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ABSTRACT When dealing with customers, original equipment manufacturers (OEMs) classify vehicular
usage by resorting to simplified, often colloquial, descriptions that allow for a rough understanding of the
operating conditions and the user’s needs. In this way, the information retrieved from the customers is
exploited to guide their choices in terms of vehicle design and configuration, based on the characteristics
of the transport application, labeled using intuitive metrics. However, a common problem in this context
is the absence of any formal connection to lower levels of representation that might effectively be used
to assess vehicular energy performance in simulation, or for design optimization using mathematical
algorithms. Indeed, both processes require more accurate modeling of the surroundings, including exhaustive
information about the local road, weather, and traffic conditions. Therefore, starting with a detailed statistical
description of the environment, this paper proposes a method for mathematical classification of transport
missions and applications within the theoretical framework of the operating cycle (OC). The approach
discussed in the paper combines a collection of statistical models structured hierarchically, called a stochastic
operating cycle (sOC), with a bird’s-eye view description of the operating environment. The latter postulates
the existence of different classes, which are representative of the usage and whose definition is based
on simple metrics and thresholds expressed mathematically in terms of statistical measures. Algebraic
expressions, called operating classes in the paper, are derived analytically for all the stochastic models
presented. This establishes a connection between the two levels of representation, enabling to simulate
longitudinal vehicle dynamics in virtual environments generated based on the characteristics of the intended
application, using log data collected from vehicles and/or information provided by customers. Additionally,
the relationships between the two descriptions are formalized using elementary probability operators,
allowing for an intuitive characterization of a transport operation. An example is adduced to illustrate a
possible application of the proposed method, using six sOCs parametrized from log data collected during
real-world missions. The proposed approach may facilitate the interaction between OEMs, customers, and
road operators, allowing for planning of maintenance, and optimization of transport missions, components,
and configurations using standard procedures and routines.

INDEX TERMS Autoregressive models, mission classification, operating cycle, road transport mission,
stochastic modeling, stochastic operating cycle.
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NOMENCLATURE
Symbol Description

C Random variable for curvature (m−1).
GR Generator matrix for road type.
GV Generator matrix for speed sign.
Hp Random variable for precipitation occurrence.
K Random variable for continuous road

curvature (m−1).
Lh Mean hill length (m).
Ls Sampling length for topography (m).
Ltot Total road length (km).
LR Mean length vector for road type (km).
LRi Mean length for road type (km).
LV Mean length vector for speed sign (km).
LVi Mean length for speed sign (km).
PH |si Conditional Markov matrix for precipitation

occurrence.
PR Markov matrix for road type.
PV Markov matrix for speed signs.
Rt Random variable for road type.
S Random variable for season.
T̄ Deterministic component of air

temperature (◦C).
T̃ Stochastic component of air temperature (◦C).
Tair Random variable for air temperature (◦C).
T ′air Modified random variable for air

temperature (◦C).
T ∗air Air temperature (◦C).
Td, Ty Daily and annual amplitudes of

temperature (◦C).
Ts Random variable for stop time (s).
V Random variable for speed sign (kmh−1).
Vb Random variable for bump speed (kmh−1).
Y Random variable for road grade (%).
Y ′ Modified random variable for road grade (%).
amax
y Lateral comfort acceleration (m s−2).
eT Error term for air temperature (◦C).
eY Error term for topography (%).
eρ Error term for traffic density (km−1).
eψ Error term for relative humidity.
fHij|si Conditional number of observed transitions

for precipitation occurrence.
fVij Number of observed transitions for speed

signs.
gRij Entry of the generator matrix for road type.
gVij Entry of the generator matrix for speed

signs.
pHij|si Conditional Markov matrix entries for

precipitation occurrence.
pVij Markov matrix entries for speed signs.
pRij Markov matrix entries for road type.
ri Road type.
rturn Minimum radius of curvature (m).
s season.
ts Stop time (s).

tmin, tmax Minimum and maximum recommended
time (s).

vb Bump speed (kmh−1).
vi Signed speed (kmh−1).
vmin, vmax Minimum and maximum recommended

speed (kmh−1).
vκ Curvature speed (m s−1).
y Road grade (%).
9̄ Deterministic component of relative

humidity.
9̃ Stochastic component of relative

humidity.
9RH Random variable for relative humidity.
9 ′RH Modified random variable for relative

humidity.
9∗RH Relative humidity.
9d, 9y Daily and annual amplitudes of relative

humidity.
3p Random variable for precipitation

intensity (mmh−1).
α3p|si Conditional shape parameter for

precipitation intensity.
β3p|si Conditional rate parameter for

precipitation intensity (mmh−1).
κ Continuous road curvature (m−1).
λb Speed bump intensity (km−1).
λC Curviness intensity (km−1).
λp Precipitation intensity (mmh−1).
λs Stop signs intensity (km−1).
λRi Road type intensity (km−1).
λVi Speed sign intensity (km−1).
µC Modified mean curvature (lnm).
µL Modified mean curve length (lnm).
µT Mean temperature (◦C).
µ9 Mean relative humidity.
µρ Mean traffic density (km−1).
πH |si Conditional stationary probability vector

for precipitation occurrence.
πH1|si , πH2|si Conditional stationary probabilities for

precipitation occurrence.
πR Stationary probability vector for road type.
πRi Stationary probability for road type.
πV Stationary probability vector for speed

signs.
πVi Stationary probability for speed signs.
ρ̄ Deterministic component of traffic

density (km−1).
ρ̃ Stochastic component of traffic

density (km−1).
ρc Critical traffic density (km−1).
ρd Daily traffic density amplitude (km−1).
ρt Random variable for traffic

density (km−1).
ρ′t Modified random variable for traffic

density (km−1).
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ρ∗t Traffic density (km−1).
φT |si Conditional autoregressive coefficient for air

temperature.
φY Autoregressive coefficient for topography.
φ9|si Conditional autoregressive coefficient for

relative humidity.
φρ|si Conditional autoregressive coefficient for

traffic density.
ϕTd , ϕTy Initial phases for air temperature (rad).
ϕ9d , ϕ9y Initial phases for relative humidity (rad).
ϕρ Initial phase for traffic density (rad).
σeT |si Conditional standard deviation for the innova-

tion in the air temperature model (◦C).
σeY Standard deviation for the innovation in the

topography model (%).
σe9 |si Conditional standard deviation for the

innovation for the relative humidity model.
σeρ |si Conditional standard deviation of the

innovation for the traffic density
model (km−1).

σC Modified standard deviation of
curvature (lnm).

σL Standard deviation of curvature
length (lnm).

σT̃ |si
Conditional standard deviation for the
stochastic component of air temperature (◦C).

σY Standard deviation of topography (%).
σ9̃|si

Conditional standard deviation for the
stochastic component of relative humidity.

σρ̃|si Conditional variance for the stochastic
component of traffic density (km−1).

ω̄d Daily frequency (rad).
ω̄y Annual frequency (rad).
E(·) Exponential distribution.
N (·, ·) Normal distribution.
P(·) Poisson distribution.
E(·) Expectation.
P(·) Probability.

I. INTRODUCTION
Transport operations1 of road vehicles may differ substan-
tially depending on the particular properties of the mission
and the geographical area where it takes place [2]–[5]. From
the perspective of the intended usage, as an emblematic
example, one might compare a small, relatively low-speed
truck delivering within a municipality to a heavily loaded
timber truck traveling long distances. The characteristics of
the operating environment also stimulate vehicles differently.

1In this paper, the notions of transport application, transport operation
and transport mission are defined according to [1]. In particular, Petters-
son [1] defines the transport application as the overall purpose of a vehicle
during its lifetime. This is something antecedent to the vehicle itself, and
towards which specifications should be tailored. The difference between
transport operation and mission is less formal. The former consists of a finite
number of tasks along a given route, the latter integrates with details from
the surroundings. To make sense, both operation and mission assume the
existence of a vehicle, meaning that they are defined a posteriori.

Topography, number and length of curves along the road,
relative wind, traffic density, and many other factors all
contribute to determining the vehicle’s behavior, impacting
important indicators like energy efficiency and (equivalent)
CO2 emissions [6]–[16].

Ideally, it would be desirable to develop individual prod-
ucts for every possible route and transport mission. How-
ever, due to stringent physical and economical limitations,
this is impractical. Often, a viable alternative is to use a
statistical approach, so that commercial vehicles are devel-
oped for typical applications and geographical regions [17],
[18]. Over the years, a vast scientific literature has been
produced dealingwith the optimization of single components,
configurations, or even fleets of road vehicles depending
on the intended use [19]–[27]. Specifically, many methods
proposed by researchers rely on simplified models for lon-
gitudinal vehicle dynamics in combination with reference
speed profiles (called driving cycles) to simulate represen-
tative operating conditions. Starting from log data, vari-
ous techniques may be employed to build driving cycles,
using an assortment of measures like acceleration, mean
speed and torque, cruising time, road grade, et cetera [18],
[28]–[31], [31]–[53]. In particular, a first distinction may
be made between rule-based methods [54], [55] and sta-
tistical ones [18], [28]–[37]. While rule-based methods are
very sensitive to the experts’ opinion and only replicate a
limited number of characteristics from the measured driving
cycles [54], [55], statistical techniques correlate synthetic
speed profiles with certain operating conditions of the vehi-
cle, such as cruising, idling, acceleration, or braking events.
This enhanced approach combines different information
(mostly inferred by speed and acceleration signals) to reflect
the characteristics of real driving scenarios [18], [28]–[37].

In turn, methods for synthesizing driving cycles based
on statistical techniques may be classified into four sub-
categories: micro-trip based, segment-based, pattern classi-
fication and modal cycle construction [38]. Micro-trip-based
methods generate several candidate cycles from micro-trips.
These are usually defined as excursions between consecutive
stops, and may be chosen either randomly or based on spe-
cific modal characteristics. Then, an optimal cycle is selected
based on the fulfillment of some satisfaction criterion, using
a genetic algorithm [39], [40]. Driving cycles have been
synthesized with the micro-trip-based methods for the cities
of Hong Kong [41], Pune and Chennai, India, [35], [42] and
Singapore [43].

In the segment-based method, a driving cycle is built from
measured signals which are partitioned considering not only
consecutive stops, but also the road characteristics and traffic
conditions [9]. Segments may therefore begin and end at
any speed. An inherent difficulty is that constraints on speed
and acceleration must be imposed in chaining the segments
together when synthesizing a new cycle [44], [45].

Pattern classification methods partition the speed data into
kinematic sequences similar to micro-trips [31], [46]–[49].
With the aid of statistical techniques, these are then classified
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into heterogeneous classes depending on some defined crite-
ria. The final driving cycle is thus synthesized by combining
the kinematic sequences based on the statistical properties
of the classes. In several studies, new cycles have been con-
structed from kinematics sequences using principal compo-
nent analysis (PCA) and cluster analysis [56].

Finally, in the modal cycle method, the measured speed
data is clustered into snippets and classified into modal bins
by using maximum likelihood estimation [31], [36], [37].
A new driving cycle is then built from chosen snippets
assuming the Markov property, whose validity has also
been demonstrated theoretically by [49]. In particular, two
and three-dimensional Markov chains have been proposed
in [36], [37]. More recently, this approach was extended
in [38] by considering variable passenger loads in the syn-
thesis of driving cycles for city buses.

Further extensions to the above-referenced works on driv-
ing cycles have also been presented in the literature to reflect
variation in transport operations. For example, a procedure
to generate several driving cycles starting from a single bus
route was proposed in [44], [45], where the investigation was
conducted concerning the number of stops [44] and variable
passenger load [45]. Both factors were shown to have a sig-
nificant influence over energy consumption, which appeared
to be almost normally distributed. To cope with the inherent
uncertainties of driving cycles, a simulation model to predict
the energy demand of electric city buses was also developed
in [57].

However, it should be emphasized that, in the process of
generation of driving cycles, all the information about the
surroundings is eventually lost when incorporated directly
into a reference speed profile. From a product development
and selection perspective, it would be preferable to use mea-
sures and metrics that are independent of the vehicle, and
which would exhaustively describe the characteristics of the
environment. Indeed, a similar approach would make no
implicit assumption about the product. At the same time,
it would allow for a more intuitive understanding of the main
physical principles governing the longitudinal dynamics of a
vehicle. In this context, detailedmodeling of the surroundings
appears an essential prerequisite when tailoring the design to
the application. In the literature [1], the problem of build-
ing a comprehensive mathematical model that accurately
replicates the driving conditions, independently of vehicle
and driver, is sometimes referred to as the representation
problem.

However, as already mentioned, road vehicles are opti-
mized according to the overall application and do not con-
sider individual transport missions. Hence, these should be
grouped and labeled based on simple scalar metrics, implying
the need for a higher-level description. Ideally, such a repre-
sentation system should condense the salient characteristics
of the usage, alongside with those of the operating envi-
ronment, but without incorporating too many details about
the physical parameters that stimulate the vehicle’s behavior.
For instance, some measures of interest would be general

statistical descriptors of the terrain, the climate, and the
mission itself. To adduce a concrete example, both Volvo
and Scania have developed their own classification systems,
namely the Global Transport Application (GTA) [2] and the
User Factor Description (UFD). Their aim is to gain an intu-
itive and rough understanding of how a vehicle is operated on
the road. Using relevant feedback from maintenance shops,
road operators, and ultimately customers, existing vehicle
categories are currently improved in an evolutionary man-
ner. This iterative process may be further refined by using
some modern mathematical tools. In fact, improvement and
optimization of road vehicles can certainly be addressed in
a more rigorous, systematic way, provided that a suitable
representation of the operating environment exists. Unfor-
tunately, since they were conceived to deal primarily with
satisfying the needs of customers, the GTA and UFD descrip-
tions are mostly colloquial and are based on rather informal
statements. However, they may be translated in terms of
frequencies and probabilities. How to systematically specify
thresholds and labels to classify different missions, and how
to connect these metrics with a realistic representation of
the usage, is referred to as the classification problem in this
paper.

