intuitive view is that deep layers generate expressive representations of
the raw input data. Adopting this view, one may consider a model where a representation
generated by successive neural network layers is viewed as a kernel embeddingwhich is then
fed into the two–layer model of [1]. The connection between neural networks and kernel
machines has long been studied; [4] introduced kernels that mimic deep networks and [15]
showed kernels equivalent to certain feed–forward neural networks. Recently, [2] also make
the case that progress on understanding deep learning is unlikely to move forward until
similar phenomena in classical kernel machines are recognized and understood.

The fundamental question we address is: Do representations provided by kernel embed-
dings help in training and generalization? We address this question in the context of the
simple model of [1] and their approach based on a spectral analysis of the associated Gram
matrix. Specifically, we take a view of a multi–layer network as first producing an embedding
φ(x) of the input which is then fed as input to the simple two layer network of [1]. While a
general transformation g(x) of the input data may have arbitrary effects, one might expect
a universal kernel representation to improve performance. Do kernel representations create
a better alignment of labels with the top eigenvectors of the Gram matrix? We investigate
this first by using kernels which are label-unaware1 such as Gaussian kernel, using random
Fourier features(RFF) to approximate the Gaussian kernel embedding [12].

Next, we address the question:Do representations provided by neural embeddings help in
training and generalization?We address this in two ways: first, we use kernels that have been
designed to specifically mimic neural networks [4]. Then we use data driven embeddings
explicitly produced by the hidden layers in neural networks: either using a subset of the
same training data to compute such an embedding, or transfer the inferred embedding from
a different (but similar) domain.

We indeed find substantial improvements in both training and generalization using any of
the above kernel representations.

1 We say Gaussian kernel is label-unaware because we do not employ any data labels to compute it, i.e., this
kernel is not sensitive to the labels.
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Do Kernel and Neural Embeddings Help… 1683

Finally we ask the question: What is a good representation for optimization? The work
of [1] suggests seeking a representation which makes the label vector align best to the top
eigenvectors of the associated Gram matrix. This connects to the problem of kernel–target
alignment [5, 6]. We use the criterion suggested in these papers as a proxy for aligning the
label vector to the top eigenvectors and compute the representation so produced. Indeed we
observe that this representation provides the best results for training.

Thus this work shows that kernel and neural embeddings improve the alignment of target
labels to the eigenvectors of the Gram matrix and thus help training. This suggests a way to
extend the insights of [1] to deeper networks, and possible theoretical results in this direction.

In addition, the work in [1] yields a data-dependent complexity measure to be used to
upper bound the generalization error of a learned neural network. We adapt this measure
to be used with kernel and neural embeddings to analyze the generalization performance
resulted from these representations.

2 Spectral Theory

Network model. In [1], the authors consider a simple two layer network model:

fW ,a(x) = 1√
m

m∑

r=1

ar max(0,wT
r xi ), (1)

with x ∈ R
d , w1, .. wm ∈ R

d×m and (a1, .. am)T ∈ R
m (where m specifies the number of

neurons in the hidden layer, i.e., its width). These can be written jointly as a = (a1, .., am)T

andW = (w1, ..,wm). This network is trained on dataset of data points {xi } and their targets
{yi }.

They provide a fine grained analysis of training and generalization error by a spectral
analysis of the Gram matrix:

H∞
i, j :=EW∼N (0,I)[xTi x j1{wT xi ≥ 0,wT x j ≥ 0}]

=xTi x j (π − arccos (xTi x j ))

2π
.

(2)

If
H∞ =

∑

i

λivivTi (3)

is the orthonormal decomposition ofH∞, [1] shows that training improves if the label vector
y aligns with the eigenvectors corresponding to the top eigenvalues of H∞.

