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We propose a novel idea to construct an effective interaction under energy-density-functional (EDF) theories
which is adaptive to the enlargement of the model space. Guided by effective field theory principles, iterations
of interactions as well as enlargements of the model space through particle-hole excitations are carried out for
infinite nuclear matter and selected closed-shell nuclei (4He, 16O, 40Ca, 56Ni, and 100Sn) up to next-to-leading
order. Our approach provides a new way for handling the nuclear matter and finite nuclei within the same scheme,
with advantages from both EDF and ab initio approaches.

DOI: 10.1103/PhysRevC.106.L011305

Introduction. One important challenge in the nuclear
many-body problem concerns the construction of interactions.
Existing state-of-the-art approaches can be mainly catego-
rized into two extremes: one starts with bare nucleon-nucleon
(NN) degrees of freedom and improves the results order by
order following effective field theory (EFT) [1–14] through
ab initio calculations [15–24]; the other adopts the energy-
density-functional (EDF) framework to build an “in medium”
interaction within the self-consistent mean-field (MF) approx-
imation. However, both approaches suffer from long-standing
shortcomings.

Indeed, although ab initio approaches allow one to con-
struct the interaction on a clear foundation, they still suffer
from technical difficulties concerning the reduction of the
enormous model space required to converge the many-body
calculations [25–37]. Attempts along this direction have
been carried out through methods of unitary transformations
[35–37] or an EFT procedure which accounts for both ul-
traviolet and infrared truncations [25–33]. Moreover, much
effort has been spent to face theoretical problems related to the
power counting issues [38–41] and the growing importance of
three- and four-nucleon forces with the number of particles in
the system [42–44]. Nonetheless, a definite solution to these
questions is far from being assured.

On the other hand, a strong model dependence character-
izes the effective interactions usually employed in the EDF
framework, as derived at the MF level. To complicate matters,
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it is known that beyond-MF (BMF) effects need also to be
taken into account. In contrast to the nonperturbative treat-
ment adopted in ab initio calculations, approaches such as the
MF Hartree-Fock approximation or BMF methods are then
applied (see for instance Refs. [45–54]). However, BMF ef-
fects are usually evaluated by employing the same interaction
fitted at MF, which generates an overcounting of correlations
at the BMF level. More refined methods exist to overcome this
problem, such as self-energy-subtraction procedures, which
are used for example in the second random-phase approxi-
mation [45]. Nevertheless, there is a lack of an order-by-order
organization scheme to generate effective interactions appli-
cable to both nuclear matter and finite nuclei. Even more
importantly, as a common drawback of both EDF and ab initio
approaches, the interaction is defined in a fixed model space,
which stays unchanged throughout all considered orders.

Inspired by recent efforts toward bridging EDF and EFT
ideas [55–88], we probe in this work a novel possibility, which
proposes to improve both the interaction and the model space
order by order. Specifically, we assume there is an underly-
ing EFT expansion where the MF results correspond to the
leading-order (LO) contribution. Subleading corrections are
then added, which contain the iterated LO interaction renor-
malized in an enlarged model space through particle-hole
excitations. Constructing an EFT in this direction naturally
leads to a novel setup which demands that

(1) The interaction must be adaptive to the growth of the
model space at each order.

(2) Iterations of LO interactions must be performed
through an in-medium propagator.

This strategy was already applied to infinite matter for in-
stance in Refs. [58,62,65,75]. Note that an attempt to include
the second-order Dyson diagrams has been proposed and
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applied to the calculation of the 16O binding energy in
Ref. [89]. However, an investigation that fully exploits the
advantages of an enlarged model space and analyzes the renor-
malizability of various power-counting scenarios for both
nuclear matter and finite nuclei is so far absent.

We present here a first study where we apply such a strat-
egy to both matter and finite nuclei, sertting the basis for a
novel approach to be adopted in nuclear structure calculations.
Our focus is indeed to develop a unified framework together
with an order-by-order improvable and renormalizable inter-
action which has the potential to be applied to infinite nuclear
matter and nuclei across the entire nuclear chart, as traditional
EDF does.

Leading order. We start by defining the Hamiltonian HLO,
which contains the kinetic term plus the LO interaction term
V LO,

HLO =
∑

i

eîni +
∑
i> j

V LO
i j , (1)

where ei and n̂i are the energy and the particle-number opera-
tor for the particle i. The interaction term V LO

i j is a two-body
operator to be determined. To speculate about a reasonable
LO interaction under EDF, we make use of one basic re-
quirement of EFT: the renormalizability of the observables.
Studies performed for nuclear matter in Refs. [60,61,75] sug-
gest that a t0-t3 model of Skyrme-type interactions is most
likely to be a suitable candidate for V LO. MF calculations of
Eq. (1) are straightforward for both nuclear matter and finite
nuclei.