The last aspect connects to the variation problem. Indeed,
provided that suitable metrics can be identified, even mis-
sions belonging to the same transport application cannot be
expected to be identical when interpreted as individual real-
izations. Ideally, it should be possible to quantify the variation
within each category simply. This implies, however, the need
for an intermediate level of description, which should be built
around this principle and make use of elementary statistical
tools. A similar stochastic approach tomodeling the operating
environment would naturally bridge the low-level description
conceived for representation purposes and the higher-level
classification system discussed previously. In this context,
the three levels of representation of an operating cycle (OC)
respond exactly to these needs.

A. CONTRIBUTION OF THIS PAPER
Thus far, colloquial descriptions such as the GTA and UFD
have been exploited in an iterative process to improve exiting
vehicle configurations based on the relevant feedback from
customers and road operators. As already mentioned, the
main problem connected with this approach is that the level
of information (quantized in discrete classes) contained in
such representations is not directly usable when it comes
to assessing energy performance in simulation environments
before physical prototypes are built, or to optimizing vehicle
design using ad-hoc algorithms. In fact, engineers and math-
ematicians need to work with more refined models of the
operating environment, which should ideally involve easily
measurable and interpretable physical quantities.

In this context, even if the two levels of description serve
different purposes, a formal connection between themmay be
conveniently established. In this way, information collected
by customers and/or logged directly from vehicles – and
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hence reflecting the characteristics of the intended applica-
tion – can be easily translated into a mathematical description
of the environment, allowing for a virtual representation that
can be used in combination with a model for longitudinal
vehicle dynamics. Such an approach would enable testing
and optimization of vehicle designs and configurations based
on the user’s needs exploiting standard routines and tools.
An effort in this direction has been attempted, for exam-
ple, in [23], where the authors dealt with the optimization
problem of heavy trucks for a vast combination of oper-
ating conditions, including road topography modeled using
the stochastic description proposed in this paper, in com-
bination with the corresponding classes indicated by Volvo
(see Section III-A1).

Therefore, the main scope of the present work is to bridge
the gap between the high and low levels of representation,
enabling high-level descriptions to be used in a mathemat-
ical toolchain to optimize vehicle design depending on the
features of the surroundings. This is done systematically
by exploring the natural connection between a classification
system for road transport missions and a stochastic approach
to modeling the operating environment. Specifically, the
classification and variation problems are addressed in this
paper from the perspective of the OC format [1], [58], [59].
The fundamental idea is that, if the properties of the road,
weather, and traffic are described using stochastic models,
the same models may serve as a basis to categorize vehicular
operations based on simplified measures (the same that are
used when dealing with a customer). The calculation of this
measures may include, for instance, statistical operators like
probability and expected value. Such simplified measures
would condense the mission and environment properties,
establishing a non-bijective relationship between a certain
category (according to some classification system), and the
lower-level stochastic description. To this end, the theoretical
contribution of this paper consists in deriving the analytical
expressions for the above relationships, subsequently referred
to as operating classes.
The remainder of this paper is organized as follows.

Section II introduces the concept of an operating cycle and
discusses the connection between its three different levels
of representation. In Section III, the analytical expressions
for the operating classes are derived. A systematic method
of classifying individual missions and entire applications is
then proposed and illustrated in Section IV. To show how the
notion of an operating class may be used to label an operating
cycle, an example with six operating cycles, parametrized
using measured log data from heavy trucks, is then adduced
considering the GTA and UFD systems. The practical appli-
cation of the OC format is also illustrated by comparing two
different vehicle configurations based on the characteristics
of the intended transport application. A discussion on the
limitations of the proposed approach, plus possible oppor-
tunities for improvement, is presented in Section V. Finally,
Section VI summarizes the conclusions and outlines possible
directions for future research.

II. THE OPERATING CYCLE REPRESENTATION
The OC format is a mathematical description of a road
transport mission that includes relevant features from the
surroundings and is independent of both vehicle and driver.
Specifically, it consists of three main levels of representation,
namely the bird’s-eye view, the stochastic operating cycle
(sOC), and the deterministic operating cycle (dOC), arranged
in a pyramidal structure (see Figure 1). These three different
descriptions address the classification, variation and repre-
sentation problems, respectively. Each level will be described
in detail below and the relationships between the levels will
be demonstrated. A common feature of the different levels
of representation is that they all distinguish between four
fundamental categories: road, weather, traffic and mission.
It is worth emphasizing that this paper builds upon the
OC format, which has already been introduced in previous
works [1], [58], [59].

A. THE BIRD’s-EYE VIEW
Descending the hierarchical order between the descriptions,
the bird’s-eye view collocates on the top of the pyramid.
It characterizes both the individual mission and the entire
application, and uses simplified metrics and labels. It is
intended to be very general, allowing for straightforward
classification of transport operations and applications based
on a few statistical indicators [58], [60], [61]. These should
be ideally chosen to represent some variation in usage, perfor-
mance, or properties. Themetrics and labels for the bird’s-eye
view may be defined from scratch or borrowed from existing
classification systems, as exemplified briefly for the topogra-
phy parameter. In particular, the GTA system introduced by
Volvo specifies four different levels [2]:

1) FLAT if slopes with a grade of less than 3% occur
during more than 98% of the driving distance.

2) P-FLAT if slopes with a grade of less than 6% occur
during more than 98% of the driving distance.

3) HILLY if slopes with a grade of less than 9% occur
during more than 98% of the driving distance.

4) V-HILLY if the other criteria are not fulfilled.

In the above example, the bird’s-eye view labels clearly
correspond to the operating classesFLAT,P-FLAT (predom-
inantly flat), HILLY and V-HILLY (very hilly), while the
metrics are the values imposed on the road grade (3%, 6% and
9%, respectively) and the probability of occurrence, always
set to 0.98. On the other hand, the User Factor Descrip-
tion (UFD) used by Scania2 proposes only three classes:

1) FLAT if max 20% of the road section inclines more
than 2%.

2) HILLY if between 20-40% of the road section inclines
more than 2%.

3) V-HILLY if more than 40% of the road section inclines
more than 2%.

2The information on the User Factor Description (UFD) has kindly been
supplied by Scania through personal communication.
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FIGURE 1. Schematic representation of the pyramidal structure of an OC. All the missions being equivalent in the
sense of a GTA class belong to the same transport application from the perspective of the bird’s-eye view. The
individual statistical properties may however differ within the transport application (sOC). Finally, transport missions
can be statistically equivalent but significantly different in practice. This is captured by the dOC representation.

In both cases, the given thresholds are ambiguous, and there is
no guarantee that they can reflect any significant variation in
usage or performance. Furthermore, it is worth observing that
the UFD targets single road sections, while the GTA specifies
the different classes based on the vehicle usage, and therefore
mixes the characteristics of the environment with those of
the transport operation. One main advantage of such a vague
description resides in its colloquial tone. In fact, the bird’s-eye
view is the most appropriate representation when interfacing
with the customer, who cannot be expected to have a deep
understanding of stochastic models and parameters.

Formally, the complete set of bird’s-eye view metrics may
be defined mathematically as

OCb = {Rb,Wb, Tb,Mb}, (1)

in which Rb, Wb, Tb and Wb are the sets containing all
the respective bird’s-eye view metrics in the road, weather,
traffic, and mission categories. The subscript (·)b in (1) stands
for bird’s-eye view.

B. THE STOCHASTIC OPERATING CYCLE
A stochastic model may be used to measure and mathemati-
cally reproduce variation in a transport operation [27], [29],
[32]. At the mid-level, the sOC is specifically conceived as a
tool to investigate the variation problem. It summarizes the
statistical properties of a transport mission and consists of
a collection of stochastic models organized hierarchically.
In turn, the sOC models are provided with their own set
of stochastic parameters, which are chosen to condense the
relevant statistical properties (mean, variance, et cetera) of
the corresponding physical quantity. The structure of the sOC
is conceived to be as simple as possible, and the models
are thought to be independent of each other, in obedience
to the principle of parsimony. Disregarding the correlation

between different stochastic models guarantees modularity
and allows for ease of implementation and integration of new
parameters, whenever required. At the same time, to bal-
ance complexity and realism, a certain level of interaction
between each model is preserved by hierarchically arranging
the sOC itself. Parsimony is thus achieved by defining two
sets of models: primary and secondary ones (subordinate).
In this way, it becomes possible to build a modular structure
equipped with a high level of diversification, without the
need of introducing complicated multivariate distributions.
Specifically, in the sOC description, primary models for the
road and weather categories relate to the notions of road type
and season, as explained more extensively in Section III-B
and Appendix A, respectively.

As with the bird’s-eye view metrics, the complete set of
sOC parameters may be defined mathematically as

OCs = {Rs,Ws, Ts,Ms}, (2)

where Rs, Ws, Ts and Ws are the sets containing all the
respective sOC parameters marked as road, weather, traffic
and mission. Models and parameters for the road have been
introduced in [58], while the weather and traffic categories
have been developed more recently in [59]. The different
stochastic models, plus their relative categories, are listed in
in Table 1 and detailed later in Section III.

C. THE DETERMINISTIC OPERATING CYCLE
The dOC representation is the most adequate way of model-
ing an operating cycle when it comes to individual transport
missions. It may serve as a virtual environment for realistic
prediction of road vehicles’ performance, virtual testing and
design of control algorithms, and the development of ad-hoc
functions.
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In the dOC, the same the physical quantities that were
deemed as models in the sOC representation3 are interpreted
as parameters, and are defined as discrete functions of time
and position. Some parameters are only made dependent on
either position or time. Some others, like the ones marked
in the traffic category, depend on both. Additionally, each
parameter may be represented by a scalar or a vector-valued
signal (see dimensionality in Table 1). Any value between two
different discrete times (or positions) may be computed by
interpolation using the corresponding model in Table 1.
To formalize the dOC format mathematically, the four

categories (see Table 1) may be defined as the sets contain-
ing the parameter sequences: Rd is the set containing all
sequences labeled as road,Wd for weather, Td for traffic and
Md for mission. Then, the dOC format may formalized in
mathematical terms as

OCd = {Rd,Wd, Td,Md}, (3)

and interpolation may be defined as an operator acting on
the elements in the sets. The dOC format provides a detailed
view of individual transport operations without making any
assumptions about the driver or vehicle. Furthermore, it is
built in a modular fashion such that parameters may easily
be modified, added, or removed.

D. RELATIONSHIPS BETWEEN DESCRIPTIONS
The three levels of representation discussed so far are intrinsi-
cally related, and ordered in a pyramidal structure, as already
shown in Fig. 1.
The first connection which should be explored is that

between the sOC and dOC descriptions. Given a set of
stochastic parameters, a dOC may be interpreted as a single
realization of an sOC. Indeed, by simulating its stochastic
models, a fully parametrized sOC may be used to synthe-
size multiple dOCs. Thus, these would be equivalent in a
statistical sense, but might differ significantly in practice.
This also implies that the map between an sOC and a dOC
is not necessarily bijective; quite the opposite. Actually, this
kind of non-bijective relationship in the descending direction
also persists at the higher level between the sOC and bird’s-
eye view representations. On the contrary, given a dOC, it is
possible to estimate the corresponding stochastic parameters
and hence obtain an equivalent description in terms of an
sOC. This is usually done by resorting to elementary statisti-
cal methods, and assuming plausible probability distributions
and stochastic models.

On the other hand, the bird’s-eye view and the sOC are
both statistical descriptions, but with considerably differ-
ent resolutions. Indeed, while the bird’s-eye view generally
encompasses an entire transport application (but might also
be used to classify single operations and even road sections),
the sOC only targets individual missions. The formal relation-
ship between the two levels may be elucidated by looking

3The relationship between the role of a physical quantity in the sOC and
dOC representations is perhaps better understood from Table 1, where each
entity is labeled under model for the sOC and parameter for the dOC.

at the GTA classes previously introduced. Again, using the
topography as an example, it is possible to estimate the
process variances which yield the thresholds set by the GTA
classification system, i.e. the bird’s-eye viewmetrics (as done
in Section III-A). Thus, given an sOC, the corresponding
GTA class may always be deduced uniquely. The inverse
operation is not possible since, for a predetermined GTA
class, infinitely many sOCs may exist. More specifically,
the authors of this paper are concerned with showing that,
for a generic model ξ in the road, weather, and traffic OC
categories, the elements in the set of sOC parameters OCs
and the bird’s-eye view metrics in the setOCb may be related
as follows:

aξ
(
ηb,ξ

)
< gξ

(
ηs,ξ , ηb,ξ

)
≤ bξ

(
ηb,ξ

)
, (4)

where ξ ∈ XR,XW orXT is a generic sOCmodel,XR,XW ,
and XT denote the sets of sOC models for the road, weather,
and traffic categories, respectively, ηs,ξ ∈ Rs,ξ , Ws,ξ , Ts,ξ
and ηb,ξ ∈ Rb,ξ , Wb,ξ , Tb,ξ are vectors of sOC parameters
and bird’s-eye-view metrics for the model ξ , Rs,ξ ⊂ Rs,
Ws,ξ ⊂ Ws, Ts,ξ ⊂ Ts are subsets of sOC parameters for
the model ξ , and Rb,ξ ⊂ Rb, Wb,ξ ⊂ Wb, Tb,ξ ⊂ Tb are
subset of bird’s-eye-view metrics for the model ξ .

Finally, aξ (ηb,ξ ) and bξ (ηb,ξ ) represent lower and upper
bounds for the vector-valued function gξ (·, ·) appearing in (4).
In this context, it should be clarified that the inequalities (4)
need to be interpreted element-wise. Basically, they postulate
the existence of certain relationships which mathematically
formalize the so-called operating classes. It may be inferred
from (4) that, for each model in each category, the corre-
sponding operating class depends solely on the sOC param-
eters used to describe that model, plus the corresponding
bird’s-eye view metrics.

The analytical derivation of the relationships for the oper-
ating classes is carried out in Section III.

III. DERIVATION OF THE OPERATING CLASSES
The main analytical contribution of this paper lies in the
derivation of the aforementioned operating classes.

