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ABSTRACT
Regularity estimates for an integral operator with a symmetric continuous
kernel on a convex bounded domain are derived. The covariance of a
mean-square continuous random field on the domain is an example of
such an operator. The estimates are of the form of Hilbert–Schmidt
norms of the integral operator and its square root, composed with frac-
tional powers of an elliptic operator equipped with homogeneous
boundary conditions of either Dirichlet or Neumann type. These types of
estimates, which couple the regularity of the driving noise with the prop-
erties of the differential operator, have important implications for sto-
chastic partial differential equations on bounded domains as well as their
numerical approximations. The main tools used to derive the estimates
are properties of reproducing kernel Hilbert spaces of functions on
bounded domains along with Hilbert–Schmidt embeddings of Sobolev
spaces. Both non-homogeneous and homogeneous kernels are consid-
ered. In the latter case, results in a general Schatten class norm are also
provided. Important examples of homogeneous kernels covered by the
results of the paper include the class of Mat�ern kernels.
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1. Introduction

A Gaussian random field on a bounded domain D is characterized by its mean and
its covariance. Depending on the research community, the covariance is described
by a covariance kernel q or a covariance operator Q. More specifically, given a
symmetric continuous covariance kernel q : �D � �D ! R, the corresponding
covariance operator Q is positive semidefinite and self-adjoint on the Hilbert space
L2ðDÞ and given by
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QuðxÞ ¼
ð
D
qðx, yÞuðyÞ dy,

for x 2 D, u 2 L2ðDÞ: Our main goal in this paper is to, given the regularity of the ker-
nel q, derive regularity estimates for Q in terms of certain smoothness spaces related to
elliptic operators with boundary conditions on D:

Our motivation to analyze the coupling of these two formulations in detail comes
from the theory and approximation of solutions to stochastic partial differential equa-
tions (SPDEs). While the analysis of these equations and their numerical approxima-
tions is mainly done in Hilbert spaces, e.g., certain fractional order spaces related to the
differential operator in the equation, with a Q-Wiener process as driving noise, algo-
rithms that generate this driving noise in practice are often based on the covariance ker-
nel q. The class of Mat�ern kernels is a popular example in spatial statistics. Surprisingly,
to the best of our knowledge, such results are not available in the literature.
To be able to put our abstract results and their consequences in a more specific con-

text, let us consider a linear stochastic reaction-diffusion equation with additive noise

@X
@t

ðt,xÞ ¼
Xd
i, j¼1

@

@xj
ðai, jð�Þ@X

@xi
Þðt,xÞ � cðxÞXðt,xÞ þ @W

@t
ðt,xÞ, ðt,xÞ 2 ð0,T� �D,

Xð0,xÞ ¼ X0ðxÞ,x 2 D,

8><>: (1)

on a convex bounded domain D� R
d,d ¼ 1, 2, 3, with boundary @D: Here the func-

tions ðai, jÞdi, j¼1, c fulfill an ellipticity condition, X0 is some smooth initial function and
homogeneous boundary conditions of either Dirichlet or Neumann type are considered.
The stochastic noise term @W=@t is Gaussian, white in time and correlated by a sym-
metric continuous covariance kernel q : �D� �D ! R in space. This can be seen as a sim-
plified version of equations considered for the modeling of sea surface temperature and
other geophysical spatio-temporal processes on some spatial domain D [1, Chapter 6].
This equation is considered in the context of [2] as a stochastic differential equation of
Itô type on the Hilbert space H ¼ L2ðDÞ of square integrable functions on D: The sto-
chastic partial differential equation (1) is then written in the form

dXðtÞ þKXðtÞ ¼ dWðtÞ, (2)

for t 2 ð0,T�: The unbounded linear operator K on H is densely defined, self-adjoint
and positive definite with a compact inverse, see Section 2.2 for precise assumptions.
The stochastic term W is an H-valued Q-Wiener process on a complete filtered prob-
ability space ðX,F ,PÞ: Here Q is a positive semidefinite self-adjoint integral operator
on H with kernel q. If x 7!Wð1,xÞ ¼Wð1ÞðxÞ is pointwise defined and jointly measur-
able with respect to the product r-algebra F �BðDÞ (with BðDÞ denoting the Borel
r-algebra on D) then q is the covariance function of the random field ðWð1,xÞÞx2D: In
general, there is no analytic solution to (2) so numerical approximations have to be
computed. It is then vital to understand how various regularity properties of q influence
the behavior of X and its approximation, since this can determine the convergence rate
of the numerical approximations. We discuss this in concrete terms in Section 5.
The research field on SPDEs of the form (2) has been very active in the 21st century.

There is a substantial body of literature, both from theoretical [1, 2] as well as numerical
[4–6] perspectives. For SPDEs on domains without boundary (i.e., when D is replaced by
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Euclidean space, a torus or a sphere) the question of how regularity properties of q influ-
ence X is well understood, especially in the homogeneous case [7–10]. This refers to the
case that q(x, y) only depends on the difference x – y between two points x and y in D,
examples including the class of Mat�ern kernels, see Remark 4.3. For domains with bounda-
ries, such results are rarely found in the literature. Usually, the analysis is restricted to the
special case that the eigenvalues and eigenfunctions of Q are explicitly known. In particular
it is common to consider the case that Q and K commute, see, e.g., [2, Section 5.5.1]. One
of the few instances in which an author instead considers the properties of q as a function
on �D � �D when deriving connections between properties of q and properties of X can be
found in [3]. The main result of this paper is [3, Theorem 4.2], which states that q has to
satisfy the boundary conditions of K in a certain sense in order for Q and K to commute.
In practice, this excludes the physically relevant case of homogeneous noise from
approaches such as that of [2, Section 5.5.1], see [3, Corollary 4.9]. Our approach to the
problem consists instead of deriving sufficient conditions on q for which the associated
symmetric operator Q fulfills estimates of the form

jjKr
2QK

r
2jjL1ðHÞ ¼ jjKr

2Q
1
2jj2L2ðHÞ < 1 (3)

and

jjKr
2QK

s
2jjL2ðHÞ < 1 (4)

for fractional powers Kr=2 of K and suitable constants r, s � 0: By L1ðHÞ and L2ðHÞ we
denote the spaces of trace-class and Hilbert–Schmidt operators, respectively. We con-
sider both homogeneous and non-homogeneous kernels q. In the former case, we are
able to deduce estimates of the form (4) with the L2ðHÞ-norm replaced by the more
general Schatten class LpðHÞ-norm, p � 1:
In the setting of (2), the condition on Q in (3) is for a given value of r � 0 equivalent to

requiring that the H-valued random variable W(t) takes values in the subspace _H
r ¼

domðKr=2Þ of the fractional Sobolev space Hr ¼ Wr, 2ðDÞ at all times t 2 ½0,T�: This is a
commonly encountered assumption in the literature, particularly when analyzing numer-
ical approximation schemes for SPDEs, see Section 5. The condition also has implications
for the qualitative behavior of X. It guarantees that X takes values in _H

rþ1 � Hrþ1 [2,
Proposition 6.18] with sample paths continuous in _H

rþ1�� � Hrþ1�� for arbitrary � > 0
[2, Theorem 5.15]. In particular, if (3) holds with r> 1=2, X is a strong solution (in the
PDE sense) to (2) as opposed to just a weak solution, cf. [2, Theorem 5.40]. This means
that the process X takes values in domðKÞ and has the intuitive representation

XðtÞ ¼ WðsÞ �
ðt
0
KXðsÞ ds

for t 2 ð0,T�: Moreover, if (3) holds with r > d=2� 1, a classical Sobolev embedding the-
orem (see, e.g., [13, Section 8]) ensures that X(t) takes values in the space C0,maxð1,rÞð �DÞ of
H€older continuous functions on �D ¼ D [ @D with exponent r 2 ð0, r þ 1� d=2� P-a.s.
The evaluation functional is continuous on this Banach space. It follows that for each
t> 0, ðXðt, xÞÞx2 �D is a smooth random field on �D as opposed just an abstract random vari-
able in a Hilbert space, c.f. [14, Sections 7.4-7.5]. In summary, there could be many reasons
why one would like to know for which r> 0 the estimate (3) is satisfied for a given kernel
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q. In the case of non-homogeneous kernels, we consider H€older conditions on the kernel q
when deriving the estimate (3). This is a natural choice given our proof technique, which
is based on the fact that Q1=2ðHÞ, the image of the square root Q1=2 of Q, coincides with
the reproducing kernel Hilbert space of functions on �D associated with the kernel q [15].
For a similar reason, in the case of homogeneous kernels q, we consider a decay condition
on the Fourier transform of q, which is used in practice when generating the driving noise
with fast Fourier transforms (cf. [16]). While this interpretation of Q1=2ðHÞ as a reproduc-
ing kernel Hilbert space is well-known, we are not aware that it has been used to find esti-
mates of the form (3) before.
The estimate (4) does not, as far as we know, have an immediate interpretation in

terms of regularity properties of X or W. It is, however, important for analyzing weak
errors of approximations to certain SPDEs, such as the stochastic wave equation. It has
also been used in the recent work [17] to derive higher convergence rates for approxi-
mations of the covariance operator of SPDE solutions. There is an immediate connec-
tion between the condition on Q in (4) and regularity of q: the condition is true with
r¼ s if and only if q is an element of the Hilbert tensor product space _H

r � _H
r
, see

[18, 19]. Instead of exploiting this connection, we consider H€older or Fourier transform
conditions on q also in this case. The reason for this is partly that these conditions are
easier to check in applications compared to the rather abstract tensor product condition.
We also want to ensure easy comparisons between the estimates (3) and (4) under the
same conditions on q.
The outline of the paper is as follows. The next section contains an introduction to

the necessary mathematical background along with our assumptions on K and Q. This
includes short introductions to fractional powers of elliptic operators on bounded
domains and reproducing kernel Hilbert spaces along with the proofs of some prelimin-
ary lemmas. We derive the estimates (3) and (4) under H€older conditions on a non-
homogeneous kernel q in Section 3. In Section 4 we consider a decay condition on the
Fourier transform of a homogeneous kernel q and derive estimates on

jjKr
2QK

s
2jjLpðHÞ < 1

for p � 1, a more general form of the estimate (4). We use this estimate to obtain con-
ditions for which the estimate (3) is satisfied. Section 5 concludes the paper with a dis-
cussion of the implication of our results for the numerical analysis of SPDEs on
domains with boundary. The applications we discuss are not limited to stochastic reac-
tion-diffusion equations but include several other SPDEs involving elliptic operators on
bounded domains, such as stochastic Volterra equations or stochastic wave equations.
Throughout the paper, we adopt the notion of generic constants, i.e., the symbol C is

used to denote a positive and finite number which may vary from occurrence to occur-
rence and is independent of any parameter of interest. We use the expression a�b to
denote the existence of a generic constant C such that a 	 Cb:

2. Preliminaries

In this section, we introduce our notation and reiterate some important results that we use
in Sections 3-4. The material mainly comes from [20, Chapter 1], [21, Section 1.3-1.4], [5,
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Appendix B] and [22, Chapters 1–2]. We give explicit references for vital or nonstan-
dard results.

