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ABSTRACT ARTICLE HISTORY

Regularity estimates for an integral operator with a symmetric continuous
kernel on a convex bounded domain are derived. The covariance of a
mean-square continuous random field on the domain is an example of
such an operator. The estimates are of the form of Hilbert-Schmidt
norms of the integral operator and its square root, composed with frac-
tional powers of an elliptic operator equipped with homogeneous
boundary conditions of either Dirichlet or Neumann type. These types of
estimates, which couple the regularity of the driving noise with the prop-
erties of the differential operator, have important implications for sto-
chastic partial differential equations on bounded domains as well as their
numerical approximations. The main tools used to derive the estimates
are properties of reproducing kernel Hilbert spaces of functions on
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bounded domains along with Hilbert-Schmidt embeddings of Sobolev
spaces. Both non-homogeneous and homogeneous kernels are consid-
ered. In the latter case, results in a general Schatten class norm are also
provided. Important examples of homogeneous kernels covered by the
results of the paper include the class of Matérn kernels.
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1. Introduction

A Gaussian random field on a bounded domain D is characterized by its mean and
its covariance. Depending on the research community, the covariance is described
by a covariance kernel g or a covariance operator Q. More specifically, given a
symmetric covariance kernel q:D x D — R, the corresponding
covariance operator Q is positive semidefinite and self-adjoint on the Hilbert space
L*(D) and given by
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Qu(x) = qu<x,y>u<y> dy,

for x € D, u € L*(D). Our main goal in this paper is to, given the regularity of the ker-
nel g, derive regularity estimates for Q in terms of certain smoothness spaces related to
elliptic operators with boundary conditions on D.

Our motivation to analyze the coupling of these two formulations in detail comes
from the theory and approximation of solutions to stochastic partial differential equa-
tions (SPDEs). While the analysis of these equations and their numerical approxima-
tions is mainly done in Hilbert spaces, e.g., certain fractional order spaces related to the
differential operator in the equation, with a Q-Wiener process as driving noise, algo-
rithms that generate this driving noise in practice are often based on the covariance ker-
nel q. The class of Matérn kernels is a popular example in spatial statistics. Surprisingly,
to the best of our knowledge, such results are not available in the literature.

To be able to put our abstract results and their consequences in a more specific con-
text, let us consider a linear stochastic reaction-diffusion equation with additive noise

(tx Za )(tx) c(x)X(t,x)—i—%—VtV(t,x),(t,x)G(O,T]XD,

X(0,x) = o(x),x e D,

(1)

on a convex bounded domain D C R%,d=1,2,3, with boundary 9D. Here the func-
tions (ai,j)szl,c fulfill an ellipticity condition, X, is some smooth initial function and
homogeneous boundary conditions of either Dirichlet or Neumann type are considered.
The stochastic noise term OW /0t is Gaussian, white in time and correlated by a sym-
metric continuous covariance kernel q: D x D — R in space. This can be seen as a sim-
plified version of equations considered for the modeling of sea surface temperature and
other geophysical spatio-temporal processes on some spatial domain D [1, Chapter 6].
This equation is considered in the context of [2] as a stochastic differential equation of
Ito type on the Hilbert space H = L*(D) of square integrable functions on D. The sto-
chastic partial differential equation (1) is then written in the form

dX(t) + AX(t) = dW(1), (2)

for t € (0,T]. The unbounded linear operator A on H is densely defined, self-adjoint
and positive definite with a compact inverse, see Section 2.2 for precise assumptions.
The stochastic term W is an H-valued Q-Wiener process on a complete filtered prob-
ability space (Q,F,P). Here Q is a positive semidefinite self-adjoint integral operator
on H with kernel g. If x+— W(1,x) = W(1)(x) is pointwise defined and jointly measur-
able with respect to the product g-algebra F ® B(D) (with B(D) denoting the Borel
o-algebra on D) then g is the covariance function of the random field (W(1,x)),.p. In
general, there is no analytic solution to (2) so numerical approximations have to be
computed. It is then vital to understand how various regularity properties of g influence
the behavior of X and its approximation, since this can determine the convergence rate
of the numerical approximations. We discuss this in concrete terms in Section 5.

The research field on SPDEs of the form (2) has been very active in the 21st century.
There is a substantial body of literature, both from theoretical [1, 2] as well as numerical
[4-6] perspectives. For SPDEs on domains without boundary (i.e., when D is replaced by
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Euclidean space, a torus or a sphere) the question of how regularity properties of g influ-
ence X is well understood, especially in the homogeneous case [7-10]. This refers to the
case that g(x, y) only depends on the difference x — y between two points x and y in D,
examples including the class of Matérn kernels, see Remark 4.3. For domains with bounda-
ries, such results are rarely found in the literature. Usually, the analysis is restricted to the
special case that the eigenvalues and eigenfunctions of Q are explicitly known. In particular
it is common to consider the case that Q and A commute, see, e.g., [2, Section 5.5.1]. One
of the few instances in which an author instead considers the properties of g as a function
on D x D when deriving connections between properties of g and properties of X can be
found in [3]. The main result of this paper is [3, Theorem 4.2], which states that g has to
satisfy the boundary conditions of A in a certain sense in order for Q and A to commute.
In practice, this excludes the physically relevant case of homogeneous noise from
approaches such as that of [2, Section 5.5.1], see [3, Corollary 4.9]. Our approach to the
problem consists instead of deriving sufficient conditions on g for which the associated
symmetric operator Q fulfills estimates of the form

||A5QA5II,;1<H> = ||A5<27||§;2<H) < 00 (3)
and
|AZQA3| £, ) < 00 (4)

for fractional powers A™/? of A and suitable constants r,s > 0. By £,(H) and £,(H) we
denote the spaces of trace-class and Hilbert-Schmidt operators, respectively. We con-
sider both homogeneous and non-homogeneous kernels g. In the former case, we are
able to deduce estimates of the form (4) with the £,(H)-norm replaced by the more
general Schatten class £,(H)-norm, p > 1.

In the setting of (2), the condition on Q in (3) is for a given value of r > 0 equivalent to
requiring that the H-valued random variable W(t) takes values in the subspace H =
dom(A"/?) of the fractional Sobolev space H” = W"2(D) at all times ¢ € [0, T]. This is a
commonly encountered assumption in the literature, particularly when analyzing numer-
ical approximation schemes for SPDEs, see Section 5. The condition also has implications
for the qualitative behavior of X. It guarantees that X takes values in H e En (2,
Proposition 6.18] with sample paths continuous in H'"' € H™*1=¢ for arbitrary € > 0
[2, Theorem 5.15]. In particular, if (3) holds with »>1/2, X is a strong solution (in the
PDE sense) to (2) as opposed to just a weak solution, cf. [2, Theorem 5.40]. This means
that the process X takes values in dom(A) and has the intuitive representation

for t € (0, T]. Moreover, if (3) holds with r > d/2 — 1, a classical Sobolev embedding the-
orem (see, e.g., [13, Section 8]) ensures that X(t) takes values in the space ¢ max(1,0) (D) of
Holder continuous functions on D = D U dD with exponent o € (0,7 + 1 — d/2] P-as.
The evaluation functional is continuous on this Banach space. It follows that for each
t>0, (X(t.x)),cp is a smooth random field on D as opposed just an abstract random vari-
able in a Hilbert space, c.f. [14, Sections 7.4-7.5]. In summary, there could be many reasons
why one would like to know for which r > 0 the estimate (3) is satisfied for a given kernel
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g. In the case of non-homogeneous kernels, we consider Holder conditions on the kernel g
when deriving the estimate (3). This is a natural choice given our proof technique, which
is based on the fact that Q'/2(H), the image of the square root Q'/2 of Q, coincides with
the reproducing kernel Hilbert space of functions on D associated with the kernel g [15].
For a similar reason, in the case of homogeneous kernels g, we consider a decay condition
on the Fourier transform of ¢, which is used in practice when generating the driving noise
with fast Fourier transforms (cf. [16]). While this interpretation of QY2 (H) as a reproduc-
ing kernel Hilbert space is well-known, we are not aware that it has been used to find esti-
mates of the form (3) before.