In the remainder of the paper, the notation is as follows:
for a generic random variable A : �A 7→ SA, its realizations
are denoted by a, unless specified otherwise. For continuous
and discrete random variables, respectively, probability den-
sity functions (PDFs) and probability mass functions (PMFs)
are denoted by fA(·) and pA(·), and their argument often
by a. Cumulative distribution functions (CDFs) are written
as FA(·). For a generic function written as f (·; ·), the semi-
colon is used to separate variables from parameters. Multiple
variables or parameters may be additionally separated using
commas. The set of real numbers is denoted by R; the sets of
positive and negative real numbers are denoted by R≥0, R≤0
when including the zero and by R>0, R<0 when excluding it.
The set of positive integer numbers is denoted by N, whereas
N0 denotes the extended set of positive integers including
zero, i.e. N0 = N ∪ {0}. Sequences of random variables are
denoted by {Ak}k (the subscript k is often dropped when the
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TABLE 1. Stochastic models and deterministic parameters (dOC parameters) for the sOC and dOC representations. Linear and constant refer to linear and
right-side continuous piecewise constant interpolation models respectively. The mathematical model of Dirac delta occurs when the parameter is
regarded as an isolated event.

clarity allows). Indicator functions are denoted by 1a∈A and
assume a value of one if a ∈ A and zero otherwise.

A. ROAD CATEGORY
In the sOC description, the road category comprises stochas-
tic models for topography, curviness, speed bumps, stop
signs, road roughness, speed signs, and ground type. The cor-
responding operating classes are derived in the following, and
connect the sOC parameters to the bird’s-eye view metrics.

It is worth mentioning that all the road models presented
in this paper have been chosen as a compromise between
simplicity and accuracy, in obedience to the already men-
tioned principle of parsimony. In particular, the models for
topography, curviness and road roughness are based on the
extensive research presented in [10], [11], [62]–[67]. Simi-
larly, the models for speed bumps, stop and speed signs, and
road and ground types were introduced and validated in [58].

1) TOPOGRAPHY
Topography plays a major role in determining the overall
energy performance of road vehicles. Indeed, positive road
grades are responsible for resistive forces that oppose longitu-
dinal motion, resulting in increased energy consumption [19].
Negative road grades, in contrast, produce forces that accel-
erate the vehicle downhill, and may considerably impact the
life and performance of the mechanical components of the
braking system. Negative slopes are also exploited by battery

electric vehicles (BEVs) for regenerative braking [23]. Owing
to these premises, it should not be surprising that both Volvo
and Scania include the topography parameter in their classi-
fication systems.

In the sOC, the road is partitioned into k ∈ N short seg-
ments of fixed length Ls, and the grade {Yk}k∈N is regarded as
a randomvariable on each of them. Specifically, it is restricted
to assuming values between a minimum and maximum:

Yk = min
(
max

(
−yc,Y ′k

)
, yc
)
, (5)

where yc ∈ R>0 is an imposed limit on the maximum road
grade expressed as a percentage. By default, it may be set
to yc = 100. The modified topography Y ′k is then modeled
using a stationary, first-order autoregressive AR(1) process
as follows [10], [11]:

Y ′k = φYY
′

k−1 + eY ,k , eY ,k ∼ N
(
0, σ 2

eY

)
, (6)

where φY ∈ (−1, 1) and σeY ∈ (0,∞) are the two character-
istic parameters. According to (6), the modified road grade
itself is normally distributed [68], i.e.

Y ′ ∼ N
(
0, σ 2

Y

)
, (7)

where the subscript k has been omitted for ease of notation.
The process variance σ 2

Y reads

σ 2
Y =

σ 2
eY

1− φ2Y
. (8)
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Furthermore, the autoregressive coefficient φY may be also
rewritten as a function of the hill length Lh:

φY = sin
(
π

2
− 2

Ls
Lh

)
, (9)

where Ls is the sampling length.
Thus, the model for the topography may be equivalently

parametrized using the hill length Lh and the standard devi-
ation σY defined in (8) and (9), which are easier to interpret
than φY and σeY . Therefore, the set of stochastic road param-
eters relating to the topography model may be formalized as
Rs,Y = {Lh, σY }.
Following the interpretation of the GTA and UFD classi-

fications, the operating class for the topography connecting
the sOC and bird’s-eye view representations may be derived
by considering the probability that the road grade comprises
a value between a minimum and a maximum. This value of
probabilitymay range between lower and upper bounds py,min
and py,max, respectively. In formula: py,min < P(ymin < |Y | ≤
ymax) ≤ py,max. The corresponding formula for the operating
class is then given in Result 1.
Result 1 (Operating Class for Topography): For the road

topography model described by (5)-(9), the following expres-
sion for the operating class may be deduced:

py,min < 1ymax∈[yc,∞) +

[
28
(
ymax

σY

)
− 1

]
1ymax∈[0,yc)

−

[
28
(
ymin

σY

)
− 1

]
1ymin∈[0,yc)

−1ymin∈[yc,∞) ≤ py,max, (10)

where the function 8(·) is the CDF of the standard normal
distribution.

Proof: Noticing that

P (|Y | ≤ y) = FY (y; σY , yc)

= P
(∣∣Y ′∣∣ ≤ y)1y∈[0,yc) + 1y∈[yc,∞), (11)

and recalling that

P
(∣∣Y ′∣∣ ≤ y) = FY ′ (y; σY )− FY ′ (−y; σY )

= 28
(
y
σY

)
− 1 (12)

immediately yields (10).
It may be observed that (10), despite being scalar, has

the same structure of (4), and connects the elements in the
set of sOC parameters for topography Rs,Y = {Lh, σY }
with the bird’s-eye view metrics in the set Rb,Y =

{ymin, ymax, py,min, py,max}.
The above inequality (10) may be solved numerically

for σY , once the bird’s-eye view metrics have been speci-
fied. Again, adducing the example of the GTA classification
system, the four different values ymin = 0, ymax = 3, 6
and 9 prescribed for the road grade in (10) as a percentage
of the road length and the limits py,min = 0.98, py,max = 1
yield the values of σY reported in Table 2 for the classes

TABLE 2. Topography classes according to the GTA and UFD classification
systems with the corresponding intervals for the standard deviation σY .

FLAT, P-FLAT, HILLY and V-HILLY. On the other hand,
as already mentioned, the UFD misses the P-FLAT class.
Indeed, it only specifies one limit ymax = 2 (ymin is always
zero) for the road grade in (10), and two different probability
thresholds py,max = 0.2 and 0.4, respectively. The ranges for
the standard deviation σY corresponding to each topography
class are listed in Table 2 for both classification systems.

It should be noted that, according to both theGTA andUFD
systems, in the bird’s-eye view description the hill length Lh
is not included in the determination of the specific operating
class. Thus, according to the bird’s eye view representation,
road segments with the same process variance σ 2

Y but different
hill lengths Lh are formally equivalent. A possible extension
to the original definition for the operating class would be to
also take into account the hill length Lh, by postulating an
additional relationship of the form:

Lh,min < Lh ≤ Lh,max. (13)

Together, (10) and (13) would more accurately characterize
the road topography. Also in this case, (10) and (13) have
the same form of (4), connecting the elements in the set
Rs,Y = {Lh, σY } with the bird’s-eye view metrics in Rb,Y =

{ymin, ymax, py,min, py,max,Lh,min,Lh,max}.
As an example, a comparison between measured data from

a log file (corresponding to sOC 2 in Section IV-C) and the
analytical PDF and CDF for the road topography according
to Eqs. (11) and (12) is shown in Fig. 2.

2) CURVINESS
Lateral acceleration due to curves along the road typically
induces the driver to decelerate, resulting in increased energy
consumption. In this context, two main contributing phenom-
ena may be identified: the reduced efficiency of the prime
mover and the losses due to pure or combined slip condi-
tions that take place inside the tire contact patches [69]–[71].
Moreover, lateral load due to road curvature has a substantial
impact on the fatigue of the mechanical components of a
vehicle, reducing their useful life [62]–[64]. Therefore, the
curviness parameter is accounted for in both Volvo’s and
Scania’s descriptions.

In the sOC, a curve is regarded as an independent event
having a location, curvature (inverted radius), and length.
This description – referred to as the curviness of the road –
was adapted in [58] from [62] and is denoted in this paper by
the sequence {Xk ,Ck ,Lk}k∈N. Specifically, the locations are
modeled using a Poisson process, i.e.

Xk+1 − Xk ∼ E(λC ), (14)
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FIGURE 2. Comparison between the measured distribution and the analytical PDF and CDF of the road topography: (a)
probability density; (b) cumulative distribution.

where the intensity λC ∈ (0,∞) should be interpreted as
the mean number of curves per unit of distance. The curva-
tures Ck is modeled as a modified lognormal distribution as
follows:

1
Ck
= R′k + rturn, lnR′k ∼ N

(
µC , σ

2
C

)
, (15)

where the parameter rturn ∈ (0,∞) appears because roads
are constructed with a lower bounded radius. It should be
understood that, technically, rturn is not a statistical measure,
but rather an inherent property of the road type. Finally,
the lengths of the curve Lk are assumed to be lognormally
distributed:

lnLk ∼ N
(
µL , σ

2
L

)
. (16)

Therefore, in the sOC, the stochastic model for the curvi-
ness is completely described by the set of parameters
Rs,C = {λC , rturn, µC , σC , µL , σL}.
The relationship for the operating class for the curvi-

ness parameter may be derived following two different
approaches, according to the GTA and UFD classification
systems.

When interpreting each curve as an isolated event, an ana-
lytical expression for the operating class may be derived
by imposing lower and upper bounds n̄′C,min and n̄′C,max,
respectively, on the expected number of curves per unit of
distance that force speed reductions within a given range,
depending on two specified values for the curvature κmin
and κmax. This criterion reveals to be particularly useful
when assessing the impact of road curves on vehicle fatigue,
since each event may be interpreted as a single loading
cycle [63], [64]. A similar approach is also suggested in the
UFD classification system and yields an expression for the
operating class as in Result 2.
Result 2 (Operating Class for Curviness): According to

the UFD system, for the road curviness model described

by (14), (15) and (16), the following expression for the
operating class may be deduced:

n̄′C,min

< λC
(
1κmax∈[1/rturn,∞)

+
1
2

[
1− erf

(
ln(1/κmax − rturn)− µC

√
2σC

)]
1κmax∈(0,1/rturn)

−
1
2

[
1− erf

(
ln(1/κmin − rturn)− µC

√
2σC

)]
1κmin∈(0,1/rturn)

− 1κmin∈[1/rturn,∞)
)
≤ n̄′C,max. (17)

Proof: According to (14), the number of curves NC
along the road section behaves like a Poisson random vari-
able, i.e. NC ∼ P(λCLtot), and assumes integer values
nC ∈ SNC ≡ N0. Another Binomial variable N ′C ∼
Bin(NC , pκ ), assuming values in SN ′C = {0, . . . , nC } for
nC > 0 and SN ′C = {0} for nC = 0, may be used to model
a subset of the total number of curves, where the quantity
pκ = pκ (κmin, κmax, rturn, µC , σC ) should be interpreted as
the probability that, for an individual curve, the curvature
ranges between κmin < C ≤ κmax. Specifically, this prob-
ability may be estimated from (15) as

pκ (κmin, κmax, rturn, µC , σC ) = P
(
κmin < C ≤ κmax

)
= FC (κmax; rturn, µC , σC )

−FC (κmin; rturn, µC , σC ),

(18)

where

FC (κ; rturn, µC , σC )

= P (C ≤ κ)
= P

(
R′ ≥ 1/κ − rturn

)
1κ∈(0,1/rturn) + 1κ∈[1/rturn,∞)

=

[
1− FR′

(
1/κ − rturn;µC , σC

)]
1κ∈(0,1/rturn)
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+1κ∈[1/rturn,∞)

=
1
2

[
1− erf

(
ln(1/κ − rturn)− µC

√
2σC

)]
1κ∈(0,1/rturn)

+1κ∈[1/rturn,∞). (19)

From the law of total expectation, it also follows that

E
(
N ′C
Ltot

)
=

1
Ltot

E
(
E
(
N ′C

∣∣ NC)) = 1
Ltot

E(NCpκ )

= λCpκ (κmin, κmax, rturn, µC , σC ). (20)

Combining (18), (19) and (20) gives the result.
The operating class (17) connects the set of sOC parame-

ters Rs,C = {λC , rturn, µC , σC , µL , σL} with that of bird’s-
eye view metrics Rb,C = {κmin, κmax, n̄′C,min, n̄

′
C,max}.

It should be observed that µL and σL do not appear in (17),
since the curves along the road are regarded as isolated events.

On the other hand, the GTA description regards the cur-
vature κ(x) as a function of the position along the road.
In this context, the road section may be classified in respect
to the curviness calculating the probability that the curvature,
treated as a random variable K , assumes values between κmin
and κmax, and specifying two limits pκ,min and pκ,max. This
would be equivalent to consider a relationship of the form
pκ,min < P(κmin < K ≤ κmax) ≤ pκ,max. In particu-
lar, the probabilities pκ,min and pκ,max should be interpreted
as the minimum and maximum ratios between the portion of
the road for which κmin < K ≤ κmax and the total length
of the segment, denoted by Ltot. In this case, an approxi-
mated expression for the operating class may be derived as
in Result 3.
Result 3 (Operating Class for Curviness): According to

the GTA system, for the road curviness model described
by (14), (15) and (16), the following expression for the
operating class may be deduced:

pκ,min <

[
1− λC exp

(
µL +

σ 2
L

2

)]
×

(
1κmax∈[0,1/rturn) − 1κmin∈[0,1/rturn)

)
+1κmax∈(0,1/rturn)

λC

2
exp

(
µL +

σ 2
L

2

)
×

[
1− erf

(
ln(1/κmax − rturn)− µC

√
2σC

)]
−1κmin∈(0,1/rturn)

λC

2
exp

(
µL +

σ 2
L

2

)
×

[
1− erf

(
ln(1/κmin − rturn)− µC

√
2σC

)]
+1κmax∈[1/rturn,∞)−1κmin∈[1/rturn,∞)≤pκ,max. (21)

Proof: To derive (21), it is worth observing that position
along the road may be described by a random variable X ,
assuming values x ∈ SX = [0,Ltot]. The space SX may
be divided into two subsets K and K̄, corresponding to the
respective portions for which the road curvature is equal to
or different from zero. Clearly, SX = K ∪ K̄. Owing to

these premises, a continuous function K (X ) of the random
positionX along the roadmay be constructed starting with the
model for the curviness discussed in [58], whereas this paper
proposes a simplified approach. In particular, the curvatureK
is approximated as a piecewise continuous function of X , and
the effect of superimposing curves is disregarded. Therefore,
the total probability P(κmin < K ≤ κmax) may be calculated
starting from the relationship

P(K ≤ κ) = P
(
K ≤ κ | X = x ∈ K̄

)
P
(
X = x ∈ K̄

)
+ P

(
C ≤ κ | X = x ∈ K

)
P(X = x ∈ K)

=
[
1− P(X = x ∈ K)

]
1κ∈[0,1/rturn)

+ P
(
C ≤ κ | X = x ∈ K

)
× P(X = x ∈ K)1κ∈(0,1/rturn)
+1κ∈[1/rturn,∞), (22)

where P(C ≤ κ | X = x ∈ K) reads as in (19) and
the probability P(X = x ∈ K) may be approximated using
Wald’s equation as

P(X = x ∈ K) ≈ E

(
1
Ltot

NC∑
k=1

Lk

)
=

1
Ltot

E(NC )E(L1)

= λC exp
(
µL +

σ 2
L

2

)
. (23)

In the derivation of (23), it is worth emphasizing that, accord-
ing to (14) and (16), the random variable NC is, by construc-
tion, independent of the sequence of curve lengths {Lk}k∈N.
Combining (18), (22) and (23) yields the desired result.