2.1. Schatten class operators

Let H and U be real separable Hilbert spaces. By LðH,UÞ we denote the space of linear
and bounded operators from H to U and by LpðH,UÞ the subspace of Schatten class
operators of order p 2 ½1,1Þ: This is a separable Banach space of compact operators
with norm characterized by

jjCjjLpðH,UÞ ¼
X1
j¼1

ðkjðCÞÞp
 !1

p

: (5)

Here ðkjðCÞÞ1j¼1 are the singular values of C 2 LpðH,UÞ, i.e., the square roots of the
eigenvalues of C
C, which form a non-increasing sequence with limit 0. The special
cases L1ðH,UÞ and L2ðH,UÞ are referred to as the trace-class and Hilbert–Schmidt
operators, respectively.
For an additional real separable Hilbert space V, let C1 2 LðU,VÞ and C2 2 LðV ,HÞ

be compact operators. Then, for any j, k � 0,

kjþkþ1ðC1C2Þ 	 kjþ1ðC1Þkkþ1ðC2Þ:

This inequality is proven in [23, Theorem 2] for the case that U¼V ¼ H, but the proof
is readily adapted to our situation using the fact that the eigenvalues of C
C and CC
,
for a given operator C between Hilbert spaces, coincide [14, Section 4.3]. Using the
H€older inequality for sequence spaces ‘p, p � 1, it follows that for p, q, r 2 ½1,1Þ with
1=r ¼ 1=pþ 1=q, if C1 2 LqðV ,HÞ and C2 2 LpðU ,VÞ, then C1C2 2 LrðU ,HÞ and

jjC1C2jjLrðU,HÞ 	 21=rjjC1jjLqðV ,HÞjjC2jjLpðU,VÞ: (6)

Moreover, if E is an additional real separable Hilbert space, C1 2 LðH,EÞ, C3 2 LðU ,VÞ
(not necessarily compact) and C2 2 LpðV ,HÞ for some p 2 ½1,1Þ, then C1C2C3 2
LpðU,EÞ with

jjC1C2C3jjLpðU ,EÞ 	 jjC1jjLðH,EÞjjC2jjLpðV ,HÞjjC3jjLðU,VÞ: (7)

This ideal property follows from the fact that

kjðC1C2C3Þ 	 jjC1jjLðH,EÞkjðC2C3Þ 	 jjC1jjLðH,EÞkjðC2ÞjjC3jjLðU,VÞ,

where the inequalities are consequences of the min-max theorem.
The space L2ðH,UÞ is a separable Hilbert space with inner product

hC1,C2iL2ðH,UÞ ¼
X1
j¼1

hC1ej,C2ejiU ¼ TrðC

2C1Þ ¼ TrðC


1C2Þ,

for C1,C2 2 L2ðH,UÞ and an arbitrary orthonormal basis ðejÞ1j¼1 of H. For a positive
semidefinite symmetric operator Q 2 LðHÞ, jjQjjL1ðHÞ ¼ TrðQÞ:
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2.2. Fractional powers of elliptic operators on bounded domains

Consider a Gelfand triple V � H � V
 of real separable Hilbert spaces with dense and
continuous embeddings. We assume that ðV
,VÞ forms an adjoint pair with duality prod-
uct Vh�, �iV
 such that V
hu, viV ¼ hu, viH for all u 2 H, v 2 V: Given V and H, V
 can be
constructed by identifying H with its continuous dual space H0 � V 0 and letting V
 be the
completion of H under the norm of V 0: Next, let k : V � V ! R be a continuous, sym-
metric and coercive bilinear form, i.e., it is linear in both arguments, kðu, vÞ ¼ kðv, uÞ and
there are constants C, c > 0 such that jkðu, vÞj 	 CjjujjV jjvjjV and kðu, uÞ � cjjujj2V for all
u, v 2 V: Then, there exists a unique isomorphism L : V ! V
 such that V
hLu, viV ¼
kðu, vÞ for all u, v 2 V: Viewing L as an operator on V
, it is densely defined and closed.
We write K ¼ LjH for its part in H, which is then a densely defined, closed, self-adjoint
and positive definite operator with domain DðKÞ ¼ fv 2 V : Kv ¼ Lv 2 Hg: It has a self-
adjoint inverse K�1 2 LðHÞ, which we assume to be compact.
Applying the spectral theorem to K�1, we obtain the existence of a sequence ðkjÞ1j¼1

of positive non-decreasing eigenvalues of K, along with an accompanying orthonormal
basis of eigenfunctions ðejÞ1j¼1 in H. For r � 0, we define fractional powers of K by

K
r
2v ¼

X1
j¼0

k
r
2
jhv, ejiHej (8)

for

v 2 dom K
r
2ð Þ ¼ v 2 H : jjxjj2_Hr ¼

X1
j¼1

krj hv, eji2H < 1
( )

:

We write _H
r ¼ domðKr=2Þ: Note that _H

0 ¼ H: For r< 0, we let Kr=2 be defined by (8),
and we write _H

r
for the completion of H under the norm jjxjj _Hr : Equivalently, we can

write

_H
r ¼ dom K

r
2ð Þ ¼ x ¼

X1
j¼1

xjej : ðxjÞ1j¼1 � R such that jjxjj2_Hr ¼
X1
j¼1

krj x
2
j < 1

( )
:

Then Kr=2 2 Lð _Hr
,HÞ for all r 2 R: Regardless of the sign of r, _H

r
is a Hilbert space

with inner product hu, vi _H
r ¼ hKr=2u,Kr=2viH: For r> 0, _H

�r
is isometrically isomorphic

to ð _HrÞ0 [5, Theorem B.8]. In particular, for v 2 H ¼ H0,

jjvjj _H�r ¼ jjK�r
2vjjH ¼ sup

u2 _H
r

jhu, viHj
jjujj _Hr

:

For r> s, we have _H
r
,! _H

s
where the embedding is dense and continuous. Since

ðK�r=2ejÞ1j¼1 and ðK�s=2ejÞ1j¼1 are orthonormal bases of _H
r
and _H

s
, respectively, we may

represent the embedding I _Hr
,! _H

s by

I _Hr
,! _H

s ¼
X1
j¼1

h�,K�r
2eji _H

rK�r
2ej ¼

X1
j¼1

k
s�r
2
j h�,K�r

2eji _HrK�s
2ej:

It follows that I _Hr
,! _H

s is compact. Lemma 2.1 in [12] allows us to, for all r, s 2 R, extend
Ks=2 to an operator in Lð _Hr

, _H
r�sÞ, and we will do so without changing notation.
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Let us write _H
s
C
for the complexification of _H

s
, i.e., the complex Hilbert space given

by _H
s � _H

s
with scalar multiplication ðaþ biÞðu, vÞ ¼ ðau� bv, avþ buÞ for aþ bi 2 C

and ðu, vÞ 2 _H
s
C
: We write u þ iv for (u, v) so that we may consider ðK�s=2ejÞ1j¼1 as an

orthonormal basis of _H
s
C
when this is equipped with the inner product

huþ iv, xþ iyi _H
s
C

¼ hu, xi _H
s þ ihv, xi _Hs � ihu, yi _H

s þ hv, yi _H
s :

For r � s 2 R, it follows that

_H
r
C
¼ v 2 _H

s
C
:
X1
j¼1

kr�s
j hv,K�s=2eji _H

s
C

j2 < 1
��� o

:

(
From this, one obtains (see, e.g., [25]) that for h 2 ½0, 1�, _H

hrþð1�hÞs
C

¼ ½ _Hs
C
, _H

r
C
�h in the

sense of isometric isomorphisms, where ½ _Hs
C
, _H

r
C
�h is defined by complex interpolation.

