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A B S T R A C T

Three model configurations are presented for multi-step time series predictions of the heat absorbed by the
water and steam in a thermal power plant. The models predict over horizons of 2, 4, and 6 steps into the
future, where each step is a 5-minute increment. The evaluated models are a pure machine learning model, a
novel hybrid machine learning and physics-based model, and the hybrid model with an incomplete dataset. The
hybrid model deconstructs the machine learning into individual boiler heat absorption units: economizer, water
wall, superheater, and reheater. Each configuration uses a gated recurrent unit (GRU) or a GRU-based encoder–
decoder as the deep learning architecture. Mean squared error is used to evaluate the models compared to
target values. The encoder–decoder architecture is over 11% more accurate than the GRU only models. The
hybrid model with the incomplete dataset highlights the importance of the manipulated variables to the system.
The hybrid model, compared to the pure machine learning model, is over 10% more accurate on average
over 20 iterations of each model. Automatic differentiation is applied to the hybrid model to perform a local
sensitivity analysis to identify the most impactful of the 72 manipulated variables on the heat absorbed in the
boiler. The models and sensitivity analyses are used in a discussion about optimizing the thermal power plant.
1. Introduction

Integrating renewable energy onto the electrical grid is a critical
step to reducing carbon emissions [1]. The fastest growing renewable
energy sources, solar and wind, are also economically competitive
with traditional electricity generation sources [2]. However, due to
intermittency of solar and wind, they are not a direct substitute for
dispatchable energy sources. As a result balancing authorities have
economically incentivized some dispatchable thermal power plants
(coal and natural gas) to transition from baseload to load following
operations that ensure electricity generation meets demand [3].

Because thermal plants were traditionally designed to operate at
baseload, transitioning to load following operations results in novel
plant conditions and the need for new control strategies [4]. Instead
of optimizing for steady-state conditions around the baseload, power
plants now need to dynamically optimize operations as the facility
ramps up and down as directed by the balancing authorities. Several
papers have investigated how these new ramping conditions impacted
𝑁𝑂𝑥 emissions and how those emissions could be controlled [3,5]. In
addition to emission controls, plants are interested in optimizing the

∗ Corresponding author at: Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America.
E-mail address: kody.powell@utah.edu (K.M. Powell).

heat rate [6]. A key step in optimizing changing processes is to first
develop dynamic models that account for impacts on the process at the
current time as well as multiple steps into the future.

For complex processes, with countless phenomena occurring simul-
taneously (e.g., a thermal power plant), an accurate physics-based
dynamic model may be impossible to create. A rapid rise in the wealth
of process data paired with machine learning (ML) techniques provides
an alternative, empirical model development approach. PyTorch, Jax,
TensorFlow, and many other libraries have made ML tools, namely
automatic differentiation (backpropagation), accessible to a wide range
of practitioners [7–9].

Empirical dynamic process models use available process measure-
ments to predict values over multiple time steps. For empirical time
series forecasting, deep learning is gaining favor over traditional tech-
niques such as autoregressive integrated moving average (ARIMA) and
support vector regression (SVR) [10–13]. Within deep learning, the
preferred models are those that consider temporal relationships in the
data using recurrent neural networks (RNNs), such as long short term
memory units (LSTMs) and gated recurrent units (GRUs).
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Nomenclature

Symbol

𝑏 Biases
𝐸 Energy
𝐹 Forecast
ℎ Hidden state
�̇� Enthalpy flow
𝑛 New gate
�̇� Heat flow
𝑟 Reset gate
𝑆 State
𝑇 Target
𝑈 Manipulated variable
𝑊 Weight
𝑧 Update gate

Subscript

𝐶ℎ Chemical
𝐸𝐶 Economizer
𝐸𝑙 Electrical
𝑙 Lag
𝑚 Total steps
𝑛 Prediction steps
𝑅𝐻 Reheater
𝑆𝐻 Superheater
𝑡 Time
𝑇 𝑜𝑡 Total
𝑊𝑊 Water wall

Abbreviation

AA Auxiliary air
ARIMA Autoregressive integrated moving average
ANN Artificial neural network
CCOFA Closely coupled overfire air
ED Encoder–decoder
FA Fuel air
GRU Gated recurrent unit
LSTM Long short term memory
ML Machine learning
MSE Mean square error
MV Manipulated variable
RNN Recurrent neural network
RMSE Root mean square error
SOFA Separated overfire air
SVM Support vector machine
SVR Support vector regression

GRU and LSTM models are now established tools for time series
redictions. Rajagukguk et al. evaluated RNN, GRU, and LSTM models
o predict solar irradiance and PV power [13]. They found that the
eep learning models, RNN, GRU, and LSTM, outperformed SVMs and
eed forward neural networks. Dubey et al. studied ARIMA, seasonal
RIMA, and LSTM models to forecast energy consumption to enhance
mart grid operations [14]. The models considered weather features
nd past power consumption. The authors found that the LSTM model
as the most accurate with a root mean square error of 0.23, compared

o seasonal ARIMA with an RMSE of 0.55. The favorable accuracy of
he LSTM model became more prominent with additional data and lag
2

time steps. Wang et al. used an LSTM-based model for long-term energy
consumption predictions [15]. In the one-step-ahead forecasting, the
LSTM model had a lower prediction error compared to an ARIMA and
a backpropagation neural network. Liu et al. used GRU to forecast
Chinese energy consumption [16]. They compared the GRU model
to support vector regression and multi-linear regression. The authors
noted that the GRU model was the most accurate with an average
absolute percentage error of 5.63. Tuttle et al. developed a time series
forecasting model for combustion emissions of a coal fired boiler [4].
The authors compared ten data-driven dynamic modeling algorithms
and found that GRUs were the best for predicting emissions over 60
steps. Cai et al. used forecasting techniques to predict building forecasts
over 24 time steps in hour increments [17]. They compared deep learn-
ing models, GRUs and convolutional neural networks, with ARIMAs
with exogenous inputs. They indicated that the ARIMA-based models
generalized the best, but that the deep learning models were more
accurate for individual cases with the convolutional neural network
being the best decreasing error on average by 22.6%.

