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Abstract: The exponential proliferation of data during the 

Information Age has required the continuous exploration of novel 

storage paradigms, materials, and devices with increasing data 

density.
[1]

 As a step toward the ultimate limits in data density, the 

development of an electrically-controllable, single-

moleculememristive element is reported. In this device, digital 

information is encoded through switching between two isomer states 

by applying a voltage signal to the molecular junction, and the 

information is read-out by monitoring the electrical conductance of 

each isomer. The two states are cycled using an electrically-

controllable local heating mechanism for the forward reaction
[2–4]

 and 

catalyzed by a single charge transfer process for the reverse 

switching.
[5–7]

 This single-molecule device can be modulated in situ, 

is fully reversible, and does not display stochastic switching. The I-V 

curves of this single molecule system also exhibits memristive 

character.  These features suggest a new approach for the 

development of molecular switching systems and storage class 

memories. 

Introduction 

The increases in speed, scalability, and accessibility of 

computational technologies has resulted in a nearly insatiable 

desire for advanced data storage technologies. Conventional 

technologies such as hard-disk drives and FLASH memories are 

facing fundamental physical challenges as the feature sizes 

enter the quantum regime. Confronting these obstacles has led 

to the emergence of a variety of novel technological platforms 

that aim to extend the exponential improvement of electronic 

elements “beyond silicon”.[8] Molecular-scale electronics has 

been at the forefront of this approach,[9,10] aiming to develop new 

instantiations of wires,[11,12] diodes,[13,14] transistors,[15] and 

photoswitches[16] that operate at the single-molecule level. Here, 

we introduce the development of a single-molecule memristive 

element in which information is encoded by electrically 

controlling the isomerization processes in a molecule that is 

traditionally activated photochemically (Figure 1b). The 

electrically induced isomerization processes within a molecular 

junction are particularly different from reactions in free molecules 

which would lead to new insight in understanding chemical 

reaction in a single molecule level.  

 

Results and Discussion 

The memristive element consists of a bicyclic norbornadiene 

(NB) derivative with oligophenylene-ethylene (OPE) side groups 

that are terminated with thiol linkers that allow attachment to two 

gold electrodes in a single-molecule break junction (SMBJ) 

system (Figure 1a).[17] This NB-state configuration provides a 

conductive, conjugated pathway from one gold electrode to the 

other through the molecular backbone, and therefore exhibits a 

higher conductance, see Figure S1.[18] In conventional 

photochemical measurements, the molecule is photo-isomerized 

with UV light and the NB-state molecule is switched to the 

quadricyclane (QC) form, which breaks the conjugation pathway 

and results in a lower conductance value.[18] Once in the QC-

state, the system eventually thermally relaxes back to the NB-

state. The photochemically induced NB-QC-NB transition 

pathway is a well-studied process which has recently gained 

attention as a possible methodology for thermal storage of solar 

energy.[19–23] However, we find that the reaction mechanisms are 

significantly different when the system is placed in a single-

molecule junction and electrically stimulated. As shown here, the 

forward NB-QC process is thermally activated by electrically 

heating the junction, and the reverse process requires a high 

bias and a single electron transfer (SET) between the molecule 

and the gold contacts to induce the back-isomerization process 

(Figure 1c, blue and orange, respectively). These two reactions 

are reversibly controlled in situ by modulating the bias between 

the two switching potentials (Figure 1b). 

Figure 1. a) Schematic of the molecular device with a modulating bias. b) 

Reversible switching behavior of single-molecule devices and the applied 

waveform. 17.5% (126 out of 719) devices completed all 3 cycles. c) Energy 

landscape of isomerization processes. Blue arrow and orange arrows indicate 

the electrically-controlled forward and reverse switching processes 

respectively. d) Schematic describing the processes for controlling the NB-QC 

switching within a molecular junction (blue and orange arrow). The switching 

processes within a molecular junction are controlled in the forward direction 

(NB to QC) by electrically controlling the local temperature and in the reverse 

process (QC to NB) by catalyzing the reaction through a single electron 

transfer (SET) process. These two states possess different conductance 

values and can be used to encode digital information. 
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We start by investigating switching from the NB-state to the QC-