The estimate (4) does not, as far as we know, have an immediate interpretation in
terms of regularity properties of X or W. It is, however, important for analyzing weak
errors of approximations to certain SPDEs, such as the stochastic wave equation. It has
also been used in the recent work [17] to derive higher convergence rates for approxi-
mations of the covariance operator of SPDE solutions. There is an immediate connec-
tion between the condition on Q in (4) and regularity of g: the condition is true with
r=s if and only if q is an element of the Hilbert tensor product space H @ H', see
[18, 19]. Instead of exploiting this connection, we consider Holder or Fourier transform
conditions on ¢q also in this case. The reason for this is partly that these conditions are
easier to check in applications compared to the rather abstract tensor product condition.
We also want to ensure easy comparisons between the estimates (3) and (4) under the
same conditions on gq.

The outline of the paper is as follows. The next section contains an introduction to
the necessary mathematical background along with our assumptions on A and Q. This
includes short introductions to fractional powers of elliptic operators on bounded
domains and reproducing kernel Hilbert spaces along with the proofs of some prelimin-
ary lemmas. We derive the estimates (3) and (4) under Holder conditions on a non-
homogeneous kernel g in Section 3. In Section 4 we consider a decay condition on the
Fourier transform of a homogeneous kernel g and derive estimates on

||A%QA%||£P(H) <0

for p > 1, a more general form of the estimate (4). We use this estimate to obtain con-
ditions for which the estimate (3) is satisfied. Section 5 concludes the paper with a dis-
cussion of the implication of our results for the numerical analysis of SPDEs on
domains with boundary. The applications we discuss are not limited to stochastic reac-
tion-diffusion equations but include several other SPDEs involving elliptic operators on
bounded domains, such as stochastic Volterra equations or stochastic wave equations.

Throughout the paper, we adopt the notion of generic constants, i.e., the symbol C is
used to denote a positive and finite number which may vary from occurrence to occur-
rence and is independent of any parameter of interest. We use the expression a<b to
denote the existence of a generic constant C such that a < Cb.

2. Preliminaries

In this section, we introduce our notation and reiterate some important results that we use
in Sections 3-4. The material mainly comes from [20, Chapter 1], [21, Section 1.3-1.4], [5,
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Appendix B] and [22, Chapters 1-2]. We give explicit references for vital or nonstan-
dard results.

2.1. Schatten class operators

Let H and U be real separable Hilbert spaces. By L(H, U) we denote the space of linear
and bounded operators from H to U and by £,(H, U) the subspace of Schatten class
operators of order p € [1,00). This is a separable Banach space of compact operators
with norm characterized by

||FHLP(H, U) = (Z(;ﬁ(n)?)i (5)

=1

Here (Aj(r))]ﬁl are the singular values of I' € £,(H, U), i.e., the square roots of the
eigenvalues of I'"I', which form a non-increasing sequence with limit 0. The special
cases £1(H,U) and L,(H,U) are referred to as the trace-class and Hilbert-Schmidt
operators, respectively.

For an additional real separable Hilbert space V, let I'; € £L(U, V) and I'; € L(V, H)
be compact operators. Then, for any j,k > 0,

Zivkr1(T1) < A1 () 2k (T2).

This inequality is proven in [23, Theorem 2] for the case that U=V = H, but the proof
is readily adapted to our situation using the fact that the eigenvalues of I'*'T" and I'T™,
for a given operator I' between Hilbert spaces, coincide [14, Section 4.3]. Using the
Holder inequality for sequence spaces #, p > 1, it follows that for p,q,r € [1,00) with
1/r=1/p+1/q, if I't € L(V,H) and I', € £L,(U, V), then I''T’, € £,(U,H) and

Nl < 21/r||r1Hﬁq(V,H)”FZ”ﬁp(U,V)' (6)

Moreover, if E is an additional real separable Hilbert space, I'} € L(H,E), I's € L(U, V)
(not necessarily compact) and I'; € £,(V,H) for some p € [1,00), then I''I,I; €
L,(U,E) with

T T2 0,py < Mg,y 102l 2, v, 131 o, v (7)

This ideal property follows from the fact that
AN Ts) < [y | g, 5y 4(T2T3) < Tl 2, ATl 20, v

where the inequalities are consequences of the min-max theorem.
The space £,(H, U) is a separable Hilbert space with inner product

(T, Ty, = (T1g;Taej)y = Tr(T3T)) = Tr(T;T),
j=1

for T',T, € £,(H,U) and an arbitrary orthonormal basis (¢j);Z, of H. For a positive
semidefinite symmetric operator Q € L(H), ||Q|[,, ) = Tr(Q).
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2.2. Fractional powers of elliptic operators on bounded domains

Consider a Gelfand triple V. C H C V* of real separable Hilbert spaces with dense and
continuous embeddings. We assume that (V*, V) forms an adjoint pair with duality prod-
uct v (- )y such that v-(u,v),, = (u,v)y for all u € H, v € V. Given V and H, V* can be
constructed by identifying H with its continuous dual space H' C V' and letting V* be the
completion of H under the norm of V. Next, let A: V x V — R be a continuous, sym-
metric and coercive bilinear form, i.e., it is linear in both arguments, A(u,v) = A(v, u) and
V)| < Cllully|lvlly and A, u) > c|ul[;, for all
u,v € V. Then, there exists a unique isomorphism L:V — V* such that v-(Lu,v), =
2(u,v) for all u,v € V. Viewing L as an operator on V*, it is densely defined and closed.
We write A = L, for its part in H, which is then a densely defined, closed, self-adjoint
and positive definite operator with domain D(A) = {v € V : Av = Lv € H}. It has a self-
adjoint inverse A~' € L(H), which we assume to be compact.

Applying the spectral theorem to A™', we obtain the existence of a sequence (A])] )
of positive non-decreasing eigenvalues of A, along with an accompanying orthonormal
basis of eigenfunctions (ej);il in H. For r > 0, we define fractional powers of A by

Ay = Z AHv.ej) e (8)
=

for

VGdom(Af):{veH Z ve] }

We write H = dom(A”/?). Note that H® = H. For r<0, we let A"/ be defined by (8),
and we write H' for the completion of H under the norm |[|x|| ;- Equivalently, we can
write

= dom(A?) = {x— ije] xJ) ~, C R such that ||x||Hv = ZA x; < oo}.
j=1 =1

Then A"? € L(H',H) for all r € R. Regardless of the sign of r, H is a Hilbert space

with inner product (u,v); = (A”?u, A”/*v),;. For r>0, H ' is isometrically isomorphic
to (H')' [5, Theorem B.8]. In particular, for v € H = H’,
4 [{4.v) ]
[IVllg = [[A7V]| = sup =
weir ¥l

For r>s, we have H < H' where the embedding is dense and continuous. Since
(A" Zej)joil and (A~ 2ej)joi1 are orthonormal bases of H' and H', respectively, we may
represent the embedding I;;r. ;< by
[e.°]
Ly e =Y (A %) Ao = ZA LA A e
=1

It follows that I;r_ ;s is compact Lemma 2.1 in [12] allows us to, for all ,s € R, extend
A? to an operator in £(H',H' ), and we will do so without changing notation.
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Let us write H. for the complexification of H', i.e., the complex Hilbert space given
by H' x H' with scalar multiplication (a + bi)(u,v) = (au — bv,av + bu) for a + bi € C
and (u,v) € Hy.. We write u + iv for (u, v) so that we may consider (A~ S/ze])] ~, as an
orthonormal basis of ch when this is equipped with the inner product

(u+ivx+iy)ge = (wx)y +i(vx) g — i{wy)y + vy

For r > s € R, it follows that
. . 0
He = {v € He: Yy 4|
=
Or+(1-0)s

From this, one obtains (see, e.g., [25]) that for 0 € [0,1], Hp [Hz: Hg], in the
sense of isometric isomorphisms, where [Hy, H|, is defined by complex interpolation.
We refer to u and v as the real and imaginary parts of u + iv € H ¢ and write u + iv for
u — iv. The real part of H, C. w1th only real multiplication of scalars is a Hilbert space
isometrically isomorphic to H’.
Or+(1—0)s

The interpolation space representation of H C

lemma for a symmetric operator Q € L(H).