Newer time series models build on GRUs and LSTMs to construct
sequence-to-sequence ML models, such as encoder–decoders (EDs). Du
et al. used an LSTM-based encoder–decoder to predict air quality [18].
They used meteorological data and historical pollution values as inputs
to the model. The LSTM-based ED outperformed all other ML models,
including GRU and LSTM alone. Lu et al. built a GRU-based encoder–
decoder to model combined heat and power heat loads [19]. The
encoder in this case was an auto-encoder to extract the heat load.
The result was about a 50% reduction in forecasting errors compared
to a GRU only. Du et al. developed a multivariate attention-based
encoder–decoder built on bi-directional LSTMs for five time series
models [20]. The result of their analysis showed their model outper-
formed traditional approaches such as ARIMA and SVR as well as
deep learning approaches like GRU and LSTM. Marino et al. com-
pared the use of LSTM and LSTM-based encoder–decoder models for
energy load forecasting of a building [21]. The authors demonstrated
that the encoder–decoder model was accurate for both short term (1-
minute) and long term (1-hour) forecasts, compared to the LSTM only
model which was only accurate on 1-hour forecasts. Laubscher used
an encoder–decoder model to predict tube temperature in a coal fired
power plant [22]. The encoder and decoder were constructed with
GRUs. An input sequence of length 8 min was used to predict an output
sequence of 5-minutes. The result was a mean absolute percentage
error below 1%. Raidoo et al. used an encoder–decoder mixture-density
network to predict an air cooled condenser back pressure [23]. The
encoder–decoder models were constructed as recurrent neural net-
works. The mixture-density network ED increased model accuracy from
68% to 82%. Rahman et al. used an encoder–decoder structure to
predict electricity loads in buildings using an LSTM-based model [24].
They found that the encoder–decoder structure was more accurate than
a multi-layer perceptron.

While newly developed machine learning tools and architectures
continue to enable more accurate model development, physics-based or
other statistical models do not need to be completely discarded. Willard
et al. reviewed ML and physics-based hybridization and highlighted
several places where physics-based information can be integrated into
machine learning models, including loss functions, initialization, model
architecture, and using residuals between the measured data and phys-
ical model predictions as the target for learning [25]. The authors are
optimistic about the hybridization of ML and physics-based modeling
and believe that the scope of the field is growing. Rangapuram et al.
created hybrid deep learning and state space models that used deep
learning to predict the parameters in a state space model [26]. The
result was a hybrid model that outperformed matrix factorization,
ARIMA, and DeepAR. Rajagukguk et al. evaluated a hybrid convolu-
tional neural network (CNN) and LSTM model, which outperformed the
individual deep learning models [13]. Kraft et al. developed a hybrid

physics-based deep learning model used to predict global hydrological
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modeling [27]. The model integrates constraints from the water cycle,
such as water balances, and other domain specific information into
an LSTM layer. The model reproduces measured water cycle variation
in a manner consistent with scientific understanding. Machalek et al.
created a hybrid model for a chemical reactor which used physics-
based mass and energy balances and used ML models to learn reactor
kinetics from empirical data [28]. The authors leveraged automatic
differentiation to calculate the system Jacobian to enable the use of im-
plicit numerical methods in evolving the system of ordinary differential
equations. Smyl et al. used a hybrid LSTM and dynamic computation
graph neural network for smoothing to create a hybrid model [29]. The
model was the most accurate in forecasting over 100,000 time series in
the M4 competition.

Smyl highlighted the use of automatic differentiation in starting to
understand machine learning and deconstructing impacts of different
black boxes. According to Baydin and Raissi, automatic differentiation
is an underutilized tool in scientific computing, but it has seen a
resurgence in the past few years [30,31].

In this paper, three time series prediction model configurations are
developed with a GRU or GRU-based encoder–decoder architectures.
Two configurations hybridize physics-based information from the case
study into the ML model. The case study focuses on predicting heat rate
in a thermal power plant by way of predicting the heat absorbed by
steam and water in the boiler. The objective of the model development
is to provide insight into how the unit operates and create a stepping
stone to optimization.

The contribution of this paper is summarized below:

• The GRU-based encoder–decoder structure results in lower mod-
eling error than the GRU only model for time series predictions
on a thermal power plant in this paper. This is consistent with the
findings of the literature review. The encoder–decoder structure
is specifically constructed to separate learning the dynamics of
the model (encoder) and predicting model output (decoder). The
encoder–decoder structure is demonstrated to be on average 11%
more accurate. That structure may benefit dynamic optimization
by isolating optimization to the decoder.

• A novel hybrid physics-based encoder–decoder model is pre-
sented. Hybrid modeling leverages domain knowledge to extract
intermediate model components for the deep learning models to
focus on, instead of making predictions for the full system all at
once. The result is a more accurate model as well as additional
physical interpretability. The model hybridization increases ac-
curacy by over 10% on average, without adding any additional
data.

• Automatic differentiation is leveraged to perform local sensitivity
analysis on the manipulated variables in the model to high-
light important inputs. Paired with the hybrid model, automatic
differentiation allows for insight on how different manipulated
variables impact different intermediate components. The sensi-
tivity analysis is discussed in light of providing a pathway for
optimization.

The paper is organized as follows: Section 2 describes the back-
ground on the GRU and encoder–decoder models as well as automatic
differentiation. Section 3 introduces the thermal power plant unit case
study and shows how domain knowledge is integrated to create a
hybrid model structure. Section 4 presents the models for comparison,
including hyperparameters and evaluation metrics. Section 5 presents
the modeling results and compares the different methodologies, before
performing a local sensitivity analysis on the system to evaluate model
inputs. Section 6 discusses the implications of the results and future
work.
3

Fig. 1. Time series ML data frame.