state as shown in Figure 2. The SMBJ experiment (see 

Experimental Section) is performed by repeatedly making 

contact between two electrodes and measuring the conductance 

as they are separated. Statistical analysis of the resulting 

conductance vs. distance traces results in histograms (Figure 

2a and Figure 2b) which reveal the most probable conductance 

value of a single-molecule device. When starting with molecules 

in the NB-state in vacuum (~1 × 10-6 Torr), at room temperature, 

and at low biases (< 50 mV), only a single-peak appears in the 

conductance histogram, which corresponds to the conductance 

of a single NB-molecular junction (1.2 × 10-4 G0).
[18] However, as 

the bias is increased, a second peak begins to appear at 1.9 × 

10-5 G0 which corresponds to the QC-state, the number of counts 

at this value increases as the bias increases. Then, once the 

bias reaches 150 mV, the NB peak can no longer be discerned 

(Figure 2a). To provide a quantitative description of the 

switching, we define the NB to QC “forward switching potential” 

(Vfsw) as the point where an NB-state and a QC-state have 

equivalent probability of appearing in a SMBJ experiment 

dataset (Figure S2). At room temperature, under vacuum, Vfsw = 

101 ± 3 mV (shown by red arrow in Fig. 2a). However, the 

results are markedly different at a T0 of 78 K (Fig. 2b).  Here, we 

do not begin to see significant changes in the population until we 

are near 150 mV, and the system is not dominated by the QC 

state until we reach a value of 250 mV. In this case the value of 

Vfsw is much higher, 183 ± 4 mV. Notably, in both of these cases, 

the forward switching potential is much smaller than the energy 

of the absorbed photon in photochemical experiments (~3 

eV),[18] suggesting a significantly different reaction pathway. 

Figure 2. Electrical Control of the NB to QC reaction pathway. a) 

Conductance histograms displaying switching behavior at room temperature in 

vacuum. At low biases, only the NB-state is observed (fitted with blue curves), 

and at higher biases only the QC-state is observed (fitted with orange curves). 

At Vfsw = 101 ± 3 mV the two states have an equal probability. b) At 78K Vfsw = 

183 ± 4 mV. c) Vfsw as a function of environmental temperature demonstrating 

local heating behavior. d) By examining the transition rate for this system, we 

extract an activation barrier EA = 1.314 eV for the NB to QC transition. Error 

bars in c) and d) are the standard deviations from 3 experiments. e) 2D 

histogram showing the change in conductance as a function of time when a 

0.25 V bias is applied to the junction. 44.5% (181 out of 407) of the junctions 

undergo a NB to QC transition. 

While a variety of stimuli (electrical field, vibrionic mode, local 

temperature, etc.) can induce isomerization processes,[24–26] the 

change in Vfsw as a function of T0 suggests the switching 

behavior originates from a thermally activated process due to 

electronic local heating of a molecular junction.[4,27,28] Moreover, 

a control experiment with various bias voltages in a solution 

phase (mesitylene) has been performed.(SI, Sec. 3) and no 

obvious peak population shift is observed up to 1000 mV 

(Figure S4). Previous studies have shown that rapid phonon 

relaxation (< 10 ps) from various molecules to the solvent 

environment  can lead to a fast cooling effect[29–32] and a 

molecular junction with surrounding environment would have a 

lower local temperature compared with an isolated molecular 

junction.[33] Therefore, the absence of a population shift in 

solvent further reinforces the notion that forward switching 

process is thermally driven.  

  

To quantitatively explore the local heating mechanism in detail 

we repeated the SMBJ experiments across temperatures 

ranging from 300 K to 78 K and found that Vfsw changed from 

101 ± 3 mV to 183 ± 4 mV over this range. To extract the local 

temperature of the junction as a function of the environment 

temperature and applied bias, we utilize a model developed by 

Di Ventra et al.[2–4]. 

