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Equation (55) was incorrect in the original version of the manuscript. Indeed, the system that the
coefficients αxx, αxy, αyx, αyy, βx and βy need to satisfy is the following:

φxx −φγ φψ + φxy 0 0 0
φγ φxx 0 φψ + φxy 0 0

−φψ + φyx 0 φyy −φγ 0 0
0 −φψ + φyx φγ φyy 0 0
−1 0 0 0 φxx φψ + φxy
0 0 −1 0 −φψ + φyx φyy




αxx
αxy
αyx
αyy
βx
βy

 =


0
−φ
φ
0
σx
σy

 .

The solutions reported in Eqs. (56), (57) and (58) of the original manuscript are instead correct, but
refer to the simpler case φxy = φyx = 0.

Moreover, the present version of the manuscript integrates Sect. B.1 with additional results concerning
sideways rolling, as done for example in [81]. In this case, the coefficients αxx, αxy, αyx, αyy, βx and βy
satisfy instead:

φxx −φγ φψ + φxy 0 0 0
φγ φxx 0 φψ + φxy 0 0

−φψ + φyx 0 φyy −φγ 0 0
0 −φψ + φyx φγ φyy 0 0

−εy εx 0 0 φxx φψ + φxy
0 0 −εy εx −φψ + φyx φyy




αxx
αxy
αyx
αyy
βx
βy

 =


0
−φ
φ
0
σx
σy

 ,

where ε =
[
εx εy

]T
is defined as in [81], with ∥ε∥ = 1. Furthermore, when sideways or omnidirectional

rolling is accounted for, the corresponding of Eq. (16b) in system (16) is

dx(ρ, ς)

dς
= Aφγ

(
x(ρ, ς) − xCγ

)
,

where xCγ =
[
xCγ yCγ

]T
=
[
εx/φγ εy/φγ

]T
.

1

http://dx.doi.org/10.1080/00423114.2022.2086887
http://dx.doi.org/10.1080/00423114.2022.2086887
https://doi.org/10.1080/00423114.2022.2114704
https://doi.org/10.1080/00423114.2022.2114704


An extended LuGre-brush tyre model for large camber angles and

turning speeds

Luigi Romano∗a, Fredrik Bruzeliusa,b, and Bengt Jacobsona

a
Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Hörsalsvägen 7A, 412 96
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Abstract

This paper presents a novel tyre model which combines the LuGre formulation with the exact
brush theory recently developed by the authors, and which accounts for large camber angles and
turning speeds. Closed-form solutions for the frictional state at the tyre-road interface are provided
for the case of constant slip inputs, considering rectangular and elliptical contact patches. The
steady-state tyre characteristics resulting from the proposed approach are compared to those obtained
by employing the standard formulation of the LuGre-brush tyre models and the exact brush theory
for large camber angles. Then, to cope with the general situation of time-varying slips and spins,
two approximated lumped models are developed that describe the aggregate dynamics of the tyre
forces and moment. In particular, it is found that the transient evolution of the tangential forces
may be approximated by a system of two coupled ordinary differential equations (ODEs), whilst
the dynamics of the self-aligning moment may described by combining two systems of two coupled
ODEs. Given its stability properties and ease of implementation, the lumped one may be effectively
employed for vehicle state estimation and control purposes.

Keywords

Tyre modelling; brush models; LuGre tyre model; aggregate dynamics; transient tyre dynamics; large
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1 Introduction

The transient behaviour of the tyre is an extremely complicated and fascinating subject [1–3], which
involves the interaction of several interconnected phenomena. These may include, for example, continuous
variations in the slip inputs [4], camber angles and vertical load acting on the tyre [5], nonstationary
effects due to the compliance of the tyre tread and carcass, and even abrupt discontinuities in the available
friction at the tyre-road interface. An exhaustive understanding of all these phenomena, and their
influence upon the transient mechanism of tyre forces and moment generation, is an essential prerequisite
when it comes to the design and implementation of algorithms for vehicle state estimation and control
[2, 6, 7].

Whilst the standard brush models [1, 2, 8] have been relegated for a long time to the study of
the steady-state tyre characteristics for pedagogical purposes, and more recently used to enhance test
modalities of tyre grip [9–12], other formulations have successfully been employed to investigate the
nonstationary response of the tyre to time-varying slip and spin inputs. In this context, the first analytical
description is due to Schlippe and Segel [13, 14], and approximates the behaviour of the tyre carcass
with that of a stretched string of infinite length. Over the years, the original formulation has undergone
a number of extensions, aimed at improving its accuracy by adding, for example, bristle elements
representing the tread, or taking into account the compliance of the tyre in the longitudinal direction
[15–17]. Recent contributions have also considered the exact coupled nonlinear kinematics of the rubber
particles contacting the ground and the vehicle motion [18–24], and the presence of limited friction inside
the tyre contact patch [25–27] according to the classic Coulomb-Amontons assumption [9, 10, 28–34].
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The inherent complexity of modelling the tyre carcass as a distributed system has legitimated the
adoption of approximated formulations derived directly from the stretched string models. Amongst these,
the single contact point models [35–43] constitute a standard approach when it comes to full vehicle
dynamics simulations, since they can be easily integrated with Pacejka’s Magic Formula (MF) [1, 44] or
other empirical steady-state tyre formulae. The basic assumption of the single contact point formulation
is that the tyre dynamics may be approximated as the one of a linear system, whose main parameter is
the so-called relaxation length. This is identified as the distance that the tyre needs to travel to develop
the 63% of the steady-state forces. In this approach, the tyre carcass is held solely responsible for the
whole nonstationary process of transient generation of tyre forces and moments. In this way, the dual
nature of the tyre is mimicked by a series system that behaves as a spring at low rolling speed and as a
damper at high speeds. This pragmatic approach leads to a very straightforward model, which generally
shows a good agreement with experimental evidence and – combined with MF, which is currently able
to take into account physical phenomena connected to tyre inflation pressure, temperature and wear
[45–47] – can also handle the presence of large camber angles and steering speeds. However, two major
disadvantages of the single contact point models consist in that they neglect nonstationary phenomena
connected to the tread rubber flow inside the contact patch, i.e. the transient of the bristles, and do not
come with important dynamical properties, like, e.g., asymptotic and input-to-state stability, that are
appetible for control applications.

An alternative approach that is also grounded on the brush theory but accounts for the dynamics
of the bristles has been recently developed by the authors and renamed two-regime [48]. As opposed
to the single contact point formulation, the two-regime models describe the tyre dynamics by means
of a nonlinear system of ordinary differential equations directly in terms of forces and moment, and
has been proven to be input-to-state stable even in combined slip conditions. On the other hand, an
intrinsic difficulty connected to this formulation is the need for local inversion of the steady-state tyre
characteristics.

However, being grounded on the stretched string and brush theories, respectively, both the single
contact point and two-regime descriptions inherit the drawbacks originating from the Coulomb-Amontons
friction model, which may pose some difficulties in the derivation of control-oriented tyre models [49].
Indeed, Coulomb-like friction models imply nonsmooth relationships between the shear stresses acting on
the rubber particles contacting the ground and their sliding velocity. In particular, a major disadvantage
connects to the possible presence of multiple adhesion and sliding zones inside the contact patch, whose
number is unknown a priori.

Some of these limitations may be overcome by the LuGre formulation [50], which proposes an
alternative friction model to the Coulomb-Amontons one. Indeed, one of the strengths of the LuGre-brush
theory resides in that the calculation of the tangential forces generated at the tyre-road interface is carried
out by multiplying the normal pressure distribution by a frictional state variable, which may be eventually
interpreted as the deformation of a bristle travelling inside the contact patch. This eliminates the need
for distinguishing between multiple adhesion and sliding zones. Additional advantages connected to the
LuGre friction model are that it predicts correctly not only the Stribeck and pre-sliding displacement
effects [50], but also variable breakaway forces and frictional lag phenomena, whereas the traditional
brush models notoriously fail. Moreover, being based on linear transport partial differential equations
(PDEs), the LuGre formulation (in its standard form) leads to a nicely-behaving dynamical system. In
this context, extensive research has already been devoted to incorporating the LuGre model within the
brush theory, leading to enhanced tyre models, capable of capturing dynamic effects with high accuracy,
and extremely suited for control applications [51–57].

With a few exceptions [57], these investigations are however limited to the case of combined translational
slips, and systematically disregard the transient effects of the spin, which may play an important role in
conditions of large camber angles and steering speeds that are typical of motorsport applications. On
the other hand, these effects have been recently investigated by Romano et al. [58–60] taking advantage
of the theoretical framework provided by the brush models [1, 2, 8], under the assumption of vanishing
sliding (i.e. virtually infinite friction available inside the contact patch). Specifically, in [58, 59], a general
procedure to derive the exact analytical solution in the case of time-varying slip inputs was outlined. Then,
explicit expressions for the deflection of the bristle were provided for the cases of rectangular and elliptical
contact patches. It was also found in [58, 59] that vanishing sliding conditions may be treated analytically
for many cases of practical interests, whereas, once again, the more stringent situation of limited friction
appeared to be a source of further complications when attacking the transient problem, conflicting with
the need for simplified nonstationary models to be used in simulation and/or for control purposes. Whilst
vanishing sliding conditions are undoubtedly interesting to explore from a theoretical perspective, they
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are not representative of real tyre operating conditions, therefore limiting the applicability of the results
obtained in [58, 59].