We refer to u and v as the real and imaginary parts of uþ iv 2 _H
s
C
and write uþ iv for

u – iv. The real part of _H
s
C
with only real multiplication of scalars is a Hilbert space

isometrically isomorphic to _H
s
:

The interpolation space representation of _H
hrþð1�hÞs
C

allows us to prove the following
lemma for a symmetric operator Q 2 LðHÞ:
Lemma 2.1. Let Q 2 LðHÞ be symmetric. Then the following three claims are equivalent
for p 2 ½1,1Þ and r 2 R:

(i) jjQjjLpðH, _H
rÞ ¼ jjKr=2QjjLpðHÞ < 1:

(ii) jjQjjLpð _H�r
,HÞ ¼ jjQKr=2jjLpðHÞ < 1:

(iii) jjQjjLpð _H ðh�1Þr
, _H

hrÞ ¼ jjKhr=2QKð1�hÞr=2jjLpðHÞ < 1 for all h 2 ½0, 1�:
Proof. Assume first that r � 0: If Q 2 LðH, _H

rÞ, then by symmetry of Q,

jjQvjjH ¼ sup
w 2 H

jjwjjH ¼ 1

jhQv,wiHj ¼ sup
w 2 H

jjwjjH ¼ 1

jhK�r
2v,K

r
2QwiHj 	 jjvjj _H�r jjQjjLðH, _H

rÞ

so that Q can be continuously extended to _H
�r
: Conversely, if Q extends to _H

�r
, the

operator norm jjQKr=2jjLðHÞ is finite and therefore

jjQvjj2_Hr ¼
X1
j¼1

krj hQv, eji2H ¼
X1
j¼1

hv,QKr
2eji2H ¼

X1
j¼1

hðQKr
2Þ
v, eji2H 	 jj QKr

2

� �
jjLðHÞjjvjjH

so that Q 2 LðH, _H
rÞ: Let us now write Q̂



for the adjoint of Q with respect to

LðH, _H
rÞ, i.e., the operator in Lð _Hr

,HÞ defined by

hQ̂

u, viH ¼ hu,Qvi _H

r ¼ hKr
2u,K

r
2QviH

for u 2 _H
r
, v 2 H: Let us similarly write �Q


 2 LðH, _H
�rÞ for the adjoint of Q with

respect to Lð _H�r
,HÞ: We have for u 2 H, v 2 _H

r
that

hK�r
2 �Q



u, viH ¼ h�Q


u,K
r
2vi _H

�r ¼ hu,QKr
2viH ¼ hKr

2Qu, viH (9)

so that by density of _H
r
in H, K�r=2 �Q


 ¼ Kr=2Q: This implies
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kðQ̂

Q� Q�Q


ÞukH ¼ sup
v 2 H

kvkH ¼ 1

jhQ̂

Qu, viH � hQ�Q



u, viHj

¼ sup
v 2 H

kvkH ¼ 1

jhKr
2Qu,K

r
2QviH � hK�r

2 �Q


u,K

r
2QviHj ¼ 0

for u 2 H, hence Q�Q

 ¼ Q̂



Q: Since the eigenvalues of Q�Q



are the same as those of

�Q


Q [14, Section 4.3], the singular values of Q 2 LðH, _H

rÞ and Q 2 Lð _H�r
,HÞ are the

same, so that (5) implies the equivalence of (i) and (ii) for p 2 ½1,1Þ: For r< 0 the
proof is the same, except that we take v 2 H in (9).
Clearly (iii) implies (ii) and (i). For the other direction, we first write QC for the com-

pact operator in LðHC, _H
r
C
Þ (and Lð _H�r

C
,HCÞ) defined by QCðuþ ivÞ ¼ Quþ iQv: Then

we note that _H
hr
C
¼ ½HC , _H

r
C
�h and _H

ðh�1Þr
C

¼ ½ _H�r
C

,HC�h in the case that r> 0 while _H
hr
C
¼

½ _Hr
C
,HC�1�h and _H

ðh�1Þr
C

¼ ½HC, _H
�r
C
�1�h in the case that r< 0. Therefore, QC 2

Lð _H ðh�1Þr
C

, _H
hr
C
Þ and by restriction to the real elements of _H

ðh�1Þr
C

, it follows that Q 2
Lð _H ðh�1Þr

, _H
hrÞ: For a fix h 2 ½0, 1�, let us regard QC and Q as operators in these spaces.

Note that QC is compact if and only if Q is compact. Moreover, the vector v 2 _H
ðh�1Þr
C

is
an eigenvector of Q


C
QC with (real and positive) eigenvalue l if and only if

hQCv,QCui _H
hr
C

¼ lhv, ui _H ðh�1Þr
C

for all u 2 _H
ðh�1Þr
C

: From this it follows that �v is also an

eigenvector of Q

C
QC and that ðvþ �vÞ=2 is an eigenvector of Q
Q: Similarly, if u 2 _H

ðh�1Þr

is an eigenvector of Q
Q, it is also an eigenvector of Q

C
QC in _H

ðh�1Þr
C

with the same eigen-

value. In other words, the sets of singular values of QC 2 Lð _H ðh�1Þr
C

, _H
hr
C
Þ and Q 2

Lð _H ðh�1Þr
, _H

hrÞ coincide. Therefore, QC 2 Lpð _H�r
C
,HCÞ \ LpðHC, _H

r
C
Þ, which, using the

results of [27], implies that QC 2 Lpð _H ðh�1Þr
C

, _H
hr
C
Þ for all h 2 ½0, 1�: Another appeal to the

correspondence of the singular values of Q and QC finishes the proof. w

In the spirit of the previous result, let us also note that the equality in (3) is true
when Q is also assumed to be positive semidefinite (so that Q1=2 is well-defined).
Indeed, the right hand side guarantees that Q1=2 extends to _H

�r
so for u 2 H

jjKr
2QujjH 	 jjKr

2Q
1
2jjLðHÞjjQ

1
2K

r
2jjLðHÞjjK�r

2ujjH:
Therefore Kr=2Q also extends to _H

�r
: The operator Kr=2QKr=2 is symmetric and positive

semidefinite on H, so (since ðKr=2Q1=2Þ
ej ¼ Q1=2Kr=2ej on an eigenfunction ej of K) we have

jjKr
2QK

r
2jjL1ðHÞ ¼

X1
j¼1

hKr
2QK

r
2ej , ejiH

¼
X1
j¼1

jjQ1
2K

r
2ejjj2H ¼

X1
j¼1

jj Kr
2Q

1
2

� �

ejjj2H ¼ jj Kr

2Q
1
2

� �
jj2L2ðHÞ ¼ jjKr
2Q

1
2jj2L2ðHÞ:

Before we put the abstract framework above into a concrete setting, we note some prop-
erties of fractional Sobolev spaces. We denote by HmðDÞ ¼ Wm, 2ðDÞ and HmðRdÞ ¼
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Wm, 2ðRdÞ the classical Sobolev spaces of order m, on a bounded domain D � R
d with

Lipschitz boundary and R
d, d 2 N, respectively. We consider only Sobolev spaces of

real-valued functions in this paper. The results we cite are generally proved for Sobolev
spaces of complex-valued functions but naturally hold also in this real-valued setting.
The norm of HmðRdÞ is given by

jjujj2HmðRdÞ ¼
X
jaj	m

jjDaujj2L2ðRdÞ,

where Da is the weak derivative with respect to a multiindex a ¼ ða1, :::, adÞ and the
norm of HmðDÞ is defined in the same way. When there is no risk of confusion we
write Hm for HmðDÞ and we set H0 ¼ H ¼ L2ðDÞ: For s ¼ mþ r, m 2 N0, r 2 ð0, 1Þ,
we use the same notation for the fractional Sobolev space Hs as for the classical Sobolev
space. The space Hs is equipped with the Sobolev–Slobodeckij norm

jjujjHs ¼ jjujj2Hm þ
X
jaj¼m

ð
D�D

jDauðxÞ � DauðyÞj2
jx � yjdþ2r dx dy

0@ 1A1=2

,

for u 2 Hs: Since @D is Lipschitz, an equivalent [21, page 25] norm is given by

jjujjHsðDÞ ¼ inf
v2HsðRdÞ
vjD¼u

jjvjjHsðRdÞ: (10)

Here the norm of the fractional Sobolev space HsðRdÞ is given by

jjujj2HsðRdÞ ¼
1

ð2pÞd2
ð
R

d
jûðnÞj2ð1þ jnj2Þs dn, (11)

where û is the Fourier transform of u 2 L2ðRdÞ:
The embedding of Hr into Hs is dense and, since @D is Lipschitz, compact for all r >

s � 0 [21, Theorem 1.4.3.2]. This last fact gives us yet another way to characterize Hr

and extend the definition to negative r. Since, for m 2 N, Hm is densely and continu-
ously embedded in H, there is a positive definite self-adjoint operator Hm such that
domðHmÞ ¼ Hm and jjHmujjH ¼ jjujjHm [28, Section 1.2]. The compactness of the
embedding implies [29, Sections 4.5.2-4.5.3] that H�1

m is compact and the spaces Hr
m ¼

domðHr=2
m Þ, r 2 R

þ, can now be constructed by the spectral decomposition of the oper-
ator. The space H�r

m is, like _H
�r
, defined as the completion of H with respect to the

norm jjH�r=2
m jjH: Naturally, Hr

C
is isometrically isomorphic to the corresponding frac-

tional Sobolev space of complex-valued functions on D: By [22, Theorem 1.35] we then
obtain, for r 2 ½0, 2�, Hr

m,C ¼ ½HC ,Hm
C
�r=2 ¼ Hrm=2

C
: Thus, taking the real parts of these

spaces, we obtain Hr
m ¼ Hrm=2 in the sense of an isometric isomorphism. We define

H�r for r 2 ½0,m� by H�2r=m
m , and note that this definition is independent of m due to

the fact that H�r ¼ ðH2r=m
m Þ0 ¼ ðHrÞ0: By this characterization of the norm of Hr, r 2 R,

we can repeat the proof of Lemma 2.1 to obtain the following analogous result.

Lemma 2.2. Let Q 2 LðHÞ be symmetric. Then the following three claims are equivalent
for p 2 ½1,1Þ and r 2 R:
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(i) jjQjjLpðH,HrÞ < 1:

(ii) jjQjjLpðH�r ,HÞ < 1:

(iii) jjQjjLpðHðh�1Þr ,HhrÞ < 1 for all h 2 ½0, 1�:
The same characterization also allows us to deduce the following lemma, which tells

us when the embedding Hr ,!Hs, r> s, is of a particular Schatten class.