We extend the two-layer ReLU network in [1] via adding different types of embeddings
φ at the input layer corresponding to a kernel K. The corresponding model is:

fW,a(x) = 1√
m

m∑

r=1

ar max(0,wT
r φ(xi )). (4)

For a representation (φ(xi ), i ∈ [n]) corresponding to a kernel K, Since K(xi , x j ) =
φ(xi )Tφ(x j ), i, j ∈ [n]), similar to 2 define the Gram Matrix

H(K)∞i, j := EW[K(xi , x j )1{wTφ(xi ) ≥ 0,wTφ(x j ) ≥ 0}]
= K(xi , x j )(π − arccos (K(xi , x j ))

2π
.

(5)

and let its eigenvalues be ordered as
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1684 A. Rahbar et al.

(a) MNIST training loss as a function of
epoch number

(b) CIFAR-10 training loss as a function of
epoch number

(c) CIFAR-10 projections

Fig. 1 Performance on first two classes of MNIST and CIFAR-10 as training datasets. We observe that the
different kernels yield faster convergence of the loss function on training data compared to non-kernel variant.
Figure 1(c) demonstrates alignment of top eigenvalues and the projections of true labels on corresponding
eigenvectors

λ0(K) ≥ λ1(K) ≥ · · · ≥ λn−1(K) (6)

and let v0(K), · · · , vn−1(K) be the corresponding eigenvectors.
A kernel K such that the corresponding eigenvectors align well with the labels would be

expected to perform well for training optimization. This is related to kernel target alignment
[6].
Optimization. By adapting the convergence of the gradient descent for basic model in [1],
the convergence of our kernelized network is controlled by

√∑

i

(1 − ηλi (K))2k(v(K)Ti y)
2 (7)

Generalization. We can also adapt the generalization performance of the simple two-layer
network in [1] to the kernel embedding setting as

√
2yT (H(K)∞)−1y

n
(8)

For both optimization and generalization, we replace the data features with the feature
vectors induced by the kernel embeddings.
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3 Numerical Analysis

We perform our numerical analysis on various datasets. In addition to MNIST and CIFAIR-
10 which are used for the experiments in [1], we used other datasets such as LSUN [18]
and Fashion-MNIST in several parts of the paper. As in [1], we only look at two classes
when training our models, and set the label yi = +1 if image i belongs to the first class
and yi = −1 if it belongs to the second class. To follow the setting in [1], the images are
normalized such that ||xi ||2 = 1. This is also done for the different kernel embeddings such
that ||φ(xi )||2 = 1.

The weights in Eq. (4) are initialized as follows:

wi ∼ N (0, k2I), ar ∼ Unif({−1, 1}),∀r ∈ [m]. (9)

We then use the following loss function to train the model to predict the image labels.

�(W, a) = 1/2
n∑

(i=1)

(yi − fW,a(x))2 (10)

For optimization, we use (full batch) gradient descent with the learning rate η. We set
k = 10−2, η = 2 × 10−4 similar to [1].

3.1 Gaussian Kernel Method

We first use the Gaussian kernel

K(xi , x j ) := exp
(−γ ‖xi − x j‖2

)
. (11)

The corresponding embedding is infinite dimensional, hence we consider the fast approx-
imations to the kernel given by random Fourier features (RFF) [12]. The idea of random
Fourier features is to construct an explicit feature map which is of a dimension much lower
than the number of observations, but the resulting inner product approximates the desired
kernel function. Specifically, instead of using the kernel trick for computing the inner prod-
uct in the higher dimensional space (with feature map φ), a method is proposed to create
a randomized feature map z such that φ(x)Tφ(y) ≈ z(x)T z(y). The approximated feature
map in RFF includes sinusoids that are randomly selected from the Fourier transform of the
kernel function [12]. We use γ = 1 in all our experiments.