V,A_s/zej>HsC\2 < oo}.

allows us to prove the following

Lemma 2.1. Let Q € L(H) be symmetric. Then the following three claims are equivalent
forp € [1,00) and r € R:

®  11Qll g, = IA7QlL g, 1y < 00

(i) HQHL () = ||QAT/2||L‘ < co.
(i) [1Ql] ooy oy = ||A9'/2QA1 D2\ ) < 00 for all 0 € [0,1].
Proof. Assume ﬁrst that r>0.1fQe L(H.H ), then by symmetry of Q,

Qv = sup [(Quw)yl= sup [(A7v,A2Qw)y| < [|v]|;~]
weH weH

llwlly =1 [lwll;; =1

Q| |L(H, H)

so that Q can be continuously extended to H '. Conversely, if Q extends to H ', the
operator norm ||QA"?] c(m) is finite and therefore

o0

P = Z/V Qe Z v. QA = Y ((QA) v, ) < [1(QA) o Il

j=1 j=1

vl

so that Q € L(H,H"). Let us now write Q" for the adjoint of Q with respect to
L(H,H"), i.e., the operator in L(H', H) defined by

(Q )y = (0. Qi = (Af ATQY)

for u€ H',v € H. Let us similarly write Q" € L(H,H ') for the adjoint of Q with
respect to E(Hir, H). We have foru € H, v € H' that

(N2Q uv)y = (QuAW)+ = (u,QAW), = (A2Qu,v) 9)
so that by density of H' in H, A"/2Q" = A’/?Q. This implies
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(QQ-QQNully = sup [(Q Qu.v)y — (QQ uv)y|

veH

[Vl =1

= sup [(AQu A2Qv)y — (A2Q u, A2Qv) | = 0
veH
[Vl =1
for u € H, hence QQ" = Q*Q. Since the eigenvalues of QQ" are the same as those of
Q"Q [14, Section 4.3], the singular values of Q € £L(H,H') and Q € L(H ', H) are the
same, so that (5) implies the equivalence of (i) and (ii) for p € [1,00). For r<0 the
proof is the same, except that we take v € H in (9).
Clearly (iii) implies (ii) and (i). For the other direction, we first write Q¢ for the com-

pact operator in £(Hc, Hg) (and L(H', He)) defined by Qc(u + iv) = Qu + iQv. Then

we note that ngr = [He, Hy)y and Hg_l)r = [H;' Hc], in the case that r > 0 while Hg =
(0-1)r

[He Hel, o and He " =[Hc HZ'], , in the case that r<0. Therefore, Qc €

E(H((CO 71)r,Hg) and by restriction to the real elements of HfCO " it follows that Qe

L‘,(Hw*l)r,Hm). For a fix 0 € [0,1], let us regard Q¢ and Q as operators in these spaces.

. . oA - (0-1)r
Note that Q¢ is compact if and only if Q is compact. Moreover, the vector v € H ((C s

an eigenvector of QrQc with (real and positive) eigenvalue u if and only if

- (0-1)r .
(Qcv, Qcu)yor = p(v, U>H(H—l)r for all u € H((C " From this it follows that ¥ is also an

eigenvector of Q-Qc and that (v + ¥)/2 is an eigenvector of Q*Q. Similarly, if u € H (6=1)r

is an eigenvector of Q*Q, it is also an eigenvector of Q;Qc in H g b with the same eigen-
value. In other words, the sets of singular values of Qc € L(H ((CG _l)r, H g) and Q€
E(H(H_l)r, Her) coincide. Therefore, Q¢ € L'p(Hg, Hc) N /JP(HC,H(E), which, using the

—1)r

results of [27], implies that Qc € £,(H g) JH g) for all 0 € [0, 1]. Another appeal to the
correspondence of the singular values of Q and Q¢ finishes the proof. O

In the spirit of the previous result, let us also note that the equality in (3) is true
when Q is also assumed to be positive semidefinite (so that Q2 is well-defined).
Indeed, the right hand side guarantees that Q'/2 extends to H ' so for u € H

ARQullyy < [IARQY | g | QA

Therefore A”/?Q also extends to H . The operator A”2QA"/? is symmetric and positive
semidefinite on H, so (since (A’/ QY 2)'e = Q/2A? ej on an eigenfunction ¢; of A) we have

Ly(H) :ZM%QA%%‘» ej)H

j=1
08

=D _|IQ@A%;
j=1

Before we put the abstract framework above into a concrete setting, we note some prop-
erties of fractional Sobolev spaces. We denote by H”(D) = W™2(D) and H™(RY) =

L(H) | |A7%“| |-

[1A2QA:

f= D 1(ARQ) gl = 11(ASQ) 12, ) = AR 0
j=1
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W2(R%) the classical Sobolev spaces of order m, on a bounded domain D C RY with
Lipschitz boundary and R? d € N, respectively. We consider only Sobolev spaces of
real-valued functions in this paper. The results we cite are generally proved for Sobolev
spaces of complex-valued functions but naturally hold also in this real-valued setting.
The norm of H”(R?) is given by

[[lliim ety = D 1D*ull72 ey,
|| <m
where D” is the weak derivative with respect to a multiindex o = (o, ...,04) and the
norm of H™(D) is defined in the same way. When there is no risk of confusion we
write H” for H™(D) and we set H = H = L*(D). For s=m+a, m € Ny, ¢ € (0,1),
we use the same notation for the fractional Sobolev space H' as for the classical Sobolev
space. The space H' is equipped with the Sobolev-Slobodeckij norm

1/2

|D*u(x) — D*u(y)[?
ullgs = | ullfm + E J dxd ,
1] | | HH = Joo x— y|d+217 y

for u € H®. Since 0D is Lipschitz, an equivalent [21, page 25] norm is given by

||“||Hs(1>) = veg}(fRd) ||V||HS(]Rd)' (10)

Vip=u

Here the norm of the fractional Sobolev space H*(RY) is given by

1
el e —ijm@m +lePy ae, 1

where i is the Fourier transform of u € L*(R?).

The embedding of H" into H’ is dense and, since 0D is Lipschitz, compact for all r >
s >0 [21, Theorem 1.4.3.2]. This last fact gives us yet another way to characterize H"
and extend the definition to negative r. Since, for m € N, H" is densely and continu-
ously embedded in H, there is a positive definite self-adjoint operator ®,, such that
dom(®,,) = H" and [|®"u||, = [|u||ym [28, Section 1.2]. The compactness of the
embedding implies [29, Sections 4.5.2-4.5.3] that ®, ' is compact and the spaces H’ =
dom(@%z), r € R*, can now be constructed by the spectral decomposition of the oper-
ator. The space H," is, like H ", defined as the completion of H with respect to the
norm ||®*’/ ?||y- Naturally, H. is isometrically isomorphic to the corresponding frac-
tional Sobolev space of complex-valued functions on D. By [22, Theorem 1.35] we then
obtain, for r € [0,2], H}, - = [Hc. HY, ), = Hrm /2. Thus, taking the real parts of these
spaces, we obtain H’ = H™/? in the sense of an isometric isomorphism. We define
H™" for r € [0,m] by H,”/™, and note that this definition is independent of m due to
the fact that H" = (anr/ ™) = (H")'. By this characterization of the norm of H, r € R,
we can repeat the proof of Lemma 2.1 to obtain the following analogous result.

