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A B S T R A C T

This paper examines the structural action of Eduardo Torroja’s Alloz aqueduct, completed in 1939, to see
whether we should think of it as acting as a beam or a shell. This is of interest regarding the Alloz aqueduct
itself, but also in the design of similar structures in the future, where we must have a simple conceptual
understanding of how we want it to work.

We apply two alternative approaches available at that time, before computers. Firstly, the membrane theory
of shells, effectively assuming the aqueduct walls are infinitely flexible in bending, and secondly, the Euler–
Bernoulli ‘plane sections remain plane’ elementary beam theory. We also review Torroja’s calculations which
were based on an elaboration of the Euler–Bernoulli beam theory know as the Griffith–Taylor theory for the
bending of cantilevers, although we are uncertain as to why he decided to use the Griffith–Taylor theory for
a thin walled structure.

Both the membrane shell and Euler–Bernoulli beam theory require a prestress to be applied along the
longitudinal edges of the channel. However, the level of prestress in the Alloz aqueduct is consistent with the
beam theory, which seams the most appropriate approach.

Whether or not a structure of this type acts as a shell depends upon the thickness of the wall. The thinner
the wall, the more it act as a shell. The wall thickness of the Alloz aqueduct is sufficient for it to act mainly
as a beam.
. Introduction

It is important that engineers should understand how structures
arry loads using relatively simple conceptual models, both during
nitial design and in performing independent checks of a computer
nalysis. Computer analysis potentially gives accurate results, but they
nly make real sense to us if we have a physical understanding of
hat is going on. The lower bound or safe theorem of plasticity [1,2]

ells us that a sufficiently ductile structure will be safe if we can find
state of stress in equilibrium that does not violate yield. So even

hough serviceability criteria such as deflections and cracking are of
mportance, the prevention of collapse is ensured by designing a ductile
tructure that can satisfy equilibrium, even if we do not know what
ctual stresses will occur. In fact, materials such as concrete are non-
inear elastic and subject to creep, meaning results from a linear-elastic
omputer analysis will not be that accurate anyway.

Here we examine a slightly simplified geometry of Eduardo Tor-
oja’s prestressed concrete Alloz aqueduct completed in northeast Spain
n 1939. We consider which simple theoretical approach best captures
he structural behaviour: the Euler–Bernoulli ‘plane sections remain

∗ Corresponding author.
E-mail address: alexander.sehlstrom@chalmers.se (A. Sehlström).

plane’ elementary beam theory or the membrane theory of shells. Of
course, there is also the bending theory of shells, but that is very
complex and leads to equations that are difficult to solve, so one instead
uses the finite element method with elements based on the bending
theory of shells.

We know that the Euler–Bernoulli theory and the membrane theory
satisfy equilibrium and that if the walls of a structure are very stiff in
bending, the behaviour will be near the Euler–Bernoulli theory, but if
the walls are very flexible, the behaviour will be near the membrane
theory.

We review Torroja’s actual calculations for the project, which are
based on an elaboration of the Euler–Bernoulli beam theory known as
the Griffith–Taylor theory for the bending of cantilevers.

1.1. Eduardo Torroja

Eduardo Torroja (1899–1961) was one of the most creative and
important structural engineers of the 20th century [3] and became
well known beyond the world of engineering for his mastery of rein-
forced concrete and brickwork [4], often in extraordinary architectural
vailable online 27 May 2022
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forms [5]. He was professor at the Civil Engineering School of Madrid
1939–1961 and co-founded in 1949 the Spanish Prestressed Concrete
Association, in 1952 the Féderation Internationale de la Précontrainte
(FIP), and in 1953 the Comité Européen du Béton (CEB) [6]; later, in
1998, FIP and CEB merged into the International Federation for Struc-
tural Concrete fib. In 1959, he founded the International Association
for Shell and Spatial Structures (IASS) [7].

To develop his construction technologies, Torroja built scale models
(see e.g. [8,9]) and monitored his structures to check their safety,
learn about their structural behaviour, and improve later designs [10].
His explorations resulted in some of the most innovative structures of
their kind, such as the shells of the Algeciras Market [11], Madrid
hippodrome [12,13], and Frontón Recoletos [10,14,15]. Torroja wrote
two books [16,17] in which he explained several of his works and
structural philosophy.

1.2. Structural concepts of aqueducts

Aqueducts transport water at an elevated height across some ob-
stacle, like a valley, and resist two primary loads: the self-weight and
the hydrostatic pressure exerted by the water. Those with a structural
concept that avoids bending action in their walls are usually the most
material-efficient.

The most efficient concept for spanning between two supports for
uniformly distributed load is a parabola, for self-weight a catenary,
and for hydrostatic pressure a ‘hydrostatic catenary’, which is Euler’s
elastica [18–20]. Constructing such a curve as a compressed arch is
less efficient than as a tensioned chain since some bending capacity is
required for the arch not to buckle.

Linear extrusion of such an arch or chain results in a cylindrical
vault or channel, respectively, and if supported along their longitudinal
edges, they behave like a cylindrical membrane shell with negligible
longitudinal load transfer. Therefore, their structural behaviour can be
approximated by that of the corresponding arch or chain. This is the
case for the Brooks Aqueduct in Canada commissioned in 1914 and
in operation until 1979 [21]. It has a reinforced concrete cross-section
in the shape of a hydrostatic catenary, hung between firm supports,
vertically consisting of longitudinal beams supported on equally spaced
columns and horizontally by transverse struts. When filled with water,
the load was transferred only by tensile hoop stresses, whereas with all
other water levels, additional bending stresses about the longitudinal
axis were present [22].

Without the longitudinal support, the structural behaviour of the
channel changes substantially, requiring a capacity for longitudinal
load transfer within the channel, resulting in a need for concentrated
forces acting longitudinally at the top of the channel cross-section [23,
pp. 460–1]. The character of the force is dependent on the support
conditions. Torroja discusses in Philosophy of structures [16] a ‘simply
upported’ cylindrical roof and the need for a tensile longitudinal
orce, see Fig. 1. Turning the roof upside down, it forms a ‘simply
upported’ channel with a need for a compressive longitudinal force.
n a ‘balanced cantilevering’ channel, the needed longitudinal force is
ensile, and for other support conditions, it may switch signs along with
he length. When the force is tensile, it may be induced by prestressing,
or example, using post-tensioned high-strength steel wires. Failing
o provide the needed force requires either a flexible section that
dapts its geometry to accommodate a state of pure membrane stresses
r additional bending stresses to complete static equilibrium, which
esults in reduced material efficiency.

.3. The Alloz aqueduct

Following the completion of the Tempul aqueduct in 1925 [24,25],
orroja’s office designed the 11.5 km long Alloz canal system to trans-
ort water from a reservoir near Alloz to a hydroelectric power plant
ear Mañeru in the Navarre province in northeast Spain. Completed
2

Fig. 1. A pipe between two-supports (left) and the upper half of a pipe where the
need for longitudinal prestressing compensating for the missing lower half is indicated
(right).
Source: Adopted from Torroja’s Philosophy of structures [16].

Fig. 2. Locations of aqueducts along the Alloz canal between the Alloz reservoir and
the Mañeru power plant: (A) aqueduct over the Salado river, (B) across the Tejeria
ravine, and (C) across the Morondoba ravine.

in 1939, the same year as the Spanish Civil War ended (1936–1939),
the system consists of earth-walled channels, tunnels, and aqueducts
and is still in use. There are three aqueducts, all of the same structural
type [26], and the name ‘Alloz aqueduct’ usually refers to the longest
one spanning 218 m across the Salado river, see Fig. 2. Although much
more slender, the aqueducts have similarities with Alfonso Peña Boeuf’s
Tardienta aqueduct [27] built between 1928–1941.

The aqueducts consist of a straight U-shaped 150 mm thick concrete
channel resting on X-shaped columns located every 19 m [28,29]. The
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Fig. 3. Drawing containing of typical sections, elevations, and details of the Alloz aqueducts by Eduardo Torroja Oficina Técinca.
Source: Courtesy of Archivo Torroja – CEHOPU [28].
geometry of the U-section is given by ‘a third-degree parabola’ [17,
p. 65] whose expression can be deduced from drawings of the aque-
duct [30] as 𝑧 = 𝑐|𝑦|3 with 𝑐 = 2.68∕1.3353. There are joints in the
centre of every other span, so each module consists of a 19 m long
central span and two 9.5 m long cantilevering spans. The arrangement
ensures there is no theoretical bending moment at the middle of each
span but an absolute maximum above the supports [31]. The bending
moment is negative, thus the top of the cross-section is in longitudinal
tension whereas the bottom is in compression.