Lemma 2.3. For �1 < s < r < 1, the embedding IHr ,!Hs fulfills:

jjIHr ,!Hs jjLpðHr ,HsÞ < 1 () r � s > d=p:

Proof. We pick some m 2 N such that m � maxðjrj, jsjÞ and write ðfjÞ1j¼1 for the orthonor-
mal basis of eigenfunctions of the operator Hm that is associated with the space Hm. Then

v 2 Hr () v 2 H
2r
m
m ()

X1
j¼1

hH r
m
mv, fjiH

��� ���2 < 1 ()
X1
j¼1

hHr�s
m
m v,H

� s
m

m fjiHs

��� ���2 < 1,

which gives Hr ¼ domðHðr�sÞ=m
m Þ, Hðr�sÞ=m

m being considered as an operator on Hs.
Therefore, [19, Lemma 3] implies that the singular values of IHr ,!Hs coincide with the eigen-
values of Hðs�rÞ=m: By the same argument, the singular values of IHr�s ,!H coincide with the
eigenvalues of the same operator. It therefore suffices to show the claim for IHr�s ,!H:

The result is proven for @D 2 C1 in [19], specifically as a consequence of [19,
Lemma 2, Satz 2]. For the general case, we first note that when @D is Lipschitz, there is
an operator P 2 LðHr�sðDÞ,Hr�sðRdÞÞ, such that PujD ¼ u [21, Theorem 1.4.3.1]. For
an arbitrary bounded domain G � D such that @G 2 C1, we have

IHr�sðDÞ ,! L2ðDÞ ¼ IL2ðGÞ ,! L2ðDÞIHr�sðGÞ ,! L2ðGÞIHr�sðRdÞ ,!Hr�sðGÞP:

By definition of the norm (11), we note that IHr�sðRdÞ ,!Hr�sðGÞ is bounded, and clearly
the restriction IL2ðGÞ ,! L2ðDÞ is, too. Therefore, sufficiency of r � s > d=p follows as a con-
sequence of (7). Necessity follows by an analogous argument: if IHr�sðDÞ ,!L2ðDÞ 2
LpðHr�sðDÞ, L2ðDÞÞ then IHr�sð~GÞ ,! L2ð~GÞ 2 LpðHr�sð~GÞ, L2ð~GÞÞ for p 2 ½1,1Þ and any
domain ~G � D with @~G 2 C1:

We now let the spaces _H
r
, r � 0, obtain a concrete meaning by taking k to be a

bilinear form on V � H1ðDÞ � L2ðDÞ ¼ H given by

kðu, vÞ ¼
Xd
i, j¼1

ð
D
ai, jD

iuDjv dxþ
ð
D
cuv dx,

where Dj denotes weak differentiation with respect to xj, j ¼ 1, :::, d: The coefficients
ai, j, i, j ¼ 1, :::, d, are C1ð �DÞ functions fulfilling ai, j ¼ aj, i: Moreover, we assume that there
is a constant k0 > 0 such that for all y 2 R

d and almost all x 2 D,
Pd

i, j¼1 ai, jðxÞyiyj �
k0jyj2: The function c 2 L1ðDÞ is non-negative almost everywhere on D:

We shall consider two cases of boundary conditions for k. In the first case (Dirichlet
boundary conditions) we take V ¼ H1

0ðDÞ ¼ fv 2 H1 : cv ¼ 0g: Here c : Hr ! L2ð@DÞ
denotes the trace operator, an extension of the mapping v 7! vj@D: It is well-defined on
Hr for r> 1=2 [22, Theorem 1.3.9]. In the second case (Neumann boundary conditions)
we take V ¼ H1, and assume in addition that there is a constant c0 > 0 such that
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cðxÞ � c0 almost everywhere on D: Then k is a symmetric, bilinear form on V. The
operator K is regarded as a realization of the strongly elliptic operator

�
Xd
i, j¼1

Dj ai, jD
i

� �
þ c

on H, with boundary conditions cv ¼ 0 on @D in the first case and @v=@�K ¼ 0 on @D
in the second case. Here

@v
@�K

¼
Xd
i, j¼1

niai, jcD
jv,

with ðn1, :::, ndÞ being the outward unit normal to @D, is well-defined as an element in
L2ð@DÞ for v 2 Hr, r> 3=2. Since the embedding of V into L2ðDÞ is compact and K�1

maps into V, the assumption that this operator is compact is true.
Next, we relate the spaces ð _HsÞs2½0, 2� to ðHsÞs2½0, 2�: In the case of Dirichlet boundary

conditions, we have

_H
s ¼ Hs if s 2 ½0, 1=2Þ,

fu 2 Hs : cu ¼ 0g if s 2 ð1=2, 3=2Þ [ ð3=2, 2�,
�

(12)

with norm equivalence [22, Theorem 16.13]. In the case of Neumann boundary conditions,

_H
s ¼ Hs if s 2 ½0, 3=2Þ,

fu 2 Hs : @u=@�K ¼ 0g if s 2 ð3=2, 2�,
�

(13)

with norm equivalence [22, Theorem 16.9]. Note that since _H
�s ¼ ð _HsÞ0 and H�s ¼

ðHsÞ0 for s � 0, analogous results hold for negative exponents s 2 ð�1=2, 0� and s 2
ð�3=2, 0�, respectively.
For the identity (13) with s 2 ½0, 1� it suffices to assume that @D is Lipschitz [22,

Theorem 16.6]. Moreover, for both (12) and (13), one could replace convexity of D
with C2 regularity of @D: In this case, the equivalence in (12) holds also for s¼ 3/2 [22,
Theorems 16.7, 16.12].

2.3. H€older spaces on bounded domains

We now introduce the notation we use for H€older spaces on �D ¼ D [ @D: We write
Cð �DÞ for the space of continuous functions on �D with the supremum norm and
C0,rð �DÞ � Cð �DÞ for the space of bounded H€older continuous functions f : �D ! R with
H€older exponent r 2 ð0, 1�: It is equipped with the norm

jjf jjC0, rð �DÞ ¼ jjf jjCð �DÞ þ sup
x, y2 �D
x 6¼y

jf ðxÞ � f ðyÞj
jx� yjr :

For k 2 N, the space Ckð �DÞ consists of all functions f : �D ! R such that @af 2 Cð �DÞ
for all jaj ¼ a1 þ � � � ad 	 k while for r 2 ð0, 1�, the space Ck,rð �DÞ consists of all func-
tions f 2 Ckð �DÞ such that @af 2 C0,rð �DÞ for all jaj ¼ k: Here @a is the classical deriva-
tive with respect to a multiindex a ¼ ða1, :::, adÞ and @af 2 Cð �DÞ means that @af 2 CðDÞ
and extends to a continuous function on �D: We equip Ckð �DÞ with the norm
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jjf jjCk, rð �DÞ ¼
X
a	k

jj@af jjCð �DÞ

and Ck,rð �DÞ with the norm

jjf jjCkð �DÞ ¼
X
a<k

jj@af jjCð �DÞ þ
X
a¼k

jj@af jjC0, rð �DÞ:

We will also need the space Ck, kð �D � �DÞ, which we define as the space of continuous
functions f : �D � �D ! R such that @a

1@
a
2 f 2 Cð �D � �DÞ for all jaj 	 k: The space

Ck, k,rð �D � �DÞ consists of all functions f 2 Ck, kð �D � �DÞ such that @a
1@

a
2 f 2 C0,rð �D � �DÞ

for all jaj ¼ k: Here @a
i denotes differentiation with respect to the ith variable of f. We

equip Ck, kð �D � �DÞ with the norm

jjf jjCk, kð �D� �DÞ ¼
X
a	k

jj@a
1@

a
2 f jjCð �D� �DÞ

and Ck, k,rð �D � �DÞ with the norm

jjf jjCk, k, rð �D� �DÞ ¼
X
a<k

jj@a
1@

a
2 f jjCð �D� �DÞ þ

X
a¼k

jj@a
1@

a
2 f jjC0, rð �D� �DÞ:

2.4. Integral operators and reproducing kernel Hilbert spaces

Let q : �D � �D ! R be a positive semidefinite symmetric continuous kernel. We define
an operator Q 2 LðHÞ by

QuðxÞ ¼
ð
D
qðx, yÞuðyÞdy

for x 2 �D:

By Mercer’s theorem [31, Theorem A.8], Q is then self-adjoint, positive semidefinite
and of trace class. Moreover, Q admits an orthonormal eigenbasis ðqjÞ1j¼1 with a corre-
sponding non-increasing sequence of non-negative eigenvalues ðljÞ1j¼1: The eigenfunc-
tions corresponding to nonzero eigenvalues are continuous. The kernel can then, with
x, y 2 �D, be represented by

qðx, yÞ ¼
X1
j¼1

ljqjðxÞqjðyÞ, (14)

where the sequence converges uniformly and absolutely on �D � �D:

We write Q�1=2 ¼ ðQ1=2jkerðQ1=2Þ?Þ�1 : Q1=2ðHÞ ! kerðQ1=2Þ? � H for the pseudo-
inverse of Q1=2: The space Q1=2ðHÞ, the range of Q1=2 in H, is then a Hilbert space with
respect to the inner product h�, �iQ1=2ðHÞ ¼ hQ�1=2 � ,Q�1=2�iH: Under the notational con-
vention 0=0 ¼ 0, we note that, in light of Mercer’s theorem,

Q
1
2ðHÞ ¼ f 2 H :

X1
j¼1

jhf , qjiHj2
lj

< 1
8<:

9=;: (15)

By the same theorem, it follows that for all f 2 H,N 2 N,
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�����XN
j¼1

hQ1=2f , qjiHqjðxÞ
�����
2

	
 XN

j¼1

ljqjðxÞ2
! XN

j¼1

jhf , qjiHj2
!

	 qðx, xÞjjf jj2H:

Therefore, the elements in Q
1
2ðHÞ are continuous functions on �D, as opposed to just

equivalence classes of functions on D:

The kernel q is said to satisfy the Dirichlet or Neumann boundary conditions if

qð�, yÞ ¼ qðy, �Þ ¼ 0 (16)

or Xd
i, j¼1

nið�Þai, jð�Þ @qð�, yÞ
@xj

¼
Xd
i, j¼1

nið�Þai, jð�Þ @qðy, �Þ
@yj

¼ 0 (17)

on @D, respectively, for all y 2 D: Note that, provided that q is sufficiently smooth, this
guarantees that Qu fulfills the corresponding boundary conditions for arbitrary u 2 H:

We will make use of the theory of reproducing kernel Hilbert spaces. Recall (see, e.g.,
[20]) that a Hilbert space HqðEÞ is said to be the reproducing kernel Hilbert space of
the kernel q if it is a Hilbert space of functions on a non-empty subset E � R

d such
that the conditions

(i) qðx, �Þ 2 HqðEÞ for all x 2 E and
(ii) for all f 2 HqðEÞ, x 2 E, f ðxÞ ¼ hf , qðx, �ÞiHqðEÞ

are satisfied. The Moore–Aronszajn theorem (see [20, Theorem 3]) can be used to con-
struct HqðEÞ explicitly. Given a (not necessarily continuous) positive semidefinite func-
tion q, we write Hq, 0ðEÞ for the linear span of functions of the type
f ¼Pn

i¼1 aiqðxi, �Þ, ðxiÞni¼1 � E, ðaiÞni¼1 � R, n 2 N: We define a symmetric positive
semidefinite bilinear form on Hq, 0ðEÞ by

hf , giHqðEÞ ¼
Xn
i¼1

Xm
j¼1

aibjqðxi, yjÞ,

for f as above, g ¼Pm
j¼1 bjqðyj, �Þ 2 Hq, 0ðEÞ, ðyjÞmj¼1 � E and ðbjÞmj¼1 � R: By the

Cauchy–Schwarz inequality for such forms, jf ðxÞj ¼ jhf , qð�, xÞiHqðEÞj 	hf , f i1=2HqðEÞqðx, xÞ
1=2 for all x 2 E and f 2 Hq, 0ðEÞ: This shows that h�, �iHqðEÞ is an inner

product on Hq, 0ðEÞ: The space HqðEÞ is now given as the set of functions f on E for
which there is a Cauchy sequence ðfjÞ1j¼1 in Hq, 0ðEÞ converging pointwise to f. It is a
Hilbert space with inner product hf , giHqðEÞ ¼ limn!1 hfn , gniHqðEÞ and it fulfills the con-
ditions (i) and (ii). In fact, HqðEÞ is the unique Hilbert space of functions on E fulfilling
these conditions. From here on, we use the shorthand notation Hq ¼ Hqð �DÞ:
The property (ii) is referred to as the reproducing kernel property of the space Hq.

When q is sufficiently smooth, then an analogous property holds for the derivatives of
f 2 Hq: To be precise, if q 2 Ck, kð �D � �DÞ, then Hq ,!Ckð �DÞ continuously and

@af ðxÞ ¼ @ahf , qðx, �ÞiHq
¼ hf , @a

1qðx, �ÞiHq
(18)

for all f 2 Hq, x 2 �D and jaj 	 k: Moreover, the symmetric function @a
1@

a
2q possesses

the reproducing property
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@a
1@

a
2qðy, xÞ ¼ h@a

1qðy, �Þ, @a
1qðx, �ÞiHq

, (19)

for x, y 2 �D and jaj 	 k: These facts are proven in [32] under the stronger condition
q 2 C2kð �D � �DÞ (defined analogously to C2kð �D)) but the proof works also in the case of
our weaker condition, cf. [33, Corollary 4.36] for the case that q 2 Ck, kðD � DÞ:
A key observation that we will make use of is the fact that, under our assumptions

on q, Q1=2ðHÞ ¼ Hq: This can be seen by explicitly checking that (i) and (ii) are fulfilled
by Q1=2ðHÞ, using the expressions (14) and (15). We refer to [15, Theorem 10.29] and
[35] for analogous arguments under somewhat different assumptions on q.
In the next two sections, we will identify conditions on q which ensure that Q 2

Lpð _Hs
, _H

rÞ for appropriate powers r, s 2 R and p � 1: We first consider the non-homo-
geneous case, which is to say that q(x, y) depends explicitly on x, y, not necessarily only
on x – y or jx� yj (the homogeneous and isotropic cases, respectively).

3. Regularity of integral operators in the non-homogeneous case

In this section we consider H€older regularity assumptions on q. We start by deriving
conditions for which the trace class condition (3) holds. We recall that this is given by

jjKr
2QK

r
2jjL1ðHÞ ¼ jjKr

2Q
1
2jj2L2ðHÞ < 1

with r � 0: We use reproducing kernel Hilbert spaces in the proof of the following two
theorems, corresponding to the two types of boundary conditions considered. Below we
write “for all jaj ¼ 1” as shorthand for “for all multiindices a ¼ ða1, :::, adÞ such
that jaj ¼ 1”.

Theorem 3.1. Let K be the elliptic operator associated with the bilinear form k with
Dirichlet boundary conditions. Then, the operator Q with kernel q 2 Cð �D � �DÞ satis-
fies (3)

(i) for all r 2 ½0, r=2Þ if there exists r 2 ð0, 1� such that for a.e. z 2 D, qðz, �Þ 2
C0,rð �DÞ with ess supz2Dkqðz, �ÞkC0, rð �DÞ < 1:

If q in addition satisfies the boundary conditions (16), then Q satisfies (3)

(ii) for all r 2 ½0, ð1þ rÞ=2Þ n f1=2g if q is once differentiable in the first variable, and
there is a constant r 2 ð0, 1� such that for all jaj ¼ 1 and a.e. z 2 D, @a

1qðz, �Þ 2
C0,rð �DÞ with ess supz2Dk@a

1qðz, �ÞkC0, rð �DÞ < 1,
(iii) for all r 2 ½0, 1� n f1=2g if q 2 C1, 1ð �D � �DÞ,
(iv) for all r 2 ½0, ð2þ rÞ=2Þ n f1=2g if there exists r 2 ð0, 1� such that
jjqjjC1, 1, rð �D� �DÞ < 1,

(v) for all r 2 ½0, ð3þ rÞ=2Þ n f1=2, 3=2g if q 2 C1, 1ð �D � �DÞ and, for all jaj ¼
1, @a

1@
a
2q is once differentiable in the first variable and there exists r 2 ð0, 1� such

that for all ja0j ¼ 1 and a.e. z 2 D, @aþa0
1 @a

2qðz, �Þ 2 C0, rð �DÞ with ess supz2D
k@aþa0

1 @a
2qðz, �ÞkC0, rð �DÞ < 1,

(vi) for all r 2 ½0, 2� n f1=2, 3=2g if q 2 C2, 2ð �D � �DÞ:
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Proof. Let ðejÞ1j¼1 be the eigenbasis of K. We note that ðQ1=2ejÞ1j¼1 is then an orthonor-
mal basis of Q1=2ðHÞ ¼ Hq: For the first statement, by this observation, the definition of
the Hilbert–Schmidt norm, (13), and the reproducing kernel property of Hq, we have

jjKr
2Q

1
2jj2L2ðHÞ ¼

X1
j¼1

jjQ1
2ejjj2_Hr �

X1
j¼1

jjQ1
2ejjj2Hr

¼
X1
j¼1

jjQ1
2ejjj2H þ

ð
D�D

X1
j¼1

jQ1
2ejðxÞ � Q

1
2ejðyÞj2

jx� yjdþ2r dx dy

¼TrðQÞ þ
ð
D�D

X1
j¼1

hQ1
2ej, qðx, �Þ � qðy, �ÞiHq

��� ���2
jx � yjdþ2r dx dy

¼TrðQÞ þ
ð
D�D

jjqðx, �Þ � qðy, �Þjj2Hq

jx � yjdþ2r dx dy

¼TrðQÞ þ
ð
D�D

ðqðx, xÞ � qðx, yÞÞ þ ðqðy, yÞ � qðy, xÞÞ
jx� yjdþ2r dx dy

	TrðQÞ þ 2 ess supz2Dkqðz, �ÞkC0, rð �DÞ

ð
D�D

jx � yj�dþr�2r dx dy < 1:

The integral is finite since r� 2r > 0: For case (ii), we note that Q1=2ejðxÞ ¼
hQ1=2ej, qðx, �ÞiHq

for all x 2 @D, so that Q1=2ej inherits the boundary conditions of q.
The proof is now the same as before, except that we use the mean value theorem to
deduce that

jjqðx, �Þ � qðy, �Þjj2Hq
¼ðqðx, xÞ � qðy, xÞÞ � ðqðx, yÞ � qðy, yÞÞ

¼
ð1
0
ðr1qðð1� sÞx þ sy, xÞ � r1qðð1� sÞxþ sy, yÞÞ � ðx � yÞ ds

	 jx � yj
Xd
j¼1

ð1
0
@
xj
1 qðð1� sÞxþ sy, xÞ � @

xj
1 qðð1� sÞx þ sy, yÞ�� �� ds

	 djx � yj1þr max
j¼1, :::, d

ess sup
z2D

k@zj
1 qðz, �ÞkC0, rð �DÞ:

Here r1q ¼ ð@x1
1 q, :::, @xd

1 qÞ is the gradient with respect to the first component of q and
@
xj
1 qðx, yÞ is the derivative of qðx, yÞ ¼ qðx1, :::, xd, y1, :::, ydÞ with respect to xj. This

yields

jjKr
2Q

1
2jj2L2ðHÞ�TrðQÞ þ max

j¼1, :::, d
ess supz2Dk@zj

1 qðz, �ÞkC0, rð �DÞ

ð
D�D

jx � yj�dþ1þr�2r dx dy < 1:

For case (iii), we also apply (18) and (19) to see that
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jjK1
2Q