2. Preliminaries of machine learning methods

In this section the structure of data and the associated deep learning
models (GRU and GRU-based encoder–decoder) are described. Then the
application of automatic differentiation for local sensitivity analysis is
explained.

2.1. Data structure

A single instance of a data frame used to train the deep learning
models is illustrated in Fig. 1. The columns of the data frame represent
four categories of model variables: (1) S - states, values measured
only to the present (e.g., temperatures, pressures), (2) U - manipulated
variables, model inputs that can be manipulated into the future by
operators or algorithms, (3) F - forecasts, model inputs that are known
into the future, but cannot be manipulated (e.g., ambient temperature),
(4) 𝑇 - targets, values that are predicted. The subscript describes the
time step 𝑡. The 𝑙 subscript describes the model lag, how far back in
time the model looks to make predictions, and the 𝑛 subscript describes
the number of forward steps the prediction makes.

2.2. Deep learning architecture

Fig. 2 represents the structure for an ML model made up of a
GRU [32]. The model is initialized with a zero hidden state and moves
through the GRU cell 𝑙 times, where it is combined with information
about the current state, 𝑋𝑡. 𝑋𝑡 contains the current variables for the
state, manipulated variables, forecasts, target value, as well as manip-
ulated variables and forecasts 𝑛 steps into the future. Once the hidden
state is evolved to the current time step 𝑡, the output is turned into 𝑛
target predictions using a linear transform. The 𝑝 subscript indicates a
target prediction.

Fig. 3 shows the mechanics happening within the GRU cell at each
step.

In the GRU cell, first, the previous hidden state, ℎ𝑡−1 and the current
state, 𝑥𝑡 scale with their respective weight matrices, 𝑊ℎ𝑟 and 𝑊𝑥𝑟, and
biases 𝑏ℎ𝑟 and 𝑏𝑥𝑟. The scaled values are passed through the non-linear
sigmoid activation function, 𝜎, to calculate 𝑟𝑡, the reset gate, in Eq. (1).

𝑟 = 𝜎(𝑊 𝑥 + 𝑏 +𝑊 ℎ + 𝑏 ) (1)
𝑡 𝑥𝑟 𝑡 𝑥𝑟 ℎ𝑟 𝑡−1 ℎ𝑟
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Fig. 2. GRU ML structure.
Fig. 3. Individual GRU cell.

Then the update gate, 𝑧𝑡, is calculated in a similar manner using
weights, 𝑊ℎ𝑧 and 𝑊𝑥𝑧, and biases 𝑏ℎ𝑧 and 𝑏𝑥𝑧 in Eq. (2).

𝑧𝑡 = 𝜎(𝑊𝑥𝑧𝑥𝑡 + 𝑏𝑥𝑧 +𝑊ℎ𝑧ℎ𝑡−1 + 𝑏ℎ𝑧) (2)

The new gate, 𝑛𝑡, combines information from the ℎ𝑡−1, 𝑟𝑡, and 𝑥𝑡
with weights, 𝑊ℎ𝑛 and 𝑊𝑥𝑛, and biases 𝑏ℎ𝑛 and 𝑏𝑥𝑛 in Eq. (3). Here
hyperbolic tangent (𝑡𝑎𝑛ℎ) is the non-linear activation function. The
Hadamard product (elementwise multiplication) is represented as *.

𝑛𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑛𝑥𝑡 + 𝑏𝑥𝑛 + 𝑟𝑡 ∗ (𝑊ℎ𝑛ℎ𝑡−1 + 𝑏ℎ𝑛)) (3)

Finally, the new gate and update gate are combined to calculate the
new hidden state ℎ𝑡, in Eq. (4).

ℎ𝑡 = (1 − 𝑧𝑡) ∗ 𝑛𝑡 + 𝑧𝑡 ∗ ℎ𝑡−1 (4)

During model fitting, the weights, 𝑊 , and biases, 𝑏, are updated to
minimize the model and data mismatch. Each GRU cell contains the
same 𝑊 and 𝑏 values. Fig. 2 displays the unrolled recurrent network
with a hidden state passed between steps.

Fig. 4 illustrates the encoder–decoder model used for time series
predictions. The encoder–decoder uses the same GRU cells from Fig. 3,
but breaks the problem into two portions.

The encoder captures the system dynamics from the past to the
present moment into a hidden or context state. The structure of the
hidden state is dictated by the number of layers and nodes in the GRU.
If the GRU has the 2 layers of 10 nodes, the number of hidden states is
20.

The encoder uses inputs, 𝐸𝑡, only from the current time of the
model progression for S, U, F, and T. Then the decoder uses the hidden
state passed from the final step of the encoder with future information
available to the model 𝐷𝑡+1 (𝑈𝑡+1 and 𝐹𝑡+1), to estimate future target
values. The target values from the decoder at each time step are used
as input to the next step. To clarify, the encoder and decoder have
different weights and biases, but keep the same hidden state structure
so that it can be passed from encoder to decoder.

The encoder–decoder explicitly deconstructs the data frame from
Fig. 1 by time step, which may enhance model accuracy. If the model
were to be used in optimization, optimizing decoder output with re-
spect to future manipulated variables only requires the hidden state
from the encoder to be calculated one time.
4

2.3. Sensitivity analysis

Reverse-mode automatic differentiation is the generalization of
backpropagation used in the fitting of ML models, and allows for
efficient access to the partial derivatives of differential computer pro-
grams compared to manual or symbolic differentiation [33]. The tool
accumulates gradients of the elementary operations (e.g., addition,
multiplication) and functions (e.g., sin, sigmoid) of the computer pro-
gram as it moves backward from the output to the input to calculate
derivatives. Fig. 5a shows the forward pass through a simple example of
a computational graph and Fig. 5b shows the automatic differentiation
steps used in the backward pass.