Post-tensioned steel cables in the flanges at the upper side of the
channel counteract the resulting longitudinal tensile stresses, see Fig. 3.
In each flange, there are four cables over each support and two else-
where [32]. The cables, which have hooks at the ends and are 39 mm
in diameter [30], were during construction embedded in the concrete
channel at the ends and elsewhere laid loosely in pairs in groves on
top of the flanges. Tubes placed where the cables transition from the
concrete section to the groves prevented possible cracking as the cables
were stretched. Pairs of cables are held together by two clamps and, one
month after casting the channel, the cables were separated at midpoint
using hydraulic jacks. A bar was placed between the cables to keep
the spacing after removing the jacks. The process was repeated as
many times as necessary until reaching the desired stress in the cables,
whereafter they were sealed into the channel by pouring concrete. The
cables were post-tensioned to such an extent that the entire concrete
cross-section is put in longitudinal compression. As a result, small
transverse stresses appear in the section [32].

Besides containing the cables, the flanges stiffens the edges of the
channel and doubles as a service footbridge. Furthermore, transverse
bars with turnbuckles every 4.75 m pull the flanges together, setting
the inside of the channel in compression. The accumulative effect of
the longitudinal and transverse prestress renders the channel crack-free
and watertight, which, according to Torroja, was ‘the fundamental idea
in the design of this aqueduct’ [17, p. 59].

2. Theory

At least five theoretical approaches and versions thereof applicable
for the design of a structure such as the Alloz aqueduct were established
by the mid-1930s, including:

1. 3D elasticity theory
2. Bending theory of shells

(a) Finsterwalder simplified bending theory for segmented
circular cylindrical shells
3

3. Membrane theory of shells
4. Beam theory

(a) Euler–Bernoulli beam theory
(b) Cosserat and Timoshenko–Ehrenfest beam theories taking

into account shear deformation
(c) Griffith–Taylor theory for the bending of cantilevers

5. Plasticity theory

3D elasticity theory result in complex mathematics and practical ap-
plications lingered until numerical computer methods became readily
available.

The same applies to the bending theory of shells. Although the
Finsterwalder theory [33] simplifies things, it still results in ‘highly
complex calculations’ [34]. It applies to segmented circular cylindrical
shells supported by beams along the longitudinal edges, conditions the
Alloz aqueduct does not fulfil. However, it is possible to alter the theory
for other conditions, which Torroja did for the design of the Frontón
Recoletos [10].

The membrane theory of shells is based on the assumption that
there are no bending stresses present, imposing requirements on the
geometry of the shell, and in the case of cylindrical shells result in sim-
ple calculations. Deviations from the ‘ideal shape’ results in additional
bending stresses that have to be estimated by other means.

Beam theories summarise the internal stresses into resultant forces
and moments and apply to structures that are much longer in one direc-
tion than the other two. Kazinczy [35] conclude that ‘cylindrical shells
of sufficient length 𝑙 in relation to their width 𝑏 (i.e. 𝑙 ≧ 2𝑏) may be con-
sidered as beams’, which is the case for the Alloz aqueduct. Depending
on assumptions made, the theories lead to different levels of accuracy.
The Euler–Bernoulli ‘plane sections remain plane’ theory is one of the
simplest and most useful beam theory. The theory ignores the effects
of shear deformation and rotatory inertia, leading to underestimated
deformations for beams with a span-to-depth ratio of less than 10;
the Alloz aqueduct has a ratio of about 7. The Timoshenko–Ehrenfest
beam theory [36] accounts for these effects at the expense of increased
complexity. The Griffith–Taylor theory [37] applies to a prismatic bar
loaded at its tip and assumes the same longitudinal stresses as you get
from Euler–Bernoulli theory, but uses a more elaborate theory to find
the shear stresses in a thick-walled beam. Torroja applied the theory
for the design of the Alloz aqueduct and we return to the details later
on in the paper.

The theory of plasticity allows yield stresses to occur when de-
termining the ultimate capacity of the structure, usually leading to
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Fig. 4. Cross-section notation.

aterial savings compared to designs based on the theory of elasticity
nd can thus be used to refine initial designs based on elasticity.
ontributions to its development were made in the 1930s [38], for
xample, by Kazinczy [39,40], who introduced the concept of plastic
inges in reinforced concrete structures [41]. It should be noted that
oth the membrane theory of shells and the Euler–Bernoulli theory of
eams both satisfy equilibrium, and therefore if yield is not violated
hey both represent a lower bound and therefore safe solution.

We seek a simple conceptual understanding of the structural be-
aviour of the Alloz aqueduct, answering the question of whether we
hould think of it as a shell or a beam. Thus, we have chosen to
pply and compare the membrane theory of cylindrical shells and the
uler–Bernoulli beam theory, outlined in grater detail the following.

.1. Coordinate system

Let the directrix of the cylindrical channel be in the direction of
he 𝑥-axis and let the generatrix representing the middle curve of the
ross-section be a plane curve in the 𝑦𝑧-plane. Restrict the attention
o symmetric cross-sections positioned so that 𝑧 = 0 at the bottom of
he cross-section curve. Let 𝑠 be the arc length parameter of the cross-
ection curve, measured from the bottom of the cross-section curve, and
et 𝑠 = ± at the top, see Fig. 4. Any point on the middle surface can
hen be described by the position vector

= (𝑥, 𝑦(𝑠), 𝑧(𝑠)) , (1)

hose first and second derivatives with respect to 𝑠 are the tangent
ector and the curvature vector of the cross-section curve, respectively.
et 𝜆 be the slope, 𝜅 the curvature, and 𝑅 the radius of curvature of the
ross-section so that
𝑑𝑦
𝑑𝑠

= cos 𝜆, (2)
𝑑𝑧
𝑑𝑠

= sin 𝜆, (3)

𝜅 = 1
𝑅

= 𝑑𝜆
𝑑𝑠

. (4)

he middle surface of the channel may then be unrolled to a flat plane
erpendicular to the 𝑧-axis with coordinates (𝑥, 𝑠).

.2. In-plane equilibrium and stress–strain relations

The load acting on the aqueduct is the sum of water weight and the
elf-weight. Therefore, the normal pressure 𝑝 is given by the sum of
he hydrostatic pressure and the normal component of the self-weight,
he body force 𝑝𝑠 in the hoop direction given by the component of
he self-weight tangential to the surface, and the body force 𝑝𝑥 in the
ongitudinal direction is zero, all measured as force per unit surface
4

rea. The self-weight and water weight are constant along the length
Fig. 5. Membrane stress resultants, measured as force per unit cross-section width,
acting on the four sides of a small curvilinear square cylindrical shell element with
side lengths 𝛿𝑥 and 𝛿𝑠, respectively. Summing up the stresses in the 𝑠-direction gives
(

𝑛𝑠
)

2 𝛿𝑥 −
(

𝑛𝑠
)

4 𝛿𝑥 +
(

𝑛𝑥𝑠
)

1 𝛿𝑠 −
(

𝑛𝑥𝑠
)

3 𝛿𝑠 + 𝑝𝑠𝛿𝑥𝛿𝑠 = 0 or, by dividing with the area 𝛿𝑥𝛿𝑠,
[(

𝑛𝑠
)

2 −
(

𝑛𝑠
)

4

]

∕𝛿𝑠 +
[(

𝑛𝑥𝑠
)

1 −
(

𝑛𝑥𝑠
)

3

]

∕𝛿𝑥 + 𝑝𝑠 = 0 where 𝑝𝑠 is the component of body
force per unit surface area acting in the hoop direction. If the element area is taken
smaller and smaller, i.e. 𝛿𝑥 , 𝛿𝑠 → 0, the limit of

[(

𝑛𝑠
)

2 −
(

𝑛𝑠
)

4

]

∕𝛿𝑠 becomes 𝜕𝑛𝑠∕𝜕𝑠 by
the definition of such a derivative. Similarly

[(

𝑛𝑥𝑠
)

1 −
(

𝑛𝑥𝑠
)

3

]

∕𝛿𝑥 becomes 𝜕𝑛𝑥𝑠∕𝜕𝑥. The
equation of equilibrium is obtained in the longitudinal direction in the same manner.