However, we do not adopt the conventional Hartree-Fock
procedure here. Guided by empirical information (such as
the information obtained by shell-model calculations fitted
to experiments), one could start with an ansatz of the wave
function � and evaluate HLO by calculating its matrix el-
ement. Note that here � defines our model space at LO
and does not change with the effective interaction. Reference
[90] showed that reasonably good results can be obtained by
directly evaluating the Gogny interaction between � consist-
ing of a single-particle basis constructed in the shell model.
Inspired by that, we directly define our LO model space as
the shell-model wave function up to the highest occupied
shell and calculate the expectation value of the Hamiltonian
perturbatively. The ground-state (g.s.) energy of the system
at LO can be written as ELO

g.s. = Ev + Ecoul − tCM + Ec, with
Ev, Ecoul, Ec the energies of valence particles, the Coulomb
potential, and the core contributions, respectively; tCM = 3

4 h̄ω

is the center-of-mass (CM) kinetic energy. Throughout this
exploratory work we only consider closed-shell nuclei, so that
Ev = 0, and the Coulomb potential is treated within the mean-
field approximation. The core energy can be further written as
the core kinetic energy plus the core potential energy, that is
Ec = tc + Vc, where [90]

Vc =
∑
jc
a� jc

b

∑
JT

(2T + 1)(2J + 1)
〈
jc
a jc

bJT
∣∣V LO

∣∣ jc
a jc

bJT
〉
,

tc =
∑

jc
a

(2T + 1)(2J + 1)
〈
jc
a

∣∣̂t ∣∣ jc
a

〉
. (2)
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FIG. 1. Ground state energies of 4He (a), 16O (b), and 40Ca (c) as
a function of h̄ω. Results obtained from a t0-t3 model and full SLy5
and SkP functionals are plotted as black solid, red dotted, and green
dashed lines, respectively. The empirical h̄ω value for each nucleus
is marked as a red vertical dashed line. The horizontal blue lines
represent the experimental energies. The SM energy per particle at
LO is plotted as a function of the density ρ in the inset.

Here jc
a, jc

b label the single-particle orbits in the core, t̂ is the
kinetic energy operator, and J and T are the total angular
momentum and isospin quantum numbers for each pair of
interacting particles, respectively.

Note that the combination of the harmonic oscillator (HO)
strength h̄ω and Nmax (denoting the truncation up to the high-
est occupied shell) provides a natural cutoff of the Fermi
sphere in finite nuclei and might play a similar role as the
Fermi momentum kF in the nuclear matter case. Since our
interaction is singular, without additional regulators, results in
general will not converge with the increase of h̄ω. For each nu-
cleus, there exists an optimal h̄ω so that the shell-model basis
matches the size of the nucleus. For nuclei with mass number
A, the empirical value h̄ω ≈ 45A−1/3 − 25A−2/3 is frequently
adopted [91]. With the above equations, evaluations of the g.s.
energies of 4He, 16O and 40Ca using V LO are straightforward.
The detailed derivation is given in Refs. [89,90] and sum-
marized in the Supplemental Material [92], together with the
form assumed by the adopted LO interaction.

We present the g.s. energies as a function of h̄ω in Fig. 1,
where a t0-t3 model of the SkP parametrization [93] is adopted
for V LO. LO calculations systematically provide strongly
overbound nuclei with respect to experimental data, even at
the empirical value of h̄ω, though the corresponding MF
equation of state (EoS) for symmetric matter (SM) (shown in
the inset of Fig. 1) is quite satisfactory. This is not surprising
judging from the simple form of the LO interaction. We have
tried other t0-t3 parametrizations, which reproduce as well the
empirical SM EoS, and found that the systematic overbinding
persists. On the other hand, with the t1,2 Skyrme terms in-
cluded, the MF g.s. energies obtained from SkP [93] or SLy5
[94,95] are very reasonable, with the minimum also located
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FIG. 2. Once-iterated diagrams for the interaction V LO
iter . k1 (k2)

denotes the single-particle momentum of the initial (final) state, and
q is the transferred momentum.

close to the empirical h̄ω value. Although an EFT should
aim to capture the most important physics already at LO, one
could argue that basic physics is roughly captured once the
equation of state of symmetric matter can be reproduced up to
saturation density.