The relationship (21) is the expression for the oper-
ating class relating the curviness parameters Rs,C =

{λC , rturn, µC , σC , µL , σL} of the sOC and the bird’s-eye
view metrics Rb,C = {κmin, κmax, pκ,min, pκ,max} (according
to the GTA representation).

Comparing (17) and (21), the classification criterion pro-
posed by the GTA system appears more refined than that of
the UFD description, since it also accounts for the length of
the curves via the parameters µL and σL .

Figure 3 compares the analytical expression (22) for
the CDF of the road curviness against the distribution
extracted from the original log file corresponding to sOC 2
in Section IV-C.

3) SPEED BUMPS AND STOP SIGNS
In the UFD, another criterion used to classify a transport mis-
sion relates to the obstacle height of the speed bumps that may
be found along the vehicle’s trajectory. These force the driver
to reduce their cruising speed, often resulting in increased
energy consumption. A similar effect is produced by the
stop signs, which clearly impose a driving speed of zero.
Speed bumps and stop signs are modeled similarly in the sOC
representation. They are regarded as independent events and
described by the sequences {Xk ,Vb,k}k∈N and {Xk ,Ts,k}k∈N,
respectively, whereXk is again the location,Vb,k is interpreted
as a recommended speed, and Ts,k as a recommended time.
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FIGURE 3. Comparison between the measured cumulative distribution
and the analytical CDF obtained from the curviness model.

The distance between two consecutive events is assumed to
be exponentially distributed, as in (14), but with intensities
λb and λs. The recommended speed Vb,k and time Ts,k are
supposed to be uniformly distributed between aminimum and
maximum value, i.e.

Vb,k ∼ U
(
vmin, vmax

)
, (24a)

Ts,k ∼ U
(
tmin, tmax

)
. (24b)

Analogous to what done for the curviness, the road section
may be characterized by imposing a limit on the expected
number of speed bumps or stops that cause considerable
speed reductions or prescribe sufficiently long standstill
times. A similar approach is proposed in the UFD for road
obstacles, whereas the GTA classification system makes no
reference to either speed bumps or stop signs. Starting with
the model for speed bumps, the operating class may be for-
malized mathematically as in Result 4.
Result 4 (Operating Class for Speed Bumps): For the spe-

ed bumps model described by (24a), the following expression
for the operating class may be deduced:

n̄′b,min < λb

[
1vb,max∈[vmax,∞) − 1vb,min∈[vmax,∞)

+

(
vb,max − vmin

vmax − vmin

)
1vb,max∈(vmin,vmax)

−

(
vb,min − vmin

vmax − vmin

)
1vb,min∈(vmin,vmax)

]
≤ n̄′b,max.

(25)

Proof: The number of events per unit of length may
be described again using a Poisson random variable, Nb ∼

P(λbLtot), assuming integer values nb ∈ SNb ≡ N0. The
Binomial variable N ′b ∼ Bin(Nb, pb) may instead be intro-
duced to model the number of speed bumps that impose
severe speed reductions or long standstill times. It would
assume integer values in the space SN ′b = {0, . . . , nb} for
nb > 0 and SN ′b = {0} for nb = 0. The quantity pb represents
the probability that the recommended speed Vb is lower than
a specified threshold, and may be computed from (24a) as

pb (vb,min, vb,max, vmin, vmax)

, P(vb,min < Vb ≤ vb,max)

= FVb (vb,max; vmin, vmax)− FVb (vb,min; vmin, vmax)

= 1vb,max∈[vmax,∞) +

(
vb,max − vmin

vmax − vmin

)
1vb,max∈(vmin,vmax)

−

(
vb,min − vmin

vmax − vmin

)
1vb,min∈(vmin,vmax) − 1vb,min∈[vmax,∞).

(26)

Calculating E(N ′b/Ltot) as in (20) and specifying lower and
upper bounds n̄′b,min, n̄

′

b,max on the expected number of speed
bumps per unit of distance yields the result.

The expression (25) establishes a relationship between the
sOC parameters Rs,Vb = {λb, vmin, vmax} and the bird’s-eye
viewmetricsRb,Vb = {vb, n̄

′

b,min, n̄
′

b,max}. The corresponding
relationship for stop signs may be derived with the same
rationale:

n̄′s,min < λs

[
1ts,max∈[tmax,∞) − 1ts,min∈[tmax,∞)

+

(
ts,max − tmin

tmax − tmin

)
1ts,max∈(tmin,tmax)

−

(
ts,min − tmin

tmax − tmin

)
1ts,min∈(tmin,tmax)

]
≤ n̄′s,max. (27)

4) ROAD ROUGHNESS
Road roughness plays an important role when it comes to
durability and fatigue of mechanical components, but has a
minor impact on energy efficiency. Nonetheless, this param-
eter is included in both the GTA and UFD systems.

Road profiles are traditionally modeled using Gaussian
processes [72]. This choice works satisfactorily for small
sections of roads, whereas variability between sections may
be better explained using generalized Laplace models. These
may be interpreted as Gaussian processes with randomly
varying variance. In the sOC representation, the model for the
road profile Z (x) is based on the definition given by the ISO
standard 8608 [73], which uses a two-parameter spectrum:

SZ (�) = Cr

(
�

�0

)−w
, �1 ≤ � ≤ �2, (28)

and zero otherwise. In (28),� is the spatial angular frequency,
�0 = 1, �1 = 2π · 0.011, �2 = 2π · 2.83 [73] are two
cut frequencies expressed in radians per metre, and Cr is the
degree of unevenness, also called the roughness coefficient.
Finally, the waviness parameter w is assumed to be constant
and set tow = 2. The sOC description employs a Laplace ISO
model [10], [11], [65], [66], parametrized by its mean rough-
ness Cr and the Laplace shape parameter νr (or, equivalently,
its variance and kurtosis).

Taking inspiration from the ISO classification [73], the
road may be labeled in respect to the roughness depending
on the degree of unevenness Cr:

Cr,min < Cr ≤ Cr,max. (29)

In particular, the ISO standard [73] specifies eight different
road levels, ranging from class A to H in increasing roughness
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order. Amongst these, however, only the first five are impor-
tant for automotive applications [74]. A similar criterion is
adopted in this paper to the sOC description. Accordingly,
only (29) is required to establish a relationship between the
set of sOC parameters Rs,Z = {Cr, νr} and the two limits
in the set Rb,Z = {Cr,min,Cr,max}. It should be noted that
the proposed criterion systematically neglects the effect of
variability between sections, since the shape parameter νr
does not appear in (29). By contrast, a more refined classi-
fication approach would prescribe an additional relationship
including νr. To this end, further details on generalized
Laplace distributions may be found in [67], [75].

5) SPEED SIGNS AND GROUND TYPE
The legal speed dramatically impacts the energy performance
of road vehicles. In fact, while constant cruising speeds may
be observed to be apparently optimal from an energy effi-
ciency perspective, frequent variations in driving speed result
in increased consumption [23].

On the other hand, the ground type and the asphalt prop-
erties play an important role in determining the maximum
traction forces that the tires can generate, and have also
a substantial effect on rolling resistance [76]–[79]. These
two aspects are particularly significant for electric vehicles,
in connection to both the higher instantaneous torques that
the wheels may experience and the well-known phenomenon
of range anxiety.

Accordingly, both theGTA andUFD classification systems
include the above-mentioned parameters.

In the sOC description, speed signs and ground type behave
as piecewise constant, right-side continuous functions of the
position [58]. Since the same stochasticmodel is used for both
entities, only the speed signs are discussed. Specifically, these
are treated as a random process V = V (x) along with the
position x ∈ R on the road. The variable V (x) is only allowed
to take discrete values in the state space SV = {v1, . . . , vnv},
where nv denotes the finite number of possible speed limits.
The entire process is then split into two parts and modeled as
a sequence of positions, with the locations of the signs, and
speeds {Xk ,Vk}k∈N.
It is also assumed that the current speed limit exerts the

greater part of the influence on the upcoming limit. Thus, for
the sake of simplicity, the sequence of speed limits is modeled
as a Markov chain [80], [81]:

P
(
Vk+1 = vi,k+1

∣∣V1 = vi,1,V2 = vi,2, . . . ,Vk = vi,k
)

= P
(
Vk+1 = vi,k+1

∣∣Vk = vi,k
)
, (30)

where the generic signed speed vi is an element of the speed
vector v = [v1 . . . vnv ]

T.
The Markov probability matrix PV ∈ Rnv×nv

≥0 fully char-
acterizes the chain. An entry pVij models the conditional
probability of transitioning from state i to state j and satisfies∑nv

j=1 pVij = 1. The description may be reduced further by
observing that the speed limit model is embedded in that
of the locations and that there are no self-transitions, so all

diagonal elements are equal to zero, i.e. pVii = 0. Instead, the
off-diagonal elements may be easily estimated from data by
measuring the number of changes fVij between states i and j.
Moreover, in the modeling of the road type sequence, it is
assumed that there are no absorbing states. The speed sign
locations may be modeled as in (14). However, each state
is expected to have its own intensity: nv states introduce nv
parameters λV1, . . . , λVnv , which may be deduced from the
mean length LVi of speed limit vi:

λVi =
1
LVi
. (31)

As for the speed, the nv mean lengths LVi may be organized
into a vector LV = [LV1 . . . LVnv ]

T. Thus, the complete
description consists of the conditional probabilities pVij and
the nv mean lengths LVi (or, alternatively, the intensities λVi).
Furthermore, the fact that the distance Xk+1 − Xk between
consecutive positions is exponentially distributed implies that
V (x) itself becomes a continuous-time4 Markov chain [80].
In particular, the stationary distribution πV of the overall
process may be derived starting from the knowledge of the
generator matrix GV , and satisfies the equation

πVGV = 0, (32)

where the entries gVij = gVij(pVij,LVi) of GV are given by

gVij
(
pVij,LVi

)
=


λVipVij =

pVij
LVi

, i 6= j,

−λVi = −
1
LVi
, i = j.

(33)

Form a bird’s-eye view perspective, the operating class
may be defined by considering the probability that the speed
over the road section ranges between a minimum v̂min and a
maximum v̂max. This probability value may be constrained
between lower and upper bounds pv,min and pv,max, i.e.
pv,min < P(v̂min < V ≤ v̂max) ≤ pv,max. This criterion
is similar to that used in the UFD representation system.
Denoting by I(v̂min,v̂max] the set comprising the values of i
such that vi ∈ (v̂min, v̂max], the relationship connecting the
sOC parameters Rs,V = {v,PV ,LV } to the bird’s-eye view
metrics Rb,V = {v̂min, v̂max, pv,min, pv,max} may be found in
the form

pv,min <
∑

i∈I(v̂min,v̂max]

πVi(PV ,LV ) ≤ pv,max, (34)

subjected to the constraint
∑nv

i=1 πVi = 1.
Instead, the GTA description proposes that a transport

mission should be classified based on the expected number
of transitions between speeds along the road, per unit of
length. To formalize this mathematically, the variable NfV ,
assuming values in SNfV ≡ N0, is introduced to model
the number of speed changes occurring on a road of total

4Continuous Markov chains are traditionally called continuous-time
Markov chains, even though, in the present case, the dimension being con-
sidered is space rather than time.
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length Ltot. This criterion may be integrated with information
about the mean legal speed along the road, thus imposing also
v̂min < E(V ) ≤ v̂max. The two conditions yield the set of
analytical expressions for the operating class as in Result 5
Result 5 (Operating Class for Speed Signs): According to

the GTA system, for the speed signs model described
by (30)-(33), the following expressions for the operating class
may be deduced:

n̄fV ,min <
1
Ltot

∞∑
nfV =0

nv∑
j=1

nv∑
i=1

nfV p̂ij
(
nfV ;Ltot

)
×πVi(PV ,LV ) ≤ n̄fV ,max, (35a)

v̂min <

nv∑
i=1

viπVi(PV ,LV ) ≤ v̂max. (35b)

Proof: The probability p̂ij(nfV ;Ltot) , P(NfV = nfV ∩
V (Ltot) = vj | V (0) = vi) of having exactly nfV > 0 number
of transitions when V (Ltot) = vj conditioned to V (0) = vi
may be calculated as [82], [83]

p̂ij
(
nfV ;Ltot

)
=

∑
k 6=i

∫ Ltot

0
egVii(pVij,LVi)(Ltot−L)

× gVik
(
pVij,LVi

)
p̂kj
(
nfV − 1;L

)
dL, (36)

with initial condition p̂ij(0;Ltot) = pVijegii(pVij,LVi)Ltot [83].
Supposing that the initial probability of being in the state
vi coincides with the stationary one, the total probability
p̂j(nfV ;Ltot) , P(NfV = nfV ∩V (Ltot) = vj) of having exactly
nfV transitions when V (Ltot) = vj then becomes

p̂j
(
nfV ;Ltot

)
=

nv∑
i=1

P
(
NfV = nfV ∩ V (Ltot) = vj

∣∣ V (0) = vi
)

×πVi(PV ,LV )

=

nv∑
i=1

p̂ij
(
nfV ;Ltot

)
πVi(PV ,LV ). (37)

Summing over j yields the probability of having exactly nfV
speed jumps along a road of length Ltot, i.e. the PMF

pNfV
(
nfV ; pVij,LV ,Ltot

)
=

nv∑
j=1

p̂j
(
nfV ;Ltot

)
=

nv∑
j=1

nv∑
i=1

p̂ij
(
nfV ;Ltot

)
πVi(PV ,LV ). (38)

Accordingly, the expected value of speed transitions per unit
of length E(NfV /Ltot) reads

E
(
NfV
Ltot

)
=

1
Ltot

∞∑
nfV =0

nfV pNfV
(
nfV ;PV ,LV ,Ltot

)
=

1
Ltot

∞∑
nfV =0

nv∑
j=1

nv∑
i=1

nfV p̂ij
(
nfV ;Ltot

)

TABLE 3. Probabilities psi for each season assuming that the year is
always composed of 365 days.