of the aqueduct, so all load components are independent of 𝑥, allowing
the abbreviations
𝜕𝑝
𝜕𝑠

=
𝑑𝑝
𝑑𝑠

= 𝑝′,
𝜕𝑝𝑠
𝜕𝑠

=
𝑑𝑝𝑠
𝑑𝑠

= 𝑝′𝑠, (5)

and similarly for higher-order derivatives with respect to 𝑠.
The load acting on the aqueduct give rise to membrane stresses

acting in a plane tangential to the surface of the channel, see Fig. 5. For
both the membrane shell theory and the Euler–Bernoulli beam theory,
the membrane stress resultants are in equilibrium when

𝜕𝑛𝑠
𝜕𝑠

+
𝜕𝑛𝑥𝑠
𝜕𝑥

+ 𝑝𝑠 = 0
𝜕𝑛𝑠𝑥
𝜕𝑠

+
𝜕𝑛𝑥
𝜕𝑥

= 0

⎫

⎪

⎬

⎪

⎭

, (6)

where 𝑛𝑥 is the longitudinal membrane stress resultant, 𝑛𝑠 the hoop
membrane stress resultant, and 𝑛𝑥𝑠 = 𝑛𝑠𝑥 the shear membrane stress
resultant, all measured per unit cross-section width of the middle
surface. The relation between stress resultant and stress measured per
unit cross-section area is for the different directions given by

𝑛𝑥 = 𝜎𝑥𝑡, 𝑛𝑥𝑠 = 𝜏𝑥𝑠𝑡, 𝑛𝑠 = 𝜎𝑠𝑡. (7)

Eq. (6) is not enough to arrive at a complete state of stress in
equilibrium, and a third expression is needed. In the shell membrane
theory, Eq. (6) is complemented with an equation describing the equi-
librium between the internal stresses and the normal load 𝑝. In the
Euler–Bernoulli beam theory, we assume the load components in the
hoop direction and the normal direction to be zero (𝑝𝑠 = 0, 𝑝 = 0).
Nevertheless, the effect of these load components is still present, which
we for the symmetric cross-section consider by using an equivalent
uniformly distributed vertical load acting along the neutral axis of the
cross-section giving rise to a beam bending moment. If the cross-section
is asymmetric, an additional equivalent twisting moment is required.
Assumptions about the relation between the beam bending moment and
the longitudinal stress distribution result in a third expression which
together with Eq. (6) describe the membrane stresses. However, these
membrane stresses are, in general, not in equilibrium, giving rise to
bending stress about the longitudinal axis.

We assume an isotropic elastic material, leading to constitutive
stress–strain relations given by

𝜖𝑥 =
(

𝑛𝑥 − 𝜈𝑛𝑠
)

∕ (𝐸𝑡)

𝛾𝑥𝑠 = (1 + 𝜈)𝑛𝑥𝑠∕ (𝐸𝑡)
( )

⎫

⎪

⎬

⎪

, (8)

𝜖𝑠 = 𝑛𝑠 − 𝜈𝑛𝑥 ∕ (𝐸𝑡)

⎭
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in which 𝑡 is the wall thickness, 𝐸 is the elastic modulus, and 𝜈 Poisson’s
ratio. Usually, the wall thickness does not appear in these relations
but is needed to make the strains unitless since we here use stress
resultants measured per unit cross-section width rather than stress per
unit cross-section area.

2.3. Cylindrical membrane shell theory

Membrane shell theory implicitly gives the preconditions for a
material-efficient structural concept that may fully utilise the mate-
rial strength, which stands in contrast to those that include bending
action, where full strength-utilisation only can be achieved in the
outermost material fibre of the cross-section. The theory relies on a set
of assumptions that requires the solution to be statically determinate.

By establishing an equilibrium in the normal direction of the chan-
nel, an expression for the hoop stress is found as

̂𝑠 = 𝑅𝑝, (9)

where 𝑝 is the normal load measured per unit surface area. A hat ̂ is
used throughout the paper to denote quantities related to the cylindri-
cal membrane shell theory so that these are not confused with those of
the Euler–Bernoulli beam theory, denoted with a ring ̊ .

With 𝑛̂𝑠 given by Eq. (9) inserted in the first expression in Eq. (6) and
using the resulting expression for 𝑛̂𝑥𝑠 inserted in the second expression
of Eq. (6), the complete state of membrane stress for the aqueduct
channel is obtained as

𝑛̂𝑥 = 𝑥2

2
(

𝑛̂′′𝑠 + 𝑝′𝑠
)

+ 𝑥𝐶 ′′
1 + 𝐶 ′′

2

𝑛̂𝑥𝑠 = −
(

𝑥
(

𝑛̂′𝑠 + 𝑝𝑠
)

+ 𝐶 ′
1
)

𝑛̂𝑠 = 𝑅𝑝

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (10)

where 𝐶1 and 𝐶2 are two statically indeterminate scalar functions in 𝑠.
With 𝑢, 𝑣, and 𝑤 the assumed small displacements in the longitudi-

nal, hoop, and normal directions, respectively, of the cylindrical shell,
the kinematic relations between strains and displacements are given by

𝜖𝑥 = 𝜕𝑢
𝜕𝑥

𝛾𝑥𝑠 =
1
2

( 𝜕𝑢
𝜕𝑠

+ 𝜕𝑣
𝜕𝑥

)

𝜖𝑠 =
𝜕𝑣
𝜕𝑠

+ 𝑤
𝑅

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (11)

y combining Eqs. (8) and (11) and integrating once where needed,
xplicit expressions for the displacements are obtained. With con-
tant wall thickness 𝑡, which is the case for the Alloz aqueduct, the
isplacement field is given by

𝑢 = 1
𝐸𝑡 ∫

𝑥
(

𝑛̂𝑥 − 𝜈𝑛̂𝑠
)

𝑑𝑥 +
𝐶3
𝐸𝑡

𝑣 = ∫

𝑥 (2(1 + 𝜈)
𝐸𝑡

𝑛̂𝑥𝑠 −
𝜕𝑢
𝜕𝑠

)

𝑑𝑥 +
𝐶4
𝐸𝑡

𝑤 = 𝑅
( 1
𝐸𝑡

(

𝑛̂𝑠 − 𝜈𝑛̂𝑥
)

− 𝜕𝑣
𝜕𝑠

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (12)

here 𝐶3 and 𝐶4 are functions in 𝑠.

.3.1. Boundary conditions and the need for prestress
For cylindrical shells with continuous vertical supports along the

ongitudinal edges, the shear stress and longitudinal stress must be
ndependent of 𝑥, thus zero or constant. Then, with flexible walls in
ending and assuming that the water weight is much larger than the
elf-weight, the aqueduct must have the shape of a so-called ‘hydro-
tatic catenary’, which curvature is proportional to the distance from
he water surface. The hydrostatic catenary is the same curve as Euler’s
lastica [18–20], which curvature is proportional to the distance from
5

he line of action of the force. An example of an aqueduct with such w
cross-section curve is the Brooks Aqueduct in Canada, which was
ommissioned in 1914 and in operation until 1979 [21,22]. When
illed with water, the load was carried only by tensile hoop stresses
n the reinforced concrete section, whereas with all other water levels,
dditional bending stresses about the longitudinal axis were present in
he shell.

The Alloz aqueduct does not have continuous but intermediate
ertical supports along the longitudinal edges of the channel. For such
ases, the shear stress and longitudinal stress must change with 𝑥. Then,
o satisfy the equilibrium along the longitudinal edges, there must be a
restress tension 𝑇 (𝑥) along the top of each side of the cross-section [23,
p. 460–1] such that

̂𝑥𝑠 = ±
(

−𝑑𝑇
𝑑𝑥

)

when 𝑠 = ±. (13)

ence, Eq. (13) tells us that the material-efficient structural concept of
cylindrical membrane shell is connected to the use of prestressing.