Next-to-leading order: Two possibilities of improvements.
To improve further, two approaches are possible. First, one
could add more terms to the effective interaction together
with an EFT-based speculation on their form or importance,
and then evaluate again Eq. (1) to produce better fits to a
wider range of nuclear properties. Many attempts have been
devoted in this direction [69–73,96–98]. On the other hand,
since nuclei are bound states, they should be generated by
at least partial iteration of a certain interaction. The MF de-
scription might be then improved by considering higher-order
corrections coming from the iterated diagrams, such as the
ones corresponding to the enlargement of the model space
through particle-hole excitations. Improvements in this direc-
tion are much less studied, as iterating effective interactions
built at MF level in the loops usually generates self-
consistency problems, unless renormalization is taken care of
properly.

Starting from next-to-leading order (NLO), we improve
our theory by considering both of the above directions, and
demonstrate how to establish self-consistent NLO corrections
through proper renormalization procedures. Up to NLO, one

has

ENLO = ELO + 〈�|V CT
i j |�〉 + ENLO

iter , (3)

where V CT
i j is the higher-order contact interaction entering at

NLO with its contribution evaluated at the MF level [the same
way as in Eq. (2)]. The structure of V CT

i j has to be determined
according to the renormalizability and the power-counting
scheme. ENLO

iter represents the contribution of the once-iterated
diagrams shown in Fig. 2. The general form of ENLO

iter reads
[99]

ENLO
iter = −1

4

∑
jc
a� jc

b,Xα�Xβ

|〈 jc
a jc

bJT |V LO
iter |XαXβJT 〉|2

εα + εβ − εa − εb
, (4)

where jc
a(b) are the same as in Eq. (2) because one stops at

the highest occupied orbital; Xα(β ) stands for excited states,
where the summation starts at the Fermi sphere and stops at
an upper limit which defines the second-order model space;
εi = k2

i /2m is the single-particle energy of each state having
momentum ki (the effective mass is set to its bare value m =
939 MeV in this work). V LO

iter denotes the part of the LO
interaction which is iterated to provide the NLO contribution.
A straightforward evaluation of Eq. (4) is in principle possible.
However, the truncation applied to the excited states in the
single-particle basis cannot be directly matched with the trun-
cation performed for the EoS of matter in Refs. [60,61,75],
where a relative momentum cutoff � is applied. Moreover,
Moshinsky transformations require all excited states Xα,β to
be represented in terms of the HO basis,1 which complicates
the matching between different nuclei, as they correspond to
different h̄ω and Xα(β ) .

To produce a renormalized interaction to be easily applied
to all cases, we proceed as follows. First, since excitations are
governed by V LO

iter , one can directly represent the relevant wave
functions in relative coordinates. Let us call k1, k2 (k′

1, k′
2)

the single-particle momenta of the initial/final (intermediate)
state. Then, the incoming and outgoing momenta in rela-
tive coordinates are k = (k1− k2)/2, k′ = (k′

1− k′
2)/2 + q,

where q is the transferred momentum. Equation (4) can be
rewritten as

ENLO
iter = f (h̄ω)

4

[∫
d3k

∫
d3k′

∫
d3K〈�(K; k)|V LO

iter (k; k′)|ψ (k′)〉G〈ψ (k′)|V LO
iter (k′; k)|�(K; k)〉

]
BC

, (5)

where

G = −m

k′2 − k2
. (6)

� is represented in the same basis used at LO, which depends
on the CM momentum K = k1 + k2 = k′

1 + k′
2 and on the

relative momentum k. ψ = ∑
i φi denotes the intermediate

excitations, where φi can be represented by any complete
basis. One caveat is that if one chooses to expand � and ψ

1Alternatively, one could go through extra processes which involve
the decomposition of the chosen basis into the HO one [100,101].

in a different basis, an overall factor f �= 1 will be needed
to fix the norm. To define the intermediate model space, one
must truncate it either by the number of basis states or by the
highest momentum. In this work, we choose the second option
and adopt the free wave-packets basis so that f depends only
on h̄ω. The detailed derivation leading to Eq. (5) is given in the
Supplemental Materials [92]. Note that the conversion of ini-
tial/final and intermediate single-particle-basis states (which
are also restricted as mentioned before) to relative coordinates
results in a boundary condition (BC) which couples kF to
new variables k, k′, and K. The threefold integration under
the same BC has been carried out to obtain the second-order
EoS [62,99], and is to be carried out in a similar manner in
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TABLE I. kA (in fm−1) for 4He, 16O and 40Ca under various h̄ω.
Those adopted in Fig. 3 are highlighted by bold text.