1
2jj2L2ðHÞ �

X
jaj	1

X1
j¼1

jj@aQ
1
2ejjj2H ¼

X
jaj	1

X1
j¼1

ð
D
j@aQ

1
2ejðxÞj2 dx

¼
X
jaj	1

X1
j¼1

ð
D
jhQ1

2ej , @
a
1qðx, �ÞiHq

j2 dx

¼
X
jaj	1

ð
D
jj@a

1qðx, �Þjj2Hq
dx ¼

X
jaj	1

ð
D
@a
1@

a
2qðx, xÞ dx,

which is bounded by a constant times jjqjjC1, 1ð �D� �DÞ: For case (iv), we obtain, for r> 1,

X
jaj¼1

ð
D�D

X1
j¼1

j@aQ
1
2ejðxÞ � @aQ

1
2ejðyÞj2

jx� yjdþ2ðr�1Þ dx dy

¼
X
jaj¼1

ð
D�D

X1
j¼1

hQ1
2ej, @

a
1qðx, �Þ � @a

1qðy, �ÞiHq

��� ���2
jx� yjdþ2ðr�1Þ dx dy

¼
X
jaj¼1

ð
D�D

ð@a
1@

a
2qðx, xÞ � @a

1@
a
2qðx, yÞÞ þ ð@a

1@
a
2qðy, yÞ � @a

1@
a
2qðy, xÞÞ

jx � yjdþ2ðr�1Þ dx dy

so that

jjKr
2Q

1
2jj2L2ðHÞ�

X
jaj	1

X1
j¼1

jj@aQ
1
2ejjj2H þ

X
jaj¼1

ð
D�D

X1
j¼1

j@aQ
1
2ejðxÞ � @aQ

1
2ejðyÞj2

jx� yjdþ2ðr�1Þ dx dy

� jjqjjC1, 1ð �D� �DÞ þ jjqjjC1, 1, rð �D� �DÞ

ð
D�D

jx� yj�dþ2þr�2r dx dy < 1:

Finally, case (v) is obtained by a modification of this argument, similar to how case (ii)
was obtained, while the proof of case (vi) is analogous to that of case (iii). w

Remark 3.2. This result is sharp, in the following sense. Consider the setting of D ¼
ð0, 1Þ and K ¼ ð�DÞ, where D is equipped with zero boundary conditions. In this set-
ting, the kernel of the operator Q ¼ K�1 is explicitly given by qðx, yÞ ¼ minðx, yÞ � xy;
for x, y 2 D, see, e.g., [11]. By Theorem 3.1, (3) is satisfied for r< 1=2. The eigenpairs
associated to Q are given by qjðxÞ ¼

ffiffiffi
2

p
sin ðpjxÞ and lj ¼ ðpjÞ�2 for j 2 N: Therefore,

the expression in (3) is infinite for r � 1=2:

Theorem 3.3. Let K be the elliptic operator associated with the bilinear form k with
Neumann boundary conditions. Then, the operator Q with kernel q 2 Cð �D � �DÞ satisfies (3)

(i) for all r 2 ½0, r=2Þ if there exists r 2 ð0, 1� such that for a.e. z 2 D, qðz, �Þ 2
C0,rð �DÞ with ess supz2Dkqðz, �ÞkC0, rð �DÞ < 1,

(ii) for all r 2 ½0, ð1þ rÞ=2Þ if q is once differentiable in the first variable, and there is
a constant r 2 ð0, 1� such that for all jaj ¼ 1 and a.e. z 2 D, @a

1qðz, �Þ 2 C0,rð �DÞ
with ess supz2Dk@a

1qðz, �ÞkC0, rð �DÞ < 1,
(iii) for all r 2 ½0, 1� n f1=2g if q 2 C1, 1ð �D � �DÞ,
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(iv) for all r 2 ½0, ð2þ rÞ=2Þ if there exists r 2 ð0, 1� such that jjqjjC1, 1, rð �D� �DÞ < 1:

If q additionally satisfies the boundary conditions (17), then Q satisfies (3)

(v) for all r 2 ½0, ð3þ rÞ=2Þ n f3=2g if q 2 C1, 1ð �D � �DÞ and, for all
jaj ¼ 1, @a@aq is once differentiable in the first variable and there exists r 2 ð0, 1�
such that for all ja0j ¼ 1 and a.e. z2D, @aþa0

1 @a
2qðz,�Þ2C0,rð �DÞ with

esssupz2Dk@aþa0
1 @a

2 qðz,�Þ kC0,rð �DÞ <1,
(vi) for all r 2 ½0, 2� n f1=2, 3=2g if q 2 C2, 2ð �D � �DÞ:

Proof. The proof is the same as in the previous theorem. We simply note that for the
last case, since q 2 C1, 1ð �D � �DÞ, the boundary condition (17) is well-defined.
Moreover, since

@aQ
1
2ejðxÞ ¼ hQ1

2ej, @
a
1qðx, �ÞiHq

for all x 2 �D, Q1=2ej inherits the boundary conditions of q.

In the next two theorems we derive conditions on the kernel q that guarantee that the
estimate (4) is satisfied for appropriate powers r, s � 0:We recall that it is given by

jjKr
2QK

s
2jjL2ðHÞ ¼ jjKs

2QK
r
2jjL2ðHÞ < 1:

In this case we do not rely on the reproducing kernel property but can use more elem-
entary techniques.

Theorem 3.4. Let K be the elliptic operator associated with the bilinear form k with Dirichlet
boundary conditions. Then, the operator Q with kernel q 2 Cð �D � �DÞ satisfies (4)

(i) for all r, s 2 ½0, 1=2Þ such that r þ s < r if there exists r 2 ð0, 1� such that for a.e.
z 2 D, qðz, �Þ 2 C0,rð �DÞ with ess supz2Dkqðz, �ÞkC0, rð �DÞ < 1:

If q also satisfies the boundary conditions (16), then Q satisfies (4)

(ii) for all r, s 2 ½0, 2� n f1=2, 3=2g such that r þ s < kþ r if there exist k � 0 and r 2
ð0, 1� such that for a.e. z 2 D, qðz, �Þ 2 Ck,rð �DÞ with ess supz2Dkqðz, �ÞkCk, rð �DÞ < 1:

If r¼ 1 in (ii) the statement is true with r þ s 	 kþ 1:

Proof. Since q is symmetric, we have ess supz2Dkqðz, �ÞkCk, rð �DÞ ¼ ess supz2D kqð�, zÞkCk, rð �DÞ
for k, r � 0: Moreover, because of (12) and Lemmata 2.1 and 2.2, it suffices to show that if
there exist k � 0 and r 2 ð0, 1� such that for a.e. z 2 D, qðz, �Þ 2 Ck,rð �DÞ with
ess supz2Dkqðz, �ÞkCk, rð �DÞ < 1, then Q 2 L2ðH,HrÞ for all r < kþ r, and for all r 	
kþ 1 when r¼ 1. Under this condition, we have by definition of the weak derivative that

Da
ð
D
qð�, yÞejðyÞ dy ¼

ð
D
Da

1qð�, yÞejðyÞ dy ¼
ð
D
@a
1qð�, yÞejðyÞ dy

for jaj 	 k, where ðejÞ1j¼1 is an orthonormal basis of H. This is also true when qðz, �Þ 2
Ck�1, 1ð �DÞ, k � 1, with ess supz2Dkqðz, �ÞkCk�1, 1ð �DÞ < 1, since then @a

1qð�, yÞ, jaj 	
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k� 1, has a bounded classical derivative almost everywhere in D: Under either of these
conditions, we obtain from the definition of the Hilbert–Schmidt norm that

jjQjj2L2ðH,HkÞ ¼
X1
j¼1

jjQejjj2Hk ¼
X1
j¼1

X
jaj	k

jjDa
ð
D
qð�, yÞejðyÞ dyjj2H

¼
X
jaj	k

ð
D

X1
j¼1

j
ð
D
@a
1qðx, yÞejðyÞ dyj2 dx

¼
X
jaj	k

ð
D
jj@a

1qðx, �Þjj2H dx

¼
X
jaj	k

ð
D

ð
D
j@a

1qðx, yÞj2 dx dy < 1,

which finishes the proof of the very last statement of the theorem. Next we have, for
k < r < kþ r,

jjQjj2L2ðH,HrÞ ¼
X1
j¼1

jjQejjj2Hk þ
X
jaj¼k

ð
D�D

X1
j¼1

jDaQejðxÞ � DaQejðyÞj2

jx� yjdþ2ðr�kÞ dx dy

¼ jjQjj2L2ðH,HkÞ þ
X
jaj¼k

ð
D�D

X1
j¼1

h@a
1qðx, �Þ � @a

1qðy, �Þ, ejiH
�� ��2

jx � yjdþ2ðr�kÞ dx dy

¼ jjQjj2L2ðH,HkÞ þ
X
jaj¼k

ð
D�D

jj@a
1qðx, �Þ � @a

1qðy, �Þjj2H
jx � yjdþ2ðr�kÞ dx dy

� jjQjj2L2ðH,HkÞ þ
X
jaj¼k

ð
D�D

ess supz2Dkqðz, �Þk2Ck, rð �DÞ
jx� yjdþ2ðr�r�kÞ dx dy < 1,

which completes the proof. w

Remark 3.5. This result is not sharp for the example of Remark 3.2. From the explicit
representation of the eigenpairs of Q, it follows that (4) is fulfilled for all r, s 2 ½0, 3=2Þ
such that r þ s < 3=2: However, Theorem 3.4 only guarantees (4) to hold for r, s 2 ½0, 1�
such that r þ s 	 1: The proof could in this case be amended to recover the sharp result
by a more involved analysis of the termð

D�D

jj@1qðx, �Þ � @1qðy, �Þjj2H
jx � yj1þ2ðr�kÞ dx dy,

with k¼ 1, since in this case the (discontinuous) function @1qðx, �Þ is explicitly known.
However, as we only consider H€older conditions in this section, we do not pursue this
direction further.