The computational graph represents the function shown in Eq. (5):

𝑇 = 𝑊𝑈𝑠𝑖𝑛(𝑈 ) (5)

Symbolically the derivative of 𝑇 with respect to U could be solved
using the product rule of calculus in Eq. (6):
𝜕𝑇
𝜕𝑈

= 𝑊 (𝑠𝑖𝑛(𝑈 ) + 𝑈𝑐𝑜𝑠(𝑈 )) (6)

For a simple example like this, symbolic derivatives are feasible,
however for complex computation graphs (e.g., deep neural networks),
maintaining symbolic expressions is not tractable.

Numeric differentiation, which investigates small changes in 𝑇 with
respect to small changes of U, is another option as shown in Eq. (7):
𝜕𝑇
𝜕𝑈

≈ 𝛥𝑇
𝛥𝑈

(7)

However, this approach does not consider intermediate values, such
as 𝑎 and 𝑏, and their respective derivatives which can be reused when
there are multiple inputs, which is often the case in deep learning.

Automatic differentiation breaks the problem into the fundamental
operations using the chain rule to recover the derivative across the
computation graph, as shown in Eq. (8):
𝜕𝑇
𝜕𝑈

= 𝜕𝑇
𝜕𝑎

𝜕𝑎
𝜕𝑈

+ 𝜕𝑇
𝜕𝑏

𝜕𝑏
𝜕𝑈

(8)

Each partial derivative on the right hand side is the derivative of an
elementary operation in Fig. 5. Those derivatives can be substituted in
Eq. (8), to yield Eq. (9):
𝜕𝑇
𝜕𝑈

= 𝑊 𝑏 + 𝑎𝑐𝑜𝑠(𝑈 ) (9)

The intermediate values, 𝑎 and 𝑏, can be replaced with their values
from the forward pass in Fig. 5 to recover the final form in Eq. (10):
𝜕𝑇
𝜕𝑈

= 𝑊 𝑠𝑖𝑛(𝑈 ) +𝑊𝑈𝑐𝑜𝑠(𝑈 ) (10)

Reverse-mode automatic differentiation scales efficiently with the
large numbers of inputs, as is often the case in deep learning [34].
PyTorch and TensorFlow make reverse-mode automatic differentiation
straightforward by managing the intermediate calculations and deriva-
tives of elementary operations [35].

Automatic differentiation has many applications beyond backprop-
agation, including calculating the system Jacobians and Hessians, but
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Fig. 4. Encoder–decoder ML structure.
Fig. 5. Automatic differentiation example.
one simple, yet powerful, use of automatic differentiation is to eval-
uate the local sensitivity of model outputs to model inputs, including
manipulated variables [36–38].

Because the deep learning models cover multiple time steps, the
automatic differentiation can be applied to any outputs that a manip-
ulated variable impacts. For instance, if the sensitivity of the output
with respect to each manipulated variable or forecast, 𝑖, at the same
time step, 𝑡, its desired the output would be:
𝜕𝑇𝑡
𝜕𝑈𝑡,𝑖

and
𝜕𝑇𝑡
𝜕𝐹𝑡,𝑖

The sensitivity analysis can also be applied over the sum of the next
𝑛 time steps:

𝜕
∑𝑗=𝑛−1

𝑗=0 𝑇𝑡+𝑗
𝜕𝑈𝑡,𝑖

and
𝜕
∑𝑗=𝑛−1

𝑗=0 𝑇𝑡+𝑗
𝜕𝐹𝑡,𝑖

Automatic differentiation can be applied to physics-based models
as well. There is nothing about deep learning models to uniquely
qualify them for automatic differentiation. It is also worth noting that
this sensitivity only applies around the inputs that passed through the
neural network and that it is not a global sensitivity analysis.

3. Physical process, data, and hybrid model

In this section, the physical process of interest, thermal power
generation is described. A simplified diagram of a coal fired boiler is
illustrated in Fig. 6. After the physical process description, the available
data set is presented. Finally, a hybrid approach, which integrates
domain knowledge into the machine learning model, is described.
5

3.1. Process

In a coal-fired boiler, pulverized coal is injected along with suffi-
cient air for combustion in the lower portion of the boiler. This lower
boiler is surrounded by the water walls, which function to change the
phase of the water from liquid to steam using the energy immediately
released by combustion. High temperature combustion gases (flue gas)
then exit the furnace along a designated path. Along this path, the
high-temperature flue gas passes multiple tube sections designated as
superheater, reheater, and economizer. Energy is transferred from the
flue gas to these tube sections to ultimately provide superheated steam
to the turbine for electricity generation.

The target for time series prediction is approximating the boiler heat
rate, 𝐻𝑅. Heat rate is an efficiency metric for boilers. The heat rate
is defined in Eq. (11) as the energy, 𝐸, ratio of chemical energy, 𝐶ℎ,
injected into the boiler from coal combustion to the electrical energy,
𝐸𝑙, produced by turbines from steam.

𝐻𝑅 =
𝐸𝐶ℎ
𝐸𝐸𝑙

(11)

Explicitly predicting the heat rate of a boiler is challenging because
the coal combustion process is incredibly complex. Instead of focusing
on coal combustion and energy released, the prediction model in this
paper focuses on heat transferred from coal combustion into the water
and steam loop which feeds the turbines and generates electricity. To
reframe the problem of predicting heat rate, this model focuses on
predicting the heat absorbed in the boiler, �̇�𝑇 𝑜𝑡, as a proxy for the
electrical energy generated. The thermal heat produced is assumed to
be a model disturbance and the coal mass feed rate is not a manipulated
variable. That way the model can be used to inform how to maximize
electricity generated without increasing the coal mass feed rate.

As shown in Fig. 6, heat is absorbed in four units of the boiler:
the economizer (𝐸𝐶), the water walls (𝑊𝑊 ), the superheater (𝑆𝐻),
and the reheater (𝑅𝐻). The total heat absorbed in the boiler can be
calculated using an enthalpy flow, �̇� , balance around the entire boiler
using Eq. (12).