    
    

      
   

 .        (1) 

where    is the environment temperature and      is a 

generalized electron-phonon coupling coefficient defined by the 

molecular junction structure. The effective temperature (Teff) 

depends on the coupling between tunneling current with the 

phonon modes of molecular junction as well as the elastic 

phonon scattering (heat dissipation into electrodes) between 

gold contact lattice and the molecule.  Assuming that the 

effective temperature of the molecular junction (Teff) is the same 

at each switching potential and fitting yields              
     

and            K (Figure 2c, black dashed line). The 

agreement of experimental data and the fitting curves in Figure 

2c supports the thermally-driven NB to QC isomerization 

process. The extracted electron-phonon coupling coefficient 

             
      for NB state, and is consistent with the 

trend from other experiment work[4,27] which suggest that π-

bonding throughout a molecular system yields larger electron-

phonon couplings. We also extracted the activation barrier for 

the switching process by treating the isomerization process as a 

thermally-activated first order reaction with kfsw = A·exp(-

EA/kBTeff), where EA is the activation barrier, kB is the Boltzmann 

constant, and kfsw is the transition rate from NB to QC. Here, kfsw 

is estimated from the probabilities of the two states through 

sorting the state of the single traces in the 1D conductance 

histograms (Eqn. S1) at bias ranging from 170 mV to 210 mV 

with T0 = 78 K. Since the QC state should have a smaller      

due to the saturated bond at the center, a much smaller effective 

temperature is expected. Therefore, the spontaneous relaxation 

from QC to NB is assumed to be negligible in this case. Teff is 

then determined using Eq (1) and the fitted value of      . From 

this information, we were able to plot the transition rate as a 

function of 1/Teff (Figure 2d, SI Sec.4), and found an activation 

barrier of EA = 1.314 eV. In solution phase, this potential barrier 

is estimated to be in the range of 1.5 ~ 2.0 eV.[18,19] These 

results indicate that a thermally activated pathway is possible, 

though there are changes in the energy landscape when the 

molecule is bound in the junction vs. the solution pathway.[34]. 
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Finally, we examined the switching process in situ by holding a 

molecular junction and stepping the bias to 250 mV for 1000 ms 

(Figure 2e) under T0=78 K. In this case, the NB to QC transition 

occurred probabilistically with 44.5% of the junctions switching 

within the hold time. Interestingly, stochastic switching between 

the states rarely occurred. Both of these observations are 

consistent with a thermally-induced switching mechanism as i) 

small variations in configuration will affect the power dissipation 

and heating of the junction thus modifying the switching time, 

and ii) the QC-state is expected to have a smaller      which 

implies the junction will cool-down after switching into the QC-

state especially at a low T0 and allow the QC molecule to 

stabilize in this configuration without changing the bias.  

 

Having developed an understanding of the switching process 

from the NB-state to the QC-state, we now examine the reverse 

process. At much higher biases (0.75 V to 1.5 V) we once again 

began to observe differences in the populations of NB-state and 

QC-state in the conductance histograms (Figure 3a,b), and we 

are again able to estimate a potential at which the two 

populations have equal probability in a SMBJ, which we term as 

the “reverse switching potential” (Vrsw). For this reaction there 

was no obvious change in Vrsw (defined similarly as Vfsw, SI Sec. 

2) ranging from 78 K to 300 K (Figure 3c), which indicates that 

local heating is not the dominant mechanism in the QC to NB 

transition. 

Figure 3. Electrical Control of the QC to NB reaction pathway. a) 

Conductance histograms showing the high-bias switching behavior of the QC 

system at room temperature. At 0.75V most molecules are in the QC-state. By 

1.5 V the system is again dominated by the NB-state. b) Conductance 

histograms obtained at 78K showing similar behavior. c) Temperature 

independence of the reverse switching potential (Vrsw). Error bars are the 

standard deviations from three experiments. d) Average I-V characteristics fit 

with a single-level model demonstrating that the energy offset between the 

molecular orbital and the Fermi energy of the electrodes is similar to the 

reverse switching potential. Grey area corresponds to standard deviation of 24 

I-V curves e) Schematic illustration of SET assisted QC to NB mechanism 

when applied bias is higher than the reverse switching voltage. Single-sided 

arrow indicates the electron transfer through the molecular orbital not through 

the space f) 2D conductance histogram displaying the switching from QC to 

NB when a 0.75V step function is applied, 4.8% (5 out of 104) curves switch. 

g) Similar histogram displaying behavior when 1.5V is applied. 70.6% (60 out 

of 85) junctions switch in this case.  