However, since the structure of the governing PDEs of the standard brush models is similar to that
of the LuGre-brush formulation, the intuition and the results obtained in [58, 59] may be effectively
exploited in the development of an enhanced model for control purposes, and capable of taking correctly
into account the individual contributions of the camber and turn spin slips. Therefore, the main scope
of this paper is to combine the LuGre friction model with the exact brush theory developed in [58, 59].
In this process, the tyre characteristics are obtained as a function of an internal frictional variable,
whose dynamics is described using two coupled PDEs. These enjoy important dynamical properties
that constitute an essential prerequisite when it comes to designing control algorithms and estimators
for distributed dynamical systems. Moreover, although the original formulation in terms of PDEs may
eventually be used directly for control-oriented applications [61, 62], an approximated description would
better serve the purpose. Therefore, starting from the original set of equations, a lumped model is
derived that represents the transient tyre forces and moment using multiple sets of simpler ODEs. Similar
approximations are well documented in the literature [51–57], and describe the tyre dynamics using
aggregate frictional states, which may be interpreted as global or averaged variables inside the contact
patch.

Whilst possible disadvantages and improvements of the LuGre model have been discussed in [63–67],
where enhanced descriptions have also been proposed based on refined friction models [65, 68], the
adoption of the LuGre-brush formulation in this paper is justified by its almost ubiquitous presence
in the vast control-oriented literature in the field [69–74], together with its nice properties and relative
simplicity, which allow for natural extensions in several research directions. In this context, it should be
also observed that the present work is mainly theoretical in nature, and should be intended as a starting
point for future investigations.

The remainder of the manuscript is organised as follows: Sect. 2 introduces the governing equations
of the LuGre-brush tyre models, and states the corresponding boundary (BCs) and initial conditions
(ICs); Sect. 3 derives the closed-form solutions for the time-varying frictional state in case of constant
slip inputs and compares the resulting steady-state tyre characteristics against the standard version of
the LuGre tyre model and the exact brush theory for large camber angles presented in [58, 59]. The
development of the approximated lumped models for the tyre characteristics is instead carried out in Sect.
5. Finally, Sect. 6 summarises the main findings of the paper, and outlines future directions for research.

2 The LuGre-brush tyre model

In this paper, the governing equations of the brush models according to the LuGre formulation are divided
in three sets: the kinematic equations, the friction relationship and the equilibrium equations.

2.1 Kinematic equations

The kinematic equations relate the time derivative of the internal frictional state z(x, t) to the local
sliding velocity1 vµ(x, t) between the tyre and the road:

∂z(x, t)

∂t
+
(
vt(x, t) · ∇t

)
z(x, t) = vµ

(
z(x, t),x, t

)
−

vµ
(
z(x, t),x, t

)
g
(
vµ
(
z(x, t),x, t

))C0z(x, t), (x, t) ∈ P̊ × R>0,

(1)

where P̊ denotes the interior of the contact patch P, modelled as a compact subset of the road plane Π
and assumed fixed for simplicity, vµ(z(x, t),x, t) ≜

∥∥vµ(z(x, t),x, t)
∥∥ and

C0 =

[
c0xx c0xy
c0yx c0yy

]
(2)

is a constant matrix, often assumed to be positive-definite or even diagonal. It may be noticed that the
entries of the matrix C0 have the same dimension of a curvature. The sliding function g(vµ(z(x, t),x, t))

1It should be clarified that, in reality, the sliding velocity should also account for the term
dz(x, t)

dt
=

∂z(x, t)

∂t
+

(vt(x, t) · ∇t)z(x, t) if the variable z(x, t) is interpreted as a real deflection. In the brush models, such a sliding velocity is

denoted by vs(x, t) =
dz(x, t)

dt
+ vµ(x, t).
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in Eq. (1) is usually postulated in the form

g
(
vµ
(
z(x, t),x, t

))
= µd + (µs − µd) e−(vµ(z(x,t),x,t)/vδ)

δ

, (3)

where µs and µd are the static and dynamic friction coefficients, clearly with µd ≤ µs, vδ is the Stribeck
velocity, and δ is the Stribeck exponent. It should be observed that µd and µs are global quantities in the
LuGre friction model, meaning that they are not function of the position inside the contact patch P.

In particular, from the exact formulation of the brush theory, the sliding velocity vµ(x, t) = Vr(t)v̄µ(x, t)
and the tangential velocity field vt(x, t) = Vr(t)v̄t(x, t) may be derived as follows:

v̄µ(x, t) = σ(t) + Aφ(t)
(
x + χψ(t)z(x, t)

)
, (4)

and

v̄t(x, t) = −
[
1
0

]
+ Aφγ (t)x, (5)

where Vr(t) = Ω(t)Rr(t) is the so-called rolling speed of the tyre, Ω(t) is the angular speed of the wheel hub

around its axis, Rr(t) is the so-called rolling radius,σ(t) =
[
σx(t) σy(t)

]T
is the vector of translational

slips, and the spin and camber tensors Aφ(t), Aφγ (t) write respectively as

Aφ(t) =

[
0 −φ(t)
φ(t) 0

]
, (6a)

Aφγ (t) =

[
0 φγ(t)

−φγ(t) 0

]
. (6b)

The spin variable φ(t) appearing in the spin tensor accounts for both the turning speed of the tyre ψ̇(t)
around its axis and the vertical component of the rolling velocity due to camber γ(t). Hence, it may be
generally decomposed as φ(t) = φγ(t) + φψ(t), with

φγ(t) =
1

Rr

(
1 − εγ

)
sin γ(t), (7a)

φψ(t) = − ψ̇(t)

Vr(t)
. (7b)

The variables φγ(t) and φψ(t) are called camber and turn spin, respectively. They may be interpreted
as two different signed curvatures φγ = 1/Rγ and φψ = −1/Rψ; the actual curvature of the contact
patch centre is thus given by the difference φ = 1/Rγ − 1/Rψ. The camber and turn spin slips may be
conveniently expressed as ratios of the total spin, that is φγ = χγφ and φψ = χψφ, with χγ + χψ = 1.
The coefficients χγ and χψ have been introduced by Romano et al. [58] and are called camber and turn
ratio, respectively.

Finally, the quantity εγ in Eq. (7a) is known as camber reduction factor, and incorporates additional
curvature effects due to ply-steer and conicity. For car and truck tyres, this parameter ranges between 0.4
and 0.7, whilst motorcycle tyres have camber reduction factor εγ ≈ 0 [1, 2, 8, 75].

Equations (1), (4), (6) together yield the general form for the governing PDEs of the LuGre-brush
tyre model for large camber angles and turning speeds. However, in this formulation, they do not admit
analytical solution for the frictional state z(x, t), as also reported by Deur [57]. This is due to the fact
that, according to Eqs. (3) and (4), the sliding function g(·) and the total velocity vµ(z(x, t),x, t) depend
not only on the vector position inside the contact patch, but also on the frictional state itself. Therefore,
to derive a closed-form expression for z(x, t), at least in steady-state conditions, this paper approximates
the original PDEs as

∂z(x, t)

∂t
+
(
vt(x, t) · ∇t

)
z(x, t) = Vr(t)

[
σ(t) + Aφ(t)

(
x + χψ(t)z(x, t)

)]
− v̂µ(t)

g
(
v̂µ(t)

)C0z(x, t),

(x, t) ∈ P̊ × R>0,

(8)

where v̂µ(t) is calculated by neglecting the contribution Aφψ (t)z(x, t) in Eq. (4), and considering average
values for the longitudinal and lateral components of vµ(x, t). It is also worth observing that, for a

symmetrical contact patch, it is v̂µ(t) ≡ Vr(t)σ(t), with σ(t) ≜
∥∥σ(t)

∥∥. Some qualitative results for the
more general case in which v̂µ(x, t) is assumed to vary with the coordinate x, but not with z(x, t), are
instead presented in Appendix A (see Remark A.2).
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The vector Eq. (8) is composed of two linear transport PDEs, and comes equipped with BC and IC
given respectively by

BC: z(x, t) = 0, (x, t) ∈ L × R>0, (9a)

IC: z(x, 0) = z0(x), x ∈ P̊, (9b)

possibly for some z0 ∈ C1(P̊;R2) with z0(x) = 0 on L . The IC (9b) specifies an initial distribution
z0(x) for the frictional state, whilst the BC (9a) prescribes that the frictional state must vanish on the
leading edge L . The notion of leading edge strictly connects to those of neutral edge and trailing edge,
according to the following Definition 2.1.

Definition 2.1 (Leading edge, neutral edge and trailing edge for fixed contact patch). Assuming a fixed
contact shape, the leading, neutral and trailing edges L , N and T are defined respectively by

L ≜

{
x ∈ ∂P

∣∣∣∣ vt(x, t) · ν̂∂P(x) < 0

}
, (10a)

N ≜

{
x ∈ ∂P

∣∣∣∣ vt(x, t) · ν̂∂P(x) = 0

}
, (10b)

T ≜

{
x ∈ ∂P

∣∣∣∣ vt(x, t) · ν̂∂P(x) > 0

}
, (10c)

where ∂P is the boundary of the contact patch, ν̂∂P(x) is the outward-pointing unit normal to the
boundary ∂P of the contact patch.

The Definition 2.1 above may be extended to the more general case of time-varying contact geometry
as in Ref. [59].

2.2 Friction relationship

In the LuGre friction model, the local friction coefficient µ(x, t) =
[
µx(x, t) µy(x, t)

]T
inside the contact

patch depends on the internal state z(x, t) according to the following relationship:

µ(x, t) = C0z(x, t) + C1
∂z(x, t)

∂t
+ C2vµ(x, t), (11)

where C1, C2 are two matrices of constant coefficients:

C1 =

[
c1xx c1xy
c1yx c1yy

]
, (12a)

C2 =

[
c2xx c2xy
c2yx c2yy

]
, (12b)

usually assumed to be positive definite and even diagonal. Their entries are expressed in s m−1.

