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Abstract

We introduce a tactical resource allocation model for a large aerospace engine system manufacturer aimed
at long-term production planning. Our model identifies the routings a product takes through the factory,
and which machines should be qualified for a balanced resource loading, to reduce product lead times. We
prove some important mathematical properties of the model that are used to develop a heuristic providing a
good initial feasible solution. We propose a tailored approach for our class of problems combining two well-
known criterion space search algorithms, the bi-directional ε-constraint method and the augmented weighted
Tchebycheff method. A computational investigation comparing solution times for several solution methods
is presented for 60 numerical instances.

Keywords: bi-objective mixed integer programming (BOMIP); production planning; aerospace industry; capacity plan-
ning

1. Introduction

Allocating resources among competing activities is one of the most popular type of optimization
problems considered in various application areas, such as manufacturing, hospitals, and finance.
Manufacturing, Planning, and Control (MPC) is a subject of interest to many practitioners as
well as operations research experts due to its positive impact on efficiency for many companies
globally. Some of the traditional MPC systems are integrated MPS (Master Production Schedule;
Blackstone Jr., 2013) and MRP (Materials Requirement Planning; Plossl and Orlicky, 1999) models
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that optimize simultaneously the production and the purchase of raw materials over a shorter time
horizon, taking the allocation of products to resources as fixed. It is well understood that having
more options of verified resources could be useful for the planners to tackle any demand variations
in the short term. In some industries, there is, however, a need to perform time-consuming or costly
verification before re-allocating a product to a new resource. Hence, it is beneficial to identify such
verifications (we use the term qualifications) before they are required.

Our proposed model (for case company GKN Aerospace, a leading manufacturer of aerospace
engine systems) identifies the routes that a product may take through the factory over a fairly
long time horizon (a quarter of a year in this work). The need of our allocation model is due
to the requirement of costly as well as time and resource demanding qualification of production
processes when new products are introduced or significant changes arise in the machining capacity
(in this work, resources implies machines). The model considers multiple products, each having
different part types that require machining operations (e.g., milling, turning, and grinding), and
the capacity (in hours) of machines as well as the time horizon are considered to be finite. There
is a tendency (at GKN) to utilize only a few capable machines (with respect to speed, tolerances,
and multiple functionality) at high loading levels (Blackstone Jr., 2013, p. 94). This causes a resource
loading imbalance in the production system that leads to variations in the delivery times of products,
resulting in long queues of jobs (operations done on products/parts) in front of some machines. We
relieve imbalance by identifying multiple routes by means of qualifying alternative machines for a
given type of job. In summary, our model allocates jobs (operations performed on products/parts)
to machines with the bi-objective goal to minimize both qualification cost and loading imbalance,
while demand in each time period and various other side constraints are satisfied.

1.1. Qualifications of machines for jobs

A qualification of a machine for a job type involves verifying that all encoded tasks can be per-
formed by the machine within acceptable tolerances. It involves writing a computer program for
the control system, buying new fixtures, training the machining staff, and performing simula-
tions to validate expected output. Once a machine is qualified for a given job type, it can be
used for orders of the same job type in all subsequent time periods; hence, the associated costs
are one-time costs, as opposed to set-up/start-up (changeover) costs commonly considered in
capacitated lot-sizing models (Pochet and Wolsey, 2006, p. 137).1 Table 1 illustrates the routings
in a dummy production system with three machines and the two operations milling and turn-
ing, performed on a single product/part. For simplicity, we refer to job type as the combination
of a product/part type and the operation performed on it. In the first time period, milling is
done in machines 1 and 3, in the second time period, the same operation is done in machines 1
and 2, and in the third time period, it is done only in machine 2. For machine 2, the box around
the M indicates that the milling operation is to be qualified and performed in time period 2. For
machine 3, the turning operation is to be qualified in time period 2 and performed in time pe-
riod 3. The blue and green colors indicate the time periods when a given machine is qualified to

1As the volumes are quite low in the aerospace industry, jobs are not performed in batches. Hence, set-up times are
included in the processing times of jobs in machines.
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Table 1
Routings for a single part/product: M (milling)
and T (turning) indicate time periods (t) when
machines (k) are used for the respective purpose;
� indicates time period and machine qualifica-
tion for milling and turning, respectively

k = 1 k = 2 k = 3

t = 1 M T T M
t = 2 M T M T
t = 3 M T T

perform milling and turning, respectively. As a few machines are pre-qualified (used previously) for
some job types, not all machines need to be qualified. For example, machine 1 is pre-qualified for
both M and T.