Previous studies have shown that the QC to NB isomerization 

process can be catalyzed by a Single Electron Transfer (SET) 

reaction, where radical formation to QC•+ is followed by 

isomerization to NB•+, and then reduction back to the neutral NB-

state (see SI Sec. 9 for cyclic voltammetry experiments).[23,35–37] 

The energy barrier for this process is smaller than that for the 

direct QC to NB transition.[23,35–37] Moreover, in a molecular 

junction oxidation can easily occur when the Fermi level of the 

electrode is aligned with the HOMO level of the molecule.[38,39] 

To explore this possibility, we examined the current-voltage (I-V) 

characteristics of single-molecule junctions in the QC-state that 

did not show switching behavior, and adopted the Breit-Wigner 

single-level formula[40,41] to estimate the energy difference (E0) 

between the HOMO-level of molecule in the QC-state and the 

Fermi energy of the gold electrode (Eqn S2). Using this model to 

fit 24 I-V curves measured on QC-state molecular junctions 

yields an energy difference of E0 = 1.149 ± 0.04 eV (Figure 3d), 

and a coupling coefficient Γ of 6.69 ± 0.03 meV. These values 

coupled with the propensity of this molecular system for SET-

catalyzed relaxation in the QC suggests that the high bias 

applied to the junction could induce the SET-catalyzed reaction 

process. As described in Figure 3e, when the applied bias is 

large enough for the electrode to oxidize the QC state molecule, 

a single electron could transfer (indicated by single-sided arrow) 

to the electrode through the molecular orbital through the phenyl 

rings and become QC•+. A QC radical cation would relax to an 

NB radical cation rapidly due to the decreased energy barrier 

and gain an electron from electrode to become a neutral state. 

Similar SET-catalyzed reaction process is demonstrated in metal 

catalyzed reactions[35,36] as well as electrochemical process,[23,37] 

and these results are also consistent with recent reports 

describing stabilization of charged transition states in molecular 

junctions.[42] To further test this hypothesis, in situ QC to NB 

switching experiments are performed using the bias waveform 

shown in Figure 3f-g. First, a long bias window (330 ms) at 

250mV is applied to ensure the junctions are in the QC-state, 

then a step function is applied to switch the system to the NB-

state. In this case, no delay was observed in the switching. 

Either the junction switched immediately, or did not switch at all, 

again confirming a different switching mechanism from the NB to 

QC process. In the case where the bias is stepped to 0.75 V, 

4.8% of the junctions switch to the NB-state. Alternatively, 

stepping to 1.5 V results in 70.6% of the junctions switching 

(Figure 3f,g).  

 

It is generally true that local heating effect still exist in the 

reverse QC to NB SET assisted switching process.  But since no 

temperature dependence is observed in the reverse process, 

local heating is not playing the dominant role. This is likely due 

to a couple of reasons. First, because the QC-state molecule is 

not conjugated throughout the molecular backbone and the 

conductance is lower, it is expected that the electron-phonon 

coupling is smaller. Additionally, at high biases, it has been 
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shown that electron-electron coupling must be taken into 

account which causes the junction to cool.[4,27,43] The 

combination of heating effects in the two states and the 

accessibility of SET processes in the QC-state thus combine to 

create a system that can be switched bidirectionally and non-

stochastically using only the bias as the control barrier. These 

factors thus open up the possibility of utilizing the system in a 

memory configuration where different biases are used to set the 

molecule into different states.  