2.3 Equilibrium equations

In the LuGre formulation, the tangential forces exerted at the tyre-road interface are given by the product
between the local friction coefficient µ(x, t) and the normal pressure distribution qz(x, t), expressed in
N m−2. Integrating over the contact patch P yields the following expressions for the tangential force

vector Ft(t) =
[
Fx(t) Fy(t)

]T
and the self-aligning moment Mz(t):

Ft(t) =

∫∫
P

µ(x, t)qz(x) dx, (13a)

Mz(t) =

∫∫
P

(
xµy(x, t) − yµx(x, t)

)
qz(x) dx. (13b)

Equations (13) are known as equilibrium equations. It should be observed that, according to Eq. (13b),
the self-aligning moment is computed on the undeformed configuration.
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3 Analytical solutions for constant slip inputs

In the general case of time-varying slip inputs and contact patch, Eq. (8) admits integral solutions in
parametric form. These may be easily found by resorting to the classic method of characteristic lines
for partial differential equations, as discussed in detail in [59]. However, closed-form expressions for
the frictional state z(x, t) are usually only possible when the spin slips are constant and the shape of
the contact patch admits simple analytical representations. Therefore, to limit the scope of this paper,
only the case where the slip inputs and rolling speed are constant over time is considered. Moreover,
the rolling speed is assumed to be always positive, so that the mapping between the travelled distance
s =

∫ t
0
Vr(t

′) dt′ and the time is one-to-one. Owing to these premises, replacing the time variable t with
the travelled distance s turns Eq. (8) into

∂z(x, s)

∂s
+
(
v̄t(x) · ∇t

)
z(x, s) = σ + Aφ

(
x + χψz(x, s)

)
− v̂µ

Vrg
(
v̂µ
)C0z(x, s), (x, s) ∈ P̊ × R>0.

(14)

Renaming [
φxx φxy
φyx φyy

]
≜

v̂µ

Vrg
(
v̂µ
) [c0xx c0xy
c0yx c0yy

]
=

v̂µ

Vrg
(
v̂µ
)C0, (15)

and assuming parametrisations of the type x = x(ρ, ς), s = x(ρ, ς) and z = z(x(ρ, ς),x(ρ, ς)) = ζ(ρ, ς),
for constant slip inputs and rolling speeds the original PDEs may be restated as

ds(ρ, ς)

dς
= 1, (16a)

dx(ρ, ς)

dς
= −

[
1
0

]
+ Aφγx(ρ, ς), (16b)

dζ(ρ, ς)

dς
= Ãφψζ(ρ, ς) + σ + Aφx(ρ, ς), (16c)

where the modified turn spin tensor has been defined as

Ãφψ ≜ Aφψ − v̂µ

Vrg
(
v̂µ
)C0 =

[
−φxx −φψ − φxy

φψ − φyx −φyy

]
. (17)

The solution to the above system (16) may be derived as explained in Romano et al. [59] and reads

s(ρ, ς) = ς + s0(ρ), (18a)

x(ρ, ς) = Rφγ (ς)
(
x0(ρ) − xCγ

)
+ xCγ , (18b)

ζ(ρ, ς) = Φ̃φψ (ς, 0)
(
ζ0(ρ) − ζ̃0(ρ)

)
+ ζ̃(ρ, ς). (18c)

Equations (18a) and (18b) relate the physical variables (x, s) to the parametric coordinates (ρ, ς). In
particular, Eq. (18a) is a transformation between time-like variables, whilst Eq. (18b) parametrises the
trajectories of the rubber flow inside the contact patch. If the frictional state z(x, s) is interpreted as the
deflection of a bristle, then Eq. (18b) clearly describes the kinematics of its root attached to the tyre.
Specifically, Rφγ (ς) in Eq. (18b) is the so-called camber rotation matrix, given by

Rφγ (ς) = eAφγ ς =

[
cos
(
φγς

)
sin
(
φγς

)
− sin

(
φγς

)
cos
(
φγς

)] , (19)

whilst the vector
xCγ =

[
0 yCγ

]T
≜
[
0 Rγ

]T
=
[
0 1/φγ

]T
(20)

denotes the position of the cambering centre Cγ . Equation (18c) describes instead the dynamics of the
transformed internal state ζ(ρ, ς). Specifically, the entries of the modified turning transition matrix

Φ̃φψ (ς, 0) = eÃφψ
ς =

[
ϕφψ11(ς) ϕφψ12(ς)
ϕφψ21(ς) ϕφψ22(ς)

]
(21)
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write as follows:

ϕφψ11(ς) =

(
φxx − φyy

)
ϕ1(ς) + φ̃ψϕ2(ς)

2φ̃ψ
, (22a)

ϕφψ12(ς) = −
2e−

(φxx+φyy)ς

2 sinh

(
φ̃ψς

2

)(
φxy + φψ

)
φ̃ψ

, (22b)

ϕφψ21(ς) = −
e−

(φxx+φyy+φ̃ψ)ς

2

(
eφ̃ψς − 1

) (
φyx − φψ

)
φ̃ψ

, (22c)

ϕφψ22(ς) =

(
φyy − φxx

)
ϕ1(ς) + φ̃ψϕ2(ς)

2φ̃ψ
, (22d)

with the functions ϕ1(·), ϕ2(·) reading

ϕ1(ς) ≜ e−
(φxx+φyy+φ̃ψ)ς

2 − e−
(φxx+φyy−φ̃ψ)ς

2 , (23a)

ϕ2(ς) ≜ e−
(φxx+φyy+φ̃ψ)ς

2 + e−
(φxx+φyy−φ̃ψ)ς

2 , (23b)

and

φ̃ψ ≜
√(

φxx − φyy
)2 − 4

(
φψ + φxy

)(
φψ − φyx

)
. (24)

It may be easily verified that the transition matrix Φ̃φψ(ς, 0) in Eq. (21) reduces to a rotation matrix
when φxx = φxy = φyx = φyy = 0, yielding exactly the same result of the exact brush theory presented

in [58, 59]. The function ζ̃(·, ·) appearing in Eq. (18c) may be expressed in matrix form as

ζ̃(ρ, ς) =

[
αxx αxy
αyx αyy

]
x(ρ, ς) +

[
βx
βy

]
, (25)

where the coefficients αxx, αxy, αyx, αyy, βx and βy depend in turn upon σ, φγ , φψ and Vr. Their

expressions are quite lengthy and reported in Appendix B.1. Finally, ζ̃0(ρ) ≜ ζ̃(ρ, 0) in Eq. (18c).
To derive the analytical expression for the frictional state z(x, s), a mapping between the parametric

coordinates (ρ, ς) and the initial variables (x, s) should be found so to transform back the function ζ(ρ, ς)
[76–78]. This may be done prescribing in turn the BC (9a) and IC (9b), respectively, which guarantee the
uniqueness of a diffeomorphism between the coordinates (ρ, ς) and (x, s), and thus also the uniqueness of
the solution for the problem at hand, at least locally. Similar considerations about the importance of the
inflow BC may be drawn from an application of the energy method, as reported in Appendix A, where
the inflow BC plays again a fundamental role.

In particular, enforcing (9a) and (9b) yields two different solutions for z(x, s), corresponding to
the steady-state and transient one, denoted by z−(x) and z+(x, s), and defined respectively on the
subdomains P− and P+ of the contact patch. The global solution over the contact patch P = P−∪P+

may be then formally constructed as

z(x, s) =

{
z−(x), (x, s) ∈ P− × R≥0,

z+(x, s), (x, s) ∈ P+ × R≥0.
(26)

Sections 3.1 and 3.2 are dedicated to the derivation of the steady-state and transient solutions z−(x) and
z+(x, s) for the frictional state.

3.1 Steady-state solution

The steady-state solution for the frictional state z−(x, s) should be sought by enforcing the BC (9a),
which imposes z(x, s) = 0 on the leading edge L . Compatibility conditions imply therefore ζ0(ρ) = 0.
By noticing that

ζ̃
(
ρ(x, s), ς(x, s)

)
= z̃(x) ≜

[
αxx αxy
αyx αyy

]
x +

[
βx
βy

]
, (27)

and manipulating Eqs. (18a), (18b) as

x2 +
(
y − 1/φγ

)2
=
(
x0(ρ)

)2
+
(
y0(ρ) − 1/φγ

)2
, (28a)
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ς =
1

φγ

arctan

(
x

y − 1/φγ

)
− arctan

(
x0(ρ)

y0(ρ) − 1/φγ

), (28b)

s0(ρ) = s− ς, (28c)

the following representation formula may be obtained for the frictional state in the steady-state region
P− of the contact patch:

z−(x) = Φ̃φψ

(
Σ(x), 0

)
Ψ(x) + z̃(x), (x, s) ∈ P− × R≥0. (29)

In particular, it should be noticed that, owing to the assumption of constant slips and fixed contact
patch, the initial conditions for the independent variables s and x may be parametrised independently as
s0(ρ) = ρ1 and x0(ρ) = x0(ρ2), respectively. Accordingly, the functions Σ(·) and Ψ(·) appearing in Eq.
(29) are as follows:

Σ(x) ≜
1

φγ

arctan

(
x

y − 1/φγ

)
− arctan

(
x0
(
ρ2(x)

)
y0
(
ρ2(x)

)
− 1/φγ

), (30a)

Ψ(x) =
[
Ψx(x) Ψy(x)

]T
≜ −z̃

(
x0

(
ρ2(x)

))
, (30b)

where the expressions for x0(ρ) = x0(ρ2) should be derived starting from an analytical representation of
the leading edge. In particular, the exact functions for x0(ρ) = x0(ρ2) have been derived by Romano et
al. [59] for a rectangular and elliptical contact patch, and are reported in Appendix B.2 for completeness.
From Eq. (29), it may also be observed that z−(x) is independent of the travelled distance, as it happens
in the basic formulation of the brush models.