.3.2. Self-weight and water loading
Loaded with self-weight and with water, the normal load is given

y

= 𝑝c + 𝑝w, (14)

c = 𝜌c𝑔𝑡 cos 𝜆, (15)

w = 𝜌w𝑔𝜁, (16)

= max
(

𝑧w − 𝑧, 0
)

, (17)

here 𝜌c is the density of the concrete wall, 𝜌w the density of the water,
the standard acceleration due to gravity, 𝜁 the non-negative depth of

he water, and 𝑧w the top of the water. Assume no ‘support from above’,
hat is, no support along the edges of the shell where 𝑠 = ±, then

𝑠 = 0 when 𝑠 = ±. (18)

he hoop stress 𝑛̂𝑠 of Eq. (10) combined with Eqs. (14)–(18) then
ells us that the wall should be vertical (cos 𝜆 = 0) between the top
evel of the water, 𝑧w, and the top of the shell, 𝑧top = 𝑧(), to carry
ts self-weight, just as the Shahe Aqueduct in China, although this
ould perhaps be relaxed if some bending is allowed. But certainly, the
ondition in Eq. (18) means that the structure will be flexible in the
ormal direction along the top edges and should therefore be provided
ith a stiffening lip or horizontal beam, just as the Alloz aqueducts
ave.

.3.3. Influence of the cross-section
The stresses in Eq. (10) are proportional to the radius of curvature 𝑅

f the cross-section curve, which is the inverse of the curvature 𝜅. For
n arbitrary plane cross-section curve given by 𝑧 = 𝑓 (𝑦), the curvature
s given by

=
𝑓 ′′(𝑦)

(

1 + 𝑓 ′(𝑦)2
)3∕2

. (19)

where 𝑓 ′(𝑦) is used to denote derivatives with respect to 𝑦 and similar
for higher-order derivatives.

The Alloz aqueduct have a cross-section given by a cubic parabola
𝑧 = 𝑓 (𝑦) = 𝑐|𝑦|3. Hence, the curvature is

𝜅 =
6𝑐𝑦2

|𝑦|
(

1 + 9𝑐2𝑦4
)3∕2

, (20)

hich tend to zero as 𝑦, 𝑠 → 0. Therefor, the radius of curvature tend to
nfinity as 𝑦, 𝑠 → 0. As a consequence, Eq. (10) tells us that for a cubic
arabola there will be infinite hoop stress along the centre line 𝑠 = 0.
n reality, if the wall is flexible enough in bending, the cross-section
ill change its geometry to relax such a stress concentration.
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2.4. Euler–Bernoulli beam theory

The formulas of this section are based on the Euler–Bernoulli beam
theory and take into account the effect of combining concrete and
reinforcement steel, something Kazinczy reported on in 1933 [39]. In
1949, he applied these principles for the design of cylindrical reinforced
concrete shells [35] in a similar manner as we have proposed in the
following.

Assume the wall thickness 𝑡 to be thin but variable and that lon-
gitudinal strains can be calculated using plane sections remain plane
and perpendicular to the longitudinal axis, as is assumed in Euler–
Bernoulli beam theory [42]. Then, with notations indicated in Fig. 4,
the longitudinal bending strains are equal to the distance below the
elastic centroid, 𝑧c, multiplied by the sagging curvature.

2.4.1. Prestress and equivalent cross-section
With the simultaneous presence of a beam bending moment, 𝑀 =

𝑀(𝑥), and a longitudinal prestress force, 𝑃 = 𝑃 (𝑥), shared between the
two sides induced at an eccentricity 𝑒 above the cross-section centroid
𝑧c by means of tension wires, the total sagging moment is

𝑀total = 𝑀 + 𝑃𝑒. (21)

If the moment 𝑀 is hogging, as is the case for the Alloz aqueduct,
𝑃𝑒 will reduce the absolute value of the moment. Regardless, the
longitudinal tensile membrane stress is given by

𝑛̊𝑥 =
(𝑀 + 𝑃𝑒)

𝐼
𝑡
(

𝑧c − 𝑧
)

− 𝑃 𝑡
𝐴c

, (22)

where 𝐴c and 𝐼 are the cross-sectional area and second moment of
area of the solid concrete wall. A ring ̊ is used throughout the paper
to denote quantities related to the Euler–Bernoulli beam theory so that
these are not confused with those of the cylindrical membrane shell
theory, denoted with a hat ̂ .

With varying thickness 𝑡, the cross-sectional properties are given by

𝐴c = 2∫



𝜂=0
𝑡(𝜂) 𝑑𝜂, (23)

𝑧c =
2
𝐴c ∫



𝜂=0
𝑡(𝜂)𝑧(𝜂) 𝑑𝜂, (24)

= 2∫



𝜂=0
𝑡(𝜂)

(

𝑧c − 𝑧(𝜂)
)2 𝑑𝜂, (25)

hich are constants and do neither vary in the longitudinal nor the
oop direction.

The prestress may be considered as an applied load with no accom-
anying elastic stiffness. Assume the prestress arranged to be propor-
ional to the hogging moment due to vertical loading so that

𝑒 = −𝜇𝑀, (26)

here 𝜇 is a dimensionless constant and the minus sign is to make 𝑃𝑒
ositive when 𝑀 is sagging. Then

𝑛̊𝑥 = 𝑀
𝐼
𝑡(𝑠)

(

𝑧NA − 𝑧(𝑠)
)

, (27)

where the modified second moment of area 𝐼 and the level of the
odified centroid, which coincide with the level of the neutral axis
NA, are

̃ = 𝐼
1 − 𝜇

, (28)

𝑧NA = 𝐼
(

1 − 𝜇
𝐼

𝑧c +
𝜇
𝑒𝐴c

)

= 𝑧c + ℎ. (29)

Note that 𝜇 = 1 makes perfect physical sense because then there is
no bending of the section and it is in a state of uniform compression
with the neutral axis at infinity (𝑧NA = ∞). If 𝜇 > 1, then 𝐼 is negative,
which means that the prestress and eccentricity are sufficient to reverse
the curvature due to vertical loading.
6

s

The prestress force could, instead of using tension wires, be gener-
ated by the addition of a concentrated area 𝐴f , shared between the two
sides, and a simple elastic stiffness, such that
(

𝐴c + 𝐴f
)

𝑧NA = 𝐴c𝑧c + 𝐴f
(

𝑧c + 𝑒
)

, (30)

𝐴f =
ℎ

𝑒 − ℎ
𝐴c. (31)

As one would expect, an infinite area 𝐴f would be required to move
the centroid so that ℎ = 𝑒.

2.4.2. Membrane stress state
With 𝑛̊𝑥 given by Eq. (27), the membrane stresses in the cross-

section are given using Eq. (6) by setting 𝑝𝑠 = 0 and 𝑝 = 0 since the
effect on the membrane stresses of these load components is accounted
for already when determining the beam bending moment 𝑀 influenc-
ing 𝑛̊𝑥. Thus, with 𝑛̊𝑥 inserted in the second expression in Eq. (6) and
using the resulting expression for 𝑛̊𝑥𝑠 inserted in the first expression of
Eq. (6), the complete state of membrane stress is obtained as

𝑛̊𝑥 = 𝑀
𝐼
𝑡(𝑠)

(

𝑧NA − 𝑧(𝑠)
)

𝑛̊𝑥𝑠 = − 𝑑
𝑑𝑥

(

𝑀
𝐼
𝐵(𝑠) + 𝐹1

)

𝑛̊𝑠 =
𝑑2

𝑑𝑥2

(

𝑀
𝐼 ∫

𝑠

𝜂=0
𝐵(𝜂) 𝑑𝜂 + 𝑠𝐹1

)

−
𝑑𝐹2
𝑑𝑥

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (32)

where 𝐹1 and 𝐹2 are two statically indeterminate scalar functions in 𝑥
nd

(𝑠) = ∫

𝑠

𝜂=0
𝑡(𝜂)

(

𝑧NA − 𝑧(𝜂)
)

𝑑𝜂, (33)

s the first moment area of the cross-section from the centre-line to 𝑠
bout the neutral axis.