×πVi(PV ,LV ), (39)

which gives (35a). The derivation of (35b) is trivial and hence
omitted.
The inequalities (35) relate the set of sOC parameters

Rs,V = {v,PV ,LV } with that of bird’s-eye view metrics,
denoted by Rb,V = {v̂min, v̂max, n̄fV ,min, n̄fV ,max}. It may be
observed that (39) yields a rather complicated expression for
the total number of transitions per unit of length. A simpler
approach would be to approximate the number of transitions
to the state i considering the asymptotic or limiting distribu-
tion, i.e. E(NfV /Ltot) ≈

∑nv
i=1 πVi/LVi, so that (35a) becomes

n̄fV ,min <

nv∑
i=1

πVi(PV ,LV )
LVi

≤ n̄fV ,max. (40)

The above relationship (40) may be used in place of (35a) to
establish a formal expression of the operating class.

B. WEATHER CATEGORY
As briefly mentioned in Section II-B, in the sOC format,
a hierarchical order is introduced to preserve the interaction
between the weather models without needing to introduce
complicatedmultivariate formulations. A composite structure
is achieved by defining the season as the primary weather
model. The parameters describing each physical quantity then
inherit their values depending upon the specific seasonal
setting. This concept is illustrated graphically in Fig. 4, where
the four seasons (primary model) are shown together with
the set of stochastic parameters for each secondary weather
model.

In this context, the season may be also regarded as a
random variable S, whose possible realisations are s ∈ SS =
{s1, s2, s3, s4} with probabilities psi , i = 1, 2, 3, 4, respec-
tively.5 It is worth emphasizing that the seasons considered
in this paper are the meteorological ones, as opposed to the
astronomical. Hence, the probabilities psi should be calcu-
lated differently depending on the location of the road seg-
ment (boreal or austral hemisphere), and are given in Table 3.
Based on these premises, using A to denote a generic

random variable (either continuous or discrete) for a weather
model, the total probability P(A) may be computed starting
from the conditional probabilities P(A | S = si) as

P(A) =
4∑
i=1

P
(
A
∣∣ S = si

)
P
(
S = si

)
5In this paper, the realizations si, i = 1, 2, 3, 4 correspond to winter,

spring, summer and autumn, in that order.
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FIGURE 4. The season is the primary weather model. The other parameters are treated as ancillary and inherit
their values depending on the season.

=

4∑
i=1

P
(
A
∣∣ S = si

)
psi . (41)

Since the sOC parameters used also depend on the specific
seasonal setting, the notation ζ|si is used to emphasize that
ζ|si is the conditional version of the parameter ζ for S = si.
The stochastic models for the weather category discussed

in this paper are based on the formulations presented in [59],
and were validated using data collected from the Swedish
Meteorological and Hydrological Institute (SMHI).

1) AIR TEMPERATURE AND ATMOSPHERIC HUMIDITY
Air temperature and humidity have a profound impact on the
performance of the engine and on the batteries of BEVs [12].
Thermalmanagement strategies also need to be adapted based
on the combined effect of both quantities, especially for
vehicles operating in cold climates [84], [85]. In addition,
the air temperature has a secondary effect on air drag. Not
surprisingly, the UFD and GTA classification systems take
into account both temperature and humidity in their simpli-
fied descriptions of the environment.

In the sOC representation, the models for air temperature
and atmospheric humidity are introduced simultaneously,
since they are similar.More specifically, they are described by
two sequences {Tair,k}k∈N, {9RH,k}k∈N assuming values T ∗air,k
and 9∗RH,k in their respective spaces STair and S9RH . In both
cases, the time resolution may be expressed as a fraction of
hour 1/K , with K ∈ N. Accordingly, the value k = 1 refers
to the first fraction of the first hour of a first year assumed as a
reference. Furthermore, limits are imposed on both quantities
to satisfy physical constraints:

Tair,k = max
(
T0,T ′air,k

)
, (42a)

9RH,k = min
(
max

(
0, 9 ′RH,k

)
, 1
)
, (42b)

where T0 = −273.15◦C represents the zero point for ther-
modynamic temperature, and T ′air,k , 9

′

RH,k may be in turn
decomposed as

T ′air,k = T̄k + T̃k , (43a)

9 ′RH,k = 9̄k + 9̃k , (43b)

in which T̄ , 9̄ and T̃ , 9̃ capture the deterministic and
stochastic components of the air temperature and humidity,
respectively.

In particular, the deterministic trends T̄k and 9̄k in (43)
are modeled using a composition of two sine waves as
follows [59], [61]:

T̄k = µT + Td sin
(
ω̄dk + ϕTd

)
+Ty sin

(
ω̄yk+ϕTy

)
, (44a)

9̄k = µ9 +9d sin
(
ω̄dk + ϕ9d

)
+9y sin

(
ω̄yk + ϕ9y

)
,

(44b)

where µT and µ9 represent the average temperature and
humidity over the year, Td, Ty and 9d, 9y are the ampli-
tudes of the daily and annual deterministic component, and
ω̄d = 2π/(24 · K ), ω̄y = 2π/(24 · 365 · K ) the daily and
annual frequency, respectively. It should be noticed that the
deterministic parameters in (44) are not season-dependent.
On the other hand, the stochastic parts T̃k and 9̃k are both
modeled using a stationary AR(1) process:

T̃k = φT |si T̃k−1 + eT ,k , eT ,k ∼ N
(
0, σ 2

eT |si

)
, (45a)

9̃k = φ9|si9̃k−1 + e9,k , e9,k ∼ N
(
0, σ 2

e9 |si

)
, (45b)

with the characteristic parameters φT |si , σeT |si and φ9|si ,
σe9 |si depending explicitly upon the specific season si, i =
1, 2, 3, 4. The stochastic components themselves are nor-
mally distributed, i.e. T̃ ∼ N (0, σ 2

eT |si
), 9̃ ∼ N (0, σ 2

e9 |si
),

where the process variances σ 2
T̃ |si

and σ 2
9̃|si

are given
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respectively by

σ 2
T̃ |si
=

σ 2
eT |si

1− φ2T |si
, (46a)

σ 2
9̃|si
=

σ 2
e9 |si

1− φ29|si
, (46b)

and may be used in place of σ 2
eT |si

and σ 2
e9 |si

to parametrize
the temperature and humidity models, since they are easier to
interpret.

In both cases, the operating classes may be established
starting from the known probability that each quantity ranges
between a minimum and a maximum value. Considering the
air temperature Tair, this statement may be formalized by
calculating the probability that T ∗min < Tair ≤ T ∗max during the
whole year, and imposing lower and upper bounds pT ∗air,min
and pT ∗air,max, respectively. This translatesmathematically into
pT ∗air,min < P(T ∗min < Tair ≤ T ∗max) ≤ pT ∗air,max. The analytical
expression for the corresponding operating class reads as
in Result 6.
Result 6 (Operating Class for Air Temperature): For the

air temperature model described by (42a), (43a), (44a), (45a),
and (46a), the following expression for the operating class
may be deduced:

pT ∗air,min

<

4∑
i=1

∑
T̄k∈ST̄ |si

pT̄k |sipsi1T ∗max∈[T0,∞)

×8

(
T ∗max − T̄k

(
µT ,Td,Ty, ϕTd , ϕTy

)
σT̃ |si

)

−

4∑
i=1

∑
T̄k∈ST̄ |si

pT̄k |sipsi1T ∗min∈[T0,∞)

×8

(
T ∗min − T̄k

(
µT ,Td,Ty, ϕTd , ϕTy

)
σT̃ |si

)
≤ pT ∗air,max.

(47)

Proof: According to (41), the total probability that the
air temperature is between T ∗min and T ∗max may be computed
by summation over si ∈ SS of the conditional probabilities
relating to each season. From (42a), it follows that

P
(
T ∗min < Tair ≤ T ∗max

∣∣ S = si
)

= P
(
T ′air ≤ T

∗
max

∣∣ S = si
)
1T ∗max∈[T0,∞)

− P
(
T ′air ≤ T

∗

min

∣∣ S = si
)
1T ∗min∈[T0,∞). (48)

For each season, the conditional probabilities in (48) may
be determined considering the number of different solutions
T̄k ∈ ST̄ |si of the deterministic component T̄ obtained as
k varies in each seasonal subsets Sk|si ⊆ N>0, plus their
probabilities pT̄ |si . To this end, it should be observed that
the two sine waves in (44a) are periodic over the day and
the year, respectively. Since ω̄d is an integer multiple of ω̄y,

the total period coincides with the year itself, and thus the
solutions T̄k may be deduced considering each season once
only and in isolation. This is equivalent to considering the
seasonal subsets relating to a single year, for example Sk|si ⊂
{1, . . . , 24·365·K }. Indeed, the sets Sk|si comprise the values
assumed by k for a generic season, independently of the year.6

Thus, a generic conditional probabilityP(T ′air ≤ T
∗

air

∣∣ S = si)
may be written as

P
(
T ′air ≤ T

∗

air

∣∣ S = si
)

=

∑
T̄k∈ST̄ |si

P
(
T̄ + T̃ ≤ T ∗air

∣∣ S = si ∩ T̄ = T̄k
)

=

∑
T̄k∈ST̄ |si

FT̃
(
T ∗air − T̄k

(
µT ,Td,Ty, ϕTd , ϕTy

)
; σeT |si

)
× pT̄k |si , (49)

with

FT̃
(
T ∗air − T̄k

(
µT ,Td,Ty, ϕTd , ϕTy

)
; σeT |si

)
= 8

(
T ∗air − T̄k

(
µT ,Td,Ty, ϕTd , ϕTy

)
σT̃ |si

)
. (50)

Combining (41) with (48), (49) and (50) yields the result.
The expression for the operating class (47) relates the

sOC parameters Ws,Tair = {µT ,Td,Ty, ϕTd , ϕTy , φT |si , σT̃ |si}
and the set of bird’s-eye view metrics Wb,Tair =

{T ∗min,T
∗
max, pT ∗air,min, pT ∗air,max}. Once again, it should be

observed that the autoregressive coefficients φT |si do not
appear in (47).

A similar equation may be derived for the atmospheric
humidity considering the probability that 9RH ranges
between 9∗min and 9∗max. In this case, the conditional prob-
ability reads

P
(
9∗min < 9RH ≤ 9

∗
max

∣∣ S = si
)

= 19∗max∈[1,∞) + P
(
9 ′RH ≤ 9

∗
max

∣∣ S = si
)
19∗max∈[0,1)

− P
(
9 ′RH ≤ 9

∗

min

∣∣ S = si
)
19∗min∈[0,1)

− 19∗min∈[1,∞).

(51)

Hence, analogous calculations as previously yield the follow-
ing relationship:

p9∗RH,min < 19∗max∈[1,∞) +

4∑
i=1

∑
9̄k∈S9̄|si

p9̄k |sipsi19∗max∈[0,1)

×8

(
9∗max − 9̄k

(
µ9 , 9d, 9y, ϕ9d , ϕ9y

)
σ9̃|si

)

−

4∑
i=1

∑
9̄k∈S9̄|si

p9̄k |sipsi19∗min∈[0,1)

6For example, for s = s1, Sk|si is given by Sk|s1 = {1, . . . , 24 · 59 ·K } ∪
{24 · 334 · K , . . . , 24 · 365 · K } in the boreal hemisphere and by Sk|s1 =
{24 · 153 · K , . . . , 24 · 244 · K } in the austral hemisphere.
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×8

(
9∗min − 9̄k

(
µ9 , 9d, 9y, ϕ9d , ϕ9y

)
σ9̃|si

)
−19∗max∈[1,∞) ≤ p9∗RH,max, (52)

which again connects the set of sOC parameters Ws,9RH =

{µ9 , 9d, 9y, ϕ9d , ϕ9y , φ9|si , σ9̃|si
} to that of bird’s-eye

view metrics Wb,9RH = {9
∗

min, 9
∗
max, p9∗RH,min, p9∗RH,max}.

Analogous to (47), the terms 9̄k in (52) represent the different
solutions for the deterministic component of the atmospheric
humidity obtained by letting k vary in each seasonal subset
Sk|si , and p9̄k |si the corresponding probabilities.

As an example, the temperature distributions for the city of
Gothenburg, Sweden, in 2019, obtained using data collected
from the SMHI, are compared to the analytical PDF and CDF
derived according to Eqs. (49) and (50) in Fig. 5. The relative
humidity exhibits a similar trend.

2) PRECIPITATION
The intensity of the atmospheric precipitation highly con-
ditions the driver’s choice of speed [86], [87], which is
clearly reflected in the primemover operating conditions and,
ultimately, in its energy efficiency. Moreover, precipitation
accumulated on the ground is responsible for variations in the
friction coefficient [88] (usually decreased by the presence of
thin layers of water or ice), impacting the tire performance
and their ability to produce tractive and braking forces, and
exciting the well-known phenomenon of hydroplaning. For
these reasons, Scania explicitly accounts for the intensity of
precipitation in the UFD description.