Finally, it is worth mentioning that, in Eq. (29), the domain P− is defined from the requirement
s0(ρ1(x, s)) = ρ1(x, s) > 0 of Eq. (28c). Together with (28b), which gives s > Σ(x), this yields

γΣ(x, s) ≜ Σ(x) − s. (31)

Therefore, the subset P− of P, describing the stationary region of the contact patch, may be defined
mathematically as

P− ≜
{
x ∈ P

∣∣ γΣ(x, s) < 0
}
. (32)

In particular, the curve parametrised by γΣ(x, s) = 0 is referred to as transient or travelling edge in [59].

3.2 Transient solution

The transient solution z+(x, s) applies to the transient region of the contact patch:

P+ ≜
{
x ∈ P

∣∣ γΣ(x, s) ≥ 0
}
. (33)

The analytical expression for z+(x, s) may be obtained by parametrising x0(ρ) = ρ for s0(ρ) = 0.
Specifically, it follows again from compatibility that ζ0(ρ(x, s)) = z0(x0(x, s)), and therefore the transient
solution is given by

z+(x, s) = Φ̃φψ (s, 0)
[
z0
(
x0(x, s)

)
− z̃0(x, s)

]
+ z̃(x), (x, s) ∈ P+ × R≥0, (34)

where z̃0(x, s) ≜ z̃(x0(x, s)) and

x0(x, s) = ρ(x, s) = R−1
φγ (s)

(
x− xCγ

)
+ xCγ . (35)

The solution constructed by patching the steady-state and transient states according to Eq. (26) is clearly
continuous on the travelling edge, that is z+(x, Σ(x)) ≡ z−(x).

4 Steady-state tyre characteristics

Starting from the closed-form solutions for the internal frictional state, the steady-state tyre characteristics
may be obtained integrating numerically over the contact patch according to Eqs. (13). In this section,
the tyre forces and moment are compared to those obtained using the classic LuGre-brush formulation
and the exact brush theory recently developed by the authors in [58, 59].
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4.1 Comparison with the classic LuGre-brush tyre models

Figure 1 compares the stationary tyre forces and moment for a rectangular contact patch for different
translational slip inputs σ and a fixed spin φ = 3.33 m−1 (with χγ = 0.9) according to both the
LuGre-brush theory for large camber angles presented in this paper and the classic one (Appendix C).
Specifically, Fig. 1 was produced considering a contact patch with semilength and semiwidth of a = 0.075
and b = 0.05 m, respectively. The vertical force acting upon the tyre was set to Fz = 3000 N, whilst
the matrix C0 was assumed to be diagonal with c0xx = c0yy = 240 m−1. Generally speaking, a good
qualitative agreement between the two formulations may be observed, which would eventually confirm
the accuracy of the LuGre-brush tyre model even in its standard version. However, the novel formulation
tends apparently to predict slightly larger forces. In this context, it is also important to mention that,
whilst the classic LuGre-brush theory yields a unique steady-state solution z− ∈ C1(P̊− × R>0;R2)
over the entire contact patch, the model for large camber angles predicts the existence of three different
analytical functions describing the internal frictional state inside as many subdomains of P, as better
explained in Appendix B.2.

Similar considerations hold also true for the tyre characteristics of an elliptical contact patch illustrated
in Fig. 2. In generating the curves in Fig. 2, the same tyre parameters were assumed as for Fig. 1, except
c0xx = c0yy = 320 m−1. Perhaps, a substantial difference from the trends plotted in Fig. 1 is that the
self-aligning moment exhibits a local maximum for positive values of the lateral slip σy. This phenomenon
is a minor effect linked to the aspect ratio a/b of the contact ellipse. In particular, the fulfillment of the

condition a ≤ b(b+ 1/
∣∣φγ∣∣) guarantees a solution z− ∈ C1(P̊− × R>0;R2) defined on the entire contact

patch.

4.2 Comparison with the exact brush tyre models

A comparison between the tyre characteristics predicted by the LuGre-brush theory for large camber
angles and the exact brush models presented in [58, 59] is shown in Fig. 3 for a rectangular contact patch,
where the trend of the forces and moment is plotted versus the longitudinal slip σx, for several fixed
values of the lateral slip input σy. Again, in generating Fig. 3, a total spin slip of φ = 3.33 m−1 was
considered. The stiffnesses and the geometrical parameters were also set as in Subsect. 4.1. The stiffness
of the bristle according to the exact brush theory was instead chosen as 2.67 · 107 N m−3. Specifically, this
value was slightly adjusted starting from the one that, in pure slip conditions, ensures that the derivative
of the tyre forces at the origin, i.e. the slip stiffness, is the same for both formulation2. To provide a fair
comparison, the static and friction coefficients were also assumed to be equal, that is µs ≡ µd in Eq. (3).

Opposed to what observed from the comparison between the enhanced and classic LuGre formulations,
the discrepancy with the exact brush theory (solid lines) is particularly significant, especially at low
values of the lateral slip σy, where the LuGre-brush model (dashed-lines) for large camber angles tends
to predict much higher lateral forces Fy and self-aligning moments Mz. In respect to the lateral force,
this phenomenon may be easily explained by noticing that, in the standard brush tyre models, the shear
stresses acting upon the bristles are always constrained below the traction bound3 µsqz(x), and therefore
the magnitude of the total tangential force can never exceed the friction limit µsFz. This is not necessarily
true in the LuGre-brush theory, which might yield relatively large values for the frictional state z−(x)4.
As a result, in the example of Fig. 3(a), the combined effect of the translational slip σ and spin φ
generates a lateral force Fy that in some cases is even higher than the vertical load Fz acting upon the
tyre. The less pronounced mismatch between the two trends for the self-aligning moment in Fig. 3(b)
may be explained using a similar rationale.

Analogous considerations also hold for the case of an elliptical contact patch, which is not discussed
in this paper for brevity.

2For an isotropic tyre, straightforward calculations yield c0xx = c0yy = 4kab/Fz , where k is the bristle stiffness according
to the exact brush theory.

3In this regard, it is important to clarify that the term related to the partial derivatives of the bristle deflection was
neglected in the calculation of the direction for the shear stress acting inside the sliding zone of the contact patch. This is
usually a reasonable approximation [1].

4In this context, however, it is worth observing that the problem described by the linear PDEs (8) with BC (9a) fulfils
the noncharacteristic condition [59], and therefore the steady-state solution z−(x) for the internal frictional state should
not be expected to diverge for any x ∈ P. Further details on the purely mathematical aspects may be found in [76, 77].
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(a) Longitudinal force Fx versus longitudinal slip σx.

(b) Lateral force Fy versus lateral slip σy .

(c) Self-aligning moment Mz versus lateral slip σy .

Figure 1: Steady-state characteristics predicted by the classic (solid lines) and exact (dashed-lines) LuGre
brush-theories for different values of the translational slips σx and σy for a rectangular contact patch.
Tyre parameters: φ = 3.33 m−1, χγ = 0.9, Fz = 3000 N, a = 0.075 m, b = 0.05 m, µs = 1, µd = 0.7.
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(a) Longitudinal force Fx versus longitudinal slip σx.

(b) Lateral force Fy versus lateral slip σy .

(c) Self-aligning moment Mz versus lateral slip σy .

Figure 2: Steady-state characteristics predicted by the classic (solid lines) and exact (dashed-lines) LuGre
brush-theories for different values of the translational slips σx and σy for an elliptical contact patch. Tyre
parameters: φ = 3.33 m−1, χγ = 0.9, Fz = 3000 N, a = 0.075 m, b = 0.05 m, µs = 1, µd = 0.7.
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(a) Tyre forces Fx, Fy versus longitudinal slip σx.

(b) Self-aligning moment Mz versus longitudinal slip σx.

Figure 3: Steady-state characteristics predicted by the exact brush (solid lines) and LuGre-brush (dashed
lines) tyre models for different values of the translational slips σx and σy for a rectangular contact patch.
Tyre parameters: φ = 3.33 m−1, χγ = 0.9, Fz = 3000 N, a = 0.075 m, b = 0.05 m, µs ≡ µd = 1.
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5 Aggregate model for tyre forces and moment

The exact formulation of the LuGre-brush tyre model developed in Sect. 3 represents the tyre dynamics
in terms of PDEs. For simulation and control purposes, however, it may be beneficial to derive a
simplified description based on systems of ordinary differential equations (ODEs). In this context, several
contributions may be found in the literature that develop approximated formulations considering the
aggregate dynamics of the frictional state z(x, t). Following the approaches outlined in [51–57], the
present section extends this class of models to account for large camber angles and two-dimensional
contact geometries.

The analysis is conducted under the following Assumption 5.1.

Assumption 5.1. The vertical pressure distribution qz ∈ C1(P;R) vanishes on the trailing edge, i.e.
qz(x) = 0 for x ∈ T .