Due to symmetry, the shear stress must be zero along the middle
ine (𝑠 = 0). Inserting 𝑠 = 0 into Eq. (33) gives 𝐵(0) = 0 and, from the
econd expression in Eq. (32), follows
𝑑𝐹1
𝑑𝑥

= 0. (34)

If we assume no ‘supports from above’, then 𝑛𝑠 = 0 for 𝑠 = ±. Note
that ∫ 𝑠

0 𝐵(𝜂) 𝑑𝜂 = ∫ −𝑠
0 𝐵(𝜂) 𝑑𝜂 due to symmetry, thus, from the third

expression in Eq. (32), follows

𝑑𝐹2
𝑑𝑥

= 𝑑2𝑀
𝑑𝑥2

1
𝐼 ∫



𝜂=0
𝐵(𝜂) 𝑑𝜂. (35)

With 𝑑𝐹1∕𝑑𝑥 and 𝑑𝐹2∕𝑑𝑥 known, the stress state in Eq. (32) reduces
to

𝑛̊𝑥 = 𝑀
𝐼
𝑡(𝑠)

(

𝑧NA − 𝑧(𝑠)
)

𝑛̊𝑥𝑠 = −𝑑𝑀
𝑑𝑥

1
𝐼
𝐵(𝑠)

𝑛̊𝑠 =
𝑑2𝑀
𝑑𝑥2

1
𝐼

(

∫

𝑠

𝜂=0
𝐵(𝜂) 𝑑𝜂 − ∫



𝜂=0
𝐵(𝜂) 𝑑𝜂

)

= −𝑑2𝑀
𝑑𝑥2

1
𝐼 ∫



𝜂=𝑠
𝐵(𝜂) 𝑑𝜂.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (36)

.4.3. Wall bending moment
In pure membrane theory, the shape described by the curvature

is such that the stresses equilibrate the applied load, resulting in
membrane stress state given by Eq. (10). If the point of departure

nstead is the Euler–Bernoulli beam theory, Eq. (36) describes the
orresponding membrane stress state. If the cross-section shape is such
hat it does not act as a pure membrane, additional wall bending
oments about the longitudinal axis arises

= 𝑚w + 𝑚c + 𝑚𝜏 . (37)

ig. 6 illustrates the forces 𝑝w𝑑𝜂, 𝑝c𝑑𝜂, and 𝑛′𝑠𝑑𝜂 acting on the small

egment 𝑑𝜂 that contributes 𝑚w, 𝑚c, and 𝑚𝜏 , respectively, given by
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Fig. 6. Applied forces on a short wall segment 𝑑𝜂 positioned at 𝐫(𝜂) contributing to
the wall bending moment 𝑚 about a point 𝐫(𝑠) on the cross-section.

taking moments about 𝐫(𝑠) and integrating from the point 𝐫(𝑠) to the
top of the cross-section 𝐫().

The contributions to the moment from hydrostatic pressure and the
self-weight are

𝑚w = ∫



𝜂=𝑠
𝑝w (𝐫(𝜂) − 𝐫(𝑠)) × 𝐍(𝜂) 𝑑𝜂 ⋅ 𝐢, (38)

𝑚c = ∫



𝜂=𝑠
𝑝c (𝐫(𝜂) − 𝐫(𝑠)) × 𝐤 𝑑𝜂 ⋅ 𝐢, (39)

where 𝐢 and 𝐤 are the Cartesian base vectors in the 𝑥 and 𝑧 direction,
respectively, and 𝐍 = 𝑅𝜕2𝐫∕𝜕𝑠2 the surface inwards unit normal vector.

The force 𝑛′𝑠𝑑𝜂 is equal to the difference in shear stress acting on two
parallel cross-sections positioned at a small distance from one another,
and if this small distance is taken to the limit

𝑛′𝑠𝑑𝜂 =
𝜕𝑛𝑥𝑠
𝜕𝑥

𝑑𝜂, (40)

meaning the rate of change in hoop stress 𝑛′𝑠 is driven by the rate
of change of shear stress in the longitudinal direction. Therefore, we
refer to this wall bending moment contribution as a ‘shear stress
contribution’ denoted with a subscript 𝜏. The contribution is given by

𝑚𝜏 = ∫



𝜂=𝑠
𝑛̊′𝑠 (𝐫 (𝜂) − 𝐫 (𝑠)) × 𝐭(𝜂) 𝑑𝜂 ⋅ 𝐢

= −∫



𝜂=𝑠
𝜅𝑛̊𝑠 (𝐫(𝜂) − 𝐫(𝑠)) × 𝐍(𝜂) 𝑑𝜂 ⋅ 𝐢,

(41)

where 𝐭 = 𝜕𝐫∕𝜕𝑠 is the surface unit tangent vector in the hoop direction.
The last equality in Eq. (41) follow from integration by parts where we
make use of the fact that 𝑛̊𝑠() = 0 and 𝐭′ = 𝜕2𝐫∕𝜕𝑠2 = 𝜅𝐍.

Again, the Alloz aqueducts have a cross-section curve given by a
cubic parabola with curvature given by Eq. (20) tending to 0 as 𝑦, 𝑠 → 0.
As a consequence, the shear contribution 𝑚𝜏 to the bending moment 𝑚
will be rather low around 𝑠 = 0 compared to other choices of cross-
sections such as a circle (𝜅 = constant), a parabola (𝜅(0) = 𝜅max),
or catenary (𝜅(0) = 𝜅max). Since 𝑚𝜏 reduces 𝑚, the cubic parabola is
expected to have a relatively high bending moment along 𝑠 = 0.

3. Does it act as a shell or a beam?

Both the Euler–Bernoulli beam theory and the membrane theory
of cylindrical shells were available at the time and could have been
used to design the Alloz aqueduct. However, neither of them provide a
complete description of the aqueduct’s structural behaviour. The Euler–
Bernoulli beam theory gives a proper overall stress distribution in the
longitudinal direction but does not guide the choice of an efficient
cross-section shape, while the membrane theory of cylindrical shells
7

Fig. 7. Section drawing of the Alloz aqueduct with cubic parabola and catenary
overlay.
Source: Drawing courtesy of Archivo Torroja – CEHOPU [30].

Fig. 8. Boundary conditions for the complete aqueduct (left) and the considered part
(right).

does the opposite. Furthermore, the latter requires prestressing along
the longitudinal edges to provide solutions in equilibrium. To better
understand Torroja’s considerations and calculations, we apply and
compare these two theoretical approaches, roughly asking which theory
best describes the behaviour.

We consider an aqueduct of total length 𝓁 = 38 m with similar
boundary conditions as the Alloz aqueduct. The cubic parabola shaped
cross-section of the Alloz aqueduct has zero curvature at the bottom, so
using it leads to infinite hoop stress and, therefore, infinite deformation
along the centre line according to the membrane theory of shells. To
avoid this, we use a cross-section of constant thickness 𝑡 = 0.15 m in
the shape of a catenary given by

𝑦(𝑠) = 𝑐 sinh−1 𝑠
𝑐

𝑧(𝑠) = 𝑐
√

𝑠2

𝑐2
+ 1 − 𝑐

⎫

⎪

⎬

⎪

⎭

. (42)

With 𝑦(±) = ±1.335 m and 𝑧(±) = 2.68 m, the constant 𝑐 ≈ 0.5402,
resulting in a cross-section with only a slight deviation in geometry
compared to the true cross-section, see Fig. 7.

With the coordinate system positioned so that 𝑥 = 0 is halfway
along the aqueduct and due to symmetry in both geometry and loading,
only one half needs to be considered, see Fig. 8. For the membrane
shell theory, Appendix A.1 provides expressions for the displacement
and functions 𝐶1–𝐶4 for the considered boundary conditions. Similarly,
for the beam theory, Appendix A.2 provides expressions for the beam
bending moment and the deflection.

We consider three load cases: only water weight (LC1); only self-
weight (LC2), and; both self-weight and water weight (LC3). The
density of the water is taken as 𝜌c = 1, 000 kg/m3 and of the concrete
wall as 𝜌c = 2, 400 kg/m3.

Most expressions are analytical and exact, and only a few integrals
and optimisation problems related to finding the 𝜇 values require nu-
merical solution approaches. Using Wolfram Mathematica 11.3 running
on a Windows 10 laptop equipped with an Intel Xeon CPU @ 2.80 GHz,
it takes about 10 s to compute the results for each load case.
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Table 1
Prestress force 𝑃max (MN) at the support location (𝑥 = 𝓁∕4) according to the Euler–
Bernoulli beam theory and corresponding compressive stress in the concrete flange
𝜎f lange (MPa) and levels of prestress 𝜇.

Prestress level 𝑃𝜎 𝑃𝜏 𝑃m Torroja

𝑃max 1.69 16.41 19.08 1.84

𝜎f lange 11.7 114.0 132.5 12.9

LC1 1.11 10.73 12.48
𝜇 LC2 2.50 24.27 28.21 –

LC3 0.77 7.44 8.65

3.1. Prestress force

Combining Eqs. (26) and (51) gives an explicit expression for the
compressive prestress force 𝑃 shared between the two flanges in which
the prestressing cables are embedded. 𝑃 will have its maximum value
𝑃max above the support (𝑥 = 𝓁∕4).