�̇� =
∑

�̇� −
∑

�̇� (12)
𝑇 𝑜𝑡 𝑜𝑢𝑡 𝑖𝑛
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Fig. 6. Thermal power plant boiler steam loop.
The inlet streams to the boiler are 1 and 5 and the outlet streams are
4 and 6 in Fig. 6. The unit enthalpy of the water is determined using the
pressure and temperature data of the streams in the 𝐶𝑜𝑜𝑙𝑃 𝑟𝑜𝑝 package
with the Helmholtz equation of state [39]. The enthalpy flow is found
by multiplying the unit enthalpy with the stream mass flows.

3.2. Data

The data for the model is categorized according to Fig. 1. Data is
available over approximately 5-minute averages to reduce the noise in
the sensor data. All data was collected from one unit at a single thermal
power plant. The Python package Pandas is used to manage the data
and resample data to be on exactly 5-minute increments [40]. Linear
interpolation was used for variables with one or two missing data points
in a row. The training, validation, and test data sets are selected from
a large time series to avoid long periods with missing data points. As
a result the training and validation consisted of 6400 data points total,
which is split 80/20, respectively. The test set consisted of 500 data
points—about 41.5 h of operation.

The state data for the system includes temperature, pressure, and
flow rate data for streams 1–6, furnace temperature, excess oxygen
measurements, total air flow rate, total coal feed rate, attemperator
temperatures, attemperator pressures, and attemperator flow rates. The
manipulated variables in the boiler are 16 separated overfire air (SOFA)
dampers, 8 SOFA tilts, 4 closely coupled overfire air (CCOFA) dampers,
20 auxiliary air (AA) damper positions, 20 fuel air (FA) dampers, and
4 burner tilts—for a total of 72 manipulated variables. The forecast
variables are the unit power generation set point and ambient air
temperatures. The target is the total heat absorbed in the steam and
water, �̇�𝑇 𝑜𝑡.

All data is normalized to protect the plant proprietary information.

3.3. Hybrid model

One option for predicting the heat absorbed by the water and steam
in the boiler is to directly estimate �̇�𝑇 𝑜𝑡 from all of the available facility
data using the ML structures described in Section 2. However, because
this is a physical process there are underlying fundamentals that can be
integrated into the ML model. The proposed hybrid for this model is to
use energy balances within the boiler to isolate phenomena within each
boiler component (economizer, water walls, superheater, and reheater),
6

Fig. 7. Hybrid machine learning and physics-based model. In the hybrid model the
individual heat absorption values (�̇�𝐸𝐶 , �̇�𝑊𝑊 , �̇�𝑆𝐻 , �̇�𝑅𝐻 ) are learned separately and
then summed together to estimate the total heat absorption.

using Eq. (12), to deconstruct the problem into intermediate targets.
The sum of the energy absorbed in each component is the total energy
absorbed in the boiler as shown in Eq. (13).

�̇�𝑇 𝑜𝑡 = �̇�𝐸𝐶 + �̇�𝑊𝑊 + �̇�𝑆𝐻 + �̇�𝑅𝐻 (13)

Two domain-specific assumptions are made for this hybrid model.
The first is that the water and steam in the steam drum are at saturation
conditions, which provides the necessary information to estimate en-
thalpy in stream 3. The second is that the energy accumulation within
each component is not critical to estimate the total heat absorbed,
because it is not accounted for in Eq. (12).

The proposed hybrid model is shown in Fig. 7. The ML model for
each component is trained separately to learn the intermediate phe-
nomena for the heat absorbed. Each individual component has access
to all of the plant information. This allows the machine learning models
to select the important plant information for the specific component.
Because the individual components are not independent from each
other, they may weight input information similarly. During testing, the
outputs of each ML model are added together to estimate the total heat
absorbed.

Two other hybrid structures were evaluated. One structure included
�̇�𝑇 𝑜𝑡 in the loss function to connect the hybrid structure together.
With noisy data, adding �̇�𝑇 𝑜𝑡 to the loss function may have amplified
the noise. Another structure included passing the output of the ML
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Fig. 8. Process flow diagram for machine learning data collection, model training, and
prediction.

models into the subsequent model to parallel the steam water loop. The
output of the economizer passed to the water wall, whose output passed
to the superheater, whose output passed to the reheater. This model
involved restructuring the model so that the information flow followed
the physical structure of the plant. The proposed hybrid model in Fig. 7
had the lowest MSE, and was the only model carried through for the
remainder of the analysis.

4. Model evaluation

Three different model configurations are evaluated in this paper.
Each configuration is examined with a GRU and a GRU-based encoder–
decoder as the deep learning architecture. The first configuration is
the hybrid structure in Fig. 7, with the data from Section 3.2 where
the individual components are learned separately (�̇�𝐸𝐶 , �̇�𝑊𝑊 , �̇�𝑆𝐻 ,
�̇�𝑅𝐻 ). The second configuration is to learn the full model (�̇�𝑇 𝑜𝑡) at
once, using the same data as the hybrid model. The full model includes
the individual component heat gains as input data. This is done to
focus on the model structure difference of the hybrid and full models
as opposed to the input data difference. Finally, the third configuration
uses the hybrid model structure without manipulated variables. The
purpose is to evaluate how important the manipulated variables are as
opposed to state variables, and especially the forecasting value of the
unit power generation set point. Note that we also evaluated a model
with only manipulated variables but the models performed poorly and
were not considered for the remainder of the analysis.

A persistence model is used as a baseline for model comparison.
The persistence model predicts values to be the same as the last known
value and serves as a good lower bound on model accuracy.

Each configuration is evaluated for predicting multiple steps, 𝑛.
Specifically, predictions are made over 2, 4, and 6 steps. Each step is
considered in the loss function, not only the final step. The models are
evaluated over the entire 500 time step, 𝑚, test set, using mean squared
error (MSE) to calculate accuracy. The formula for MSE is shown in
Eq. (14):

𝑀𝑆𝐸 = 1
𝑛𝑚

𝑚
∑

𝑗=1

𝑛
∑

𝑖=1
(𝑦𝑖,𝑗 − �̂�𝑖,𝑗 )2 (14)

where 𝑦 is the measure value and �̂� is the model predicted value.
The models were coded in PyTorch. A validation set is used for early
stopping to avoid overfitting. A patience parameter of 10 was used.
The patience parameter is the number of training iterations to wait
without seeing prediction improvement on the validation set before
7

Table 1
Mean and minimum mean square error (MSE) for each model configuration. The model
architecture is specified as a gated recurrent unit (GRU) or a GRU-based encoder–
decoder (ED). The italics represent the lowest mean values and the bold represent the
lowest minimum MSE values for each predicted step length.