1.2. Contribution

The contribution of this work is twofold. We introduce a tactical resource allocation problem
(TRAP) with unrelated parallel machines (with several company related side constraints and as-
sumptions), and a corresponding mathematical model. We consider the trade-off between resource
loading imbalance and qualification costs, which is to the best of our knowledge not considered
in the literature. Some mathematical properties of the model are utilized in a starting heuristic for
reducing the computing time. We then suggest a tailored algorithm for the TRAP, starting with a bi-
directional ε-constraint method, followed by the Augmented weighted Tchebycheff (AWT) method.
The approach tackles some well-known shortcomings of the ε-constraint method and is shown
to shorten computing times, in particular for some difficult numerical instances. Our model can
be used by most organizations where resources are shared among products/parts/customers and
costly and/or time-demanding preparations are required the first time a product/part/customer
needs to be (re)allocated to a new resource.

1.3. Outline

The scope of the TRAP is described in Section 2.1 along with some background, while Section 2.2
provides a brief introduction to multi-objective optimization methods. Section 3.1 presents a math-
ematical model for the TRAP; it is proven to be NP-hard in Section 3.2. Section 3.3 incorporates
decision makers’ preferences in the TRAP and mathematical properties of the model are discussed
in Section 3.4; these are then utilized in a starting heuristic for reducing computation time; see
Section 4. Section 5 presents criterion space search methods and the numerical tests performed. In
Section 5.1, our suggested approach is motivated. Section 5.2 introduces a modified bi-directional
ε-constraint method and implementation details. Section 6 presents a method to generate instances
for our problem that closely represent the industrial setting, then followed by a comparison of our
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proposed approach with several state-of-the-art criterion space search methods on the generated in-
stances.

2. Background and scope

The research field of production planning is broad. We provide a brief orientation of the field be-
fore diving into the specific variant of the production planning problem studied in this work. One
popular way of classifying production planning models is by acknowledging the time horizons con-
sidered. This simplifies to some extent the decision variables and model parameters. Several authors
(e.g., Gupta and Maranas, 1999; Min and Zhou, 2002) classify production planning problems as
strategic, tactical, or operational. A strategic planning affects the design, the product structure, and
the configuration of the factory. It is usually done two to five years in advance (the range varies
among industries). Tactical planning involves determining material flows, inventory levels, and ca-
pacity utilization; it is usually done one to four years in advance and acts as an input to operational
models, such as machine scheduling.

2.1. Tactical planning literature and scope of the TRAP

According to Díaz-Madroñero et al. (2014), there are five main categorizations of tactical planning
problems: (a) number of products/items and structure of bill-of-materials/levels (e.g., series, assem-
bly, general, and arborescence) (Pochet and Wolsey, 2006, Chapter 13); (b) distribution (stochastic
or deterministic) of the demand; (c) time discretization; (d) capacity constraints; and (e) types of
objective functions. Further, most industrial problems are multi-item and some are also multi-level.
Mainly two types of time discretizations are considered: short-time buckets, in which their is enough
time to manufacture one part/item; long-time buckets, in which multiple parts or an entire product
is produced. A classic example in which small time buckets are used is the discrete lot-sizing and
scheduling problem (DLSP; Lasdon and Terjung, 1971), in which the integration of the lot-sizing
and scheduling problems is enhanced by the short time buckets. Hybrid models refer to combin-
ing large and small time buckets; a classic example of a hybrid model is the general lot-sizing and
scheduling problem (GLSP; Fleischmann and Meyr, 1997). Transchel et al. (2011) consider a hybrid
model using macro (discrete) and micro (continuous event-based) time scales. Although in most
companies resources are shared by multiple products, parallel machines are considered in few arti-
cles (Wörbelauer et al., 2018; for parallel production lines). It is computationally hard to perform
both scheduling and lot-sizing in a monolithic model for industrial instances. Furthermore, most
companies prepare the schedule of a job only when a customer order has been created in the MRP
system that is generally few hours/days (varying between companies) before the delivery time/date
is fixed; so-called rolling horizon. Hence, long-term scheduling is generally not practically useful
as modeling all the uncertainties in advance is a hard task. Therefore, there is merit in separating
lot-sizing and scheduling problems. Some articles pertain to bi-objective lot sizing problems, for
example, Ammar et al. (2019) (objectives inventory cost and set-up time) and Rezaei and Davoodi
(2011) (objectives service level and total cost). Many articles highlight demand uncertainty, which is
often modeled using stochastic programming (Lan et al., 2011; Nourelfath, 2011), less commonly
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by fuzzy sets (Chen and Huang, 2010; Lan et al., 2011), and by robust approaches (Wei et al.,
2011; Genin et al., 2008). Most capacity constraints in tactical level models regard machines, man-
hours, fixtures, tools, and inventory levels. The most common type of objective function minimizes
cost/time (processing time, set-up time, and fixture costs; Bradley and Glynn, 2002; Mieghem,
2003). The drawback of using such functions is, however, that most of the cost measures rely heav-
ily on the used accounting principles, which are generally misleading (Myrelid and Olhager, 2019).