We start by investigating the use of Gaussian kernels for a more efficient optimization
of the loss function on the training data. Figures 1(a) and 1(b) show the training loss at
different steps respectively on first two classes ofMNIST andCIFAR-10 datasets.We observe
that Gaussian kernel embeddings with different dimensions yield faster convergence in the
optimization on both datasets. MNIST is a simple dataset which gives incredibly high score
almost immediately, as shown by the training loss (Fig. 1(a)) and by the accuracy on the
test data (Table 1). Since we already reach very high accuracy on MNIST without using
kernels, different methods yield similar results on this dataset. We observe this behavior
in Fashion-MNIST dataset as well. So in this section, we will focus our analysis on the
CIFAR-10 dataset. Similar to the setup in [1], in Fig. 1(c), for different methods, we plot the
projections of the true class labels on the eigenvectors (i.e., the projections {(vTi y)2}n−1

i=0 ). For
better visualization, we plot the cumulative forms

fi =
i∑

j=0

(vTj y)
2 (12)
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Table 1 Accuracy on MNIST test
set (first two classes) after n
epochs. We reach a very high
accuracy after only a small
number of epochs and the test
error becomes negligible

dim(K) Steps
10 1000 50000 100000

None 0.998582 0.999527 0.999527 0.999527

500 0.996690 0.999054 0.999054 0.998582

1000 0.998109 0.999054 0.999527 0.999054

3072 0.998582 0.999527 0.999527 0.999527

10000 0.998582 0.999527 0.999527 0.999527

Table 2 Quantification of√
2yT (H∞)−1y

n (or√
2yT (H(K)∞)−1y

n ) for Gaussian
kernels in different experimental
settings (n = 12665 for MNIST
and n = 10000 for CIFAR). For
both datasets, most of the
Gaussian kernels yield smaller
upper bounds on generalization
error

γ Dimension MNIST CIFAR-10

0.01 ∞ 0.99 7.37

0.1 ∞ 0.48 3.77

1 ∞ 0.26 1.82

10 ∞ 1.24 0.49

1 500 0.35 3.33

1 1000 0.32 3.20

1 3072 0.29 3.08

1 10000 0.27 2.98

No kernel 0.35 3.86

which are normalized such that
∑n−1

i=0 (vTi y)
2 = 1.

The results show that using kernels yields a better alignment of the eigenvectors belonging
to the largest eigenvalues and the target labels, leading to faster convergences. In other words,
with kernels, we attain larger (vTi y)

2’s for top eigenvalues.
We continue by investigating the generalization performance of the Gaussian kernel

method by analyzing the values of Eq. (8). Table 2 shows this quantity for different set-
tings and kernels respectively on first two classes of MNIST and CIFAR-10 datasets. Please
note that for the infinite dimensional case we do not need to perform normalization since
for Gaussian kernels the images of input data in the feature space are already normalized2.
We observe that in both datasets with several kernels we obtain a lower theoretical upper
bound on the generalization error compared to the no-kernel case. It is clear that the bound
improves as the dimension of the representations increases but also that the generalization
bound seems quite sensitive to values of γ .

In addition to the theoretical upper bound,wemeasure the test error for the studied datasets.
Figures 2(a) and 2(b) show respectively the test error and the test accuracy at different steps
of the optimization by Gradient Descent for first two classes of CIFAR-10. Note that in the
mentioned figures (and similar figures that follow) we show the test error (loss) and accuracy
at each phase of the training. For instance, to compute accuracy we use our current model
to predict the labels in a test dataset. We observe that the kernel methods yield significant
improvements of both the test error and the accuracy on the test dataset. We observe that the
larger the kernel embedding, the larger the improvement. Additionally, we can see a sharper
reduction in test error compared to the no-kernel case. This sharp transition (after a small
number of steps) comes with a significant improvement in the test accuracy. This observation
suggests that early-stopping can be even more efficient when using kernel methods. It is

2 This comes from the fact that K(x, x) = 1 for Gaussian kernels. For more detail please refer to [14].
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(a) Test error on CIFAR-10 data as a func-
tion of epoch number.

(b) Test accuracy on CIFAR-10 data as a
function of epoch number.