Lemma 2.2. Let Q € L(H) be symmetric. Then the following three claims are equivalent
forp e [l,00) and r € R:
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@) HQHLP(H,H’) < 0.
(i) [|Qllz, v,y < 00
(iii) HQHEP(H(”*W,H”’) < oofor all 0 € [0, 1].

The same characterization also allows us to deduce the following lemma, which tells
us when the embedding H" — H?®, r>s, is of a particular Schatten class.

Lemma 2.3. For —oo < s < r < oo, the embedding Iy:—, g+ fulfills:

I — bl (11, ey < 00 <=1 — 5> d/p.

Proof. We pick some m € N such that m > max(|r|, |s|) and write (15);21 for the orthonor-
mal basis of eigenfunctions of the operator ®,, that is associated with the space H". Then

2r 0 a 2 0 r=s _s 2
vEH < veHy e Y (@%v,ﬁ)H‘ <o Y ’(@,’Sv,@m'”mm < o0,
=1 =1
which gives H" = dom(®~*/™) @"=9/™ peing considered as an operator on H'.
Therefore, [19, Lemma 3] implies that the singular values of Ir ., g« coincide with the eigen-
values of @")/™, By the same argument, the singular values of Iy, i coincide with the
eigenvalues of the same operator. It therefore suffices to show the claim for Iy, .

The result is proven for 9D € C* in [19], specifically as a consequence of [19,
Lemma 2, Satz 2]. For the general case, we first note that when 0D is Lipschitz, there is
an operator P € L(H (D), H'*(R%)), such that Pu|;, = u [21, Theorem 1.4.3.1]. For
an arbitrary bounded domain G D D such that 9G € C>, we have

Iy~ @) = @ - roln-© - rel-g) -9

By definition of the norm (11), we note that Iy, e grs(g is bounded, and clearly
the restriction Ij>(g)— 12(p) is, too. Therefore, sufficiency of r — s > d/p follows as a con-
sequence of (7). Necessity follows by an analog~ous argument: if Iy—sp)y—r2(p) €
Ly(H*(D),L*(D)) then Iy g . 125 € Lp(H*(G),L*(G)) for p € [l,00) and any
domain G C D with 9G € C™.

We now let the spaces H', r > 0, obtain a concrete meaning by taking / to be a
bilinear form on V C H!(D) C L*(D) = H given by
d

Au,v) = Z JDai,jD"uDivdx —+ J cuv dx,

irj=1 D

where DV denotes weak differentiation with respect to Xj j=1,....d. The coefficients
aij i,j=1,...,d, are C! (D) functions fulfilling a; j = aj,;. Moreover, we assume that there
is a constant Jy > 0 such that for all y € R? and almost all x € D, Zfl i1 @i (X)yiy; =
Joly|”. The function ¢ € L°(D) is non-negative almost everywhere on D.

We shall consider two cases of boundary conditions for A. In the first case (Dirichlet
boundary conditions) we take V = H}(D) = {v € H' : yv = 0}. Here 7 : H — L*(0D)
denotes the trace operator, an extension of the mapping v+ v|;p. It is well-defined on
H" for r>1/2 [22, Theorem 1.3.9]. In the second case (Neumann boundary conditions)

we take V = H!, and assume in addition that there is a constant ¢, > 0 such that
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c(x) > ¢y almost everywhere on D. Then 1 is a symmetric, bilinear form on V. The
operator A is regarded as a realization of the strongly elliptic operator

d
— Z D’(a,',jDi) + Cc
iy j=1

on H, with boundary conditions yv = 0 on 9D in the first case and dv/dva =0 on 9D
in the second case. Here

8VA Z nid; JyD]v,
i, j=

with (ny,...,n4) being the outward unit normal to 9D, is well-defined as an element in
L*(0D) for v € H', r>3/2. Since the embedding of V into L?(D) is compact and A~"
maps into V, the assumption that this operator is compact is true.

Next, we relate the spaces (H )sclo,2) t0 (H')sc[o,5- In the case of Dirichlet boundary
conditions, we have

(W if se0,1/2),
H_{{uEHS:yuzo} if s€(1/2,3/2)U(3/2.2), (12)

with norm equivalence [22, Theorem 16.13]. In the case of Neumann boundary conditions,

-s:{HS if s €10,3/2),

(we H : u/dvs =0} if s€ (3/2,2), (13)

with norm equivalence [22, Theorem 16.9]. Note that since H = = (H') and H™* =
(H°)' for s> 0, analogous results hold for negative exponents s € (—1/2,0] and s €
(—3/2,0], respectively.

For the identity (13) with s € [0,1] it suffices to assume that 0D is Lipschitz [22,
Theorem 16.6]. Moreover, for both (12) and (13), one could replace convexity of D
with C? regularity of OD. In this case, the equivalence in (12) holds also for s=3/2 [22,
Theorems 16.7, 16.12].

2.3. Holder spaces on bounded domains

We now introduce the notation we use for Holder spaces on D = DU JD. We write
C(D ) for the space of continuous functions on D with the supremum norm and
C*?(D) C C(D) for the space of bounded Holder continuous functions f : D — R with
Holder exponent o € (0, 1]. It is equipped with the norm

Flleseip) = e+ sup LE=L0L

x,y€D | }’|

x#y
For k € N, the space C*(D) consists of all functions f : D — R such that 9*f € C(D)
for all |o| = a; + - -- 0y < k while for o € (0,1], the space C*°(D) consists of all func-
tions f € C*(D) such that §°f € C*°(D) for all |a| = k. Here 9" is the classical deriva-
tive with respect to a multiindex o = (o, ..., ) and 9*f € C(D) means that &°f € C(D)
and extends to a continuous function on D. We equip C(D) with the norm
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fllgoey = D10 flle)

a<k

and C*°(D) with the norm

llekmy = DN flle +Z|I5"‘f||c°ﬂ

o<k

We will also need the space C*¥(D x D), which we define as the space of continuous
functions f:D x D — R such that 9705f € C(D x D) for all |¢| <k. The space
C*%?(D x D) consists of all functions f € C**(D x D) such that 828%f € C*°(D x D)
for all || = k. Here 07 denotes differentiation with respect to the ith variable of f. We
equip C*¥(D x D) with the norm

Hf”c“ ZIIa“f)”ch DxD)

a<k

and C**°(D x D) with the norm
Fllete ey = D 1055 ey + D 10705 fllcoe )
o=k

a<k

2.4. Integral operators and reproducing kernel Hilbert spaces

Let ¢: D x D — R be a positive semidefinite symmetric continuous kernel. We define
an operator Q € L(H) by

Qulx) = quu,yw(y)dy

for x € D.

By Mercer’s theorem [31, Theorem A.8], Q is then self-adjoint, positive semidefinite
and of trace class. Moreover, Q admits an orthonormal eigenbasis (q]) —, with a corre-
sponding non-increasing sequence of non-negative eigenvalues (,u]) —,- The eigenfunc-
tions corresponding to nonzero eigenvalues are continuous. The kernel can then, with
x,y € D, be represented by

Z wig;(x (14)

where the sequence converges unlformly and absolutely on D x D.

We write Q72 = (Q1/2|ker Q) )71 QY2(H) — ker(QY2)Y ¢ H for the pseudo-
inverse of Q'/2. The space Q!/ 2( ) the range of Q'/? in H, is then a Hilbert space with
respect to the inner product ()2 =(Q7'/?.,Q7'/2.),,. Under the notational con-
vention 0/0 = 0, we note that, in hght of Mercer’s theorem,

Q(H) = feH-iM< (15)
= 2 m 00 .