Our model focuses on long-range resource (machine) loading, a time frame in which reliable and
detailed (weekly/daily) demand predictions do not exist. Consequently, short-time buckets are not
relevant. Instead our time discretization uses long-time buckets (a quarter of a year for our case)
wherein it is reasonable to assume a constant material flow (i.e., precedence between jobs can be
ignored) and a deterministic demand due to various fixed contracts. The manufacturing of products
involves activities such as cutting, welding, heat treatment, and quality control on either the final
product or parts that are later assembled into the final product. We focus only on cutting operations,
which make up the majority of the total lead time of products. We propose a capacity allocation
plan that promotes a balanced resource loading enabled by new qualifications. This is done by
means of a bi-objective optimization model, which is to be used when one or several products are
introduced in the factory or in case of significant change in available machining capacity.

2.2. Multi-objective optimization methods

Most real world industrial applications have several, often conflicting, objectives. This has resulted
in a surge in utilization of multi-objective optimization methods to obtain so-called efficient fron-
tiers (see Ehrgott, 2006). The solutions on the efficient frontier help the decision maker understand
the true trade-off between two or more objectives. Algorithms for bi-objective integer programming
(BOIP) and bi-objective mixed-integer programming (BOMIP) are broadly classified into decision
space search methods and criterion space search methods. Popular methods for decision space search
include evolutionary multi-objective methods (e.g., NSGA-II; Deb et al., 2002), which has gained
interest although it does not provide any measure of optimality or near-optimality. There are also
some nonevolutionary metaheuristics, hybrid multi-objective metaheuristics, and parallel multi-
objective optimization methods that have become popular in some applications (such nonstandard
approaches are discussed in Talbi et al. (2012)). Such inexact methods are, however, extremely use-
ful if the enumeration of all the nondominated points (NDPs) using exact methods is hindered by
time or memory limitations. Some improvements in branch-and-bound methods for bi-objective
mixed 0–1 linear optimization problems are presented in Vincent et al. (2013).

Our work focuses on criterion space search methods, motivated by the fact that they can exploit
the power of integer programming solvers (Gurobi in our case), and that any future computa-
tional enhancement of the solver will be replicated for the end-user of our algorithm as well. Some
popular methods for criterion space search are the weighted sum method (Aneja and Nair, 1979),
the perpendicular search method (Chalmet et al., 1986), the augmented weighted Tchebycheff (AWT)
method (Bowman, 1976; Steuer and Choo, 1983), and the ε-constraint method (Miettinen, 1988, p.
85). More recently proposed methods include the balanced box (BB) method (Boland et al., 2015a),
which extends the traditional box method for BOIP (Hamacher et al., 2007), and the triangle split-
ting method for BOMIP (Boland et al., 2015b). Methods such as weighted sum are not able to find
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unsupported nondominated points (Ehrgott, 2005, Definition 8.7), the existence of which makes
BOMIP (and BOIP) particularly hard to solve. Most algorithms for multi-objective integer pro-
gramming (MOIP) possess one basic common operation, the so-called scalarization, the idea of
which is to transform a MOIP into a sequence of single objective IPs (integer programs). Scalariza-
tion techniques for transforming a BOIP into a sequence of IPs include the augmentation method,
which uses appropriate values for the objective weights (Mavrotas, 2009; Özlen and Azizoğlu, 2009),
and lexicographic minimization of the two objectives (Ehrgott, 2005, Section 5.1).