For the beam theory, we consider four values for the prestress
force, enabling the exploration of the influence of the longitudinal
prestressing: no prestress (𝑃 = 0); prestress so that the longitudinal
stress at the top of the section (𝑠 = ±) is zero in the flanges (𝑃 = 𝑃𝜎);
prestress so that the beam shear stress at the top of the section is equal
to the shell shear stress (𝑃 = 𝑃𝜏 ), and; prestress so that the wall bending
moment is minimised at 𝑠 = 0 (𝑃 = 𝑃m). The prestress forces are
omputed considering LC3 combining Eqs. (26) and (51), and Table 1
how the maximum prestress force and corresponding 𝜇 values for the
ifferent load cases.

Assuming the dimensions of each flange to be 600 × 120 mm (see
ig. 3), the force 𝑃max results in viable levels of stress in the concrete,
f lange, for 𝑃𝜎 , whereas for 𝑃𝜏 and 𝑃m, it is far beyond the compressive

strength of most concrete qualities available in 1939, see Table 1.

3.2. Membrane stresses

Fig. 9 display the hoop stress 𝜎𝑠, shear stress 𝜏𝑥𝑠, and longitudinal
stress 𝜎𝑥 at the support location (𝑥 = 𝓁∕4) for LC1–LC3 computed using
the membrane shell theory and the beam theory. The stress plots have
the same shape and proportions for any cut, only the magnitude of the
stresses will differ.

For LC1, the hoop stress 𝜎𝑠 is zero in the flanges at the top of the
cross-section regardless of theory and prestress level, whereas for LC2
and LC3, the shell theory results in tensile hoop stress at the top of the
section (Fig. 9, top).

Without any prestress (𝑃 = 0), the stress levels of the beam theory
are relatively low compared to those of the shell theory. Furthermore,
the longitudinal stress 𝜎𝑥 in the beam is such that the top of the
cross-section is in tension while the central part is in compression,
whereas for the shell theory, the central part is always in tension (Fig. 9,
bottom).

By increasing the prestressing so that the longitudinal stress is zero
along with the flanges (𝑃 = 𝑃𝜎), the entire beam cross-section becomes
longitudinally compressed. The compression reduces the risk of cracks
on the inside, as was the design intent with the Alloz aqueduct.

Increasing the prestress to 𝑃 = 𝑃𝜏 makes the shear stress at the
top of the cross-section according to the beam theory match the shear
stress of the shell theory. Then, in LC1 and LC3, the stress state of
the beam theory almost matches that of the shell theory. The beam is
then prestressed to such a degree that it acts almost like a membrane
shell. However, the longitudinal stress will then be a mix of tensile and
compressive stresses with risks of cracks on the inside.
8

3.3. Wall bending moment

Fig. 10 display the wall bending moment complementing the mem-
brane equilibrium of the cross-section wall using the beam theory. The
bending moment decreases with an increased level of prestress. In fact,
it is possible to find a level of prestress 𝑃 = 𝑃m such that 𝑚 = 0
at 𝑠 = 0, resulting in minor bending moments at the position of the
shear maximum points (see Fig. 9). The beam is then prestressed to
such a degree that its load-carrying action resembles a membrane shell,
again highlighting the need for prestressed longitudinal edges for the
cylindrical shell membrane theory. If a circular cross-section would
have been used, finding 𝑃m such that 𝑚 = 0 at 𝑠 = 0 would give 𝑚 = 0
for any 𝑠.

The bending-moment capacity of a wall similar to the Alloz aque-
duct channel wall is about 41.6 kNm/m (assume: 150 mm thick con-
crete with Young’s modulus 30 GPa, Poisson’s ratio 0.15, compressive
strength 25 MPa; 9𝜙15 reinforcement bars per metre with yield strength
250 MPa placed on the tension side with 30 mm concrete cover).
Hence, in accordance with the lower-bound theorem [2] and even
without any prestress (𝑃 = 0), the wall has the capacity to resist the
bending moment that arises.

For prestress levels 𝑃 ≤ 𝑃𝑚, the bending moment is positive meaning
that the inside of the wall is in tension whereas the outside is in
compression. This imposes a risk for cracks on the water side with
accelerated corrosion of the reinforcement steel and water leakage. To
overcome this risk, Torroja imposed a larger negative bending moment
on the Alloz aqueduct wall by means of transverse ties with turn
buckles that pulls the flanges together, effectively putting the inside
in compression and the outside in tension. For a prestress level of 𝑃𝜎 ,
the bending moment is 30.33 kNm/m. With transverse ties placed every
4.75 m, the magnitude of the force in each needed to make the bending
moment negative is about 54 kN.

3.4. Deformations

Fig. 11 display the vertical displacement of the neutral axis of the
aqueduct computed using the beam theory. Without prestress, the tip
of the cantilever sags for any load case, whereas with prestress 𝑃𝜎 , the
tip sags only a little for LC3 and rises for LC1 and LC2, but the overall
deformation is insignificant regardless of load case. With prestress 𝑃𝜏
and 𝑃m, the tip rises with magnitudes comparable to the displacement
obtained for the upper part of the cross section using the shell theory,
see Fig. 12, although such displacements are unreasonably high from a
serviceability perspective.

Fig. 12 display the deformed channel according to membrane theory
of shells for LC1. The longitudinal edges move substantially inwards
with increased distance from the support (𝑥 = 𝓁∕4) with a maximum
value of about 100 mm, again highlighting the importance of providing
the shell with a stiffening lip at the top of the cross-section. At the
bottom of the tip of the cantilever, the shell deforms downwards about
116 mm (for LC3, 145 mm downwards), forming a sharp kink that
could possible damage the sealing between one aqueduct module and
the next. The deformation of the bottom part of the wall can be reduced
if the wall is provided with some bending stiffness. Furthermore, at the
top of the tip of the cantilever, the shell deforms upwards due to the
prestress needed to complete the equilibrium of the longitudinal edges.

4. Torroja’s design approach

Torroja described the Alloz aqueduct in his books [16,17] and
papers [31,32,43], but none of these contain detailed information of the
analysis undertaken during the design. However, among the extensive
collection of original drawings (see e.g. Figs. 3 and 7), sketches, and
documents in the Archivo Torroja are two documents of particular
interest: Teoría del método de la lámina de jabón (Theory of the soap-film



Engineering Structures 264 (2022) 114425A. Sehlström et al.

t

Fig. 9. Membrane stresses in catenary shaped channel at the support location (𝑥 = 𝓁∕4) for load cases LC1–LC3 according to membrane theory of shells and Euler–Bernoulli beam
heory. Prestress forces for the beam theory: no prestress (𝑃 = 0), prestress making the hoop stress zero in the flanges at 𝑠 = ± (𝑃 = 𝑃𝜎 ), prestress making the shear stress of the

two theories match at 𝑠 = ± (𝑃 = 𝑃𝜏 ), and prestress minimising the wall bending moment at 𝑠 = 0 (𝑃 = 𝑃m), all determined considering LC3.
method) from 1939 [44] and Calculo del acueducto de Alloz (Calculation
of the Alloz aqueduct) from 1940 [45]. Unfortunately, the author(s)
and the status of these documents are unknown, and they contain
typos, especially in the equations, leaving room for interpretation
and uncertainties. The documents do not contain any discussion on
displacements of the aqueduct or long-term losses in prestress forces
and concrete stiffness, at that time little known issues. However, we
believe the documents reveal enough to conclude how Torroja design
the Alloz aqueduct.

4.1. Theory

The theory document [44] is an extract from another document,
‘Instruccion E. 20,1’, not found in the archive, presumably containing
the theoretical background to the used expressions. However, upon
translating to English, the writings appear partly the same as in Articles
105 Bending of a Cantilever and 113. The Solution of Bending Problems by
the Soap-film Method in Theory of Elasticity by Timoshenko and Goodier
from 1951 [46], first published by just Timoshenko in 1934, six years
9

before the completion of the Alloz aqueduct.
Article 105 introduces general assumptions on the nature of the
bending problem of cantilevering prismatical bars loaded at their tip.
Article 113 reports theory presented by Griffith and Taylor in 1917 [37]
that make use of a soap-film analogy to establish a stress function in
the plane of the cross-section to find the components of shear stress in a
beam which does not have thin walls, and so the usual consideration of
shear flow in the Euler–Bernoulli theory fails. The theory draws upon
Prandtl’s soap-film analogy for torsional problems [46, Art. 93]. In
essence, the Griffith–Taylor theory for the bending of cantilevers is an
elaboration of the Euler–Bernoulli beam theory, and we are uncertain
as to why Torroja decided to use the theory when he just as well
could have used the simpler beam theory for a relatively thin-walled
structure.