By the same theorem, it follows that for all f € H,N € N,
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N
Z l/f% )ugi(x

j=1

(Zu]qj ) (Z |<f’qj>H|2> < q(x2)|f1[3-
j=1

Therefore, the elements in QE(H) are continuous functions on D, as opposed to just
equivalence classes of functions on D.
The kernel g is said to satisfy the Dirichlet or Neumann boundary conditions if

q(~y) =4q() =0 (16)

or

d . d .
> o) 282 = 3 ) P4 —o a7
i,j=1

on 0D, respectively, for all y € D. Note that, provided that g is sufficiently smooth, this
guarantees that Qu fulfills the corresponding boundary conditions for arbitrary u € H.

We will make use of the theory of reproducing kernel Hilbert spaces. Recall (see, e.g.,
[20]) that a Hilbert space Hy(&) is said to be the reproducing kernel Hilbert space of
the kernel g if it is a Hilbert space of functions on a non-empty subset £ C R? such
that the conditions

(i)  q(x,-) € Hy(€) for all x € £ and
(ii) forall f € Hy(E),x€&, flx) = (f,q(x,-))Hq<g)

are satisfied. The Moore-Aronszajn theorem (see [20, Theorem 3]) can be used to con-
struct Hy (&) explicitly. Given a (not necessarily continuous) positive semidefinite func-
tion g, we write Hyo(E) for the linear span of functions of the type
f=>"0uq(xi-), (), C& (), CR,neN. We define a symmetric positive
semidefinite bilinear form on Hy (&) by

=33 wipa(xiy),
i=1 j=1

for f as above, g=3"", B;q(y;,-) € Hyo(E), ()2, €& and (B;);L, CR. By the
Cauchy-Schwarz ~ inequality = for  such  forms, If(x)] = |(f q(- %)) g, ()] <
(ff>1/2 q(x,x) 2 for all x € & and f € Hy o(€). This shows that (., >Hq(5) is anq inner
product on Hyo(€). The space Hy(&) is now given as the set of functions f on & for
which there is a Cauchy sequence (fj)%, in Hyo(E) converging pointwise to f. It is a
Hilbert space with inner product (f, g) Hy(6) = iMu—oe (fu.gn)py () and it fulfills the con-
ditions (i) and (ii). In fact, Hy(€) is the unique Hilbert space of functlons on & fulfilling
these conditions. From here on, we use the shorthand notation H, = H,(D).

The property (ii) is referred to as the reproducing kernel property of the space H,,.
When q is sufficiently smooth, then an analogous property holds for the derivatives of
f € H,. To be precise, if g € C°¥(D x D), then H, — C*(D) continuously and

Ff(x) = f.q(x ), = (. 07q(x. )y, (18)

for all f € Hy,x € D and |0 < k. Moreover, the symmetric function §705q possesses
the reproducing property
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91 0q(y,x) = (01q(y.-). 97q(x.)) > (19)

for x,y € D and || < k. These facts are proven in [32] under the stronger condition
q € C*(D x D) (defined analogously to C**(D)) but the proof works also in the case of
our weaker condition, cf. [33, Corollary 4.36] for the case that g € C**¥(D x D).

A key observation that we will make use of is the fact that, under our assumptions
on g, Q'/?(H) = H,. This can be seen by explicitly checking that (i) and (ii) are fulfilled
by QI/Z(H), using the expressions (14) and (15). We refer to [15, Theorem 10.29] and
[35] for analogous arguments under somewhat different assumptions on g.

In the next two sections, we will identify conditions on g which ensure that Q €
EP(H H r) for appropriate powers r,s € R and p > 1. We first consider the non-homo-
geneous case, which is to say that q(x, y) depends explicitly on x, y, not necessarily only
on x — y or |x — y| (the homogeneous and isotropic cases, respectively).

3. Regularity of integral operators in the non-homogeneous case

In this section we consider Holder regularity assumptions on gq. We start by deriving
conditions for which the trace class condition (3) holds. We recall that this is given by

||AZQA?|

r 1.2
o) = INQ[L, ) < 00

with r > 0. We use reproducing kernel Hilbert spaces in the proof of the following two
theorems, corresponding to the two types of boundary conditions considered. Below we
write “for all |x| =1” as shorthand for “for all multiindices o = (oy,...,o4) such
that |o| = 1.

Theorem 3.1. Let A be the elliptic operator associated with the bilinear form A with
Dirichlet boundary conditions. Then, the operator Q with kernel q € C(D x D) satis-

fies (3)

(i) for all r €[0,0/2) if there exists o € (0,1] such that for ae z€D,q(z-)€
C*?(D) with esssup,cpllq(z, )|l coe(p) < 00

If q in addition satisfies the boundary conditions (16), then Q satisfies (3)

(ii) for all r € [0, (1 + 0)/2) \ {1/2} if q is once differentiable in the first variable, and
there is a constant ¢ € (0,1] such that for all |¢| =1 and ae. z €D, 0iq(z) €
CV (D) with ess 5up,.p|07q(5 ) coe ) < o,

(iii) for all r € [0, 1] \ {1/2} if g € C*}(D x D),

(iv) for all re|0,(240)/2)\{1/2} if there exists o€ (0,1] such that
lallcvne@xp) < 005 o

(v) for all re[0,(3+0)/2)\{1/2,3/2} if g€ C*Y(D x D) and, for all |o|=
1, 0705q is once differentiable in the first variable and there exists o € (0,1] such
that for all |¢|=1 and ae z€D, 0" dq(z-) € C* (D) with esssup,.p
105 Bq(z Ycor ) < o0 o

(vi) for all r € [0,2] \ {1/2,3/2} if g € C**(D x D).
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Proof. Let (¢j);%, be the eigenbasis of A. We note that QY %¢;)%, is then an orthonor-

mal basis of Q!/2 (H) = H,. For the first statement, by this observation, the definition of
the Hilbert-Schmidt norm, (13), and the reproducing kernel property of H,, we have

AGHR o =S Okl 2 = S 0k |2
| Q||LZ(H)—§ ||erHH'~§ Loz
= =

> Q) — Q)P

d+2r

dxdy
DxD |x — |

o0 . )
=S ldg i+ |
=1

S l@eate) —a0n |

=Tr(Q) + dt2r dxdy
DxD lx — ¥
[lq(x.-) = q(>)II;
=Tr(Q) + T <L dx dy
DxD lx — y|
_m( 4+ [ X )+ Cgizz(ry,y) —909) gy
Jpxp |x — |

<Tr(Q) + 2ess sup,.pld(e. ~>||co,o(D>J

Dx

lx — y| 7 dxdy < oo.
D

The integral is finite since ¢ —2r >0. For case (i), we note that QY %ei(x) =
(QY%¢;.g(x.)) g, for all x € 9D, so that Q!/%¢; inherits the boundary conditions of q.
The proof is now the same as before, except that we use the mean value theorem to
deduce that

lla(x-) = a0 I, = (9(xx) = g, %) = (9(xy) — q(%.7))

= L(qu((l —s)x+sp,x) = Viq((1 —s)x +sy,y)) - (x —y) ds

d 1
<|x —y|2jo|ai‘fq<<1 St 5px) — 94((1 - $)x + sy, )| ds

=1
<d|x — y|""" max ess sup |07 q(z, Moo (p)-

Jj=1,...,d zeD

Here Viq = (0{'g, ..., 0;"q) is the gradient with respect to the first component of g and
07 q(x,y) is the derivative of q(x,y) = q(x1,.... X4, y1, ... ya) with respect to x;. This
yields

NQ|[7, 1y STr(Q) + max ess sup,p[|07 (2, -)Ilcwp)L i —y[THHT dxdy < 0.
X

j=Lynd

For case (iii), we also apply (18) and (19) to see that
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A= S Zna“oze]HH -3 Zj 10 Qley(x

Jo|<1 j=1 o] <1 j=1
= 35| e fats
[e]<1 j=1
- Zj Oatw s, dx= 3 [ oro2qn) d,
o<1 [o]<1 7P

which is bounded by a constant times ||q||c.,1(pyp)- For case (iv), we obtain, for r>1,