5.1 Aggregate model for tyre force

The time-varying tyre forces may be described in terms of an aggregate state, which may be interpreted
as an average tangential stress acting inside the contact patch. In this context, it is customary to define

ẑ(t) ≜
1

Fz

∫∫
P

z(x, t)qz(x) dx, (36)

so that Eq. (13a) may be restated as

Ft(t) = Fz

(
C0(t) + Vr(t)C2Aφψ (t)

)
ẑ(t) + FzC1

˙̂z(t) + Vr(t)C2

(
σ(t) +

Aφ(t)

Fz

∫∫
P

xqz(x) dx

)
. (37)

Equation (37) should be complemented with another relationship for the dynamics of the aggregate
state ẑ(t). To this end, differentiating Eq. (36) with respect to time gives

˙̂z(t) =
1

Fz

∫∫
P

∂z(x, t)

∂t
qz(x) dx = Vr(t)

(
Ãφψ (t) −K(t)

)
ẑ + Vr(t)

(
σ(t) +

Aφ(t)

Fz

∫∫
P

xqz(x) dx

)
− Vr(t)

Fz

∮
∂P

z(x, t)qz(x)v̄t(x, t) · ν̂∂P(x) dL,

(38)

where it has been used the fact that the velocity field v̄t(x, t) is solenoidal, i.e. ∇t ·v̄t(x, t) = 0. In deriving
Eq. (38), it should be noticed that the frictional state z(x, t) must always be continuous on a travelling
edge. Discontinuities may only take place on the characteristic lines separating the subdomains of the
contact patch where different analytical solutions are obtained depending on the boundary prescription.
Therefore, on these lines the boundary terms vanish, as it happens also for the last integral in Eq. (38) if
Assumption 5.1 is satisfied.

The matrix K(t) appearing in Eq. (38) is diagonal and time-varying:

K(t) =

[
κx(t) 0

0 κy(t)

]
, (39)

with the entries κx(t) and κy(t) given by

κx(t) ≜ −
∫∫

P zx(x, t)
(
v̄t(x, t) · ∇tqz(x)

)
dx∫∫

P zx(x, t)qz(x) dx
, κy(t) ≜ −

∫∫
P zy(x, t)

(
v̄t(x, t) · ∇tqz(x)

)
dx∫∫

P zy(x, t)qz(x) dx
. (40)

It should be observed that the functions κx(t) and κy(t) defined in the above Eq. (40) depend upon the
frictional state z(x, t), which is however unknown. Different solutions have been proposed in the literature
to approximate them. In particular, a common approach consists in replacing the expression for the
time-varying frictional state z(x, t) with the corresponding stationary solution z−(x). This guarantees
that the lumped model and the original one yield the same result in steady-state conditions. Another
option is to postulate a priori an analytical function to describe the quantity z(x, t). A more exhaustive
discussion may be found in dedicated works [51–57], whereas the present paper privileges the first method
for purposes of simplicity.
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A comparison between the transient response of the tyre forces to a constant slip input σ according
to the exact and aggregate formulations is illustrated in Fig. 4 for different combinations of σx, σy and a
fixed value of φ = 3.33 m−1 (again with χγ = 0.9). The evolution of the tyre characteristics is shown
versus the travelled distance s instead of the time t (since it is assumed C1 = C2 = 0 for simplicity, the
problem is indeed independent of the tyre speed). In general, a very encouraging agreement may be
noticed between the two models, especially concerning the longitudinal force. In any case, the trends
predicted by the lumped formulation converge to the exact ones approximately within s = 0.15 m.

5.2 Aggregate model for self-aligning moment

An approximated model for the self-aligning moment with aggregate dynamics may be derived similarly
to what done for the tangential forces. In particular, the following states may be defined:

ẑxx(t) ≜
1

aFz

∫∫
P

xzx(x, t)qz(x) dx, ẑxy(t) ≜
1

bFz

∫∫
P

yzx(x, t)qz(x) dx,

ẑyx(t) ≜
1

aFz

∫∫
P

xzy(x, t)qz(x) dx, ẑyy(t) ≜
1

bFz

∫∫
P

yzy(x, t)qz(x) dx, (41)

where a and b are two characteristic geometrical parameters in longitudinal and lateral direction,
respectively (intuitively, for a symmetrical contact patch, they would correspond to the semilength and
semiwidth). It may be easily inferred that the aggregate states in Eq. (41) represent moments averaged
over the contact patch. Then, the dynamic equation for the self-aligning moment becomes

Mz(t) = aFz
(
c0yx + Vr(t)c2yyφψ(t)

)
ẑxx(t) − bFz

(
c0xx + Vr(t)c2xyφψ(t)

)
ẑxy(t)

+ aFz
(
c0yy − Vr(t)c2yxφψ(t)

)
ẑyx(t) − bFz

(
c0xy − Vr(t)c2xxφψ(t)

)
ẑyy(t)

+ aFzc1yx ˙̂zxx(t) − bFzc1xx ˙̂zxy(t) + aFzc1yy ˙̂zyx − bFzc1xy ˙̂zyy

+
Vr(t)

abFz

∫∫
P

[
σx(t)

(
bc2yxx− ac2xxy

)
+ σy(t)

(
bc2yyx− ac2xyy

)]
qz(x) dx

+
Vr(t)

abFz

∫∫
P

[
ac2yyx

2 −
(
ac2xy + bc2yx

)
xy + bc2xxy

2
]
φ(t)qz(x) dx,

(42)

being the dynamics of the states ẑxx(t), ẑxy(t), ẑyx(t) and ẑyy(t) described by the two following systems
of coupled ODEs:

˙̂zxx(t) = −Vr(t)
(
φxx(t) + κxx(t)

)
ẑxx(t) − Vr(t)

(
φxy(t) + φψ(t)

)
ẑyx(t)

+
Vr(t)

aFz

∫∫
P

x
(
σx(t) − φ(t)y

)
qz(x) dx− Vr(t)

aFz

∮
∂P

zx(x, t)xqz(x)v̄t(x, t) · ν̂∂P(x) dL,
(43a)

˙̂zyx(t) = −Vr(t)
(
φxy(t) − φψ(t)

)
ẑxx(t) − Vr(t)

(
φyy(t) + κyx(t)

)
ẑyx(t)

+
Vr(t)

aFz

∫∫
P

x
(
σy(t) + φ(t)x

)
qz(x) dx− Vr(t)

aFz

∮
∂P

zy(x, t)xqz(x)v̄t(x, t) · ν̂∂P(x) dL,
(43b)

and

˙̂zxy(t) = −Vr(t)
(
φxx(t) + κxy(t)

)
ẑxy(t) − Vr(t)

(
φxy(t) + φψ(t)

)
ẑyy(t)

+
Vr(t)

bFz

∫∫
P

y
(
σx(t) − φ(t)y

)
qz(x) dx− Vr(t)

bFz

∮
∂P

zx(x, t)yqz(x)v̄t(x, t) · ν̂∂P(x) dL,
(44a)

˙̂zyy(t) = −Vr(t)
(
φyx(t) − φψ(t)

)
ẑxy(t) − Vr(t)

(
φyy(t) + κyy(t)

)
ẑyy(t)

+
Vr(t)

bFz

∫∫
P

y
(
σy(t) + φ(t)x

)
qz(x) dx− Vr(t)

bFz

∮
∂P

zy(x, t)yqz(x)v̄t(x, t) · ν̂∂P(x) dL.
(44b)

Once again, it is worth noticing that the boundary terms in Eqs. (43) and (44) vanish if Assumption 5.1
is satisfied.

The functions κxx(t), κxy(t), κyx(t) and κyy(t) appearing in Eqs. (43) and (44) read

κxx(t) ≜ −
∫∫

P zx
(
v̄t(x, t) · ∇txqz(x)

)
dx∫∫

P xzx(x, t)qz(x) dx
, κxy(t) ≜ −

∫∫
P zx

(
v̄t(x, t) · ∇tyqz(x)

)
dx∫∫

P yzx(x, t)qz(x) dx
,

κyx(t) ≜ −
∫∫

P zy
(
v̄t(x, t) · ∇txqz(x)

)
dx∫∫

P xzy(x, t)qz(x) dx
, κyy(t) ≜ −

∫∫
P zy

(
v̄t(x, t) · ∇tyqz(x)

)
dx∫∫

P yzy(x, t)qz(x) dx
, (45)
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(a) Transient response of tyre forces Fx and Fy to constant slip inputs σx = 0.14, σy = 0.07.

(b) Transient response of tyre forces Fx and Fy to constant slip inputs σx = 0.07, σy = 0.14.

(c) Transient response of tyre forces Fx and Fy to constant slip inputs σx = σy = 0.1.

Figure 4: Transient response of the longitudinal and lateral tyre forces Fx, Fy according to the exact
LuGre formulation (solid lines) and the lumped model (dashed lines) when subjected to different constant
slip inputs. Tyre parameters: a = 0.075 m, b = 0.05 m, µs = 1, µd = 0.7, δ = 0.6, Vr = 10 m s−1,
vδ = 3.49 m s−1, c0xx = c0yy = 320, c0xy = c0yx = 0 m−1.
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Figure 5: Transient response of the self-aligning moment Mz according to the exact LuGre formulation
(solid lines) and the lumped model (dashed lines) when subjected to different constant lateral slip inputs.
Tyre parameters: a = 0.075 m, b = 0.05 m, µs = 1, µd = 0.7, δ = 0.6, Vr = 10 m s−1, vδ = 3.49 m s−1,
c0xx = c0yy = 320, c0xy = c0yx = 0 m−1.

and may be again approximated using the steady-state solution z−(x) in place of the general expressions
for z(x, t).

As already done for the longitudinal and lateral tyre characteristics, some possible transient evolutions
of the self-aligning moment according to both the exact and lumped formulations are shown in Fig. 5
for different lateral slip inputs σy and a fixed spin φ = 3.33 m−1. In this case, the response from the
aggregate dynamic equations converges still relatively fast to that of the exact formulation, but the
discrepancy between the two models is more evident. In particular, whilst the exact formulation predicts
a transient peak, the lumped model does not. This should however be expected, since the aggregate
formulation consists of two linear systems [79, 80].