Predicted steps

2 4 6

Hybrid forecasts only
ED Mean 0.031 0.109 0.178

Min 0.025 0.086 0.154

GRU Mean 0.036 0.149 0.264
Min 0.027 0.102 0.187

Full forecasts and MVs
ED Mean 0.028 0.075 0.121

Min 0.020 0.059 0.087

GRU Mean 0.031 0.090 0.151
Min 0.024 0.056 0.114

Hybrid forecasts and MVs
ED Mean 0.024 0.063 0.109

Min 0.021 0.052 0.083

GRU Mean 0.026 0.071 0.128
Min 0.021 0.056 0.108

Persistence – – 0.098 0.413 1.000

early stopping is triggered. Each model fitting is run 20 times to find
the distribution of model errors that were produced.

The hyperparameters for each model were the same, although dif-
ferent values were tested for each to find the best fit. Values in
parentheses indicate alternative hyperparameters that were investi-
gated. Each deep learning model used 2 layers (1 layer) with 10 nodes
(20, 40 nodes). The learning rate is 0.1 (0.01) with optimizer LBFGS
(Adam). The models were initialized using the default PyTorch weight
and bias initialization. The best lags for the models were 3, 4, or 5
(15–25 min), however, 4 lag steps were used for consistency.

Automatic differentiation was applied to the hybrid encoder–deco-
der to perform a local sensitivity analysis. Two sensitivity analyses
are of interest. The first is to look at how the inputs to the decoder
(manipulated variables and forecasts) impact the heat absorbed at the
same time step. The second is to evaluate the impact of the manipulated
variables on the next four time steps. The sensitivities are investigated
for the model as a whole as well as each individual component.

A summary of the data collection and machine learning approach is
shown in Fig. 8.

5. Results

The results section is separated into a modeling section that dis-
cusses model fitting and accuracy, and a model sensitivity analysis that
discusses the outputs of the automatic differentiation.

5.1. Model comparisons

Table 1 shows a normalized mean and minimum MSE for each
model configuration over 20 model fittings. The values are normalized
to make the 6-step prediction error for the persistence model unit value.
The lowest individual errors (Min) for each predicted step length are
bolded and lowest averages (Mean) are italicized. Fig. 9 shows the
distributions for the model fittings for each configuration for the 4-step
prediction models. The whiskers represent 1.5 times the interquartile
range or the further point within that range and outliers are shown
as individual points. Several points stand out from the data. First,
all deep learning models outperform the persistence model. Second,
comparing the hybrid models with and without manipulated variables
indicates the importance of manipulated variables to the model. While
the power generation set point of the model is crucial for model fitting
it is not sufficient to capture the model dynamics in the coal fired
boiler. Third, the encoder–decoder (ED) structure is preferred over the
GRU model in each case. For 2, 4, and 6 steps into the future, the
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Fig. 9. Box and whisker plot for 4 prediction steps of each ML model. The boxes represent the interquartile range around the mean (orange line) and the whiskers represent the
5 to 95 distribution percentiles. Outliers are represented as circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 10. Time series model prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
encoder–decoder on average outperforms the GRU model by 11%, 21%,
and 25%, respectively. Finally the hybrid encoder–decoder model is on
average more accurate than the full encoder–decoder model for 2, 4,
and 6 steps the improvement is 13%, 16%, and 10%, respectively. For
the minimum values the full model is more accurate for 2 steps, but is
overtaken by the hybrid model 4 and 6 steps into the future.

An example prediction for the model is shown in Fig. 10. The
figure shows the outputs of the encoder–decoder hybrid model with all
data inputs compared to the persistence model and measured values
for the test set 4 prediction steps into the future. In the figure, the
persistence model does fine when the unit operates at a steady set point,
and therefore steady heat absorption rate. However, during transitions
from a high heat absorption rate to a low heat absorption rate, the
persistence model fails (this is highlighted in the plot inset). During
the transition the deep learning encoder–decoder leverages information
about model dynamics and future information to more closely follow
the actual unit.

The mean errors at each step of the 6-step predictions (30 min)
for the 20 iterations of each model are shown in Fig. 11. In addition
to plotting the described model configurations, a steady-state model
is added. The steady-state model only uses forecasts and manipulated
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information at each future time step through a feed forward neural
network to predict the heat adsorbed. The purpose is to show how
much the recurrent neural networks are relying on future information
as opposed to the dynamics in the hidden state. For the mean trends
in Fig. 11, as the most accurate model configuration predictions reach
6 steps they approach the steady-state value. This indicates that often
the dynamics stored in the hidden state of the model are largely lost
by step 6.

5.2. Sensitivity analysis

Fig. 12 shows the local sensitivity of the output of the encoder–
decoder model (heat absorbed) at the current time step to the 72
manipulated variables and 2 forecast variables at the same time step.
This is the same time frame shown in Fig. 10. The figure shows the
changes in the sensitivity of model inputs over time and under different
conditions. For example, the teal and orange lines at the bottom of the
plot swap in magnitude depending on the operation of the unit. When
the heat absorbed is high, orange is more negative, and visa versa.
The figure also shows the stratification of model input importance
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Fig. 11. Mean normalized error for each individual prediction step.
Fig. 12. Sensitivity of the model output to input at the same time step. The lines
represent the 72 manipulated and 2 forecast variables and the normalized sensitivity
of the most important variables is summarized in Tables 2 and 3. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

(magnitude). A handful of variables have an outsized positive and
negative impact on the model, while most variables hover around 0.