J > 0 Qle(x) - Q)
[o]=1 DxD

S| F20D) xay

| —
2

(Qe.01q(x.) — D0y,

oo
J Zj:l
DxD

= dxd
=1 jx — |20 i’

_ (0707q(x, x) — 0705q(x, ) + (97 05q(y, y) — 91 05q(y,x))

o d+2(r-1) dx dy
lo|=1/DxD lx =yl

so that

/ > 07 Qex) = 07 Q)
DxD

S xay

= > > lorQelh+ >
o<1 j=1

|o]=1 |x —

—d+2+0-2
= lqllc1pxp) + ||q||Cl’1’“(DxD)JD D|x —y[ T dxdy < oo
X

Finally, case (v) is obtained by a modification of this argument, similar to how case (ii)
was obtained, while the proof of case (vi) is analogous to that of case (iii). 0

Remark 3.2. This result is sharp, in the following sense. Consider the setting of D =
(0,1) and A = (—A), where A is equipped with zero boundary conditions. In this set-
ting, the kernel of the operator Q = A™' is explicitly given by q(x,y) = min(x, y) — xy;
for x,y € D, see, e.g., [11]. By Theorem 3.1, (3) is satisfied for r<1/2. The eigenpairs
associated to Q are given by g;(x) = v/2sin (rjx) and = (7j)~* for j € N. Therefore,
the expression in (3) is infinite for r > 1/2.

Theorem 3.3. Let A be the elliptic operator associated with the bilinear form A with
Neumann boundary conditions. Then, the operator Q with kernel g € C(D x D) satisfies (3)

(i) for all r € [0,0/2) if there exists o € (0,1] such that for ae. z€ D, q(z,-) €
C%?(D) with esssup,_p||q(z, )||C0r< p) < 00,

(ii) for all r € [0, (1 + 0)/2) if q is once differentiable in the first variable, and there is
a constant ¢ € (0,1] such that for all |o| =1 and a.e. z € D, 9*q(z,-) € C*°(D)

with ess sup, o)l 0%q(z o) <
(iii) for all r € [0,1]\ {1/2} 1fq 6 CY(D x D),
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(iv) for all r € [0, (2 + 0)/2) if there exists o € (0,1] such that ||q||c,.-pyxp) < o0
If q additionally satisfies the boundary conditions (17), then Q satisfies (3)

(v) for all rel0,(34+0)/2)\{3/2} if qeC YD xD) and for all
lo| =1, 0*0%q is once differentiable in the first variable and there exists o € (0,1]
such that for all |o/|=1 and ae zeD,d*dq(z-)eC> (D) with
esssup, o077 0% () lowpy <%0

(vi) for all r € [0,2] \ {1/2,3/2} if g € C*2(D x D).

Proof. The proof is the same as in the previous theorem. We simply note that for the
last case, since q € C"'(D x D), the boundary condition (17) is well-defined.
Moreover, since

0" Qey(x) = (@ 0l ),
for all x € D, Q'/%¢; inherits the boundary conditions of g.

In the next two theorems we derive conditions on the kernel q that guarantee that the
estimate (4) is satisfied for appropriate powers r,s > 0. We recall that it is given by

||A%QA%||L2(H) = ||A%QA%||£2(H) < 00.
In this case we do not rely on the reproducing kernel property but can use more elem-

entary techniques.

Theorem 3.4. Let A be the elliptic operator associated with the bilinear form A with Dirichlet
boundary conditions. Then, the operator Q with kernel q € C(D x D) satisfies (4)

(i) for all r,s € [0,1/2) such that r +s < o if there exists o € (0,1] such that for a.e.
z€ D, q(z,-) € C*?(D) with esssup,.plq(z, Meoepy < 00

If q also satisfies the boundary conditions (16), then Q satisfies (4)

(ii) for all r,s € 0,2] \ {1/2,3/2} such that r +s < k + o if there exist k > 0 and ¢ €
(0,1] such that for a.e. z € D, q(z,-) € C*°(D) with esssup,pl|q(z Mewem) < o0

If 6 =1 in (ii) the statement is true with r +s < k+ 1.

Proof. Since q is symmetric, we have ess sup,.p||q(2,*)||cvo(p) = €ss sup,cp [|9( 2)[| cor(p)
for k, @ > 0. Moreover, because of (12) and Lemmata 2.1 and 2.2, it suffices to show that if
there exist k>0 and ¢ € (0,1] such that for ae. z €D, q(z-) € Ct?(D) with
ess sup,cp||q(z, )|l cur(py < 00, then Q € Ly(H,H") for all r <k+o, and for all r <
k + 1 when ¢ = 1. Under this condition, we have by definition of the weak derivative that

D“j 4(>p)ei(y) dy = j Dq(y)e(y) dy = j 0%4(y)ei(y) dy
D D D

for |o| <k, where (ej)]?il is an orthonormal basis of H. This is also true when g(z,-) €
CMU(D), k> 1, with ess sup,cpllg(z,-)||cenip) < 00, since then 87q(-y), o] <
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k — 1, has a bounded classical derivative almost everywhere in D. Under either of these
conditions, we obtain from the definition of the Hilbert-Schmidt norm that

QU = DNQa = 3 3 107 atonle) oyl
=1

=1 [a|<k

= IJ 07q(x.y)ei(y) dy* dx
1

o<k’ D j=

= 107 q(x, ) |[7 dx

lu[<k ¥ D

=S| | joratenl ax ¢y < o

o<k *PID

which finishes the proof of the very last statement of the theorem. Next we have, for
k<r<k+o,

> IDQe(x) — D*Qe ()

QllZ Qejl[7 + dx d
QI b1, 1) ZII il e |az: . R y
00 o o 2
ol S > ol -)—M(y )¢ -
= X
La(H, H) ~ Jpp X — y|d+2 Y
|oe| =k
107g(x,-) — 3?‘(1()' i
=1Q 2 4 dx d
| ||L2(H,Hk) |az—:k D x— y|d+2 Y
ess sup_.p|lq(z, ')Hckﬂ(z’))
=|lQ + J dx dy < oo,
|| ||£2 H, H¥) ;c DxD |x y|d+2 r—a—k) Y
which completes the proof. O

Remark 3.5. This result is not sharp for the example of Remark 3.2. From the explicit
representation of the eigenpairs of Q, it follows that (4) is fulfilled for all r,s € [0,3/2)
such that r + s < 3/2. However, Theorem 3.4 only guarantees (4) to hold for r,s € [0, 1]
such that r + s < 1. The proof could in this case be amended to recover the sharp result
by a more involved analysis of the term

oq(x,-) =0
J 101q(x, ) mﬂz()k/ i dx dy,
DxD lx — y|

with k=1, since in this case the (discontinuous) function 9,q(x,-) is explicitly known.
However, as we only consider Holder conditions in this section, we do not pursue this
direction further.

The following theorem for Neumann boundary conditions can be proven in the
same way.

Theorem 3.6. Let A be the elliptic operator associated with the bilinear form A with
Neumann boundary conditions. Then, the operator Q with kernel g € C(D x D) satisfies (4)
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(i) for all r,s € [0,1] such that r + s < o if there exists o € (0,1] such that for a.e. z €
D, g(z.-) € C**(D) with esssup,pa(z o) <

(ii) for all r,s € [0,3/2) such that r +s < 1 + ¢ if there exists o € (0,1] such that for
ae z €D, q(z-) € C*°(D) with esssup,pllq(z, )|l o) < 00

If q also satisfies the boundary conditions (17), then Q satisfies (4)

(iii) for all r,s € [0,2] \ {3/2} such that r+s < k+ o if there exist k >0 and ¢ €
(0,1] such that for a.e. z € D, q(z,-) € C*7(D) with ess sup,_p||q(z, Mewe ) < 00

Moreover, if =1 above, the statements remain true with r+s<1,r+s<2 and
r+s < k+ 1, respectively.