According to the sOC representation, the sequence for
atmospheric precipitation is modeled in a two-step pro-
cess [59], [61]. In the first step, the occurrence of the event
{Hp,k}k∈N is simulated, and then a suitable probability dis-
tribution is used to fit the intensity {3p,k}k∈N, which corre-
sponds to the precipitation amount expressed in millimeters
per hour (it assumes value λp,k ∈ S3p ⊆ R>0). In particular,
the occurrence is modeled by using a Markov chain of fixed
interval, similar to what was done in [89], [90]. The stochastic
variable Hp,k is allowed to take states from the finite space
SHp = {1, 2}, where 1 and 2 correspond to the dry and
wet events. The Markov process for the precipitation is fully
characterized by a transition matrix PH |si ∈ R2×2

≥0 . The
model for precipitation has only two states, and hence the two
following conditions also hold:

pH12|si = 1− pH11|si , (53a)

pH21|si = 1− pH22|si . (53b)

The transition probabilities pH11|si and pH22|si may be esti-
mated by counting the number of transitions for the dry and
wet events.

For the wet event, the intensity (that is the amount of
precipitation per hour) is finally modeled using a Gamma
distribution [91], [92]:

3p,k|si ∼ Ga
(
α3p|si , β3p|si

)
. (54)

Hence, for each season, the precipitation model is fully
described by the coefficients pHij|si of the matrix PH |si
and the shape and rate parameters α3p|si ∈ (0,∞) and
β3p|si ∈ (0,∞).

The corresponding operating class may be formalized by
prescribing that the probability that the precipitation amount
per hour ranges between λp,min, λp,max and should be lower
and upper-bounded by pλp,max and pλp,min, i.e. pλp,min <

P(λp,min < 3p ≤ λp,max) ≤ pλp,max. This yields the
expression in Result 7.
Result 7 (Operating Class for Precipitation): For the pre-

cipitation model described by (53) and (54), the following
expression for the operating class may be deduced:

pλp,min <

4∑
i=1

πH1|si

(
PH |si

)
psi
[
1λp,max∈R≥0 − 1λp,min∈R≥0

]
+

4∑
i=1

1

0
(
α3p|si

)γ(α3p|si , β3p|siλp,max

)
×πH2|si

(
PH |si

)
psi1λp,max∈R>0

−

4∑
i=1

1

0
(
α3p|si

)γ(α3p|si , β3p|siλp,min

)
×πH2|si

(
PH |si

)
psi1λp,min∈R>0 ≤ pλp,max, (55)

where 0(·) and γ (·, ·) are the Gamma function and the Lower
Incomplete Gamma function, respectively.

Proof: The probability P(λp,min < 3p ≤ λp,max)
may be worked out analytically by considering the stationary
distribution for the wet and dry events during each season.
In particular, the conditional stationary distributions πH |si
correspond to the left eigenvector for the matrices PH |si :

πH |siPH |si = πH |si , (56)

subject to the constraint πH1|si + πH2|si = 1. Solving (56)
yields

πH1|si

(
PH |si

)
=

1− pH22|si

2− pH11|si − pH22|si
, (57a)

πH2|si

(
PH |si

)
=

1− pH11|si

2− pH11|si − pH22|si
. (57b)

Therefore, for each season, the conditional probability
P(λp,min < 3p ≤ λp,max | S = si) may be calculated starting
from the relationship

P
(
3p ≤ λp

∣∣ S = si
)

= P
(
3p ≤ λp

∣∣ S = si ∩ Hp = 1
)
P
(
Hp = 1 | S = si

)
+ P

(
3p ≤ λp

∣∣ S = si ∩ Hp = 2
)
P
(
Hp = 2 | S = si

)
= πH1|si

(
PH |si

)
1λp∈R≥0

+F3p

(
λp;α3p|si , β3p|si

)
πH2|si

(
PH |si

)
1λp∈R>0 . (58)

Recalling (41) and combining (54), (57) and (58) leads to the
result.
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FIGURE 5. Comparison between the measured and analytical temperature distributions for the city of Gothenburg, Sweden,
in 2019: (a) probability density; (b) cumulative distribution.

FIGURE 6. Comparison between the measured cumulative distribution for
the precipitation in Gothenburg (2019) and the analytical CDF derived
from the precipitation model.

Inequality (55) establishes the relationships between
the set of sOC parameters Ws,Hp = {PH |si , α3p|si ,

β3p|si} and the bird’s-eye view metrics Wb,Hp = {λp,min,

λp,max, pλp,min, pλp,max}.
The measured cumulative distribution for the precipitation

in Gothenburg for the year 2019, obtained again using SMHI
data, is compared to the analytical CDF of Eq. (58) in Fig. 6.

C. TRAFFIC CATEGORY
Especially in highly-congested scenarios, road traffic excites
frequent fluctuations in the driver’s choice of speed. As a
consequence, the prime mover becomes subjected to tran-
sient dynamics and operates in suboptimal conditions. From
the perspective of energy efficiency, detailed modeling of
the interaction between individual vehicles is not usually
required, whereas a macroscopic approach is sufficient [9].

More specifically, in the sOC representation, the traffic
flow is assumed to be stationary on the road section, and thus
the unique variable to be considered becomes the so-called

density, denoted by ρt expressed as a number of vehicles
per distance. Moreover, in the sOC format, given a road, the
parameters used to describe the traffic are also supposed to
depend upon the season, and therefore a relationship analo-
gous to (41) holds for ρt.

1) TRAFFIC DENSITY
For each road segment, the traffic density is modeled7 as a
sequence {ρt,k}k∈N assuming non negative values ρ∗t,k ∈ Sρt :

ρt,k = min
(
max

(
0, ρ′t,k

)
, ρc

)
(59)

where ρc is a critical value for the density, and ρ′k is the sum
of a deterministic and stochastic component:

ρ′t,k = ρ̄k + ρ̃k . (60)

with

ρ̄k = µρ|si + ρd|si sin
(
ω̄dk + ϕρd|si

)
, (61a)

ρ̃k = φρ|si ρ̃k−1 + eρ,k , eρ,k ∼ N
(
0, σ 2

eρ |si

)
. (61b)

In (61), µρ|si is the average density on a specific road seg-
ment during the season, ρd|si is the amplitude of the daily
variation, ω̄d is again the daily frequency, ϕρd|si the initial
phase. It should be noted that, as opposed to the mod-
els for the air temperature and humidity, the deterministic
parameters in this case depend explicitly upon the seasonal
setting. Thus, in the sOC description, the traffic density
is parametrized by the deterministic quantities µρ|si , ρd|si ,
ϕρd|si and the stochastic coefficients φρ|si , σeρ |si . As usual, the

7The stocastic model for traffic density discussed in this paper is based
on that presented in [59], and was validated using data collected from the
Trafikverket.
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error variance σ 2
eρ |si

may be rewritten in terms of the process
variance as

σ 2
ρ̃|si
=

σ 2
eρ |si

1− φ2ρ|si
, (62)

which, for each season, actually represents the vari-
ance of the stochastic component of the traffic density,
i.e. ρ̃ ∼ N (0, σ 2

ρ̃|si
).

In the bird’s-eye view representation, the relative metrics
may again be derived by imposing pρ∗t ,min < P(ρ∗min < ρt ≤

ρ∗max) ≤ pρ∗t ,max, where ρ∗min, ρ
∗
max are prescribed thresholds,

and the probabilities pρ∗t ,min, pρ∗t ,max should be interpreted as
the limiting fractions of the day for which the traffic density
is comprised between ρ∗min and ρ

∗
max. These two values may

be deduced starting from some empirical or analytical model
that relates density to speed variation.

Due to the above premises, the derivation of the relation-
ship for the operating class may be worked out exactly as
in Section III-B1 and is hence omitted. The final inequality
is

pρ∗t ,min < 1ρ∗max∈[ρc,∞) +

4∑
i=1

∑
ρ̄k∈Sρ̄|si

pρ̄k |sipsi1ρ∗max∈[0,ρc)

×8

ρ∗max − ρ̄k

(
µρ|si , ρd|si , ϕρd|si

)
σρ̃|si


−

4∑
i=1

∑
ρ̄k∈Sρ̄|si

pρ̄k |sipsi1ρ∗min∈[0,ρc)

×8

ρ∗min − ρ̄k

(
µρ|si , ρd|si , ϕρd|si

)
σρ̃|si


−1ρ∗min∈[ρc,∞) ≤ pρ∗t ,max, (63)

which connects the set of sOC parameters Ts,ρt = {µρ|si ,
ρd|si , ϕρd|si , φρ|si , σρ̃|si} to the bird’s-eye viewmetrics Tb,ρt =
{ρ∗min, ρ

∗
max, pρ∗t ,min, pρ∗t ,max}.

D. MISSION CATEGORY
In the sOC description, there is presently no stochastic model
for the mission category. However, for classifying road trans-
port missions, the traveled distance might be used as a first
indicator. This paper proposes the same approach as the GTA
system, which prescribes four different levels:

1) STOP&GO if the mean distance between delivery or
pickup of goods/passengers is shorter than 0.5 km.

2) LOCAL if themean distance between delivery or pickup
of goods/passengers is longer than 0.5 km but shorter
than 5 km.

3) REGIONAL if the mean distance between delivery or
pickup of goods/passengers is longer than 5 km but
shorter than 50 km.

4) L-DISTANCE if the mean distance between delivery
or pickup of goods/passengers is longer than 50 km.

The mission length is a delicate parameter, since it produces
a significant effect on nondimensional indicators [1].

The complete set of operating class relationships derived in
this paper, plus the corresponding sOC parameters and bird’s-
eye view metrics, are summarized in Table 4 for each model
in the road, weather, and traffic categories.

IV. MATHEMATICAL CLASSIFICATION OF ROAD
TRANSPORT MISSIONS AND APPLICATIONS
The theoretical framework developed in Section III may be
used to label individual transport missions, but also to encom-
pass entire transport applications, starting from available
measurements logged during vehicular operations. To illus-
trate this, two examples are adduced using the GTA and UFD
representations.

A. THE GTA AND UFD CLASSIFICATION SYSTEMS
The derivation of the analytical expressions for the operating
classes in Section III was inspired by the interpretation from
two already-existing classification systems: the GTA and the
UFD representations. In the scope of product development
and selection, they may serve as a preliminary but powerful
tool to gain a rough idea of the vehicle usage, and evalu-
ate the salient characteristics of its operating environment.
As they are both colloquial in nature, with some exceptions
they do not prescribe the precise thresholds of the operating
classes, whereas an informal approach is often preferred.
An option would be to establish the corresponding metrics
using some fundamental intuition about the effect that some
physical quantities produce on the vehicle’s performance
or driver’s behavior. Tables 5 and 6 list the values for the
probabilities and limits imposed on some of the operating
classes according to the GTA and UFD interpretations. The
numbers highlighted in bold refer to values not specified
in the original classification system, but which were either
deduced in the paper based on some simple physical model,
or guessed. On the other hand, the expression ’n.s.’ has been
used when the threshold is not specified and no simple model
was available fromwhich to infer a plausible numerical value.

Starting from the topography model, it should be observed
that both the GTA and UFD systems define the operat-
ing classes with great precision, as briefly mentioned in
Section III-A1 and exemplified in Section IV. This may well
be ascribed to the topography’s considerable impact on such
important indicators as energy efficiency [58]. The number of
curves and local curvature of the road also play a major effect
in determining the overall performance of the vehicle [58].
In spite of this, the classification approach appears to be
less refined for the curviness parameter. In particular, the
GTA system only sets the limits for the probabilities pκ,min
and pκ,max, while no exhaustive information is provided by
the UFD representation. Hence, the maximum value for the
curvature κmax = 0.008 m−1 in Tables 5 and 6 was estimated
from the steady-state relationship κmax = amax

y /v2κ , which
connects a comfort threshold for the lateral acceleration amax

y
with a reference speed in a curve vκ . In the present case, the
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TABLE 4. Model interpretation, operating class relationships, sOC parameters and bird’s-eye view metrics for the models presented in Section III.
It should be observed that the operating classes for the topography and curviness parameters are determined using two relationships. While for the
topography the inequality for the hill length may complement that on the process variance, the two relationships for the road curviness and speed signs
should be used separately, depending on the specific classification system in use (UFD or GTA).

latter two quantities were assumed to be amax
y = 2 m s−2

and vκ = 54 kmh−1, respectively. These are only indicative
values, and correspond specifically to a speed reduction of
about 20% when driving at 70 kmh−1. The value for the
maximum number of curves n′C,max (expressed in events per
100 km) marking the transition from the LOW to the HIGH
class in the UFD system was simply set as equal to 20,
analogous to the first limit for the stop signs. The same
rationale was applied in determining the limits for the number
of speed bumps, with the difference that in this case three
levels are specified, namely LOW, HIGH and V-HIGH. For
the latter two models, the speed and waiting time thresholds
vb,min, vb,max, ts,min, ts,max were assumed to be equal to the
maximum recommended speed and time vmax, tmax, meaning
that all the speed bumps and stop signs are considered in
defining a class. The values for Cr,min and Cr,max in the road
roughness model were deduced from the first four levels
specified by the ISO standard [73]. Finally, regarding the
model for speed signs, no limits v̂min, v̂max were assumed for
the GTA system, and the classes LOW, HIGH and V-HIGH
were only determined based on the number of expected

speed transitions. The values n̄fV ,min and n̄fV ,min were inspired
by those for the stop signs. The probabilities pv,min and
pv,max in the UFD description were always set to 0.7 and 1,
respectively.

Regarding the weather models, there was no easily identifi-
able metric for atmospheric humidity and precipitation. How-
ever, the different levels and thresholds for air temperature
are detailed in Appendix VI-B. In theory, it should be pos-
sible to correlate the amount of precipitation with the driver
speed variation using some physical or empirical model, but
no attempt was made in this paper. Alternatively, a more
refined system would be preferable; one that distinguishes
between more than just two classes. An example would be
specifying four categories according to theManual of Surface
Observations [93].