Table 2 averages the sensitivities shown in Fig. 12 for the overall
trend, as well as for the sensitivities of the individual boiler com-
ponents. The facility tags for each model input are shown. SOFA,
CCOFA, AA, and FA correspond to the definitions from Section 3.2
and the numbers and letters that follow indicate positioning within the
boiler. Unsurprisingly, the unit set point (MW Start Remote) is the most
important model input, but some manipulated variables also play an
important role. Namely, certain SOFA dampers correspond to a positive
sensitivity and CCOFA dampers correspond to a negative sensitivity
while the FA and AA dampers are in between. Burner tilts appear to
be less important.

The economizer is not as impacted by MW Start Remote as the over-
all system and depends more on SOFA values. Meanwhile, the water
walls most closely follow the overall sensitivity to the heat absorbed.
This makes sense because the water walls absorb the most heat in
the boiler and are most directly impacted by combustion, which the
manipulated variables directly impact. This highlights that manipulated
9

variables impact components differently, which means one component
can be targeted for heat absorption. For example, the heat absorption
may need to be increased in the water walls, but not increased too much
in the superheater to avoid excessively hot tubes.

Table 3 shows the sensitivity of the model outputs over the next
four time steps (20 min) to the inputs at the current time step. For
the thermal power plant, a 20 min horizon is large enough to plan for
the large power generation swings the plant must undertake. Compared
to Table 2, this table shows that the auxiliary air (AA) dampers have
a larger magnitude in the sensitivity analysis overall and for each
component for the longer time horizon.

The varied sensitivity of different model variables in many ways
reflects understood domain expertise regarding the process. Many of
these sensitivity values can be understood by recognizing the effect
changes in these variables have on the physical position of the com-
bustion process as well as combustion efficiency and performance. For
instance, SOFA dampers have the effect of stretching the combustion
process, making it occur over a larger area. This results in more
combustion occurring higher in the furnace, which assists in explaining
the dominant positive effect of many SOFA dampers relative to the
economizer heat absorption. Similarly, due to the method of providing
air to each damper, increasing CCOFA damper position ‘‘robs’’ air from
the SOFA dampers, having a negative impact on this relationship.

Concerning air introduction directly at the point of fuel injection, it
is common for there to be imbalances in fuel feed rate from injection
port to injection port. These disturbances are unmeasured, but often
advanced modeling systems can recognize and attempt to compensate
for such imbalances. It is not uncommon for individual AA or FA
dampers to have varied effects on the combustion process, and this is
a likely cause for the apparent range of sensitivities assigned to these
parameters.

The local sensitivity does not provide the entire picture for the
model because it does not consider correlations or non-linearities [41].
Nonetheless, automatic differentiation is the most effective method
for fitting non-linear deep neural networks. The tool is at least worth
considering for investigating the impacts of manipulated variables on
the output of the developed deep learning models, which are already
in the form of differentiable models.

Automatic differentiation can only be applied to manipulated vari-
able trajectories that already passed through the model and the resul-
tant sensitivities are only accurate locally. Therefore the tool is most
effective given an initial trajectory, possibly from facility operators or
another algorithm. Within bounds around the initial trajectory, the
automatic differentiation could be integrated with a gradient descent
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Table 2
10 most positive and most negative sensitivities of model outputs to inputs at the same time step.

Sign Overall Economizer Water wall Superheater Reheater

Input Sens. Input Sens. Input Sens. Input Sens. Input Sens.

+

MW Start Remote 0.34 SOFA 4 RR 0.07 MW Start Remote 0.14 SOFA 4 RR 0.14 MW Start Remote 0.13
SOFA 4 LR 0.24 SOFA 4 LF 0.07 SOFA 4 LR 0.12 MW Start Remote 0.13 SOFA 1 RF 0.10
SOFA 4 RR 0.21 SOFA 3 RF 0.06 SOFA 3 RR 0.11 AA 34 LR 0.13 FA 1 LR 0.08
SOFA 3 RR 0.21 SOFA 4 LR 0.06 SOFA 4 RR 0.07 AA 23 LF 0.10 SOFA 3 LF 0.07
SOFA 4 LF 0.19 SOFA 3 LF 0.05 SOFA 4 LF 0.07 SOFA 4 LF 0.10 AA 23 LR 0.06
AA 23 LF 0.15 SOFA 3 LR 0.03 SOFA 4 RF 0.07 SOFA 4 LR 0.10 SOFA 3 LR 0.05
AA 34 LR 0.15 SOFA 1 LR 0.03 FA 1 RR 0.07 SOFA 3 RR 0.08 AA 45 RF 0.05
SOFA 4 RF 0.14 AA 56 LR 0.03 AA 34 LR 0.07 AA 12 RR 0.05 AA 34 RR 0.05
SOFA 3 LF 0.13 MW Start Remote 0.03 SOFA 3 LF 0.05 AA 12 RF 0.05 SOFA 2 RR Tilt 0.05
AA 34 RR 0.08 FA 2 LF 0.03 SOFA 2 RR 0.05 SOFA 4 RF 0.05 AA 56 LR 0.04

−

FA 3 RF −0.08 AA 34 RR −0.03 FA 4 LF −0.04 FA 5 RF −0.04 FA 4 RF −0.03
FA 4 LF −0.08 FA 4 LF −0.03 SOFA 2 RF −0.04 FA 1 LR −0.04 AA 12 LF −0.03
AA 34 LF −0.08 FA 2 RR −0.03 FA 5 LR −0.04 FA 5 LF −0.04 CCOFA 1 RR −0.04
AA 45 LR −0.09 FA 3 LR −0.03 AA 45 LR −0.04 FA 3 RF −0.04 AA 45 LF −0.05
CCOFA 1 RF −0.09 CCOFA 1 LF −0.04 FA 3 RF −0.05 AA 12 LF −0.07 SOFA 1 RF Tilt −0.05
AA 12 LF −0.09 AA 23 RR −0.04 CCOFA 1 LF −0.05 CCOFA 1 LR −0.08 AA 34 LR −0.05
AA 23 RF −0.17 CCOFA 1 LR −0.04 FA 1 LR −0.06 AA 34 LF −0.08 CCOFA 1 RF −0.05
AA 45 RR −0.18 CCOFA 1 RF −0.05 AA 34 RF −0.06 CCOFA 1 RR −0.09 FA 2 RR −0.06
CCOFA 1 LR −0.18 CCOFA 1 RR −0.05 CCOFA 1 RR −0.07 AA 45 RR −0.12 AA 45 LR −0.09
CCOFA 1 RR −0.19 AA 23 LR −0.07 CCOFA 1 LR −0.08 AA 23 RF −0.15 AA 45 RR −0.10
Table 3
10 most positive and most negative sensitivities of the next four model outputs to inputs at the current time step.