The following theorem for Neumann boundary conditions can be proven in the
same way.

Theorem 3.6. Let K be the elliptic operator associated with the bilinear form k with
Neumann boundary conditions. Then, the operator Q with kernel q 2 Cð �D � �DÞ satisfies (4)
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(i) for all r, s 2 ½0, 1� such that r þ s < r if there exists r 2 ð0, 1� such that for a.e. z 2
D, qðz, �Þ 2 C0,rð �DÞ with ess supz2Dkqðz, �ÞkC0, rð �DÞ < 1,

(ii) for all r, s 2 ½0, 3=2Þ such that r þ s < 1þ r if there exists r 2 ð0, 1� such that for
a.e. z 2 D, qðz, �Þ 2 C1,rð �DÞ with ess supz2Dkqðz, �ÞkC1, rð �DÞ < 1:

If q also satisfies the boundary conditions (17), then Q satisfies (4)

(iii) for all r, s 2 ½0, 2� n f3=2g such that r þ s < kþ r if there exist k � 0 and r 2
ð0, 1� such that for a.e. z 2 D, qðz, �Þ 2 Ck,rð �DÞ with ess supz2Dkqðz, �ÞkCk, rð �DÞ < 1:

Moreover, if r¼ 1 above, the statements remain true with r þ s 	 1, r þ s 	 2 and
r þ s 	 kþ 1, respectively.

4. Regularity of integral operators in the homogeneous case

We now move on to the case of a homogeneous (or stationary) kernel, i.e., when q is
taken to be a function defined on the unbounded space R

d � R
d of the form qðx, yÞ ¼

qðx � yÞ for x, y 2 R
d: We now assume that q is positive definite as opposed to just

positive semidefinite, and a member of CðRdÞ \ L1ðRdÞ, i.e., it is continuous, bounded
and integrable on R

d: Then, it has a positive Fourier transform q̂ ¼ FðqÞ : Rd ! R
þ

which is also integrable on R
d, see [15, Chapter 6]. We use this property to derive a

regularity result for Q in a general Schatten class, starting with the following lemma.

Lemma 4.1. If there are constants C> 0, r > d=2 such that

q̂ðnÞ 	 C 1þ jnj2
� ��r

for all n 2 R
d, then the operator Q with kernel q 2 Cð �D � �DÞ satisfies Q 2 LðH,H2rÞ:

Proof. Let v 2 H ¼ L2ðDÞ: The function D�x 7!QvðxÞ can be extended to R
d by

QvðxÞ ¼
ð
D
qðx� yÞvðyÞ dy ¼

ð
R

d
qðx� yÞvðyÞvDðyÞ dy ¼ q 
 ðvvDÞ

� �ðxÞ,
where vDðxÞ ¼ 1 for x 2 D and 0 elsewhere. Since q 2 L1ðRÞ and vvD 2 L2ðRÞ, q 

ðvvDÞ 2 L2ðRÞ so that Fðq 
 ðvvDÞÞ is well-defined and (10) implies that

jjQvjj2H2rðDÞ 	 jjq 
 ðvvDÞjj2H2rðRdÞ ¼
1

ð2pÞd2
ð
R

d
jF�q 
 ðvvDÞÞðnÞj2ð1þ jnj2Þ2r dn

¼ 1

ð2pÞd2
ð
R

d
jdvvDðnÞj2q̂ðnÞ2ð1þ jnj2Þ2r dn

�
1

ð2pÞd2
ð
R

d
jdvvDðnÞj2 dn ¼ jjvjj2H ,

where we made use of Plancherel’s theorem. w

This lemma allows us to deduce a regularity result on Q, similar to Theorems 3.4 and
3.6. However, instead of just considering the estimate (4), we deduce conditions on q
for which the general Schatten norm condition jjKr=2QKs=2jjLpðHÞ < 1, with p 2
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½1,1Þ, is satisfied. Since q is defined on all of Rd, we cannot expect q to satisfy any
boundary condition in the sense of (16) or (17), cf. [3], which, in light of (12) and (13),
explains the restrictive range on r and s below.

Theorem 4.2. Under the same conditions as in Lemma 4.1, the operator Q with kernel
q 2 Cð �D � �DÞ satisfies

jjKr
2QK

s
2jjLpðHÞ < 1

(i) for all r, s 2 ½0, 1=2Þ such that r þ s < 2r� d=p if K has Dirichlet boundary condi-
tions and

(ii) for all r, s 2 ½0, 3=2Þ such that r þ s < 2r� d=p if K has Neumann bound-
ary conditions.

Proof. Using Lemmata 2.3 and 4.1 along with (7), we obtain

jjQjjLpðH,HrÞ < jjIH2r ,!Hr jjLpðH2r,HrÞjjQjjLðH,H2rÞ < 1
for 2r� r > d=p: Lemma 2.2 along with (12) and (13) now complete the proof.

Remark 4.3. Examples of kernels q covered by the results above include the class of
Mat�ern covariance kernels [6, Example 7.17]. The exponential kernel is a special case. It
is given by qðx, yÞ ¼ exp ð�jx � yjÞ for x, y 2 R: Its Fourier transform q̂ is, for a con-
stant C> 0, given by q̂ðnÞ ¼ Cð1þ jnj2Þ�ðdþ1Þ=2: Another example of a kernel covered
by the results is the Gaussian kernel qðx, yÞ ¼ exp ð�jx� yj2Þ with Fourier transform
given by q̂ðnÞ ¼ C exp ð�n2=4Þ:
As a special case of this theorem, we obtain conditions on q that ensure the condition

(3) to be satisfied. We recall that this condition is given by

jjKr
2QK

r
2jjL1ðHÞ ¼ jjKr

2Q
1
2jj2L2ðHÞ < 1,

with r � 0:

Corollary 4.4. Under the same conditions as in Lemma 4.1, the operator Q with kernel
q 2 Cð �D � �DÞ satisfies (3)

i. for all r 2 ½0,minðr� d=2, 1=2ÞÞ if K has Dirichlet boundary conditions and
ii. for all r 2 ½0,minðr� d=2, 3=2ÞÞ if K has Neumann boundary conditions.

Recall from Section 1 that (3) being satisfied is equivalent to requiring that the H-val-
ued Gaussian random variable W(t) with covariance tQ takes values in the space _H

r
: As

such, given the ranges of r and s above, Corollary 4.4 can be seen as a statement on the
spatial regularity (as measured in Sobolev norms) of W(t) when this is regarded as a
(generalized) random field in D with stationary covariance kernel tq. The deduction of
such regularity properties of stationary processes (i.e., when D � R) based on the prop-
erties of q̂ has a long tradition, see, e.g., [24]. Results that deal with stationary fields on
general domains with Lipschitz boundary are harder to find. One exception is [37]
which implicitly contains the Sobolev regularity result of the corollary, albeit for r 2 N:
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This can be seen from the fact that under the conditions of Lemma 4.1, Q1=2ðHÞ ¼
Hqð �DÞ ,!HrðDÞ (cf. [15, Corollary 10.48]).

Remark 4.5. The result of Corollary 4.4 is sharp. Consider the setting that d¼ 1 with
D ¼ ð0, 1Þ, K ¼ ð�DÞ with Neumann boundary conditions and let qðx, yÞ ¼ exp ð�jx�
yjÞ for x, y 2 D: Then r¼ 1 and by the result above, jjKr

2Q
1
2jjL2ðHÞ < 1 for all r 2

½0, 1=2Þ: By [15, Corollary 10.48], we have H1 ¼ Hqð �DÞ with equivalent norms. Since
the condition (3) is equivalent to IHqðDÞ ,! _H

r 2 L2ðHqðDÞ, _HrÞ, we see by (13) and
Lemma 2.3 that jjKr

2Q
1
2jjL2ðHÞ ¼ 1 for r � 1=2:

5. Applications to SPDE approximations

In this section, we reconnect to the discussion in Section 1 and highlight applications of
the estimates obtained in Sections 3 and 4 to the numerical approximation of SPDEs on
bounded domains. We list a few examples from the literature where these estimates are
used as assumptions and discuss how they are used and how this relates to our results.
Even though our focus is on the numerical approximation of SPDEs, the estimates we
have obtained have implications also for SPDEs themselves, as seen in Section 1. These
are not restricted to stochastic reaction-diffusion equations but include other SPDEs
where an elliptic operator is involved, such as stochastic wave equations and stochastic
Volterra equations on bounded domains. As an example of the latter, it can be seen
that a bound of type (3) implies a certain regularity of the solution [38,
Proposition 2.1].
All the examples below are considered on some bounded convex domain D � R

d,
d¼ 1, 2, 3.