Fig. 2 Experimental test errors and accuracy on the test set at the different steps of the Gradient Descent
optimization algorithm for first two classes of CIFAR-10 dataset

(a) Training loss as a function of epoch num-
ber.

(b) Test loss as a function of epoch number

(c) Projections

Fig. 3 Experimental train and test errors at the different steps of Gradient Descent as well as eigenvector
projections for the first two classes of CIFAR-10 dataset. For the model pre-trained with the same labels, the
training loss and projections are calculated based on the unseen subset of training data. We observe that neural
embeddings improve the convergence, generalization and the alignment of eigenvector projections

worth noting that these improvements are results of choosing appropriate parameter for the
kernels. For instance, a Gaussian kernel with γ = 1000 would not generalize well. The
generalization results shown in Fig. 2(a) are consistent with the measures in Table 2.
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1688 A. Rahbar et al.

(a) Training loss as a function of epoch num-
ber.

(b) Test loss as a function of epoch number

(c) Projections

Fig. 4 Experimental train and test errors at the different steps of Gradient Descent as well as eigenvector
projections for the "kitchen" and "living room" classes of LSUN dataset. We observe that neural embeddings
improve the convergence, generalization and the alignment of eigenvector projections

3.2 Neural Embedding

Choosing an appropriate kernel and its parameters can be challenging [10], as also seen in
Table 2. Thus, we investigate a data-dependent neural embedding. For this purpose, we add a
second hidden layer to the neural networkwithm = 10000 hidden units andReLU activation.
We pre-train this embedding using two different approaches. The first layer is then kept fix
as an embedding where the rest of the network is reinitialized and trained. The first approach
is to split the training data in half. We use the first subset to pre-train this three-layer network
and the second subset to use for our optimization experiments. In this approach we double η

to keep the step length the same. The other approach is to use data from a different domain
for pre-training. For instance, we use the last two classes of the CIFAR-10 dataset for pre-
training the embedding. We compare our results with not using any kernel and with using an
RFF kernel with embedding of size 10000. In Fig. 3 we show results for the two mentioned
settings on first two classes of CIFAR-10: i. using a subset of the training data for pre-training
(same label), ii. using data from other classes for pre-training (different label). Also in Fig.
4 we show the results of experiments on "kitchen" and "living room" classes of LSUN with
the same label setting. Figures 3 and 4 show the average of 5 different random initializations.
We observe very insignificant standard deviation in different stages of training. For instance,
both Gaussian and neural kernels show standard deviation of order 10−4 for training loss
when using the LSUN dataset in different steps of training.
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3.2.1 Optimization

Figure 3(a) shows the training loss for the first two classes CIFAR-10 dataset. We observe
the neural embeddings achieve faster convergence compared to the previous methods. We
report the training loss for neural embedding (same label) on the second (unused) subset of
the data, whereas in the other cases we report the results on the full training data. If we use
only the second subset for the other methods, we observe very consistent results to Fig. 3.
Figure 3(c) demonstrates eigenvector projections on the target labels. This shows that both
variants of neural embeddings improve alignment of the labels to eigenvectors corresponding
to larger eigenvalues (compared to the best RFF kernel). While the effect is unsurprisingly
larger when pre-training on the same labels, it is still significantly better when pre-trained on
other labels. Also in Figs. 4(a) and 4(c), we see similar results for the LSUN dataset, and the
neural embedding outperforms RFF kernel in terms of training loss. The alignment of labels
and eigenvectors is improved as well.

3.2.2 Generalization

In Figs. 3(b) and 4(b) we report the test error on the first two classes CIFAR-10 and "kitchen"
and "living room" classes of LSUN respectively. This shows that the neural embeddings
perform at least comparable with the best studied RFF kernel. If the pre-training is done on
the same labels we obtain a clear improvement, even if the actual training is only done on a
dataset with half the size.

Finally, it is worth mentioning that similar results are obtained when the pre-training
process is stopped earlier (i.e., 5,000 epochs).