Sign Overall Economizer Water wall Superheater Reheater

Input Sens. Input Sens. Input Sens. Input Sens. Input Sens.

+

MW Start Remote 0.60 SOFA 4 LF 0.12 MW Start Remote 0.20 MW Start Remote 0.29 SOFA 1 RF 0.21
SOFA 4 LR 0.28 SOFA 4 RR 0.11 SOFA 3 RR 0.11 AA 34 LR 0.23 MW Start Remote 0.20
SOFA 4 RR 0.26 SOFA 4 LR 0.11 SOFA 4 LR 0.10 SOFA 4 RR 0.19 SOFA 3 LF 0.14
AA 34 LR 0.24 SOFA 3 RF 0.09 SOFA 4 RF 0.08 AA 23 LF 0.13 AA 45 RF 0.11
SOFA 3 RR 0.24 MW Start Remote 0.08 AA 34 LR 0.08 SOFA 4 LR 0.11 SOFA 3 LR 0.10
SOFA 4 LF 0.24 AA 56 LR 0.07 FA 1 RR 0.07 AA 12 RF 0.10 SOFA 2 RR Tilt 0.10
AA 23 LF 0.21 SOFA 3 LF 0.06 SOFA 4 LF 0.07 SOFA 3 RR 0.10 AA 56 LR 0.10
SOFA 3 LF 0.19 SOFA 3 LR 0.05 SOFA 4 RR 0.07 SOFA 4 LF 0.09 SOFA 4 LR 0.09
AA 34 RR 0.17 AA 23 RF 0.04 AA 23 LF 0.07 CCOFA 1 LF 0.09 Burner RF Tilt 0.09
SOFA 4 RF 0.16 FA 2 LF 0.04 FA 2 RR 0.06 AA 12 RR 0.09 SOFA 4 RF 0.09

−

FA 5 RF −0.08 FA 1 LF −0.04 AA 45 LR −0.04 FA 4 LR −0.06 FA 4 RF −0.06
AA 56 LF −0.09 FA 5 LR −0.05 AA 12 RF −0.04 CCOFA 1 LR −0.07 CCOFA 1 LR −0.07
AA 45 LR −0.10 FA 4 LR −0.05 SOFA 3 RF −0.04 FA 5 LF −0.08 FA 1 RR −0.07
AA 34 LF −0.10 AA 34 RR −0.05 CCOFA 1 LF −0.05 AA 56 LF −0.09 FA 4 LF −0.07
FA 4 LF −0.13 CCOFA 1 LF −0.07 FA 5 LR −0.05 AA 34 LF −0.11 CCOFA 1 RF −0.08
AA 12 LF −0.13 CCOFA 1 RF −0.08 FA 3 RF −0.06 AA 12 LF −0.12 SOFA 1 RF Tilt −0.08
CCOFA 1 LR −0.20 AA 23 RR −0.08 CCOFA 1 RR −0.07 SOFA 1 LR −0.12 CCOFA 1 RR −0.10
AA 23 RF −0.25 CCOFA 1 LR −0.09 FA 1 LR −0.07 CCOFA 1 RR −0.14 FA 2 RR −0.13
CCOFA 1 RR −0.28 CCOFA 1 RR −0.10 CCOFA 1 LR −0.07 AA 45 RR −0.19 AA 45 RR −0.15
AA 45 RR −0.30 AA 23 LR −0.12 AA 34 RF −0.09 AA 23 RF −0.25 AA 45 LR −0.15
algorithm to slightly modify the manipulated variables to optimize the
output of the hybrid model. Notably, the optimization would need to
be recalculated at every time step from a new initial trajectory.

6. Conclusion

In this paper, three model configurations with two different deep
learning models at the core, GRU and GRU-based encoder–decoder,
are presented. The models perform multi-step time series predictions
(steps of 2, 4, and 6). The time series predictions are made on the
heat absorbed by water and steam in a boiler. The GRU-based encoder–
decoder deep learning structure is more accurate than the GRU alone
by over 11% on average for 20 iterations of each model. The novel
hybrid physics-based model constructed with the encoder–decoder is
the most accurate model overall. That configuration is over 10% more
accurate than the full encoder–decoder model on average over 20 iter-
ations. Automatic differentiation is used to perform a local sensitivity
analysis of the hybrid encoder–decoder model. The output shows which
manipulated variables in the thermal power plant are most important
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around the model input trajectory. Further, the hybridization allows for
the sensitivity analysis to be applied to individual components (econ-
omizer, water wall, superheater, reheater) in the unit to evaluate how
manipulated variables impact the heat absorbed in each component. In
the future, the gradients of heat absorbed with respect to manipulated
variables could be used to modify unit operations to maximize the
heat absorbed by steam and water. The caveat is that the sensitivity
analyses need to be constructed around an initial input trajectory. If the
encoder–decoder architecture is used in an optimization routine, the
encoder hidden state only needs to be calculated one time because all
future manipulated variables are only inputs into the decoder. Future
work will also expand both the available data set evaluated as well
as the hyperparameter selection to enhance the models. Future work
will also expand the types of models investigated including such as
ARIMA and Deep autoregression to evaluate more tools for this complex
forecasting problem.
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