Three important factors to consider when selecting an appropriate method are (i) the maximum
number of scalarized problems to solve in order to identify all the nondominated points (NDPs), (ii)
the quality of the feasible solutions (if) available for each scalarized problem, and (iii) the compu-
tational cost of a given scalarized problem. A combination of these factors along with information
about the problem type and instance sizes help in identifying a functioning approach. For example,
if a problem is computationally hard to solve unless it is initialized with a good feasible solution,
then a decomposition method such as the balanced box (BB; Boland et al., 2015a) and the box
method (Hamacher et al., 2007) may provide better (i.e., shorter) solution times as compared to the
ε-constraint method. However, to identify a set G of NDPs, the BB method solves 3|G| scalarized
problems (Boland et al., 2015a, Proposition 5), while the ε-constraint method solves only 2|G| + 1
scalarized problems (Chankong and Haimes, 1983). Hence, most decomposition methods solve
more scalarized problems, which may result in large computing times for certain problem instances.
Several attempts to combine different approaches to utilize their respective strengths and avoid
weaknesses have been made. For one such example, as presented by Dai and Charkhgard (2018),
the algorithm starts by employing the BB method and then switches to the ε-constraint method;
this algorithm results in 25%–40% improvement in solution times over the pure BB method and
the pure ε-constraint method on various popular benchmarking instances (Dai and Charkhgard,
2018, Table 1). In Leitner et al. (2016), switches between the perpendicular search and ε-constraint
methods are done repeatedly during the course of the algorithm. The contrast between these two
methods—apart from using different combinations—is that Dai and Charkhgard (2018) use a fixed
switch rule while Leitner et al. (2016) do not. The idea of combining two or more approaches has,
however, been around for a long time (to the best our knowledge, the first application appeared
in Ulungu and Teghem (1994)). We conclude that different criterion space search methods have
varying effects on computational performance, depending on the problem and instances.

3. Problem description and properties

The tactical resource allocation problem (TRAP) is defined as follows; notations are listed in
Table 2.

Definition 1 (Tactical Resource Allocation Problem (TRAP)). Given a set J of job types (tasks) and
a set K of machines, let p jk be the processing time (including set-up time) of job type j ∈ J when
performed in a compatible machine k ∈ K j ⊆ K. Each machine k ∈ K has the capacity Ckt (time
units) in time period t ∈ T and a relative loading threshold ζk ∈ [0, 1]. The demand a jt of each job
type j ∈ J in time period t ∈ T must be met. The number of machines allocated to the same job
type in each time period may not exceed the value of the parameter τ ∈ Z+. For assignments ( j, k),
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Table 2
Notation for the tactical resource allocation model

Sets Description

J = {1, . . . , J} set of job types to be performed on the products
K = {1, . . . , K} set of machines
K j ⊆ K set of machines feasible for job type j ∈ J
N j ⊆ K j set of machines feasible, but not qualified for job type j ∈ J
T = {1, . . . , T } set of time-periods

Variables Description

xjkt ∈ Z+ number of jobs of type j ∈ J performed in machine k ∈ K j in time period t ∈ T
s jkt ∈ {0, 1} = 1 if a job of type j ∈ J is allocated to machine k ∈ K j in time period t ∈ T
z jkt ∈ {0, 1} = 1 if machine k ∈ N j is qualified for job type j ∈ J in time period t ∈ T
nt ∈ R+ maximum resource loading above thresholds ζk, k ∈ K, in time period t ∈ T
y := (x, s, n, z) bold notations representing vectors of the corresponding indexed variables

Parameters Description

ajt ∈ Z+ demand of jobs of type j ∈ J in time period t ∈ T
pjk ∈ Q+ machining time (including set-up time) in machine k ∈ K j for job type j ∈ J
Ckt ∈ Z+ capacity (hours) available in machine k ∈ K in time period t ∈ T
β jk ∈ Z+ cost associated with qualifying machine k ∈ N j for job type j ∈ J
γ ∈ Z+ upper limit on the number of qualifications in a single time period
τ ∈ Z+ maximum number of alternative machines for each job type in a single time period
ζk ∈ [0, 1] loading threshold for machine k ∈ K

such that k ∈ N j and j ∈ J , so-called qualifications are required that generate additional one-time
costs. It holds that N j ⊆ K j for all j ∈ J ; for the case of a new job type (associated with a new
product) j, K j = N j holds. For a job type j ∈ J , the machines in the set K j \ N j do not require any
qualifications (pre-qualified machines). The total number of qualifications performed per time period
t may not exceed the value of the parameter γ ∈ Z+. The objectives considered are to minimize the
sum (over time periods) of maximum excess resource loading above given thresholds and to minimize
the qualification costs (see Section 3.1 for more details). �

Let us consider the example illustrated in Table 1, with two job-types, T and M. Using the no-
tations (see Table 2) J = {M, T}; T = {1, 2, 3}; NM = {2}; NT = {3}; KM = KT = K = {1, 2, 3};
aM1 = aM2 = 2; aM3 = 1; aTk = 2, k ∈ K; Ckt = 4, k ∈ K, t ∈ T ; ζk = 0.7, k ∈ K; pM1 = pM2 = 1;
pM3 = 3, pT1 = 3; pT2 = pT3 = 1; τ = 2; γ = 1; β jk = 1, j ∈ J , k ∈ K. Let us denote the solution

(the variable x in Tab. 2) illustrated in Table 1 for the job type milling (M) as x1
M··=