3.3 Embeddings with Other Kernels

So far, we have used two embedding methods: i) a fixed embedding according to Gaussian
kernels, and ii) the embeddings induced by deep neural networks. In this section we analyze
the use of kernels designed for our task of interest. In particular, we study two types of kernels:
i) the arc-cosine kernel proposed in [4] which represents neural network layers. Note that, as
we will discuss, computing this kernel is significantly faster than training a neural network
layer. Thus, it can be used for the same purpose, i.e., an embedding induced by a neural
network, but in a more efficient way. ii) The multiple kernel learning method proposed in
[5]. Given the training data and the corresponding labels, this method computes the optimal
feasible kernel, independent of any classification model or algorithm. We call the resulting
kernel optimal since an optimization function is defined and the final kernel is found based
on the solution from the optimization problem (see Sect. 3.3.2).

In both cases, we first approximate the kernel embedding using the Nyström method [17],
and then feed the approximated kernel embedding to the two-layer neural network model,
instead of the original data features.

3.3.1 Arc-Cosine Kernel

The arc-cosine kernel [4] mimics the computations in a neural network within an infinite
dimensional feature space, where the kernel function is equivalent to the inner product of the
feature vectors from a neural network. Then, the Nyström method with different number of
components can be used to approximate the kernel embeddings.
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(a) Training loss as a function
of epoch number.

(b) Test loss as a function of
epoch number.

(c) Projections

(d) Training loss as a function
of epoch number.

(e) Test loss as a function of
epoch number.

(f) Projections

(g) Training loss as a function
of epoch number.

(h) Test loss as a function of
epoch number.

(i) Projections

Fig. 5 The results of the embeddings induced by the arc-cosine kernel on first two classes of CIFAR-10
(a-c), second and third classes of CIFAR-10 (d-f) and “kitchen” and “living room” classes of LSUN (g-i)
with different dimensionality of parameterizations. This kernel performs better than the Gaussian kernel for
sufficiently large number of components and the case where we use the original features as in [1]. The overlap
measure in Eq. 12 is verified for this case as well

The n-th order arc–cosine kernel between two inputs x and y is computed by

kn(x, y) = 1

π
‖x‖n‖y‖n Jn(θ). (13)

Where the function Jn and θ are given by

Jn(θ) = (−1)n(sin θ)2n+1
(

1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
(14)

θ = cos−1
(

x .y

‖x‖‖y‖
)

(15)

In [4] it is shown that the computations in single-layer threshold networks is closely related
to this kernel. Specifically, the kernel is equivalent to the inner product of embeddings induced
by a single-layer threshold network. Moreover, [4] suggests a family of kernels mimicking
multi-layer networks based on the base kernel. In our experiments we use the base kernel
with n = 03. It is worth mentioning that earlier, but with different activation functions, these

3 The reason behind this particular choice is that in [4] it is mentioned that best results are achieved by n = 0
or 1.
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kernels arose as covariance functions of limiting Gaussian processes of wide neural networks
[11]. Also in [16] closed form kernels for different activation functions are derived.Moreover,
in [15] the kernel for Leaky ReLU activations is calculated.

Figures 5(a)-5(c), 5(d)-5(f) and 5(g)-5(i) show the results of the arc-cosine kernel embed-
dings on first two classes of CIFAR-10, second and third classes of CIFAR-10, and "kitchen"
and "living room" classes of LSUN respectively. We conducted these experiments with 5 dif-
ferent random initializations and these figures illustrate the average results. We observe that
arc-cosine kernel (with a sufficiently large number of components) outperforms the Gaussian
kernels as well as the no-kernel case in all of our experiments. The standard deviation of our
results in different stages of training was very insignificant. For example, for the arc-cosine
and Gaussian kernel embeddings of size 10000, the standard deviations of training loss are in
the order of 10−4. Similar to the Gaussian kernel increasing the number of components in arc-
cosine kernel embeddings improves the estimations, and hence, leads to a faster optimization
and a lower test error. Moreover, the overlap parameters are also better for arc-cosine kernel
with a large number of compoenents (i.e., arccos 10000). These results show that assuming
the arccosine kernel does approximate neural embeddings, then the results of [1] extend to
multilayer networks.