With 𝑥 the vertical downwards axis, 𝑦 the horizontal, and 𝑧 the
longitudinal axis, all acting through the centre of gravity of the cross-
section, the following summarise the theory:

1. Assume that a cantilevering prismatic bar of length 𝓁 and with
second moment of area 𝐼 loaded with downwards acting load 𝑃

at its tip sufficiently describe the structural behaviour.
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Fig. 10. Wall bending moment 𝑚 for catenary shaped channel for LC3 (water weight +
elf-weight) according to beam theory for the case with no prestress (𝑃 = 0), prestress

making the hoop stress zero in the flanges at 𝑠 = ± (𝑃 = 𝑃𝜎 ), prestress making the
hear stress of the beam and membrane shell theories match at 𝑠 = ± (𝑃 = 𝑃𝜏 ),
nd prestress minimising the wall bending moment at 𝑠 = 0 (𝑃 = 𝑃m), all determined

considering LC3.

2. Assume that the longitudinal stress is determined by

𝜎𝑧 = −
𝑃 (𝓁 − 𝑧)𝑥

𝐼
and that the components 𝜎𝑥, 𝜎𝑦, and 𝜏𝑥𝑦 = 𝜏𝑦𝑥 are zero.

3. Solve the remaining shearing stress components 𝜏𝑥𝑧 = 𝜏𝑧𝑥 and
𝜏𝑦𝑧 = 𝜏𝑧𝑦 using the soap-film method such that

𝜏𝑥𝑧 = −
𝜕𝜙
𝜕𝑥

, 𝜏𝑦𝑧 =
𝜕𝜙
𝜕𝑦

− 𝑃𝑥2

2𝐼
+ 𝜈

1 + 𝜈
𝑃𝑦2

2𝐼
,

where 𝜈 is Poisson’s ratio and 𝜙 = 𝜙(𝑥, 𝑦) a stress function
acting over the cross-section such that the curvature of 𝜙 is
proportional to that of a pressurised soap bubble covering a hole
with the same shape as the cross-section perimeter.

Even though we have studied the Griffith–Taylor theory in some
detail, we do not fully understand why Torroja chose to use it because it
would appear that the simpler Euler–Bernoulli beam theory is sufficient
to calculate the bending moments in the wall of the structure. The
Euler–Bernoulli beam theory also allows for the prestress to be a
design parameter and provides the shape of the beam bending moment
diagram.

4.2. Design calculations

The calculation document [45] solves sectional properties graphi-
cally and approximates integrals as sums. It considers a cantilever of
length 9.5 m loaded with 2,750 kg self-weight and 4,960 kg water per
metre length summed up as a point load at the tip.

4.2.1. Main reinforcement in the flanges
1. Bending moment at the cantilever support: (2,750 + 4,960) kg/m

× 9.52 m2 / 2 = 350,000 kgm.
2. Assume zero longitudinal stress at the top linearly increasing

towards the bottom so that the stress resultant is position at 1/3 of the
cross-section height measured from the bottom, or 0.95 m, resulting in
1.90 m lever arm between flange reinforcement and resultant. Then the
bending moment equates a force couple worth 350,000 kgm/1.9 m =
184,000 kg each.

3. Place in each flange 4𝜙39 cables with a breaking load of 72,320 kg
per cable, resulting in a safety factor of the main reinforcement of
10

72,320 kg/184,000 kg × 8 = 3.2.
Fig. 11. Vertical displacement 𝛿 of neutral axis according to beam theory for a catenary
cross-section.

4. Assume a fictitious maximum compression of 100 kg/cm2 at
the bottom and calculate the corresponding total compression volume
564,300 kg. Then recalculate to true maximum compressive stress 𝜎𝑧
as 350,000 kgm × 100 kg/cm2 / 564,300 kg = 32.2 kg/cm2. Torroja’s
assumed stress distribution is indicated in grey in the lower right plot
in Fig. 9, deviating only slightly from our result.

5. In the end of the cantilever where only half the number of cables
are laid, the compression is 92,000 kg. The centre of gravity for this
section is 1.4 m and so the eccentric force is replaced with a moment
65,000 kgm and a force 92,000 kg positioned half way up, i.e. 1.45 m
above the bottom. With cross-section area 11,685 cm2 and moment of
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Fig. 12. Deformations [m] according to membrane shell theory for LC1: water weight. Deformations drawn scaled 5 times and undeformed shell outlined with dashed lines.
inertia 96,400 cm4, the concrete compression in this section is
92, 000
11, 685

± 65, 000 × 100 × 145
96, 400

= 7.9 ± 10 kg/cm2.

4.2.2. Calculation of shear forces
1. Compute the shearing stresses 𝜏𝑥𝑧 and 𝜏𝑦𝑧 using the soap-film

ethod at four points at the cross-section considering only the weight
f the concrete.

2. Compute a stress resultant 𝑡 =
√

𝜏2𝑥𝑧 + 𝜏2𝑦𝑧 for each of the four
points and combine with stress 𝜎𝑧 at the same points via Mohr’s
circle to determined principal stresses; max tension: 9.5 kg/cm2; max
compression: 32.0 kg/cm2. Reinforcement 4.5𝜙15 bars per metre length
resists the tension.

4.2.3. Calculations of bends in the wall
1. Use obtained shearing stresses combined with self-weight and

hydrostatic pressure to compute the bending in the wall and recompute
to a need for an additional 4.5𝜙15 bars per metre, resulting in a total
of 9𝜙15 bars per metre.

2. Arrange the vertical reinforcement with an inclination according
to Mohr’s circle, slightly reduced towards the ends, see Fig. 3.

Note that at the tip of the cantilever, the reinforcement is arranged
vertically and reduced to 9𝜙12 per metre, but there are not comments
about this in the calculation document. Neither are there any mentions
of the longitudinal reinforcement 8𝜙8 per metre in the channel wall
shown in Fig. 3.

4.2.4. Tie rods
Use the resulting wall bending moment to design the tension ties

connecting the two flanges: a 𝜙25 bar every 4.75 m, each carrying a
tension of 4,800 kg.

5. Summary

In this paper, we examine the structural action of Eduardo Torroja’s
prestressed concrete Alloz aqueduct completed in 1939. In particular,
we address which simple theoretical approach would be the most
suitable if you would design a similar structure today: the Euler–
Bernoulli beam theory or the membrane theory of cylindrical shells.
Furthermore, we review the Griffith–Taylor theory for the bending of
cantilevers, which Torroja used to design the aqueduct.

The cylindrical membrane shell theory results in inadmissible infi-
nite hoop stress if the considered cross-section curve has zero curvature.
That is the case at the bottom of the Alloz aqueduct, whose cross-
section is a ‘cubic parabola’. In reality, if the wall is flexible enough
in bending, the cross-section will change its geometry to relax such a
stress concentration. However, this makes the membrane shell theory
an invalid analysis approach for the Alloz aqueduct. To generalise
the discussion and allow a comparison between the two theories,
we have chosen to approximate the Alloz geometry using a catenary
cross-section, which has everywhere non-zero curvature, and whose
geometry deviates only slightly from Torroja’s cubic parabola.
11
We have shown that, in general, it is possible to establish an
equilibrium using either the cylindrical membrane theory or the Euler–
Bernoulli beam theory for an aqueduct of similar cross-section as the
Alloz aqueduct. The lower-bound theorem [1,2] then tells us that
the structure will also find an equilibrium state. A specific level of
prestressing is needed for equilibrium in the membrane shell theory,
whereas it is satisfied for any level of prestressing in the beam theory.

With the beam theory, it is possible to prestress the aqueduct to such
a degree that the wall bending moments are reduced to a minimum,
making the aqueduct channel act predominantly by membrane stresses,
as in the membrane shell theory. However, the level of prestress
needed to do so is high, resulting in longitudinal compressive concrete
stresses around the prestressing tension wires far beyond reasonable
assumptions on concrete strength. Furthermore, such prestress would
result in tensile concrete stresses at the bottom of the cross-section, with
risks for water intrusion and corrosion as a result.