(
k=1 k=2 k=3

t =1 1 0 1
t =2 1 1 0
t =3 0 1 0

)

and for turning (T) as x1
T·· =

(
1 1 0
1 1 0
0 1 1

)
(with the same row (t) and column (k) labels). The ex-

cess resource loading (loading level above the threshold ζk) for t =1 and k=1 is defined as
1

C11
(pM1x1

M11 + pT1x1
T11) − ζ1 =0.3. The excess resource loading for each value of t (row) and k
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(column) then is
(

0.3 0 0.05
0.3 0 0
0 0 0

)
, which implies that for t =1 the maximum resource loading over all ma-

chines is 0.3. Analogously computed, for t =2 the maximum is 0.3 and for t =3 the maximum is 0.
Hence, the sum over the time periods of the maximum excess resource loading equals 0.6 and the
qualification cost equals 2 (machine 2 is used for M and machine 3 is used for T, but NM = {2} and
NT = {3}). In another solution, if we do not consider qualifications, the corresponding solutions

would be x2
M··=

(
1 0 1
1 0 1
1 0 0

)
and x2

T··=
(

1 1 0
1 1 0
1 1 0

)
, which yields the excess resource loading matrix

(
0.3 0 0.05
0.3 0 0

0.05 0 0

)
.

Hence, the sum of the maximum excess resource loading equals 0.65 and the qualification cost is 0
(machine 2 is not used for M and machine 3 is not used for T).

3.1. A bi-objective mixed integer programming model of the TRAP

The constraints defining feasible resource allocations. The production should equal the demand
for each job type j in each time period t, as expressed in (1a). The constraints (1b) ensure that
no job is performed in any machine and time period to which it is not allocated. The constraints
(1c) limit, for each job type and time period, the number of alternative allocated machines to τ ,
the value of which is given as input by the user; a too small value of τ may result in an empty
set of feasible solutions; a too large value may lead to an increased complexity of the product
routes. The constraints (1d) ensure that the machining hours do not exceed the respective ma-
chine capacities in any time period. The constraints (1e) imply that if a job of type j is assigned
to machine k ∈ N j in time period l ∈ T , then machine k must be qualified for that job type at the
latest in time period l . The constraints (1f) limit the number of scheduled qualifications in each
time period to γ (due to limited number of skilled professionals for completing new qualifica-
tions). The constraints (1g)–(1j) define the allowed values of the variables xjkt, s jkt, z jkt, and nt.
The feasible solutions to the TRAP are thus defined as the variable vectors (x, s, n, z) fulfilling the
constraints∑

k∈K j

x jkt = a jt, j ∈ J , t ∈ T , (1a)

xjkt ≤ min
{

a jt ,
⌊

Ckt
p jk

⌋}
s jkt, k ∈ K j, j ∈ J , t ∈ T , (1b)∑

k∈K j

s jkt ≤ τ, j ∈ J , t ∈ T , (1c)

1
Ckt

∑
j∈J

p jkx jkt ≤ nt + ζk ≤ 1, k ∈ K, t ∈ T , (1d)

∑
t∈T :t≤l

z jkt ≥ s jkl , k ∈ N j, j ∈ J , l ∈ T , (1e)

∑
j∈J

∑
k∈N j

z jkt ≤ γ , t ∈ T , (1f)
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xjkt ∈ Z+, k ∈ K j, j ∈ J , t ∈ T , (1g)

s jkt ∈ {0, 1}, k ∈ K j, j ∈ J , t ∈ T , (1h)

z jkt ∈ {0, 1}, k ∈ N j, j ∈ J , t ∈ T , (1i)

nt ≥ 0, t ∈ T . (1j)

Definition 2 (Set of feasible solutions and its image in the criterion space). Defining2 y := (x, s, n, z),
for any values of τ, γ ∈ Z+, the set of feasible solutions to the model (1) is denoted as

Y (τ, γ ) :={
y

∣∣ the constraints (1a)–(1j) hold
}
. �

The two objectives considered represent the preferences of the planners. The first objective is to
minimize the excess resource loading, expressed as to

minimize
x,s,n,z

g1(x, s, n, z) :=
∑
t∈T

nt, (2a)

where nt is limited by the constraints (1d) and (1j).
It considers the sum over the time periods t ∈ T of the excess resource loading of the machines (i.e.,

nt ≥ 0), which is defined as the maximum (over the machines) ratio between the allocated machining
hours and the available hours (i.e., 1

Ckt

∑
j∈J p jkx jkt) minus the loading threshold ζk ∈ [0, 1] for

the machine. Therefore, in a solution (x, s, n, z) that minimizes the objective g1, the equality nt =
max{0; maxk∈K{ 1

Ckt

∑
j∈J p jkx jkt − ζk}} will hold for every t ∈ T . In the context of a bi-objective

mixed integer programming (BOMIP), this objective is thus defined by (2a), (1d), (1g), and (1j).
The constraints (1d) prevent the loading level of each machine in each time period from exceeding
one, hence, imposing a capacity limit on each machine. Minimizing the excess resource loading will
result in an increased capacity of buffers, which in turn enables reduced lead times for the products.