Notice that Neural Tangent Kernel (NTK) [8] is another approach to compute a kernel
representing a neural network. However, the applicability of this method is confined by its
very inefficient computational runtime. By inefficiency we mean it is not a good choice to
use NTK together with Nyström method.4

3.3.2 Multiple Kernel Learning

Finally, we investigate learning an appropriate kernel, independent of the model or the algo-
rithm to be used for training and classification. For this purpose, we use the method proposed
in [5] that suggests an algorithm to learn a new kernel from a group of kernels based on a
similarity measure between the kernels, namely centered alignment. Then, the problem of
learning a kernel with a maximum alignment between the data and the labels is formulated as
a quadratic programming (QP) problem. The respective algorithm is called alignf [5]. This
multiple kernel learning algorithm does not involve parameter selection and as mentioned it
is computed solely based on the true class labels. The kernel learning algorithm works based
on centered kernel alignment. If K1 and K2 are two kernel matrices, the centered alignment
between them can be computed by the following [7].

CA(K1, K2) = 〈Kc
1 , K

c
2〉F√〈Kc

1 , K
c
1〉F 〈Kc

2 , K
c
2〉F

, (16)

where Kc is the centered version of the kernel matrix K . To find the optimal combination
of the kernels (i.e. a weighted combination of some base kernels), [5] suggests the objective
function to be centered alignment between the combination of the kernels and yyT , where y
is the labels vector. By restricting the weights to be non-negative, a QP can be obtained as

minimize vT Mv − 2vT a w.r .t . v ∈ RP+ (17)

P is the number of the base kernels and Mkl = 〈Kc
k , K

c
l 〉F for k, l ∈ [1, P], and finally a

is a vector wherein ai = 〈Kc
i , yy

T 〉F for i ∈ [1, P]. If v∗ is the solution of the QP, then the
vector of kernel weights is given by [5, 7]

4 In our experiments on even a significantly smaller dataset (i.e., with only 1000 images) it took about 24
hours to run the algorithm on GPU.
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(a) Training loss as a function
of epoch number.

(b) Test loss as a function of
epoch number.

(c) Projections

(d) Training loss as a function
of epoch number.

(e) Test loss as a function of
epoch number.

(f) Projections

(g) Training loss as a function
of epoch number.

(h) Test loss as a function of
epoch number.

(i) Projections

Fig. 6 The results of the embeddings induced by the alignf kernel on first two classes of CIFAR-10 (a-c),
second and third classes of CIFAR-10 (d-f), and “kitchen” and “living room” classes of LSUN (g-i) with
different dimensionality of parameterizations. This kernel is optimally learned w.r.t. the data and significantly
performs better than the arc-cos kernel, the Gaussian kernel and the no-kernel case. We again observe the
consistency of a fast optimization, a low test error and a large overlap measure defined in Eq. 12

μ∗ = v∗/‖v∗‖ (18)

Figures 6(a)-6(c), 6(d)-6(f), and 6(g)-6(i) show the results of the alignf embeddings with
different dimensions on first two classes of CIFAR-10, second and third classes of CIFAR-10,
and "kitchen" and "living room" classes of LSUN respectively. Similar to the experiments in
[5], we use a combination of Gaussian kernels (i.e., Eq. (11)) with changing the parameter
γ . Specifically, we employ 7 different values for the parameter: γ ∈ {2−3, 2−2, . . . , 22, 23}.
The experiments are repeated with 5 different random initializations. Figure 6 illustrates the
average of our results. The optimal kernel learned by the alignf algorithm achieves the best
results, as expected. Similar to Gaussian and arc-cosine kernels, the standard deviation of
the results for alignf kernel was also significantly low. For instance, the standard deviation of
training loss in different stages of training are in the order of 10−5 in the setting of Fig. 6(a) and
10−4 in the settings of Figs. 6(d) and 6(g) (when using alignf kernel embeddings with 10000
features). As in previous cases, we observe direct relations between a faster optimization, a
better generalization and an improved overlap measure. All the other embeddings such as
the arc-cosine kernel designed as a proxy for neural embeddings could be viewed as trying
to reach the performance of this optimal representation.
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(a) Training loss as a function
of epoch number.