Ultimately, the traffic model was omitted, since the GTA
and UFD do not specify any density level along the road.
However, a simple approach would be to relate travel speed
to density according to some equilibrium equation assuming,
say, a fundamental diagram for the different road types. This
is also suggested in [59].
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TABLE 5. Mathematical interpretations, operating classes and bird’s-eye view metrics for the sOC models according to the GTA classification system. The
values in bold refer to values that are not specified in the original classification system, but have been guessed in the paper. The values for κmin, κmax in
the curviness model are expressed in m−1; for n̄fV ,min, n̄fV ,max in the stop and speed signs models in number of events per 100 km; for is v̂min and v̂max

in the speed signs model in km h−1.

TABLE 6. Mathematical interpretations, operating classes and bird’s-eye view metrics for the sOC models according to the UFD classification system.
If the metrics are present, but their numerical values is not specified, ’n.s.’ is used. The values in bold refer to values that are not specified in the original
classification system, but have been guessed in the paper. The values for κmin, κmax in the curviness model are expressed in m−1; for n̄′b,min, n̄′b,max and
n̄′s,min, n̄′s,max in the speed bumps and stop signs models in number of events per 100 km; for is v̂min and v̂max in the speed signs model in km h−1.

B. CLASSIFICATION OF TRANSPORT APPLICATIONS
To illustrate the potential of the combined sOC and bird’s-eye
view descriptions, a first example was aimed at classifying

an entire transport application. For the sake of simplicity,
only the mission length and topography parameters were
considered. Fig. 7 shows the distribution of 192 road transport
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missions carried out by a Volvo FH16 during a period of
approximately six months.8 The operations were classified
using the relationship for the OC class given by (10). Specifi-
cally, Fig. 7(a) and Fig. 7(b) refer to the distributions obtained
according to the GTA and UFD thresholds for the standard
deviation σY of the road grade, as listed in Table 2. While
the total distance may be deduced immediately from log data,
the topography parameters should be estimated using ad-hoc
tools, such as the Wafo package [94], [95].

Looking at Fig. 7, it may be observed that the two sys-
tems yield rather different results. In particular, the UFD
description misses the P-FLAT level; the transport opera-
tions are, therefore, spread across the remaining categories.
This generally increases the number of FLAT and HILLY
missions, compared to the distribution obtained by using
the GTA metrics. Specifically, the HILLY category seems
to be predominant in Fig. 7(b), whereas the majority of the
mission is labeled as P-FLAT in Fig. 7(a). On the other hand,
the distribution of V-HILLY missions is characterized by a
similar trend for both classification systems.

In both cases, the entire application may be character-
ized starting with the estimated parameters for the individual
missions, combined with their distributions. Independently
of the classification system, the application is labeled as
L-DISTANCE in respect of the mission length, with an
average distance traveled of 52.4 km. On the other hand, the
GTA and UFD systems classify the application respectively
as P-FLAT and HILLY in reference to the topography class.
Additional details about the individual missions are given in
Table 11 in Appendix C1.

C. CLASSIFICATION OF TRANSPORT MISSIONS
Considering individual road missions, an idealized
representation in terms of a dOC may be built starting from
measured data. An equivalent statistical description in the
form of an sOCmay then be derived for each dOC by estimat-
ing the stochastic parameters of the road models presented
in Section III.
The following example analyzes six different sOCs,

parameterized using data collected during real vehicular oper-
ations [58], [96]. To obtain a more accurate description of the
operating environment, the sOC parameters were estimated
for different road types (urban, rural, highway). These were
determined based on the legal speed values for different
sections (more details may be found in Appendix A). The
complete set of parameters for each reference sOC is listed
in Tables 12, 13, 14, 15, 16 and 17 in Appendix C2. In gen-
eral, it may be observed that each road type has its own
characteristics. For instance, urban roads generally appear
to be curvy, whereas rural and highway sections are mainly
straight, and characterized by longer and larger curves. Also,
the frequency of stop signs may be expected to correlate to
the road type, as confirmed by the value of the parameters

8Since the example excludes the weather parameters, six months has been
assumed a sufficient period of time to span the overall application.

in Appendix C2. The classification of individual road types
was then carried out directly by utilizing the expressions for
the operating classes derived in this paper. These, combined
with (66) and (68) in Appendix C2, were finally used to
categorize each road mission (sOC).

The six operating cycles thus parametrized were then clas-
sified, taking four different parameters into account: topogra-
phy, curviness, stop and speed signs. Starting from the values
for the probabilities and metrics reported in Tables 5 and 6,
the estimated classes for each combination of parameter
and road type are listed in Table 7. Specifically, while both
the GTA and UFD systems set their own thresholds on the
model for topography, curviness, and speed signs, it should
be observed that the GTA lacks the operating classes for
the stop signs. Therefore, the corresponding road types and
the overall sOC were only labeled according to the metrics
used in the UFD representation. For each operating cycle,
the road types were first categorized individually, and then
used together to classify the overall mission according to
the methodology illustrated in Appendix A. The percentages
describing the road composition in the second column cor-
respond to the stationary probabilities πRGR = 0 for the
continuous-time Markov process describing the sequence of
road types in Appendix. A. Generally speaking, it may be
observed highways are the predominant road composition
for most of the operating cycles. As a result, the total prob-
abilities and expectations calculated using (66) are largely
determined by the stochastic parameters for the highways.
These are often characterized by relatively higher velocities,
smoother curves, reduced hilliness, and fewer stops. Thus,
the stochastic operating cycles themselves inherit the same
characteristics, and are labeled accordingly. This justifies to
a large extent the fact that they quite often seem to fall in
the same categories as the corresponding highway roads.
In particular, the two parameters that deserve special atten-
tion are the topography and the speed signs. Concerning
the former, the road types and stochastic operating cycles
of the example are noticeably categorized in the P-FLAT
level according to the GTA system. However, this category
is absent in the UFD representation, which systematically
assigns the labels FLAT or HILLY. Again, this discrepancy is
interesting, and confirms that the two systems conflict most of
the time. A similar phenomenon may be observed in respect
of the speed signs (to ensure a fair comparison, only the
criterion on the mean speed in (35b) was included in the
example, while the number of transitions was disregarded).
By construction, urban sections are always labeled in the LOW
category according to both the GTA and UFD descriptions.
According to the UFD metrics, rural and highway roads
are alternatively labeled as MODERATE and HIGH or HIGH
and V-HIGH, respectively, whereas the UFD system often
replaces the MODERATE level with the HIGH class, except
for sOC 6. For the case under consideration, all the rural
sections were labeled as MODERATE using the UFD crite-
rion, whereas the highways, excluded sOC 5, as HIGH. The
GTA system also classifies as V-HIGH the highway section
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FIGURE 7. Distribution of road transport mission according to the GTA (a) and UFD (b) classification systems.

of sOC 4. At any rate, the stochastic operating cycles always
inherited the HIGH label. Two striking exceptions are sOC 2
and sOC 5, which did not satisfy any criterion based on
the classification established by the UFD system. Indeed,
no speed range of those in Table 5 dominates for more than
70% of the traveled distance. This unexpected result is symp-
tomatic and highlights the need for a refined classification
system, plus more scientific definitions of both the notion
of a class per se and its corresponding metrics. Conversely,
the GTA system tends to assign the label V-HIGH to urban
or rural sections, which are characterized by more frequent
transitions between speeds. In this case, highway roads also
exerted the majority of the influence in determining the level
of the entire operating cycles, which were always classified
as LOW except for sOC 5.

D. A CASE-STUDY EXAMPLE OF APPLICATION
While a complete, rigorous optimization problem is beyond
the scope of this paper, a simple example is adduced to
illustrate the practical application of the OC format for the
purpose of vehicle design selection. For the sake of sim-
plicity, only two different configurations are considered and
compared in the following: a rigid Volvo FH16 750 and a
FH13 540. The two configuration are similar, with the Volvo
FH13 540 being equipped with a smaller engine. Additional
details about both configurations may be found, for example,
in the Volvo specification sheets [97].

The energy performance of the two different powertrains
may be assessed considering a typical transport applica-
tion, given for example in the form of a distribution as in
Section IV-B. To this end, multiple dOCs (either original
or synthetic) may be used as an input to a complete simu-
lation model for longitudinal vehicle dynamics, including a
dynamic driver model. For the case study presented in this
paper, the VehProp environment [98] was used to model and

simulate both trucks. To reduce the dimension of the problem,
a few sOCs were selected appropriately to be representative
of the actual usage. More specifically, using the GTA descrip-
tion as a reference classification system, the first three sOC
in Section IV-C, parametrised based on real data logged from
the Volvo FH16 750, were employed to assess variability in
fuel consumption (measured in l 10−1km−1)9 depending on
the characteristics of each mission and on the specific config-
uration. In this context, it may be easily observed that all the
three missions are classified as P-FLAT in the topography
category, which is the predominant class. In turn, the selected
sOCs were used to synthesize 200 dOCs for each reference
mission.

The resulting distributions are plotted in Figures 8 and 9.
In particular, in Figure 8, the histograms of the fuel consump-
tion are shown (blue for the FH16 750 and orange for the
FH13 540), along with the mean value µ and the two band-
widths µ±σ and µ±2σ (the corresponding mean values are
listed in Table 8 for both trucks), whereas Figure 9 compares
the energy performance of the two configurations for each
reference mission. Generally speaking, it may be observed
that the total fuel consumption calculated by simulating the
reference dOCs is lower than the mean value resulting from
the corresponding distribution. For the first two missions,
the fuel consumption in output from the reference dOCs is
still contained within a single standard deviation bandwidth,
whereas for the third missions is contained between two
standard deviations for both vehicle configurations. There-
fore, the reference dOCs may be fairly considered as typical
operation for the first two transport missions. In all cases,
it may be concluded that the FH13 540 outperforms the FH16
750 in terms of energy efficiency, implying that, all the other

910 km correspond to one Swedish mil.
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TABLE 7. Operating classes for the six different stochastic operating cycles in the example of Section IV-C. The term composition refers to the
composition of the road (percentages of urban, rural and highway types) according to the distributions calculated as explained in Section VI-A. The
classification is carried out in respect of both the individual road types and the total transport operation. The topography and curviness parameters are
classified using the GTA and UFD system in turn; the stop signs are only classified using the metrics from the UFD.

TABLE 8. Fuel consumption (l10−1km−1).

things being equal, the FH13 540 configuration would be
preferable to purchase.10

It should be emphasized that, since only two different con-
figurations were considered in the previous example, it was
possible to easily compare the energy performance on the
whole population of generated dOCs. This approach would
not be feasible when dealing with a complex optimization
problem involving thousands of decision variables and pos-
sible vehicle designs. In the latter case, the vehicle should

10In general, no substantial difference between the vehicles’s speed could
be observed in simulation.

be optimized by considering dOCs that are optimally repre-
sentative of both the mission characteristics and the energy
usage, that is a synthetically generated mission yielding,
in simulation, mean or close-to-mean energy consumption.
Such approach as been already applied by other scholars,
for example in [21]–[23], [26] (in particular, it is interesting
to observe that the OC model for topography was already
included in [23], with the corresponding classes defined
according to the GTA system). Moreover, if log data from
idividual or single vehicles are available, typical dOCs may
be properly selected as already explained in the previous
example. The representativeness in terms of energy consump-
tion for an optimized configuration may be instead evaluated
a posteriori on the same population of road operations.

V. DISCUSSION
The examples in Section IV were aimed at illustrating how
the dual description bird’s-eye view/sOC can bemade towork
in practice when addressing the classification problem. This
section discusses two extremely delicate aspects related to the
proposed approach.

A. SCIENTIFIC DEFINITION OF METRICS AND LABELS
The example discussed in Section IV was emblematic in
underlining the need for a classification system that could
appropriately reflect the usage. To clarify this concept, one
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FIGURE 8. Distribution of the fuel consumption for both configurations.

FIGURE 9. Comparison between the distribution of the fuel consumption for each reference mission.

may think of a customer who, based on the known proper-
ties of the intended transport application, needs to choose
a new vehicle. Assuming that an optimization problem to
find standard configurations that better suit the application
has already been solved, the customer simply has to choose
from the available optimal designs. However, the outcome of
the optimization problem would be highly dependent on how
the operating classes and their metrics have been established.
Both the GTA and UFD representations set their own systems
of thresholds mostly on empirical bases. The reason for this
lies in the fact that both classifications have been developed
over many years as a result of mutual interaction between
manufacturers and customers. Their non-mathematical nature

reflects the stakeholders’ necessities. In this context, the sub-
stantial discrepancy between the metrics from the GTA and
UFD systems might lead to very different solutions in terms
of the best design. This might be overcome if a systematic,
scientific method of specifying labels and limits for the oper-
ating classes were to be established.

For those models whose metrics are prescribed in terms
of expectation, as in (17), (25) and (27), the problem merely
reduces to finding the right sequence of limits for the expected
number of events. This operation might seem trivial in theory,
but, from a practical perspective, it is not obvious how to
proceed. When the classes are specified in terms of probabil-
ities, on the other hand, the issue may become rather thorny.
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Often, the GTA and UFD systems only set one bound. In this
case, as with the road topography, the levels are always well-
defined, and it is possible to assign a unique set of sOC
parameters to a certain operating class. In a more general
situation, lower and upper bounds on both the probability
and the parameter itself should be prescribed to span the
entire range of possibilities. However, this also multiplies the
number of classes needed, increasing the complexity of such
a classification system. To keep the structure of a bird’s-eye
view description as simple as possible, it becomes obvious
that the thresholds values cannot be imposed based on pure
mathematical considerations, whereas a heuristic approach is
required.