An alternative to the min-sum objective in (2a), which amounts to solving miny∈Y (τ,γ ){
∑

t∈T nt},
would be to choose a min–max objective, that is, to solve miny∈Y (τ,γ ){maxt∈T nt}. The latter may
result in more reasonable solutions, but is not chosen due to two reasons. (i) First, since there
is no clear priority among the excess resource loading nt over the time periods t ∈ T , let us hy-
pothetically consider T objective functions (nt) defining a T -dimensional criterion space. While
the min-sum objective is guaranteed to always yield an efficient solution in this T -criterion space,
the min–max objective (also known as max-ordering) is not (Ehrgott, 2005, Proposition 9). The
min–max objective can, however, be utilized to calculate an efficient solution by performing a lex-
icographic max-ordering optimization (Ehrgott, 2005, Chapter 5.3). But since the order in which
the objectives are minimized is not known a priori (generally T ≥ 16 holds for all our problem
instances) identifying a nonincreasing ordered sequence of the objective functions’ values will sig-
nificantly increase the computing time. (ii) From a practical standpoint, in some time periods the

2The notations (x, s, n, z) and y will be used interchangeably throughout this article.
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demand for products might be consistently higher, leading to higher loading levels of the machining
resources. Hence, a min–max objective—focusing on high-demand time periods and ignoring the
others—can be counterintuitive for production planners.

The second objective is to minimize the total qualification cost, defined as the sum of the one-time
costs incurred by qualifying machines for job types, over the time periods. It is expressed as to

minimize
x,s,n,z

g2(x, s, n, z) :=
∑
t∈T

∑
j∈J

∑
k∈N j

β jkz jkt. (2b)

Note that an increase in the number of qualifications (g2) will enable a reduction of the excess
loading of the machines (g1).

The vector-valued function of objectives is denoted as g(y) := (g1(y), g2(y)), and the image of
the set Y (τ, γ ) in the criterion space is defined as g(Y (τ, γ )) := { g(y) ∈ R2 | y ∈ Y (τ, γ ) }.
Definition 3 (Efficient solution). A solution ȳ ∈ Y (τ, γ ) is an efficient solution to the TRAP if �
y ∈ Y (τ, γ ) such that the relations g(y) ≤ g(ȳ) and g(y) �= g(ȳ) hold. If ȳ is efficient in the decision
space, then g(ȳ) is a nondominated point in the criterion space. The set of efficient solutions to the
bi-objective optimization problem (1)–(2) is denoted as Yeff(τ, γ ). �

3.2. Computational complexity

We show that the TRAP (Definition 1) is NP-hard, by comparing with the makespan minimization
problem.

Definition 4 (Makespan minimization). Given n jobs and m machines, let d jk be the processing time
of job j ∈ {1, . . . , n} if it is assigned to machine k ∈ {1, . . . , m}. No machine can process two jobs at
the same time. After a job has started getting processed, it must be completed on that machine without
any interruption. The makespan minimization of unrelated parallel machine is the problem of assigning
each job to a machine such that the maximum completion time (makespan) Cmax over the machines is
minimized. This problem is referred to as R||Cmax; see (Lawler et al., 1993, Chapter 9). The problem
is NP-hard in the strong sense, since its version where d jk = d, that is, the problem denoted P||Cmax, is
also NP-hard; Garey and Johnson (1979). �
Proposition 1 (Problem reduction). The makespan minimization of the unrelated parallel machine
scheduling problem, that is, R||Cmax, is polynomially reducible to the TRAP of Definition 1.