h̄ω (MeV) 11 12 13 14 15 16 17 18

kA of 4He 0.90 0.95 0.98 1.02 1.05 1.08 1.12 1.15
kA of 16O 1.08 1.13 1.18 1.22 1.26 1.30 1.34 1.38
kA of 40Ca 1.25 1.37 1.35 1.40 1.45 1.49 1.54 1.58

Eq. (5). However, unlike the nuclear matter case—where a
clear definition of Fermi momentum is possible—kF is not
clearly given in finite nuclei. In the nuclear matter case, the
radial integral dk is truncated by k ∈ [0, kF ]. On the other
side, in finite nuclei, the same integrals are carried out through
k ∈ [0,∞]. However, the shell structure (the LO wave func-
tions of a nucleus at a chosen h̄ω) provides a natural truncation
analogous to kF . To proceed, we interpret kF in finite nuclei to
be the highest momentum each wave function can access. The
procedure to extract kF in a finite nucleus is thus the following.
First, we evaluate the g.s. energy at the MF level and separate
the contributions from the t0, the t3, and the V CT terms for
each nucleus. Then, we compare the ratios 〈t0〉

〈t3〉 and 〈t0〉
〈V CT 〉 to

their corresponding values in SM. The ratios in nuclear matter
depend on kF , whereas the same ratios in finite nuclei are
related to their shell structure. By requiring the same ratios
between finite nuclei and nuclear matter, we can extract the
corresponding kF for 4He, 16O, and 40Ca (denoted as kA) under
various h̄ω values. The resulting kA are listed in Table I. One
can see that a heavier nucleus (and a larger h̄ω) naturally
corresponds to a higher kA. We have tried several interactions
having different values of α (the power of the density in the t3
term) and found a very weak spreading (�1% variations for
α ≈ 0.16–0.3)2 between the values of kA obtained by using
such interactions in the matching of the ratios.

Once kA is known, we have all the ingredients to per-
form actual calculations. In Refs. [61,75], the full t0-t3 LO
interaction is iterated to generate ENLO

iter for nuclear matter.
The same procedure can be performed in principle in Eq. (5)
for finite nuclei. However, some conceptual subtleties arise
regarding how to account for the density ρ when one considers
the fluctuation of the wave functions due to the intermediate
excitations. In fact, in conventional EDF approaches with a
density-dependent term included (for example the t3 term of
Skyrme interactions), the interaction does not correspond to
a genuine Hamiltonian. The iteration of this term generates
a conceptual drawback and may lead to technical problems
such as divergences in BMF calculations for nuclei [102–104].
Also, the density-dependent term depends on the wave func-
tion and this could potentially complicate an EFT analysis.
Therefore, we choose not to iterate the t3 part of the interaction
in this work.

In the following, we perform two types of NLO calcula-
tions:

(1) Only the t0 part of the LO interaction is iterated, and
V CT = C(1 + xcPσ ).

2For α up to 1, the extracted kF can vary up to 5%.

FIG. 3. Left panels (a)–(c): Ground state energies up to NLO for
4He, 16O, and 40Ca as a function of �. Right panel (d): Rel. err. =
(Eb − Eexp.)/|Eexp.| for the first five closed-shell, N = Z nuclei. The
labels NLO (i) and NLO (ii) refer to the two prescriptions described
in the main text, where parameters in NLO (ii) are obtained by either
fitting to EoS only (fit EoS) or an overall fit including EoS and all
five nuclei (fit all). Their corresponding EoSs are plotted in (e).

(2) Same as (i), but with additional V CT
ii = 1

2 t1(1 + x1Pσ )
(k′2 + k2) + t2(1 + x2Pσ )k′ · k, that is, the Skyrme-
type t1,2 terms are added.