6 Conclusions

This paper presented an extended version of the LuGre-brush tyre model to handle large camber angles
and turning speeds. In this context, the first main contribution of the manuscript consisted of the
analytical derivation of the steady-state and transient solutions for the frictional state variable when
considering constant slip inputs. Specifically, closed-form solutions were deduced for a rectangular and
elliptical contact patch by resorting to classic results for the theory of linear PDEs. A comparison
against the standard version of the LuGre-brush tyre model highlighted minor discrepancies between
the steady-state tyre characteristics predicted by the refined theory and the standard one. A possible
explanation to this may be sought in that, in order to derive closed-form solutions, in this paper, the
nonlinear terms involving the sliding velocity were approximated not only by neglecting the contribution
due to the internal frictional state, but also the variability with the coordinate inside the contact patch.
In this context, a possible extension, which would however require numerical methods for hyperbolic
systems of PDEs [82], could be to also taken into account the dependence upon the space variables.

On the other hand, significant differences could be observed when comparing the LuGre-brush theory
for large camber angles to the exact formulation of the brush models presented in [58, 59], especially at
low values of the longitudinal slip. The enhanced, physical model presented in this paper may thus have
the potential to become a viable alternative to Pacejka’s MF, which currently appears to be the only
analytical model capable of dealing effectively with large camber angles and steering speeds.

In the second part of the manuscript, approximated models for the transient tangential forces and
moment were developed based on the aggregate dynamics of averaged frictional states over the contact
patch. This approach is well-established in the literature and leads to the derivation of simplified models
describing the time-varying tyre characteristics using linear systems of ODEs. As opposed to PDEs,
linear dynamical systems of ODEs are in fact easier to implement when it comes to control applications
and vehicle dynamics studies. The transient response of the tyre forces and moment predicted using the
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aggregate model was validated against the exact formulation in terms of PDEs, showing an encouragingly
good agreement.

A major disadvantage of the extended formulation presented in the paper is that, owing to the
complexity of the analytical solutions, some functions that play a fundamental role in the derivation of
the approximated models need to be evaluated numerically. Therefore, future research efforts should be
devoted to building look-up tables for these functions depending on different tyre structural parameters
and operating conditions. The validation of the model should also be conducted to assess its ability
to correctly replicate the steady-state tyre characteristics at large spin slips. This will require ad-hoc
experiments or procedures [46], as well as a more detailed model for the contact patch shape as a function
of the camber angle. In this context, it would be also interesting to perform a comparison against the
forces and moment predicted using a full-version of Pacejka’s MF.
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Nomenclature

Forces Unit Description
and Moments
Ft N Tangential tyre force vector
Fx, Fy N Longitudinal and lateral tyre forces
Mz N m Self-aligning moment
qz N m−2 Vertical pressure

Frictional states Unit Description
z m Internal frictional state vector
zx, zy m Longitudinal and lateral frictional states
z− m Steady-state frictional state vector
z−x , z−y m Steady-state longitudinal and lateral frictional states
z+ m Transient frictional state vector
z+x , z+y m Transient longitudinal and lateral frictional states
ẑ m Aggregate internal frictional state vector for tyre forces
ẑx, ẑy m Aggregate longitudinal and lateral frictional states for tyre forces
ẑxx, ẑyy m Aggregate diagonal frictional states for self-aligning moment
ẑxy, ẑyx m Aggregate diagonal frictional states for self-aligning moment

Coordinates Unit Description
s m Travelled distance
t s Time
x m Coordinate vector
x, y, z m Longitudinal, lateral and vertical coordinates
x0 m Initial data vector (ID)
x0, y0 m Initial longitudinal and lateral data (ID)
ξ m Local coordinate vector
ξ, η m Alternative longitudinal and lateral coordinates

Speeds Unit Description
vt m s−1 Tangential velocity field
vx, vy m s−1 Longitudinal and lateral components of the tangential velocity field
v̄t - Nondimensional tangential velocity field
v̄x, v̄y - Longitudinal and lateral components of the nondimensional velocity field
vδ m s−1 Stribeck velocity
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vµ m s−1 Micro-sliding velocity
vµ m s−1 Total micro-sliding speed
v̂µ - Average micro-sliding speed
vµx, vµy m s−1 Longitudinal and lateral micro-sliding speeds
Vr m s−1 Tyre rolling speed

ψ̇ rad s−1 Steering speed

Slip Unit Description
Parameters
χγ , χψ - Camber and turn ratio
εγ - Camber reduction factor
σ - Theoretical translational slip vector
σ - Total theoretical translational slip
σx, σy - Theoretical longitudinal and lateral slip
φ m−1 Rotational slip or spin parameter
φγ , φψ m−1 Camber and turn spin parameters

Rotational Matrices Unit Description
and Tensors
Aφ, Aφγ , Aφψ m−1 Spin, camber spin and turn spin tensors

Ãφψ m−1 Modified turn spin tensor
φxx, φyy m−1 Diagonal elements in the modified turn spin tensor
φxy, φyx m−1 Cross elements in the modified turn spin tensor
Rφγ - Camber spin rotation matrix

Φ̃φψ - Modified transition matrix for turn spin

Geometric Unit Description
Parameters
a, b m Contact patch semilength and semiwidth
xCγ , xCψ m Cambering centre and turning centre coordinate vectors
xL m Leading edge explicit representation
xN m Neutral edge explicit representation
yCγ , yCψ m Cambering centre and turining centre lateral coordinates
yL m Leading edge explicit representation
yN m Neutral edge explicit representation
Rr m Rolling radius
Rγ , Rψ m Cambering radius and turning radius
γ rad Camber angle
λx, λy m Longitudinal and lateral relaxation lengths

Curvature Unit Description
Matrices
C0 m−1 Zeroth-order frictional matrix
c0xx, c0yy m−1 Diagonal entries of the zeroth-order frictional matrix
c0xy, c0yx m−1 Cross entries of the zeroth-order frictional matrix
C1 s m−1 First-order frictional matrix
c1xx, c1yy s m−1 Diagonal entries of the first-order frictional matrix
c1xy, c1yx s m−1 Cross entries of the first-order frictional matrix
C2 s m−1 First-order frictional matrix
c2xx, c2yy s m−1 Diagonal entries of the first-order frictional matrix
c2xy, c2yx s m−1 Cross entries of the first-order frictional matrix
K m−1 Curvature functions matrix for aggregate model for tyre forces
kx, ky m−1 Diagonal curvature functions matrix for tyre forces
kxx, kyy m−1 Diagonal curvature functions for self-aligning moment
kxy, kyx m−1 Cross curvature functions for self-aligning moment
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Frictional Unit Description
Parameters
µ - Friction coefficient vector
µx, µy - Longitudinal and lateral friction coefficients
µd - Dynamic friction coefficient
µs - Static friction coefficient

Functions Unit Description
and Operators
∇t m−1 Tangential gradient
Γ (·) m2 Gamma function
Σ(·) m Sigma function
Ψ(·) m Vector-valued psi function
Ψx(·), Ψy(·) m Longitudinal and lateral psi functions

Sets Unit Description
P m2 Contact patch
P− m2 Steady-state zone
P+ m2 Transient zone

P̊ m2 Interior of P
∂P m Boundary of P
L m Leading edge
N m Neutral edge
S m Sliding edge
T m Trailing edge
R≥0 - Set of positive real numbers (including 0)
R>0 - Set of strictly positive real numbers (excluding 0)

Implicit curves Unit Description
γΣ m Implicit representation of the travelling edge
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[21] Takács D, Stépán G. Experiments on quasiperiodic wheel shimmy. ASME. J. Comput. Nonlinear
Dynam. 2009;4(3):031007. Available from: https://doi.org/10.1115/1.3124786.
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A Energy estimate for the bristle deflection

This section gives upper bounds on the internal frictional state resulting from the solution of the PDEs
(8). For the sake of notation, the time variable t is again replaced by the travelled distance s. The
analysis is conducted with respect to the modified formulation described by Eq. (8). However, it should
be observed that, as opposed to Sect. 3, the slip inputs and the tangential velocity field are not assumed
to be constant over s.

For what follows, it is also beneficial to introduce the notion of Lp-norm ∥·∥Lp . In particular, consider
a domain Ω ⊆ R2; then, the Lp-norm ∥·∥Lp(Ω) (1 ≤ p <∞) is defined as [76, 77]

∥·∥Lp(Ω) ≜

(∫∫
Ω

(·)p dx

) 1
p

. (46)

A generic measurable function f(·) is said to belong to the space Lp(Ω), 1 ≤ p <∞, denoted f ∈ Lp(Ω),

if
∥∥f(·)

∥∥
Lp(Ω)

<∞. The next Proposition A.1 provides an energy estimate for the L2-norm
∥∥z(·, s)

∥∥2
L2(P̊)

of the total internal frictional state z(x, s) ≜
∥∥z(x, s)

∥∥. In what follows, it is assumed that z0(·) ∈ L2(P̊),
and that all the quantities are sufficiently smooth for the derivation of the result.