(b) Test loss as a function of
epoch number.

(c) Projections

(d) Training loss as a function
of epoch number.

(e) Test loss as a function of
epoch number.

(f) Projections

(g) Training loss as a function
of epoch number.

(h) Test loss as a function of
epoch number.

(i) Projections

Fig. 7 The consistency of fast optimization, low test error and high overlap between the labels vector and the
top eigenvectors using the first two classes of CIFAR-10 (a-c), second and third classes of CIFAR-10 (d-f),
and “kitchen” and “living room” classes of LSUN (g-i) as the dataset. We see a consistent ranking of kernel
methods where alignf yields the best results for all the three criteria. The second best method is the arc-cosine
kernel, followed by the Gaussian kernel. All the three kernels (alignf, arc-cos and Gaussian) outperform the
base setting used in [1]

3.4 Discussion

Wehave studied several kernel embeddings to obtainmore sophisticated features for the basic
neural network model. In Figs. 7(a)-7(c), 7(d)-7(f) and 7(g)-7(i) we compare the different
kernels with the largest number of dimensions (i.e., when the number of features/components
is 10, 000) which provides the most precise approximations. We observe the consistency of
fast optimization, low test error and high overlap between the labels vector and the top
eigenvectors. In addition, we observe a consistent ranking of different kernel methods. The
multiple kernel learning method in [5] (called alignf ) yields the best results for all the three
criteria and in all datasets. Indeed this is expected since it is explicitly optimized for overlap
with data labels. All other kernels could be viewed as trying to reach the performance of
this kernel. The second best method is the arc-cos kernel which mimics the computations
in a neural network, and as expected, it performs better than a generic kernel like Gaussian
(the kernel embeddings computed directly from a neural network are comparable to the
arc-cos kernels, however they require a significantly larger runtime to be computed). Using
the original data features yields the worst results, which indicates the importance of proper
feature learning and inference for the task of interest.
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Table 3 Quantification of√
2yT (H∞)−1y

n (or√
2yT (H(K)∞)−1y

n ) for different
kernels on first two classes of
CIFAR-10 dataset (n = 10000).
The alignf method yields the
smallest upper bound in the
generalization error

Kernel Dimension CIFAR-10

Gaussian 10000 2.98

arc-cosine 10000 2.59

alignf 10000 1.45

No kernel 3.86

Finally, in Table 3 we compare the theoretical upper bounds on the generalization errors
of the different kernels when used with the first two classes of CIFAR-10. We observe a
consistent ranking with the previous results. The alignf method yields the best performance,
and the arc-cos and the Gaussian kernels are the next choices, both better than the no-kernel
case.

4 Conclusions

Weempirically explored the implications of recent results of [1] for deeper networks, viewing
previous layers as producing better representations of the input data. We studied different
kernel and neural embeddings and showed that such representations benefit both optimiza-
tion and generalization. We demonstrated the applicability of the overlap criteria in [1] for
analysing the impacts of different kernels. In particular, we showed that a kernel optimally
aligned to data yields the best results in terms of fast optimization, low generalization error,
and large overlap between the top eigenvectors and the labels vector, and that other embed-
dings achieved different approximations to this optimal representation. By combining recent
results connecting kernel embeddings to neural networks such as [15], one may be able to
extend the fine–grained theoretical results of [1] for two layer networks to deeper networks.
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