Note that the above interactions are Skyrme-like, and Pσ =
(1 + σ1σ2)/2 is the spin-exchange operator. We treat C, xc, α,
t0,1,2,3, and x0,1,2,3 as the low-energy constants (LECs) in EFT,
and we choose to renormalize them to reproduce the SLy5
SM and neutron matter (NM) EoSs. The LECs, the χ2 values
and the resulting EoSs are given in the Supplemental Material
[92]. Predictions on g.s. energies of 4He, 16O, 40Ca, 56Ni, and
100Sn evaluated up to NLO with � = 4–10 fm−1, are given
in Fig. 3, where the empirical h̄ω = 45A−1/3 − 25A−2/3 are
adopted. As one can see, the pathological overbinding trend at
LO seems to persist under the prescription (i). Thus, without
the entrance of new kF dependencies in the EoS (other than
terms that behave asymptotically ∼k4

F and proportional to t2
0 )

at NLO, one does not observe any improvement from LO to
NLO for the EoSs of both matter and finite nuclei. Neverthe-
less, the NLO renormalizability is satisfied, which is reflected
in the converging pattern of NLO (i) results against �. A real
improvement is achieved by the prescription (ii), where, by
just fitting to the empirical EoSs, reasonable reproductions
of the experimental binding Eexp. are found for nuclei up to

mass number A = 40 (with |relative error| = |Eb−Eexp.|
|Eexp.| � 8%,

where Eb is the resulting binding energy). This suggests that
the t1, t2 terms are indeed indispensable, as indicated by many
phenomenological studies. However, the error grows to ∼15%
when extending the calculation to the next two N = Z nu-
clei (56Ni and 100Sn). Note that the curves labeled as NLO
(ii)fit EoS are obtained by keeping the original SkP or SLy5
values of t1,2,3, x1,2,3, and α, while adjusting only t0, C, and
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x0,c to two EoSs.3 Up to NLO, the computational cost stays
very closed to the MF calculations and is relatively small.
Thus, we attempt a second fit (utilizing all LECs but keeping
α = 1/6) to the empirical EoSs and all five nuclei. We found
it is possible to reproduce the experimental binding for all five
nuclei within 3% [denoted by the red shaded area and labeled
as NLO (ii)fit all in Fig. 3], if one allows the SM EoS to be
slightly (�2%) more attractive around saturation than the one
produced by SkP [panel (e), Fig. 3].

Power counting: Particle-number-dependent high- and
low-momentum scales. Finally, we speculate about the high-
and low-momentum scales Mhi and Mlo in our EFT expansion.
Since Mlo spans from 0 to kF —which varies with A in a
nucleus—a successful EFT arrangement of observables up to
NLO in terms of powers series in (Mlo/Mhi ) suggests that Mhi

has the following properties:

(1) It is at least larger than kF , and depends on the number
of particles A.

(2) It depends on Nmax and h̄ω, at least for those nuclei
where central densities are lower than the saturation
density of SM. Let us denote by As typical A values
for which nuclei reach the saturation density in their
central region. Then Mhi increases with A for A < As.

The breakdown scale has a functional form Mhi(A, h̄ω). For
A < As, the asymptotic form of the EFT expansion is Mlo

M̄hi
∼

k
βkF (A) , where k is the characteristic center-of-mass momentum
scale and β � 1. On the other hand, βkF (A) ∼ M̄hi, that is, it
becomes a constant for A > As, where M̄hi is a hard break-
down scale to be extracted by a Lepage-like plot [105,106]
from NLO and next-to-next-to-leading order (NNLO) results;

2
3π2 M̄3

hi and 1
3π2 M̄3

hi correspond to the highest density ρ for

3LECs adjusted to SkP and SLy5 EoSs produce � 1% difference in
Eb up to 40Ca, and are indistinguishable in Fig. 3.

which one can trust the EoS of SM and NM, respectively (for
example, twice the saturation density of SM).

Summary. In summary, we provide a novel framework to
include BMF correlations order by order. With a reliable ex-
traction of kF , the treatment of finite nuclei and nuclear matter
can be performed on the same footing. Investigations up to
NLO are performed for five N = Z closed-shell nuclei and
for nuclear matter for the first time. We have tested various
arrangements of NLO corrections through renormalization-
group analysis. Note that our analysis are based on a
trial-and-error procedure. Since not all possibilities are tested,
our NLO prescription (ii) might still be subjected to further
refinements. Nevertheless, the trial-and-error procedure car-
ried out in present work—which checks the renormalizability
of the in-medium loops (and therefore the self-consistency of
the proposed beyond mean field corrections)—can be repeated
with different interactions in the future. Thus, our work serves
as a starting point toward an EFT-based description of nuclei
across the entire nuclear chart. Many interesting future works
including the treatment of higher-order correlations and a full
EFT power-counting analysis are in progress.
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