Proposition A.1 (Energy estimate for the internal frictional state). From Eq. (8), the following energy
estimate holds for the internal frictional state z(x, s):

∥∥z(·, s)
∥∥2
L2(P̊)

≤
∥∥z0(·)

∥∥2
L2(P̊)

e

∫ s
0

1− 2v̂µ(s′)

Vr(s′)g
(
v̂µ(s′)

)λmin(C0)

 ds′

+

∫ s

0

e

∫ s
s′

1− 2v̂µ(s̃)

Vr(s̃)g

(
v̂µ(s̃)

)λmin(C0)

 ds̃∥∥∥σx(s′)− φ
(
s′
)
y
∥∥∥2
L2(P̊)

ds′

+

∫ s

0

e

∫ s
s′

1− 2v̂µ(s̃)

Vr(s̃)g

(
v̂µ(s̃)

)λmin(C0)

 ds̃∥∥∥σy(s′)+ φ
(
s′
)
x
∥∥∥2
L2(P̊)

ds′, s ∈ R≥0,

(47)

where λmin(C0) is the smallest (positive real) eigenvalue of C0.

Proof. First, it may be observed that

1

2

∂z2(x, s)

∂s
=

1

2

∂

∂s

∥∥z(x, s)
∥∥2
2

= zx(x, s)
∂zx(x, s)

∂s
+ zy(x, s)

∂zy(x, s)

∂s
. (48)

Integrating both sides over P̊ yields, after some manipulations,

1

2

d

ds

∥∥z(·, s)
∥∥2
L2(P̊)

=
1

2

d

ds

∫∫
P̊

z2(x, s) dx = −1

2

∫∫
P̊

v̄t(x, s) · ∇tz
2(x, s) dx

+

∫∫
P̊

zx(x, s)
(
σx(s) − φ(s)y

)
+ zy(x, s)

(
σy(s) + φ(s)x

)
dx

− v̂µ(s)

Vr(s)g
(
v̂µ(s)

) ∫∫
P̊

z(x, s)TC0z(x, s) dx.

(49)

Integrating by parts the first integral term on the right-hand side of Eq. (49) and recalling that v̄t(x, s)
is solenoidal, i.e. ∇t · v̄t(x, s) = 0, gives

1

2

d

ds

∥∥z(·, s)
∥∥2
L2(P̊)

= −1

2

∫
T

z2(x, s)v̄t(x, s) · ν̂∂P(x) dL

+

∫∫
P̊

zx(x, s)
(
σx(s) − φ(s)y

)
+ zy

(
x, s)(σy(s) + φ(s)x

)
dx

− v̂µ(s)

Vr(s)g
(
v̂µ(s)

) ∫∫
P̊

z(x, s)TC0z(x, s) dx,

(50)
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since either z(x, s) = 0 on L or v̄t(x, s) · ν̂∂P(x) = 0 on N . In this context, it should be also observed
that the boundary term on the right-hand side of Eq. (50) is always positive, being by definition
v̄t(x, s) · ν̂∂P(x) > 0 on T . Using the fact that C0 is positive definite, which gives z(x, s)TC0z(x, s) ≥
λmin(C0)z2(x, s), the following inequality may hence be deduced:

1

2

d

ds

∥∥z(·, s)
∥∥2
L2(P̊)

≤
∫∫

P̊

zx(x, s)
(
σx(s) − φ(s)y

)
+ zy(x, s)

(
σy(s) + φ(s)x

)
dx

− v̂µ(s)

Vr(s)g
(
v̂µ(s)

)λmin (C0)
∥∥z(·, s)

∥∥2
L2(P̊)

.

(51)

Using Hölder’s and then Young’s inequality for products yields∫∫
P̊

zx(x, s)
(
σx(s) − φ(s)y

)
dx ≤

∥∥zx(·, s)
∥∥
L2(P̊)

∥∥σx(s) − φ(s)y
∥∥
L2(P̊)

≤ 1

2

∥∥zx(·, s)
∥∥2
L2(P̊)

+
1

2

∥∥σx(s) − φ(s)y
∥∥2
L2(P̊)

,

(52a)

∫∫
P̊

zy(x, s)
(
σy(s) + φ(s)x

)
dx ≤

∥∥zy(·, s)
∥∥
L2(P̊)

∥∥σy(s) + φ(s)x
∥∥
L2(P̊)

≤ 1

2

∥∥zy(·, s)
∥∥2
L2(P̊)

+
1

2

∥∥σy(s) + φ(s)x
∥∥2
L2(P̊)

.

(52b)

Combining Eqs. (52) with (53) leads to

d

ds

∥∥z(·, s)
∥∥2
L2(P̊)

≤

(
1 − 2v̂µ(s)

Vr(s)g
(
v̂µ(s)

)λmin (C0)

)∥∥z(·, s)
∥∥2
L2(P̊)

+
∥∥σx(s) − φ(s)y

∥∥2
L2(P̊)

+
∥∥σy(s) + φ(s)x

∥∥2
L2(P̊)

.

(53)

Imposing z(x, 0) = z0(x) (and thus also z(x, 0) = z0(x)), and recalling Grönwall-Bellman inequality
finally yields the result (47).

Remark A.1. Proposition A.1 has been proved under the assumption of fixed contact patch. The proof
may however be conducted similarly even for the case of time-varying contact patch, yielding exactly the
same result as in Eq. (47) (see also [81]).

Remark A.2. If the approximated sliding velocity v̂µ(x, s) is assumed to also vary with x, but inde-
pendently of z(x, s), by observing that v̂µ(x, s) and the function g(·) are always nonnegative, it holds
that ∫∫

P̊

v̂µ(x, s)

Vr(s)g
(
vµ(x, s)

)z(x, s)TC0z(x, s) dx ≥ 0, (54)

and therefore a simpler energy estimate for the total internal frictional state z(x, s) may be derived exactly
as for the classic brush tyre models, for example as done in [81].

B Analytical solutions

This appendix yields some analytical solutions for the results presented in Sect. 3.

B.1 Expressions for the α and β coefficients

The coefficients αxx, αxy, αyx, αyy, βx and βy appearing in Eq. (25) must satisfy
φxx −φγ φψ + φxy 0 0 0
φγ φxx 0 φψ + φxy 0 0

−φψ + φyx 0 φyy −φγ 0 0
0 −φψ + φyx φγ φyy 0 0
−1 0 0 0 φxx φψ + φxy
0 0 −1 0 −φψ + φyx φyy




αxx
αxy
αyx
αyy
βx
βy

 =


0
−φ
φ
0
σx
σy

 . (55)
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When φxy = φyx = 0, solving the linear system in Eq. (55) yields the following expressions for the terms
αxx, αxy, αyx and αyy:

αxx = −
(
φψ + φγ

)(
φ2
yyφγ + φxxφyyφψ + φ3

ψ − φ2
ψφγ − φψφ

2
γ + φ3

γ

)
φ2
xxφ

2
yy + φ2

xxφ
2
γ + 2φxxφyyφ2

ψ + φ2
yyφ

2
γ + φ4

ψ − 2φ2
ψφ

2
γ + φ4

γ

, (56a)

αxy = −
(
φψ + φγ

)(
φxxφ

2
yy + φyyφ

2
ψ − φyyφψφγ − φxxφψφγ + φxxφ

2
γ

)
φ2
xxφ

2
yy + φ2

xxφ
2
γ + 2φxxφyyφ2

ψ + φ2
yyφ

2
γ + φ4

ψ − 2φ2
ψφ

2
γ + φ4

γ

, (56b)

αyx =

(
φψ + φγ

)(
φyyφ

2
xx + φxxφ

2
ψ − φxxφψφγ − φyyφψφγ + φyyφ

2
γ

)
φ2
xxφ

2
yy + φ2

xxφ
2
γ + 2φxxφyyφ2

ψ + φ2
yyφ

2
γ + φ4

ψ − 2φ2
ψφ

2
γ + φ4

γ

, (56c)

αyy = −
(
φψ + φγ

)(
φ2
xxφγ + φyyφxxφψ + φ3

ψ − φ2
ψφγ − φψφ

2
γ + φ3

γ

)
φ2
xxφ

2
yy + φ2

xxφ
2
γ + 2φxxφyyφ2

ψ + φ2
yyφ

2
γ + φ4

ψ − 2φ2
ψφ

2
γ + φ4

γ

, (56d)

whilst the coefficients βx, βy may be factorised as βx = β̃x/β̃, βy = β̃y/β̃, with

β̃x = −φ3
yyφ

2
γ − σyφ

5
ψ − φxxφ

4
ψ − φyyφ

4
ψ − φyyφ

4
γ + σxφyyφ

4
ψ + σxφyyφ

4
γ − σyφψφ

4
γ

− φyyφψφ
3
γ + φyyφ

3
ψφγ − φ3

yyφψφγ + σxφ
2
xxφ

3
yy + σxφ

3
yyφ

2
γ + 2σyφ

3
ψφ

2
γ − φxxφ

2
yyφ

2
ψ

− φ2
xxφyyφ

2
ψ + φxxφ

2
ψφ

2
γ + 2φyyφ

2
ψφ

2
γ − 2σyφxxφyyφ

3
ψ − φxxφ

2
yyφψφγ − φ2

xxφyyφψφγ

+ 2σxφxxφ
2
yyφ

2
ψ − σyφ

2
xxφ

2
yyφψ + σxφ

2
xxφyyφ

2
γ − σyφ

2
xxφψφ

2
γ − 2σxφyyφ

2
ψφ

2
γ − σyφ

2
yyφψφ

2
γ ,

(57a)