Example 5.1 (Approximation of the stochastic heat equation). One of the most studied
SPDEs from a numerical perspective is the stochastic heat equation with additive noise,
given by

dXðtÞ ¼ DXðtÞ dt þ dWðtÞ
for t 2 ð0,T�, a sufficiently smooth initial value Xð0Þ ¼ x 2 H and W a Q-Wiener pro-
cess in H ¼ L2ðDÞ: This can be seen as a simplified version of equations considered for
the modeling of sea surface temperature and other geophysical spatio-temporal proc-
esses [36].
In [39], Dirichlet zero boundary conditions are assumed for the negative Laplacian

K ¼ �D: Under the condition

jjKr
2QjjL1ðHÞ < 1,

it is shown in [39, Theorem 4.2] that a spatially semidiscrete finite element approxima-
tion Xh converges weakly to X in the sense that, for a smooth test functional / on H,

E /ðXhðTÞÞ � /ðXðTÞÞ½ �j j 	 Ch2þrj log ðhÞj
for some constant C> 0 independent of h> 0. Here h is the maximal mesh size of the
finite element mesh. The range for the parameter r is taken to be ½�1, d� 1�, where d
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is the degree of the piecewise polynomials making up the finite element space in which
Xh is computed.
Suppose that Q is an integral operator with a homogeneous kernel q satisfying the

conditions of Theorem 4.2 for some r > d=2: Suppose further that d > 1: Then, this
theorem implies that Xh converges weakly to X, essentially with rate 2þminð2r�
d, 1=2Þ: If we did not have access to this result, we would incorrectly assume the con-
vergence rate to be 2. Similar remarks hold, with potentially more dramatic differences
in rates, in the non-homogeneous setting of Theorem 3.1. The importance of sharp
weak convergence rates in the application of the multilevel Monte Carlo methods for
SPDE simulation has been pointed out in [40].
In the setting above, we required that the piecewise polynomials making up the finite

element space were of degree d > 1 to see a difference in the rate for the weak error.
For the strong error, on the other hand, we see an improvement in rates also when
d¼ 1. Specifically, for the same q as above, Corollary 4.4 yields that (3) is fulfilled for
all r < r� d=2: As noted in [39], we have for all such r the existence of a constant
C> 0 such that

jjXðTÞ � XhðTÞjjL2ðX,HÞ ¼ E jjXðTÞ � XhðTÞjj2H
h i1

2 	 Chminðrþ1, 2Þ:

If we did not have access to Corollary 4.4 and only knew that TrðQÞ < 1, we might
incorrectly conclude that the convergence rate was 1.
Here we only mentioned the results for Dirichlet boundary conditions since these are the

most frequently encountered for approximations of the stochastic heat equation. Similar
remarks hold for Neumann boundary conditions, we refer to [34] for details on when the
error estimates used in the analysis of [39] hold for non-Dirichlet boundary conditions.

Example 5.2 (Approximation of the stochastic Allen–Cahn equation). The stochastic
Allen–Cahn equation is a non-linear version of the stochastic heat equation, given by

dXðtÞ ¼ DXðtÞ þ FðXðtÞÞð Þ dt þ dWðtÞ, (20)

in the same setting as in Example 5.1. The operator F on H is non-linear and given by
FðuÞðxÞ ¼ uðxÞ � uðxÞ3 for x 2 D: In [41], a fully discrete approximation Xh,Dt of X is
considered, based on a piecewise linear finite element discretization in space combined
with a fully implicit backward Euler approximation in time.

Estimate (3) with r> 0 is needed to even establish existence of a solution to (20) in
[41] when the spatial dimension d¼ 3. Moreover, also for dimensions d¼ 1, 2, the esti-
mate is necessary to find optimal convergence rates of Xh,Dt: Specifically, under (3), [41,
Theorem 4.1] yields the existence of a constant C> 0 such that for all mesh sizes h> 0,
time steps 0 < Dt < 1=3 and time points tn ¼ nDt with n 2 N,

jjXðtnÞ � Xh,DtðtnÞjjL2ðX,HÞ ¼ E jjXðtnÞ � Xh,DtðtnÞjj2H
h i1

2 	 C hrþ1 þ Dt
rþ1
2

� �
:

Here r is taken in the range ½�2=3, 1�: Combining our results with this, we see, for
example, that if Q is an integral operator with a kernel q 2 C1, 1ð �D � �DÞ that satisfy the
Dirichlet boundary conditions, Theorem 3.1 yields a convergence rate of order 2 in
space and 1 in time. If q is a homogeneous kernel satisfying the conditions of Corollary
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4.4 for some r > d=2, we essentially obtain convergence rates minð1þ r� d=2, 3=2Þ in
space and minð1þ r� d=2, 3=2Þ=2 in time. Without these results, we would incorrectly
assume a rate of 1 in space and 1/2 in time. Condition (3) with r> 0 is commonly con-
sidered for the stochastic Allen–Cahn equation, for example in [26, 42].

Example 5.3 (Approximation of the stochastic wave equation). The stochastic wave
equation is another SPDE commonly encountered in the literature. It is considered as a
simplified model for the movement of DNA strings suspended in liquid [30]. The
authors of [43] analyze numerical schemes for it in the same setting as above with H ¼
L2ðDÞ: It is there given

d _XðtÞ ¼ DXðtÞ dt þ dWðtÞ (21)

for t 2 ð0,T�: Here _X is the time derivative of X, the equation is posed with two smooth
initial values X(0), _Xð0Þ and D is equipped with Dirichlet zero boundary conditions.

In [43], discretizations Xh,Dt , _Xh,Dt of X and _X are obtained by a piecewise linear
finite element method in space and an exponential integrator method in time.
Assuming that the estimate (3) holds with r � 0, [43, Theorem 4.3] yields a constant
C> 0 such that for all mesh sizes h> 0, time steps Dt > 0 and time points tn ¼ nDt
with n 2 N,

jjXðtnÞ � Xh,DtðtnÞjjL2ðX,HÞ 	 C h
2ðrþ1Þ

3 þ Dtminðrþ1, 1Þ
� �

:

The range for r is taken to be ½�1, 2�: Hence, if Q is an integral operator, Theorem 3.1
and Corollary 4.4 can improve the spatial convergence rate from 2/3 (if we only knew
that (3) held true with r¼ 0) up to 2, under the right conditions on q. Furthermore, the
corresponding error result in [43, Theorem 4.3] for the time derivative _Xh,Dt approxi-
mation requires (3) to hold with r> 0 to yield any convergence rate at all.
Similar remarks hold for the results of [44], where a temporally semidiscrete expo-

nential integrator approximation is used, and for [45], where a fully discrete scheme,
based also on the spectral Galerkin method, is applied to a damped stochastic
wave equations.

Example 5.4 (Approximation of SPDE covariance operators). Recently, the authors of
this paper derived error bounds for approximations of the covariance operator of solu-
tions to SPDEs [17], using a semigroup approach. For example, in [17, Section 3.2],
fully discrete approximations Kh,DtðtnÞ of covariance operators KðtnÞ ¼ CovðXðtnÞÞ of
the solution X to (a variant of) the stochastic wave equation (21) are considered. It is
shown that for p 2 f1, 2g, there is a constant C> 0 such that for all h,Dt 2 ð0, 1�

jjKðtnÞ � Kh,DtðtnÞjjLpðHÞ 	 C hminð2r3 , 2Þ þ Dtminð2r3 , 1Þ
� �

: (22)

This applies when the discretizations used are a piecewise linear finite element method
with mesh size h in space along with a rational approximation of the underlying semi-
group with time step Dt in time.
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The convergence in (22) is obtained under the assumption that

jjQjjLpð _H 1
, _H

r�1Þ ¼ jjKr�1
2 QK�1

2jjLpðHÞ < 1: (23)

Suppose, as in the numerical simulation in [17, Section 3.2], that Q is an integral oper-
ator with a homogeneous kernel q satisfying the conditions of Theorem 4.2 for some
r > d=2: In the L1ðHÞ case, we obtain, using (6) and (7),

jjKr�1
2 QK�1

2jjL1ðHÞ 	 jjKr�1
2 QjjLp1 ðHÞjjK�1

2jjLp2 ðHÞ

¼ jjKr�1
2 QjjLp1 ðHÞjjI _H 1

,!H
jjLp2 ð _H

1
,HÞ

	 jjKr�1
2 QjjLp1 ðHÞjjIH1 ,!HjjLp2 ðH1,HÞjjI _H 1

,!H1 jjLð _H 1
,H1Þ,

where 1=p1 þ 1=p2 ¼ 1: In light of Lemma 2.3, we should take p2 > d: By Theorem 4.2,
the bound is then finite for r � 1 < minð2r� dð1� 1=p2Þ, 1=2Þ under Dirichlet bound-
ary conditions and for r � 1 < minð2r� dð1� 1=p2Þ, 3=2Þ under Neumann boundary
conditions. By letting p2 tend to d from above and noting that r > d=2, we see that
under the condition q̂ðnÞ 	 Cð1þ jnj2Þ�r, jjKðr�1Þ=2QK�1=2jjL1ðHÞ < 1 for all r< 3=2
when Dirichlet boundary conditions are used and for all r < minð5=2, 2r� d þ 2Þ
when Neumann boundary conditions are used. By an analogous argument, we obtain,
under the same condition on q̂, that jjKðr�1Þ=2QK�1=2jjL2ðHÞ < 1 for all r< 3=2 in the
Dirichlet case. In the Neumann case, this quantity is finite for all r < minð5=2, 2rþ 1Þ
when d¼ 1 and for all r< 5=2 when d 2 f2, 3g:
As in the examples above, the use of our estimates yields higher convergence rates

compared to only knowing that Q 2 L1ðHÞ: In this case, it is important to note that if
we had only used estimates on Q1=2 as in Corollary 4.4, we would have obtained sub-
optimal rates. For example, consider the case that d¼ 2 and that, for a kernel q 2
Cð �D � �DÞ, there exists r 2 ð0, 1� such that for a.e. z 2 D, qðz, �Þ 2 C0,rð �DÞ with
ess supz2Dkqðz, �ÞkC0, rð �DÞ < 1: In the same way as before, we have

jjKr�1
2 QK�1

2jjL1ðHÞ 	 jjKr�1
2 QK

�
2jjL2ðHÞjjIH1þ� ,!HjjL2ðH1þ� ,HÞjjI _H 1þ�

,!H1þ� jjLð _H 1þ�
,H1þ�Þ

for sufficiently small � > 0: In the case of Neumann boundary conditions, Theorem 3.6
then yields that the quantity jjKðr�1Þ=2QK�1=2jjL1ðHÞ is finite for r < 1þ r: If we only
used Theorem 3.3, we would instead conclude that

jjKr�1
2 QK�1

2jjL1ðHÞ 	 jjKr�1
2 Q

1
2jj2L2ðHÞjjI _Hr

,!HjjLð _Hr
,HÞ < 1

for r < 1þ r=2: Similar remarks hold for the weak convergence analysis of approxima-
tions of hyperbolic SPDEs in [39, 44, 46, 47], where the estimate (23) for p¼ 1 is
also assumed.
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