 

To explore the utility of this molecular system as a memory 

element, we applied a specific bias waveform to the molecular 

junction after it has been formed, to examine the memory 

behavior for each case. There are three steps to the applied 

waveform (Figure 4a, b) corresponding to “Detect”, “Write” and 

“Read” in a memory device.  Figure 4a depicts writing from QC 

to NB and testing the NB volatility. The three bias steps are i) 

0.25 V to detect the QC-state, ii) 0.75 V to write the NB-state, 

and iii) 0.1 V to read the NB-state with a potential low enough to 

not cause switching effects. Here, 64.3% of the curves that 

switch to the NB-state remain there after the bias is reduced in 

step iii). Figure 4b illustrates the memory behavior when 

switching from NB-state to QC-state. Here the waveform 

voltages are i) 1.25 V, ii) 0.25 V, and iii) 0.1 V corresponding to 

the “Detect”, “Write”, and “Read” steps in the process. In this 

case, after a molecule is switched to the QC-state, 95.8% of 

curves remain there during the “Read” cycle.  Furthermore, a 

three cycle square wave is applied to the molecular junction as 

shown in Figure 1b with a high bias 1.25 V and a low bias 0.25 

V. Around 17.5 % of the traces respond to the applied signal 

instantaneously. The rest of the curves which partially respond 

to the signal could be found in SI Figure S8. Figure 4c 

demonstrates the study on I-V characteristics of the NB-QC 

molecular junction. A molecular junction in the QC-state is 

formed at the beginning of the I-V sweep (by applying a bias of 

0.25V when picking up the molecule). A 0 V – 1.5 V – 0 V bias 

voltage is then applied to the QC junction with a sweep time of 

0.1 sec. 159 out of 296 total curves demonstrate switching 

behavior during the I-V sweep and the I-V traces are overlaid to 

build the 2D histogram shown in Figure 4c. Blue arrows are 

guides to the eyes. Example curves of the I-V traces are 

presented in SI Figure S10. The ideal I-V hysteresis (Figure 

S10a) demonstrates NB to QC switching at around 1.5 V and 

the trace remains at NB-state.  In other cases (Figure S10b), we 

observe the competing process between the forward switching 

and reverse switching in the mid-range bias which is consistent 

with our expectation. The hysteresis I-V characteristics would 

lead to application of memristive device. Details of the I-V 

characteristics could be found in the SI Sec. 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. a) 2D conductance histogram showing behavior when a three-step 

waveform is applied to first “Detect” the QC-state (200 ms) then “Write” the -

NB-state (0.75 V, 100 ms), and finally to “Read” the NB-state (0.1 V, 200 ms). 

When the large bias is removed most of the curves (64.3%, 27 out of 42) can 

remain in the high conductance state, allowing the system to operate as a 

memristive element. b) 2D conductance histogram showing conversion to the 

QC-state with high reliability and low volatility. (95.8%, 92 out of 96 remain at 

QC). c) Memristive behavior of NB-QC system in I-V sweep. Blue arrows are 

guides to the eye. The 2D histograms contains 159 curves (out of 296) 

showing switching hysteresis behavior in the I-V sweep. Sweeping bias is from 

0 V to 1.5 V and back to 0 V in 0.1 sec.  

Conclusion 

In conclusion, we have demonstrated that the photoactive 

norbornadiene molecular switch can be isomerized electrically in 

situ to realize an electrically-controllable single-molecule 

memristive element. The switching mechanisms are significantly 

different from those observed in photochemical measurements 

on the same system. The NB to QC transition arises from a local 

heating effect due to current flow and a SET reaction facilitates 

the QC to NB reaction process. This work suggests unique 
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avenues for modulating isomerization processes in single-

molecule devices and demonstrates that photoactive molecular 

devices may operate as electrically-controllable single-molecule 

memristive element elements. With continued work, the intrinsic 

character of the molecule could also be improved by continued 

engineering of the molecule structure. Both the energy barrier 

between the two states as well as the electron-phonon coupling 

coefficient could be tuned and a single molecule device with 

better nonvolatility could be achieved, and further progress 

toward developing molecular memristive devices could be made.  
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This work demonstrates an electrically controllable single-molecule level reaction. The reversible reaction can be electrically 

controlled to perform switching and memory functions, where the conductance values of two molecular isomers are encoded as “0” 

and “1”. Multiple cycles of switching behavior is observed when applied a voltage signal and the absence of stochastic switching 

suggests the application as a memory device. 