β̃y = φ2
xxφ

3
ψ + 2φ3

ψφ
2
γ + σxφ

5
ψ − φψφ

4
γ − φ5

ψ + σyφxxφ
4
ψ + σyφxxφ

4
γ + σxφψφ

4
γ − φxxφyyφ

3
ψ

+ φ3
xxφyyφψ + φxxφyyφ

3
γ + φ3

xxφyyφγ + σyφ
3
xxφ

2
yy + σyφ

3
xxφ

2
γ − 2σxφ

3
ψφ

2
γ − φ2

xxφψφ
2
γ

− φ2
yyφψφ

2
γ − φ2

yyφ
2
ψφγ + 2σxφxxφyyφ

3
ψ − 2φxxφyyφ

2
ψφγ + σxφ

2
xxφ

2
yyφψ + 2σyφ

2
xxφyyφ

2
ψ

+ σyφxxφ
2
yyφ

2
γ + σxφ

2
xxφψφ

2
γ − 2σyφxxφ

2
ψφ

2
γ + σxφ

2
yyφψφ

2
γ ,

(57b)

and
β̃ =

(
φ2
ψ + φxxφyy

)(
φ2
xxφ

2
yy + φ2

xxφ
2
γ + 2φxxφyyφ

2
ψ + φ2

yyφ
2
γ + φ4

ψ − 2φ2
ψφ

2
γ + φ4

γ

)
. (58)

When sideways rolling is also considered, as done for example in [81], the coefficients αxx, αxy, αyx,
αyy, βx and βy satisfy instead:

φxx −φγ φψ + φxy 0 0 0
φγ φxx 0 φψ + φxy 0 0

−φψ + φyx 0 φyy −φγ 0 0
0 −φψ + φyx φγ φyy 0 0

−εy εx 0 0 φxx φψ + φxy
0 0 −εy εx −φψ + φyx φyy




αxx
αxy
αyx
αyy
βx
βy

 =


0
−φ
φ
0
σx
σy

 , (59)

where ε =
[
εx εy

]T
is defined as in [81], with ∥ε∥ = 1. Moreover the corresponding of Eq. (16b) in

system (16) is
dx(ρ, ς)

dς
= Aφγ

(
x(ρ, ς) − xCγ

)
, (60)

where xCγ =
[
xCγ yCγ

]T
=
[
εx/φγ εy/φγ

]T
.

B.2 Analytical expression for steady-state initial conditions

The analytical expression for the steady-state solution z−(x) depend on the shape of the leading edge.
The present appendix reports the closed-form expressions for the initial coordinates x0(ρ(x)) in Eqs. (28)
and (30) for a rectangular and an elliptical contact patch.

B.2.1 Rectangular contact patch

The contact patch is defined mathematically as

P ≜
{
x ∈ Π

∣∣ −a ≤ x ≤ a, −b ≤ y ≤ b
}
. (61)
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The formal expressions for the initial conditions x0(ρ(x)) must be determined from three different
parametrisations of the leading edge:

x = xL1
(y) = a, y ∈ (−b, b), (62a)

y = yL2
(x) = b sgnφγ , x ∈ (0, a), (62b)

y = yL3
(x) = −b sgnφγ , x ∈ (−a, 0). (62c)

Introducing the function

Γ (x) ≜ x2 +
(
y − 1/φγ

)2
, (63)

and combining Eqs. (28) with (62) yields

x0
(
ρ(x)

)
= a, y0

(
ρ(x)

)
=

1

φγ
−
√
Γ (x) −R2

0 sgnφγ , (64a)

x0
(
ρ(x)

)
=
√
Γ (x) −R2

1, y0
(
ρ(x)

)
= b sgnφγ , (64b)

x0
(
ρ(x)

)
= −

√
Γ (x) −R2

3, y0
(
ρ(x)

)
= −b sgnφγ , (64c)

where

R0 ≜ a, R1 ≜ b sgnφγ − 1/φγ , R2 ≜
√
R2

1 +R2
0,

R3 ≜ b sgnφγ + 1/φγ , R4 ≜
√
R2

3 +R2
0. (65)

Substituting Eqs. (64) in (30a) provides three different expressions for the steady-state frictional state

z−
1 (x) = Φ̃φψ

(
Σ1(x), 0

)
Ψ1(x) + z̃(x), (x, s) ∈ P−

1 × R≥0, (66a)

z−
2 (x) = Φ̃φψ

(
Σ2(x), 0

)
Ψ2(x) + z̃(x), (x, s) ∈ P−

2 × R≥0, (66b)

z−
3 (x) = Φ̃φψ

(
Σ3(x), 0

)
Ψ3(x) + z̃(x), (x, s) ∈ P−

3 × R≥0, , (66c)

where the functions Σi(·) and Ψi(·) may be obtained using Eqs. (64a), (64b) or (64c) in turn. The
subdomains P−

1 , P−
2 , P−

3 represent the steady-state regions of three different portions of the contact
patch:

P1 ≜
{
P \ (P2 ∪ P3)

}
, (67a)

P2 ≜
{
x ∈ P

∣∣∣ R2
1 < Γ (x) < R2

2

}
, (67b)

P3 ≜
{
x ∈ P

∣∣∣ R2
3 < Γ (x) < R2

4, x < 0
}
, (67c)

and therefore

P−
1 ≜

{
x ∈ P1

∣∣ γΣ1
(x, s) < 0

}
, P+

1 ≜
{
x ∈ P1

∣∣ γΣ1
(x, s) ≥ 0

}
, (68a)

P−
2 ≜

{
x ∈ P2

∣∣ γΣ2
(x, s) < 0

}
, P+

2 ≜
{
x ∈ P2

∣∣ γΣ2
(x, s) ≥ 0

}
, (68b)

P−
3 ≜

{
x ∈ P3

∣∣ γΣ3
(x, s) < 0

}
, P+

3 ≜
{
x ∈ P3

∣∣ γΣ3
(x, s) ≥ 0

}
. (68c)

Both in transient and steady-state conditions, the complete solution over the whole contact patch
is not C1(P̊ × R>0;R2) nor C0(P × R≥0;R2). Indeed, the continuity between the regions P1 and P2

stems directly from the fact that the value assumed by the bristle deflection at x = xL1(y) = a is the
same for both Eqs. (66a) and (66b). In contrast, the continuity of the solution is not preserved on C3(x).

B.2.2 Elliptical contact patch

An elliptical contact patch is described as the set

P ≜

{
x ∈ Π

∣∣∣∣∣ x2a2 +
y2

b2
≤ 1

}
, (69)

with the leading edge parametrised by

x = xL (y) = a

√
1 − y2

b2
, y ∈ (−b, b). (70)
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Setting y0(ρ) = ρ2 and x0(ρ) = xL (ρ2) yields the following expression for the composite function
y0(ρ(x)):

y0
(
ρ(x)

)
=

1

φγ
−

√√√√ 1

φ2
γ

−

(
1 − a2

b2

)(
1

φ2
γ

+ a2 − Γ (x)

)
sgnφγ(

1 − a2

b2

) , (71)

where Γ (·) is defined as in Eq. (63). Accordingly, the initial condition for the longitudinal coordinate
clearly becomes x0(ρ(x)) = xL ◦ y0(ρ(x)), with xL (·) reading as in Eq. (70). It is worth mentioning
that Eq. (71) is valid under the assumption that a2 ≤ b(b+ 1/

∣∣φγ∣∣) [59].

C Classic formulation of the LuGre-brush tyre models

The classic formulation of the LuGre-brush tyre models approximates the tangential velocity field with
the rolling velocity of the tyre, that is v̄t ≈ −êx, neglects the contribution of the internal friction state to
the turning speed (χψ = 0), and considers a diagonal matrix C0, that is c0xy = c0yx = 0 by assumption.

Owing to these premises, and replacing the time variable t with the travelled distance s, the steady-
state and transient solutions for the internal frictional state z(x, s) may be sought using the method of
characteristic lines, as done already in Sect. 3. However, in this case, it is customary to consider a proper
change of coordinates:

ξ =

[
ξ
η

]
≜

[
xL (y) − x

y

]
, (72)

where x = xL (y) is a parametrisation of the leading edge in the original space variables x. It is worth
emphasising that the above transformation given by Eq. (72) may be used only when the contact patch
is fixed. With the change of coordinates in Eq. (72), the steady-state solution may be more conveniently
expressed in components as

z−x (ξ) = λx(σx − φη)
(

1 − e−
ξ
λx

)
, (ξ, s) ∈ P− × R≥0, (73a)

z−y (ξ) = λy

[
σy + φ

(
xL (η) + λy

)](
1 − e

− ξ
λy

)
− λyφξ, (ξ, s) ∈ P− × R≥0, (73b)

where

λx ≜
Vrg
(
v̂µ
)

v̂µc0xx
≡ 1

φxx
and λy ≜

Vrg
(
v̂µ
)

v̂µc0yy
≡ 1

φyy
(74)

may be easily interpreted as the longitudinal and lateral relaxation lengths. Similarly, the components
for the transient solution z+(ξ, s) read

z+x (ξ, s) = λx(σx − φη)
(

1 − e−
s
λx

)
+ zx0(ξ − s, η)e−

s
λx , (ξ, s) ∈ P+ × R≥0,

(75a)

z+y (ξ, s) = λy

[
σy + φ

(
xL (η) − ξ + λy

)](
1 − e

− s
λy

)
+
(
zy0(ξ − s, η) − λyφs

)
e
− s
λy , (ξ, s) ∈ P+ × R≥0.

(75b)

It should be noticed that the analytical expressions in Eqs. (75) do not appear in previous works. A
rapid inspection also confirms that z+(ξ, ξ) ≡ z−(ξ), since the curve γΣ ≜ ξ − s = 0 parametrises a
travelling edge. Therefore, using the coordinates ξ, the steady-state and transient regions of the contact
patch are described by P− = {ξ ∈ P | ξ − s < 0} and P+ = {ξ ∈ P | ξ − s ≥ 0}, respectively. In
this case, the classic rectangular and elliptical contact patches are both convex in the rolling direction
v̄t = −êx, implying that z ∈ C0(P × R≥0;R2).
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