Proof. Letting, for j ∈ {1, . . . , n} and k ∈ {1, . . . , m}, � jk = 1 if job j is assigned to machine k, and
� jk = 0 otherwise, the problem R||Cmax is modeled as

min
�

{
max

k∈{1,...,m}

{
n∑

j=1

d jk� jk

} ∣∣∣∣∣
m∑

k=1

� jk = 1; � jk ∈ {0, 1}, k ∈ {1, . . . , m}, j ∈ {1, . . . , n}
}

. (3)

Consider then an instance of TRAP (see Definition 1) given by the following: T = 1; J =
n; K = τ = m; K j = K, N j = ∅, a j1 = 1, j ∈ J ;

∑n
j=1 p jk ≤ Ck1 = C > 0, ζk = 0, k = 1, . . . , m.
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The corresponding special case of our model (1)–(2), is then expressed as the single-objective
MIP to

minimize
x,n1

n1, (4a)

subject to
m∑

k=1

xjk1 = 1, j = 1, . . . , n, (4b)

n∑
j=1

p jk

C
xjk1 ≤ n1, k = 1, . . . , m, (4c)

xjk1 ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , m. (4d)

The instance of TRAP, expressed in (4), is an R||Cmax, as expressed in (3). An optimal solution
(x∗, n∗

1) to (4) is equivalent to an optimal solution to this instance of the TRAP (1)–(2) and given
by (x, s, n1, z) = (x∗, 1, n∗

1, −) ∈ Y (m, γ ). Since the R||Cmax decision problem is NP-complete, it
follows that the TRAP is NP-hard. �

3.3. Considering a third objective: routing efficient solutions

The constraints (1c) limit the number of alternative machines allocated to a job type in each time
period to τ , the practical effect of which is reducing the number of possible routings (i.e., sequences
in which machines are visited) used by a product. A decision maker prefers efficient solutions to
the bi-objective model (1)–(2) that make use of low numbers of alternative machines. Hence, we
define the set of routing efficient solutions, Yreff(τ, γ ) ⊆ Yeff(τ, γ ) (see Definition 3), by means of
the function g3(y) := ∑

t∈T
∑

j∈J
∑

k∈K j
s jkt, representing the total number of alternative machines

used. Assigning g3 a lower priority than g1 and g2, its inclusion will not change the nondominated
points (NDPs) in the two-dimensional criterion space to the TRAP. The less importance of g3 as
compared to g1 and g2 is because g3 is associated with internal transportation cost that has less
priority.

Definition 5 (Routing efficient solution). A solution ȳ ∈ Yeff(τ, γ ) is routing efficient, that is, ȳ ∈
Yreff(τ, γ ) ⊆ Yeff(τ, γ ), if and only if �y ∈ Y (τ, γ ) such that the relations gi(y) = gi(ȳ), i ∈ {1, 2} ,
and g3(y) < g3(ȳ) hold. �

For the BOMIP (1)–(2) with parameter values τ and γ , all the nondominated points (NDPs) in
the objective (i.e., criterion) space (see Section 2.2) lie in the rectangle

B(gTOP, gBOT) := {
g ∈ R2

∣∣ gTOP
1 ≤ g1 ≤ gBOT

1 , gBOT
2 ≤ g2 ≤ gTOP

2

}
,

where (gTOP
1 , gBOT

2 )	 and (gBOT
1 , gTOP

2 )	 denote the ideal and nadir points, respectively (Miettinen,
1988, p. 15–16), and the area of which is A(gTOP, gBOT) := (gBOT

1 − gTOP
1 )(gTOP

2 − gBOT
2 ). The so-

lutions corresponding to the points gTOP and gBOT are computed by lexicographic minimization
(Ehrgott, 2005, Section 5.1), as
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yTOP := arg lexmin
y∈Y (τ,γ )

{g1(y) + w2g2(y), g3(y)}, (5a)

yBOT := arg lexmin
y∈Y (τ,γ )

{g2(y) + w1g1(y), g3(y)}, (5b)

where the parameters w1, w2 > 0 are set appropriately (Özlen and Azizoğlu, 2009, Theorem 2.2) to
yield (at least weakly) efficient solutions with respect to the objectives in (2).

3.4. Integrality of the variables z

For fixed values of the binary variables s, we define the following polyhedron in the z-variable
space:

Z(s, γ ) :={
z
∣∣ z jkt ∈ [0, 1], k ∈ N j, j ∈ J , t ∈ T , and (1e)–(1f) hold

}
. (6)

Proposition 2 (Integrality of the variables z). For any s jkt ∈ {0, 1}, k ∈ N j , j ∈ J , t ∈ T , all extreme
points to the polyhedron Z(s, γ ), defined in (6), are integral.