A level of prestress chosen so that the entire cross-section is put
in longitudinal compression, just as Torroja did for his design, gives
with the beam theory a plausible state of stress in the concrete wall
and the flanges. In this paper, we have assumed that the prestress
is proportional to the beam bending moment according to Eq. (26)
producing a continuous variation in the pretension. This is a difference
from Torroja’s design assumption, with a step-wise variation of the
prestressing proportional to the number of tension wires used: two at
mid span and the tip of the cantilever versus four above the supports.

Upon comparing Torroja’s results with ours, we can conclude that
the Griffith–Taylor theory provides results that agree well with those
obtained using the Euler–Bernoulli beam theory, bearing in mind the
slight difference in geometry. The Griffith–Taylor theory implicitly
applies the ‘plane-section remain plane’ assumption and is limited to
cantilevers loaded with point loads at the tip. Furthermore, it is much
more complicated to use than the Euler–Bernoulli beam theory.

It must be stressed that both the Euler–Bernoulli theory and the
Griffith–Taylor theory likely underestimate the shear deformations of
the Alloz aqueduct. This is reflected in the reduced accuracy of their re-
sults. Therefore, the theories should be used with caution and final de-
signs checked using more refined approaches such as the finite element
method. These checks should preferably include non-linear material
models and time-dependent effects such as creep and relaxation.

6. Conclusion

Since the Alloz aqueduct does not have everywhere non-zero cur-
vature, it cannot be analysed using the cylindrical membrane shell
theory.

In general, whether or not a structure of this type acts as a shell
depends upon the thickness of the wall. The thinner the wall, the more
it act as a shell. The wall thickness of the Alloz aqueduct is sufficient
for it to act mainly as a beam, and the beam theory gives a better
approximation than the membrane shell theory.

Both the membrane shell theory and the Euler–Bernoulli beam
theory produce a distribution of stresses within a cylindrical shell of
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an appropriate shape which satisfy the equilibrium equations. Which
is more appropriate in any given circumstance depends on the wall
thickness and the boundary conditions.
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ppendix. Simple beam with equal overhangs

Consider a simply supported aqueduct channel of length 𝓁 with
qual overhangs of length 𝓁∕4 at each side of the supports. Position the

coordinate system so that 𝑥 = 0 at mid span between the supports, see
ig. 8. Due to symmetry, we may consider only the half of the aqueduct,
o we restrict our attention to where 0 ≥ 𝑥 ≥ 𝓁∕2.

.1. Cylindrical membrane shell theory

Combining Eqs. (10) and (12) gives the displacement field as

𝑢 = 1
𝐸𝑡

[

𝑥3

6
(

𝑛̂′′𝑠 + 𝑝′𝑠
)

+ 𝑥2

2
𝐶 ′′
1 +

𝑥
(

𝐶 ′′
2 − 𝜈𝑛̂𝑠

)

+ 𝐶3

]

𝑣 = − 1
𝐸𝑡

[

(1 + 𝜈)
(

𝑥2
(

𝑛̂′𝑠 + 𝑝𝑠
)

+ 2𝑥𝐶 ′
1
)

+

𝑥4

24
(

𝑛̂(3)𝑠 + 𝑝′′𝑠
)

+ 𝑥3

6
𝐶 (3)
1 +

𝑥2

2

(

𝐶 (3)
2 − 𝜈𝑛̂′𝑠

)

+ 𝑥𝐶 ′
3 − 𝐶4

]

𝑤 = 𝑅
( 1
𝐸𝑡

(

𝑛̂𝑠 − 𝜈𝑛̂𝑥
)

− 𝜕𝑣
𝜕𝑠

)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(43)

where
𝜕𝑣
𝜕𝑠

= − 1
𝐸𝑡

[

(1 + 𝜈)
(

𝑥2
(

𝑛̂′′𝑠 + 𝑝′𝑠
)

+ 2𝑥𝐶 ′′
1
)

+

𝑥4

24
(

𝑛̂(4)𝑠 + 𝑝(3)𝑠
)

+ 𝑥3

6
𝐶 (4)
1 +

𝑥2

2

(

𝐶 (4)
2 − 𝜈𝑛̂′′𝑠

)

+ 𝑥𝐶 ′′
3 − 𝐶 ′

4

]

.

(44)

At mid-span (𝑥 = 0) and at the tip of the cantilever (𝑥 = 𝓁∕2), the
shear stress must be zero. Thus, from the second expression of Eq. (10),
we get

𝐶 ′
1(𝑠) =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ 𝑥 ≤ 𝓁
4

−𝓁
2
(

𝑛̂′𝑠 + 𝑝𝑠
)

, 𝓁
4
< 𝑥 ≤ 𝓁

2
.

(45)

At the end of the cantilever (𝑥 = 𝓁∕2), the longitudinal stress 𝑛̂𝑥
must be zero. Thus, from the first expression of Eq. (10) and with the
usage of Eq. (45), we get 𝐶 ′′

2 = − 𝓁2

8

(

𝑛̂′′𝑠 + 𝑝′𝑠
)

− 𝓁
2𝐶

′′
1 = 𝓁2

8

(

𝑛̂′′𝑠 + 𝑝′𝑠
)

or the cantilever. To solve for the central span, note that on either
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ide of the support (𝑥 = 𝓁∕4) the longitudinal stress must be the same.
herefor, using the previous result, 𝐶 ′′

2 = 0 for the central span. Hence,

′′
2 (𝑠) =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ 𝑥 ≤ 𝓁
4

𝓁2

8
(

𝑛̂′′𝑠 + 𝑝′𝑠
)

, 𝓁
4
< 𝑥 ≤ 𝓁

2
.

(46)

Due to symmetry, the longitudinal displacement 𝑢 at mid-span (𝑥 =
0) is 0. So, from the first expression in Eq. (43), we find 𝐶3 = 0 for the
central span. At either side of the support (𝑥 = 𝓁∕4), the longitudinal
displacement must be the same. Thus, using the previous results,

𝐶3 = −𝓁3∕64
(

𝑛̂′′𝑠 + 𝑝′𝑠
)

for the cantilever span. Hence,

𝐶3(𝑠) =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ 𝑥 ≤ 𝓁
4

−𝓁3

64
(

𝑛̂′′𝑠 + 𝑝′𝑠
)

, 𝓁
4
< 𝑥 ≤ 𝓁

2
.

(47)

At the vertical support (𝑥 = 𝓁∕4), assume no displacement in the
hoop direction. Then, from the second expression in Eq. (43) and by
noting that the hoop displacement must be the same on either side of
the support, we find

𝐶4(𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑐mid(𝑠), 0 ≤ 𝑥 ≤ 𝓁
4

−𝑐end(𝑠),
𝓁
4
< 𝑥 ≤ 𝓁

2
.

(48)

where

𝑐mid(𝑠) =
192𝓁2 (2 + 𝜈)

(

𝑛̂′𝑠 + 𝑝𝑠
)

+ 𝓁4
(

𝑛̂(3)𝑠 + 𝑝′′𝑠
)

6144
, (49)

𝑐end(𝑠) =
192𝓁2 (6 + 7𝜈)

(

𝑛̂′𝑠 + 𝑝𝑠
)

+ 7𝓁4
(

𝑛̂(3)𝑠 + 𝑝′′𝑠
)

6144
. (50)

A.2. Beam bending theory

For the considered half of the beam, the beam bending moment is
given by

𝑀(𝑥) =

⎧

⎪

⎨

⎪

⎩

−
𝑞𝑥2

2
, 0 ≤ 𝑥 ≤ 𝓁

4
𝑞𝓁
2

(

𝑥 − 𝓁
4

)

−
𝑞𝑥2

2
, 𝓁

4
< 𝑥 ≤ 𝓁

2
,

(51)

where 𝑞 = 𝑔
(

𝐴c𝜌c + 𝐴w𝜌w
)

is the uniformly distributed load per unit
length.

The vertical displacement of the neutral axis is

𝛿(𝑥) =

⎧

⎪

⎨

⎪

⎩

−
𝑞 (𝓁 − 4𝑥)
6144𝐸𝐼

𝑓mid(𝑥), 0 ≤ 𝑥 ≤ 𝓁
4

−
𝑞 (𝓁 − 4𝑥)
6144𝐸𝐼

𝑓end(𝑥),
𝓁
4
< 𝑥 ≤ 𝓁

2
,

(52)

where

𝑓mid(𝑥) = 15𝓁3 − 68𝓁2𝑥 + 112𝓁𝑥2 − 64𝑥3, (53)

𝑓end(𝑥) = 7𝓁3 − 68𝓁2𝑥 + 112𝓁𝑥2 − 64𝑥3. (54)
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