4. Regularity of integral operators in the homogeneous case

We now move on to the case of a homogeneous (or stationary) kernel, i.e., when g is
taken to be a function defined on the unbounded space R? x R of the form g(x,y) =
g(x —y) for x,y € RY. We now assume that g is positive definite as opposed to just
positive semidefinite, and a member of C(RY) N L'(R?), i.e., it is continuous, bounded
and integrable on R?. Then, it has a positive Fourier transform § = F(q) : R — R"
which is also integrable on R? see [15, Chapter 6]. We use this property to derive a
regularity result for Q in a general Schatten class, starting with the following lemma.

Lemma 4.1. If there are constants C> 0, ¢ > d/2 such that

a(e) <cli+e?)”
for all & € RY, then the operator Q with kernel q € C(D x D) satisfies Q € L(H, H*).
Proof. Let v € H = L*(D). The function D3x — Qv(x) can be extended to R by

@) = | ate=0) &= | ale=9n0)00) by = (a* (20) )

where yp(x) =1 for x € D and 0 elsewhere. Since g € L'(R) and vyp € L*(R), g *
(vip) € L*(R) so that F(q * (vyp)) is well-defined and (10) implies that

1 o
||QV||iP”(D) <llg = (VXD)H?—I?“(Rd) = gJ |F (g (vip))(E)F (1 + [¢1*)* d¢
(2m)z Jr?

1 — . .
= o A+ e
T 2
1 _
= |, 77 0 az = I
T 2
where we made use of Plancherel’s theorem. O

This lemma allows us to deduce a regularity result on Q, similar to Theorems 3.4 and
3.6. However, instead of just considering the estimate (4), we deduce conditions on ¢
for which the general Schatten norm condition [|A”2QA%?|| £,y <00 with pe
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[1,00), is satisfied. Since g is defined on all of R? we cannot expect g to satisfy any
boundary condition in the sense of (16) or (17), cf. [3], which, in light of (12) and (13),
explains the restrictive range on r and s below.

Theorem 4.2. Under the same conditions as in Lemma 4.1, the operator Q with kernel
q € C(D x D) satisfies

||A§QA%||£1,(H) < o0

(i) for all r,s € [0,1/2) such that r +s < 26 — d/p if A has Dirichlet boundary condi-
tions and

(ii) for all r,s €[0,3/2) such that r+s<2c—d/p if A has Neumann bound-
ary conditions.

Proof. Using Lemmata 2.3 and 4.1 along with (7), we obtain

||Q||LP(H,H’) < |[|Iree . prr| L,(H>, Hr) Qll g ey < 00

for 26 — r > d/p. Lemma 2.2 along with (12) and (13) now complete the proof.

Remark 4.3. Examples of kernels g covered by the results above include the class of
Matérn covariance kernels [6, Example 7.17]. The exponential kernel is a special case. It
is given by g(x,y) = exp (—|x — y|) for x,y € R. Its Fourier transform g is, for a con-
stant C >0, given by §(&) = C(1+ |¢]*)” /2 Another example of a kernel covered
by the results is the Gaussian kernel g(x,y) = exp (—|x — y|*) with Fourier transform
given by §(¢) = Cexp (—&/4).

As a special case of this theorem, we obtain conditions on g that ensure the condition
(3) to be satisfied. We recall that this condition is given by

1ASQAS] |, 1y = |IASQ[Z, ) < 00
with r > 0.

Corollary 4.4. Under the same conditions as in Lemma 4.1, the operator Q with kernel
q € C(D x D) satisfies (3)

i. forall r € [0,min(¢ — d/2,1/2)) if A has Dirichlet boundary conditions and
ii. forall r € [0,min(c —d/2,3/2)) if A has Neumann boundary conditions.

Recall from Section 1 that (3) being satisfied is equivalent to requiring that the H-val-
ued Gaussian random variable W(t) with covariance tQ takes values in the space H'. As
such, given the ranges of r and s above, Corollary 4.4 can be seen as a statement on the
spatial regularity (as measured in Sobolev norms) of W(t) when this is regarded as a
(generalized) random field in D with stationary covariance kernel tg. The deduction of
such regularity properties of stationary processes (i.e., when D C R) based on the prop-
erties of g has a long tradition, see, e.g., [24]. Results that deal with stationary fields on
general domains with Lipschitz boundary are harder to find. One exception is [37]
which implicitly contains the Sobolev regularity result of the corollary, albeit for ¢ € N.
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This can be seen from the fact that under the conditions of Lemma 4.1, Q'/2(H) =

H,(D)— H’(D) (cf. [15, Corollary 10.48]).

Remark 4.5. The result of Corollary 4.4 is sharp. Consider the setting that d=1 with
D =(0,1), A = (—A) with Neumann boundary conditions and let g(x,y) = exp (—|x —
y|) for x,y € D. Then o=1 and by the result above, ||A5Q%||£2(H> < oo for all re
[0,1/2). By [15, Corollary 10.48], we have H' = H,(D) with equivalent norms. Since
the condition (3) }s 1equivalent to Iy pyiy € Ez(Hq(D),HT), we see by (13) and
Lemma 2.3 that |[A°Q2||, ) = oo for r > 1/2.

5. Applications to SPDE approximations

In this section, we reconnect to the discussion in Section 1 and highlight applications of
the estimates obtained in Sections 3 and 4 to the numerical approximation of SPDEs on
bounded domains. We list a few examples from the literature where these estimates are
used as assumptions and discuss how they are used and how this relates to our results.
Even though our focus is on the numerical approximation of SPDEs, the estimates we
have obtained have implications also for SPDEs themselves, as seen in Section 1. These
are not restricted to stochastic reaction-diffusion equations but include other SPDEs
where an elliptic operator is involved, such as stochastic wave equations and stochastic
Volterra equations on bounded domains. As an example of the latter, it can be seen
that a bound of type (3) implies a certain regularity of the solution [38,
Proposition 2.1].

All the examples below are considered on some bounded convex domain D C R4,
d=1,2,3.

Example 5.1 (Approximation of the stochastic heat equation). One of the most studied
SPDEs from a numerical perspective is the stochastic heat equation with additive noise,
given by

dX(t) = AX(t) dt + dW ()

for t € (0, T], a sufficiently smooth initial value X(0) = x € H and W a Q-Wiener pro-
cess in H = L*(D). This can be seen as a simplified version of equations considered for
the modeling of sea surface temperature and other geophysical spatio-temporal proc-
esses [36].

In [39], Dirichlet zero boundary conditions are assumed for the negative Laplacian
A = —A. Under the condition

1A5Q |, a1y < 00,

it is shown in [39, Theorem 4.2] that a spatially semidiscrete finite element approxima-
tion Xj, converges weakly to X in the sense that, for a smooth test functional ¢ on H,

[E[¢p(Xh(T)) — d(X(T))]| < Ch*""|log (h)|

for some constant C >0 independent of h > 0. Here h is the maximal mesh size of the
finite element mesh. The range for the parameter r is taken to be [—1,0 — 1], where ¢
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is the degree of the piecewise polynomials making up the finite element space in which
X}, is computed.

Suppose that Q is an integral operator with a homogeneous kernel g satisfying the
conditions of Theorem 4.2 for some ¢ > d/2. Suppose further that ¢ > 1. Then, this
theorem implies that X, converges weakly to X, essentially with rate 2+ min(20 —
d,1/2). If we did not have access to this result, we would incorrectly assume the con-
vergence rate to be 2. Similar remarks hold, with potentially more dramatic differences
in rates, in the non-homogeneous setting of Theorem 3.1. The importance of sharp
weak convergence rates in the application of the multilevel Monte Carlo methods for
SPDE simulation has been pointed out in [40].