B. FEASIBLE SETS OF sOC PARAMETERS
It was briefly mentioned in Section II-D that the relation-
ship between the bird’s-eye view and sOC representations is
not bijective in the ascending direction. In particular, while
a given set of sOC parameters should ideally correspond
uniquely to a certain class, the opposite does not hold. Fix-
ing a probability threshold, or equivalently the number of
expected events, the analytical expression for an operating
class may be interpreted as a hypersurface having multiple
solutions. Broadly speaking, there exist infinite different sets
of sOC parameters that categorize a mission in the same
operating class. Mathematically, this certainly appears log-
ical. The physical interpretation, on the other hand, is not
so obvious: some combinations of sOC parameters may
make no sense. An emblematic situation where this becomes
problematic is in dealing directly with customers, with no
prior information about the intended usage: they may have a
rough idea of the characteristics of the operating environment,
but would be unable to indicate a precise estimate of the
topography variance. The manufacturer might suggest an
optimal configuration for the truck based on the bird’s-eye
view description provided by the customer, but the optimiza-
tion problem should have been already solved assuming a
set of possible values for the topography variance. In this
context, how to ascertain that a solution is feasible from
the physical interpretation perspective is a highly intriguing
question. One possibility is to resort almost exclusively to
sets of parameters extracted from real vehicular operations,
or from data collected by external servers. Single missions
might, therefore, be used as a basis to build a large, reliable
dataset of parameters.

VI. CONCLUSION
Classifying individual transport missions at an individual
level, as well as entire vehicular applications, is crucial
when it comes to designing and selecting single components
and configurations, and in the planning of maintenance and
optimization of road operations. This paper addressed the
classification problem from the perspective of the operating
cycle (OC) description by exploring the relationship between
two of its three levels of representation, namely the bird’s-
eye view and the stochastic operating cycle (sOC). While

the former is characterized by a rather colloquial tone and
aims to provide an intuitive understanding of the usage
by resorting to simple metrics and labels, the latter is the
most adequate descriptive tool in reflecting variation in the
operating environment, drivers’ attitudes, and overall vehicle
performance. Specifically, the non-technical language of the
bird’s-eye view relies naturally on vague statements, which
might be interpreted in terms of elementary statistics. On the
other hand, the sOC represents the surroundings, including
the road, weather, and traffic properties, using a vast set
of independent stochastic models structured in a modular,
hierarchical fashion.

In this paper, the natural connection between the sOC
and the bird’s-eye view was therefore formulated in terms
of elementary statistical operators, such as probability P(·)
and expectation E(·). Starting from the stochastic modeling
approach typical of the sOC, these were calculated analyt-
ically in Section III for the different models in the road,
weather, and traffic categories, establishing algebraic expres-
sions, renamed in this paper as operating classes, which
relate the two levels of description. The result is a collection
of analytical relationships, which are easy to understand in
terms of frequencies, probabilities, and expected number of
events that a driver may encounter along the road or during
a mission. In particular, the mathematical derivation of the
expressions for the operating classes was based on intuition
gained from examining some existing classification systems,
like the Global Transport Application (GTA) introduced by
Volvo and the User Factor Description (UFD) used by Scania.
The purpose of the operating class is twofold. Exploiting
the relationship between the sOC and the bird’s-eye view in
the ascending direction, road transport missions categorized
according to the operating classes may be labeled directly
starting from, say, log data or non-technical information
retrieved from customers. This enables classification not only
of road operations seen in isolation, but also the entire appli-
cation, allowing for a high level of standardization. On the
other hand, the non-bijective nature of the inverse relationship
(in the descending direction) may facilitate optimization of
the vehicle’s configuration, starting from a rough understand-
ing of the usage. A typical case is that of a vehicle manu-
facturer dealing with a customer, who cannot be expected to
have a deep knowledge of stochastic models and statistical
operators. Asking simple questions about the typical operat-
ing environment and characteristics of the mission, engineers
may use information from the answers to parametrize several
sOCs, and, in turn, dOCs. These may be combined with vehi-
cle and driver models into virtual simulation environments to
conduct statistical studies and solve optimization problems.

To illustrate the potential of the proposed approach,
an example with six stochastic operating cycles parametrized
from log data, plus an entire transport application, was dis-
cussed in Section IV, using the GTA and UFD systems for
comparison. While it was shown how to take advantage of
the dual-level of description bird’s-eye view/sOC to catego-
rize both individual roads and missions, the example also
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highlighted some weaknesses of the classification systems
currently used. In particular, the need for more refined classi-
fication criteria emerged in conjunctionwith the impossibility
of labeling certain missions, at least according to the metrics
defined in the GTA and UFD representations. How to pre-
scribe probabilities and thresholds scientifically is however
an open problem, which has not so far been explored in
context. Moreover, a unique operating class according to the
bird’s-eye view description may correspond to sets of sOC
parameters that are unfeasible from a physical perspective.
Further research is needed to investigate both aspects in
greater detail.

Another interesting direction for future studies connects
to the possibility of including more stochastic models and
parameters when addressing the classification problem of
energy usage of road vehicles. For example, factors like
road width, visibility, snow accumulation, wind speed and
direction, and daily traveled distance also play an important
role in determining the vehicle’s response in terms of energy
efficiency. However, they are not currently considered by
the existing classification systems. Therefore, the need for
extending the stochastic operating cycle representation to
incorporate these variables should be carefully evaluated.

Finally, the potential of the new formalism established
in the paper should also be tested on large, compli-
cated optimization problems, similar to those solved by
Ghandriz et al. [23], where the effect of the road topography
was investigated using the stochastic model discussed in
Section III-A1. With the novel operating classes derived in
Section III, the analysis conducted in [23] could be easily
extended to account for the contribution of other road and
weather parameters.

APPENDIX
A. ROAD TYPES AND TOTAL PROBABILITY
The notion of an operating class introduced in Sections II,
and III may be used to categorize either a road mission or an
individual road section, hereinafter referred to as type. In the
latter case, the road type may be regarded as a primary model
for the road, and would work similarly to the season for the
weather category. Depending on the road type, different sets
of stochastic parameters may then be used for the models
illustrated in Section III, which would be treated as secondary
ones. This approach is often used in the sOC representation,
as discussed also in [58]. A graphical representation of the
hierarchical structure of the road type, plus the sOC parame-
ters for the secondary road models, is shown in Fig. 10. More
specifically, the modeling of the road types may be related
to the notion of speed signs, and represented as a stochastic
process starting from the speed limit [99]. The existence
of nr different road types rt may be firstly postulated, i.e.
{r1, . . . , rnr }, based on a sequence of nr − 1 characteristic
speeds, ordered in ascending magnitude. These would mark
the transition from one road type to the next, implying that
each speed sign would belong uniquely to a given road type.

Accordingly, the road type would itself become a random
variable Rt, assuming values rt ∈ SRt = {r1, . . . , rnr }, as a
function of the speed sign V (x), and would in turn depend
on the position along the road. A specific number nv|ri of
speed signs may be associated with each road type. Modeling
the locations Xk for the road types as in (14), the model
would be described by a continuous-time Markov chain, and
completely parametrized by the entries pRij of the single-step
transition matrix PR ∈ Rnr×nr

≥0 and the nr intensities λRi,
reading

λRi =
1
LRi
, (64)

being LRi the mean length of the road type ri. Again, the
nr mean lengths LRi may be collected in a vector LR =
[LR1 . . . LRnr ]

T.
If a similar approach is preferred, analogous to that in

Section III-A5, the stationary πR distribution of the overall
process should be derived as the solution of πRGR = 0,
where the entries gRij = gRij(pRij,LRi) of the generator matrix
GR would be given by

gRij
(
pRij,LRi

)
=


λRipRij =

pRij
LRi

, i 6= j,

−λRi = −
1
LRi
, i = j.

(65)

To classify an operating cycle, it would therefore be necessary
to compute the total probabilities or expectations by sum-
mation over the different road types. Indeed, road segments
belonging to the same road type should be described using
the same values for the sOC parameters. The total probability
and expectation for a generic random variable A in the road
or weather categories would become

P(A) =
nr∑
i=1

P(A | Rt = ri)P(Rt = ri)

=

nr∑
i=1

P(A | Rt = ri)πRi(PR,LR), (66a)

E(A) =
nr∑
i=1

E(A | Rt = ri)P(Rt = ri)

=

nr∑
i=1

E(A | Rt = ri)πRi(PR,LR), (66b)

where the analytical expressions for the probabilities
P(A | Rt = ri) and the expectations E(A | Rt = ri)
would coincide with those for the operating classes derived
in Section III. It should be emphasized that, in (66), the
probabilities P(Rt = ri) may be set equal to the stationary
ones for the road types, given a generic sOC. This should
be the preferred approach when referring to an sOC, which
is an abstract entity. In this context, it could be mentioned
that calculation of the number of transitions between speeds
should be modified to include also the number of transitions
between different road types. Introducing a new variable
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FIGURE 10. Graphical illustration of the primary road model.

TABLE 9. Upper and lower limits on the air temperature according to the
GTA classification system.

NfV+fR = NfV+NfR , accounting for both types of speed jumps,
the expected number of total transitions may be estimated as

E
(
NfV+fR
Ltot

)
=

nr∑
i=1

E
(
NfV
Ltot

∣∣∣∣ Rt = ri

)
P(Rt = ri)

+ E
(
NfR
Ltot

)
=

nr∑
i=1

E
(
NfV
Ltot

∣∣∣∣ Rt = ri

)
πRi(PR,LR)

+ E
(
NfR
Ltot

)
, (67)

where E(NfV /Ltot | Rt = ri) reads as in (39) and E(NfR/Ltot)
may be calculatedwith similar relationships to (36), (37), (38)
and (39).

Finally, the traffic density also deserves special attention,
since its parameters would depend not only on road type but
also speed signs. Since each speed signmay be uniquely asso-
ciated with a single road type, the total probability P(ρ∗min <

ρt ≤ ρ
∗
max) would be calculated as

P(ρ∗min < ρt ≤ ρ
∗
max)

=

nr∑
i=1

nv|ri∑
j=1

P(ρ∗min < ρt ≤ ρ
∗
max | Rt = ri ∩ V = vj)

× P(V = vj | Rt = ri)P(Rt = ri)

TABLE 10. The operating classes for the air temperature parameter in the
UDF description. The V-COLD, COLD, WARM and V-WARM classes are defined
by three relationships of the same type. On the other hand, the MIXED
class only needs two inequalities to be completely defined.

=

nr∑
i=1

nv|ri∑
j=1

P(ρ∗min < ρt ≤ ρ
∗
max | Rt = ri ∩ V = vj)

×πVj(PV |ri ,LV |ri )πRi(PR,LR), (68)

where the formal expression for P(ρ∗min < ρt ≤ ρ
∗
max | Rt =

ri ∩ V = vj) would read exactly as in (63).

B. THE AIR TEMPERATURE PARAMETER IN THE GTA AND
UFD CLASSIFICATION SYSTEMS
The temperature parameter in the GTA and UFD classifi-
cation systems is treated differently and deserves special
attention. In particular, the GTA description specifies the
lower and upper bound on the thresholds T ∗min and T ∗max
(Table 9). From Table 9, it may be understood there are eight
possible combinations between the upper and lower limits,
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TABLE 11. Travelled distance and standard deviation for topography σY for the road transport missions in the example of Section IV.

TABLE 12. sOC parameters for road transport missions 1.
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TABLE 13. sOC parameters for road transport missions 2.

TABLE 14. sOC parameters for road transport missions 3.

TABLE 15. sOC parameters for road transport missions 4.
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TABLE 16. sOC parameters for road transport missions 5.

TABLE 17. sOC parameters for road transport missions 6.

and therefore eight possible classes.11 Accordingly, each
operating class only needs one relationship to be completely
determined.

On the other hand, the UFD description uses amore sophis-
ticated strategy. Five levels are specified as follows:

1) V-COLD if sometimes colder than −30◦C, rarely
warmer than 20◦C and never warmer than 30◦C.

2) COLD if sometimes colder than −15◦C, rarely warmer
than 25◦C, and never warmer than 25◦C.

3) MIXED if rarely colder than −15◦C and rarely warmer
than 30◦C.

4) WARM if sometimes colder than 5◦C, never colder
than 0◦C and rarely warmer than 40◦C.

11In each case, the corresponding probability pT ∗air,max could be assumed

to be close to the unity (for example pT ∗air,max = 0.99) when it is not possible
to define a class using unit probabilities.

5) V-WARM if rarely colder than 15◦C, never colder
than 0◦C and sometimes warmer than 45◦C.

However, in the list above, the classes are formulated rather
vaguely, since ’sometimes’ and ’rarely’ are not specified in
terms of frequencies or probabilities. As a first interpreta-
tion, they may be assumed to indicate frequencies of around
fifty and twenty percent, respectively (in bold in Table 10).
Moreover, in the UFD system, each class is determined using
multiple conditions on the limits T ∗min, T

∗
max and the proba-

bility pT ∗air . These conditions may be numbered consecutively
using superscript (i), with i = 1, 2, 3 for the V-COLD, COLD,
WARM and V-WARM classes, and i = 1, 2 for the MIXED
class. Table 10 summarizes the operating classes for the air
temperature parameter according to the UFD interpretation.

However, in respect of the operating classes defined using
the values in Tables 9 and 10, however, it should be observed
that the relationship (47) does not guarantee absolute lower

VOLUME 10, 2022 73117



L. Romano et al.: Classification Method of Road Transport Missions and Applications Using the Operating Cycle Format

and upper limits on the air temperature (apart from the zero
point for thermodynamics). An alternative, and much simpler
approach, would consists in neglecting the stochastic com-
ponent of the temperature, and only considering the annual
variation. In this case the probability P(Tair ≤ T ∗) becomes

P(Tair ≤ T ∗air) = FTair
(
T ∗air;µT ,Ty

)
≈

1
2

+
1
π
arctan

 T ∗air − µT√
T 2
y − (µT − T ∗air)

2

 , (69)

while the constraint on the lower and upper absolute limits
may be expressed mathematically as

µT − Ty ≥ T ∗min, (70a)

µT + Ty ≤ T ∗max. (70b)

Equations (69) and (70) may be used in combination to
provide a feasible set of parameters satisfying the conditions
for the operating classes. In particular, it is worth mentioning
that the different levels specified by the GTA system only
need (70).

C. ADDITIONAL DATA AND TABLES
1) DATA FOR INDIVIDUAL MISSIONS
The values for the traveled distance and the standard deviation
σY of the topography for the missions in the example of
Section IV are listed in Table 11.

2) sOC PARAMETERS
The estimated parameters for the sOCs in the example of
Section IV-C are listed below. See Tables 12–17.
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