In the setting above, we required that the piecewise polynomials making up the finite
element space were of degree 6 > 1 to see a difference in the rate for the weak error.
For the strong error, on the other hand, we see an improvement in rates also when
0= 1. Specifically, for the same g as above, Corollary 4.4 yields that (3) is fulfilled for
all r < g —d/2. As noted in [39], we have for all such r the existence of a constant
C> 0 such that

||X(T) _Xh( )||L2 Q,H) [HX( ) Xh(T)||?_1:|E < Chmin(rJrl,Z).

If we did not have access to Corollary 4.4 and only knew that Tr(Q) < co, we might
incorrectly conclude that the convergence rate was 1.

Here we only mentioned the results for Dirichlet boundary conditions since these are the
most frequently encountered for approximations of the stochastic heat equation. Similar
remarks hold for Neumann boundary conditions, we refer to [34] for details on when the
error estimates used in the analysis of [39] hold for non-Dirichlet boundary conditions.

Example 5.2 (Approximation of the stochastic Allen—-Cahn equation). The stochastic
Allen-Cahn equation is a non-linear version of the stochastic heat equation, given by

dX(t) = (AX(t) + F(X(t))) dt + dW(¢), (20)

in the same setting as in Example 5.1. The operator F on H is non-linear and given by
F(u)(x) = u(x) — u(x)’ for x € D. In [41], a fully discrete approximation Xj, x; of X is
considered, based on a piecewise linear finite element discretization in space combined
with a fully implicit backward Euler approximation in time.

Estimate (3) with >0 is needed to even establish existence of a solution to (20) in
[41] when the spatial dimension d=3. Moreover, also for dimensions d =1, 2, the esti-
mate is necessary to find optimal convergence rates of X, a;. Specifically, under (3), [41
Theorem 4.1] yields the existence of a constant C > 0 such that for all mesh sizes h >0,
time steps 0 < At < 1/3 and time points f, = nAt with n € N,

X (tn) = X, ae(ta)ll 1200, 11y = [||x(tn) xh,At(tn)HH} < c(n+' + Af),

Here r is taken in the range [—2/3,1]. Combining our results with this, we see, for
example, that if Q is an integral operator with a kernel g € C"'(D x D) that satisfy the
Dirichlet boundary conditions, Theorem 3.1 yields a convergence rate of order 2 in
space and 1 in time. If g is a homogeneous kernel satisfying the conditions of Corollary
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4.4 for some ¢ > d/2, we essentially obtain convergence rates min(1 + ¢ — d/2,3/2) in
space and min(1 + ¢ — d/2,3/2)/2 in time. Without these results, we would incorrectly
assume a rate of 1 in space and 1/2 in time. Condition (3) with r >0 is commonly con-
sidered for the stochastic Allen-Cahn equation, for example in [26, 42].

Example 5.3 (Approximation of the stochastic wave equation). The stochastic wave
equation is another SPDE commonly encountered in the literature. It is considered as a
simplified model for the movement of DNA strings suspended in liquid [30]. The
authors of [43] analyze numerical schemes for it in the same setting as above with H =
L*(D). It is there given

dX(t) = AX(t) dt + dW(¢) (21)

for t € (0, T]. Here X is the time derivative of X, the equation is posed with two smooth
initial values X(0), X(0) and A is equipped with Dirichlet zero boundary conditions.

In [43], discretizations X, At,Xh,A[ of X and X are obtained by a piecewise linear
finite element method in space and an exponential integrator method in time.
Assuming that the estimate (3) holds with r > 0, [43, Theorem 4.3] yields a constant
C>0 such that for all mesh sizes h >0, time steps At > 0 and time points ¢, = nAt
with n € N,

2(r+1)

1X(t) — Xnae(t) Iy < COS" 4 gt )

The range for r is taken to be [—1,2]. Hence, if Q is an integral operator, Theorem 3.1
and Corollary 4.4 can improve the spatial convergence rate from 2/3 (if we only knew
that (3) held true with r=0) up to 2, under the right conditions on q. Furthermore, the
corresponding error result in [43, Theorem 4.3] for the time derivative X, o; approxi-
mation requires (3) to hold with 7> 0 to yield any convergence rate at all.

Similar remarks hold for the results of [44], where a temporally semidiscrete expo-
nential integrator approximation is used, and for [45], where a fully discrete scheme,
based also on the spectral Galerkin method, is applied to a damped stochastic
wave equations.

Example 5.4 (Approximation of SPDE covariance operators). Recently, the authors of
this paper derived error bounds for approximations of the covariance operator of solu-
tions to SPDEs [17], using a semigroup approach. For example, in [17, Section 3.2],
fully discrete approximations Kj a;(t,) of covariance operators K(t,) = Cov(X(t,)) of
the solution X to (a variant of) the stochastic wave equation (21) are considered. It is
shown that for p € {1,2}, there is a constant C >0 such that for all h, At € (0, 1]

1K (t) = Kn ae(ta)l |, ) < C(h™2E2D) 4 Agmin1)), (22)

This applies when the discretizations used are a piecewise linear finite element method
with mesh size h in space along with a rational approximation of the underlying semi-
group with time step At in time.
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The convergence in (22) is obtained under the assumption that
r—1 _1
HQHLP(HI,HPI) = ||A 2 QA ZH,CP(H) < Q. (23)

Suppose, as in the numerical simulation in [17, Section 3.2], that Q is an integral oper-
ator with a homogeneous kernel g satisfying the conditions of Theorem 4.2 for some
¢ > d/2. In the £,(H) case, we obtain, using (6) and (7),

AT QA ) < AT Qg anlIA g,
= ||ATQ||L‘P1(H)||IH1c_>H||£P2(H1,H)

-1
<Az Q||,CP1(H)||IH1‘—>H||,CP2(H1,H)HIH1<_>H1||£(H1’Hl)’

where 1/p; 4+ 1/p, = 1. In light of Lemma 2.3, we should take p, > d. By Theorem 4.2,
the bound is then finite for r — 1 < min(20 — d(1 — 1/p,), 1/2) under Dirichlet bound-
ary conditions and for r —1 < min(2¢ — d(1 — 1/p),3/2) under Neumann boundary
conditions. By letting p, tend to d from above and noting that ¢ > d/2, we see that
under the condition §(&) < C(1 + &), ||A(r_1)/2QA_1/2||£](H> < oo for all r<3/2
when Dirichlet boundary conditions are used and for all r < min(5/2,20 —d + 2)
when Neumann boundary conditions are used. By an analogous argument, we obtain,
under the same condition on g, that ||A(T_1)/2QA_1/2||LZ(H) < oo for all ¥<3/2 in the
Dirichlet case. In the Neumann case, this quantity is finite for all r < min(5/2,20 + 1)
when d=1 and for all r<5/2 when d € {2,3}.

As in the examples above, the use of our estimates yields higher convergence rates
compared to only knowing that Q € £,(H). In this case, it is important to note that if
we had only used estimates on Q'/2 as in Corollary 4.4, we would have obtained sub-
optimal rates. For example, consider the case that d=2 and that, for a kernel g €
C(D x D), there exists o€ (0,1] such that for ae. z€D,q(z-) € C* (D) with
esssup,epl|q(2, )|l coo(py < 00. In the same way as before, we have

1€

||A%QA72||£1(H) < ||A%QA% LH', H*)

L,(H) | T+ ;»H| |,C2(H1+E,H) | |IH1+f s Hlte

for sufficiently small € > 0. In the case of Neumann boundary conditions, Theorem 3.6
then yields that the quantity ||A(r71)/2QA71/2||£1(H) is finite for r < 1+ o. If we only
used Theorem 3.3, we would instead conclude that

||A%QA7||51<H) < ||A%QE||2£2(H)||IH';»H||£(H"H) <0

for r < 1+ ¢/2. Similar remarks hold for the weak convergence analysis of approxima-
tions of hyperbolic SPDEs in [39, 44, 46, 47], where the estimate (23) for p=1 is
also assumed.
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