Proof. The set Z(s, γ ) is defined by the constraints (1e), (1f), and

z jkt ∈ [0, 1], k ∈ N j, j ∈ J , t ∈ T . (7)

Consider any given s jkt ∈ {0, 1}, j ∈ J , k ∈ N j , t ∈ T . Then, for any given pair ( j, k), where k ∈ N j
and j ∈ J , define Tjk(s) := min{ t ∈ T | s jkt = 1 }; it follows that, among the constraints in (1e),
only those corresponding to the index triples ( j, k, Tjk(s)) (i.e., the tightest ones) are necessary for
defining the set Z(s, γ ) (for the case when s jk = 0, t ∈ T , all the corresponding constraints in (1e)
can be removed). Hence, the polyhedron Z(s, γ ) can be expressed by the constraints (1f), (7), and

Tjk(s)∑
l=1

z jkl ≥ 1, k ∈ N j, j ∈ J . (8)

The constraint matrix defined by (1f), (8) admits an equitable row bicoloring, hence it is totally
unimodular, which implies that the polyhedron Z(s, γ ) has integral extreme points (Conforti et al.,
2014, Corollary 4.8, Theorem 4.5, p. 133–134). The proposition follows. �

3.5. Property of the efficient frontier for the TRAP model

The efficient frontier of a general BOMIP has isolated points as well as closed, half-open, and open
line segments; (Boland et al., 2015a, Theorem 3). For the TRAP model, however, the following
proposition holds.
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Proposition 3 (Efficient frontier for the TRAP model). The efficient frontier of the model (1)–(2)
contains only isolated nondominated points (NDPs), and no (closed, half open, or open) line seg-
ments, irrespective of the values of the parameters β jk, k ∈ N j , j ∈ J .

Proof. It is sufficient to show that no line segment between any two NDPs in the criterion
space exists. First, in any efficient solution, the variables (x, s, z) will take finite integer values, say
(x′, s′, z′). Hence, from (1j) and (1d) follow that each variable nt will either take the value n′

t = 0 or
n′

t = maxk∈K{ 1
Ckt

∑
j∈J p jkx′

jkt − ζk}, that is, n′
t takes only discrete values. Hence, the efficient solu-

tions constitute a discrete set, which maps to a discrete set of (finite) NDPs in the criterion space.
The proposition follows. �

4. The starting heuristic

For solving the BOMIP (1)–(2) , we use a MILP solver, the efficiency of which partly relies on
an early pruning of branches owing to high-quality initial feasible solutions. We propose a simple
heuristic that either quickly finds a feasible solution, returns no solution (but does not conclude
infeasibility), or concludes that the problem is infeasible. A feasible solution (if found) is provided
to the MILP solver while looking for a nondominated point gTOP (see Section 3.3). The heuristic
relies on a decomposition of the model (1)–(2) with respect to the time periods resulting in one
(smaller) MILP per time period.3 Since we aim at a solution with an objective vector value as
close as possible to gTOP, the heuristic employs an objective function which prioritizes minimizing
the objective function g1, defined in (2a). The heuristic is described below and summarized in Al-
gorithm 1. Let the vector yt := (xt, st, nt, zt ) represent the corresponding variables for t ∈ T . The
constraints (1e) connect the time periods—thus complicating the model—and are replaced by the
time-disconnected constraints

zt
jk ≥ ξ t−1

jk st
jk, k ∈ N j, j ∈ J , t ∈ T , (9)

where the constants ξ t−1
jk ∈ {0, 1} are computed according to (12). Sequentially for t = 1, . . . , T , the

time-disconnected feasible sets are then defined as4

Y t (ξ t−1, γ ) :={
yt

∣∣ (1a)t–(1d)t
, (9)t

, (1f)t–(1j)t}
. (10)

3Another approach to finding a good starting feasible solution would be to use a Lagrangian heuristic, where, for example,
the constraints (1e) are relaxed, resulting in the subproblem separating over the time indices t ∈ T as well as between the
variables (x, s, n) and z. Each of the 2T subproblems would still be NP-hard, but considerably smaller than the TRAP. A
Lagrangian heuristic does, however, require several dual iterations to find good enough dual variable values and, finally,
a feasibility heuristic.

4For brevity, we define the notation (constraint reference)t , referring solely to the time index t of the corresponding con-
straints.
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Algorithm 1. Starting heuristic

Define gt
1(yt ) := nt, gt

2(yt ) := ∑
j∈J

∑
k∈N j

β jkzt
jk, and gt

3(yt ) := ∑
j∈J

∑
k∈K j

st
jk. The optimal set

to the time-disconnected problem at time step t is then defined as

Ȳ t (ξ t−1, γ ) :=arg lexmin
yt∈Y t (ξ t−1,γ )

{
gt

1(yt ) + w2gt
2(yt ), gt

3(yt )
}
, t = 1, . . . , T, (11)

where the weight parameter w2 > 0 is small enough such that the resulting solutions are (at least
weakly) efficient (Özlen and Azizoğlu, 2009, Theorem 2.2) with respect to the two objectives gt

1(yt )
and gt

2(yt ); the operator lexmin is defined as in Section 5.1 in Ehrgott (2005). The output of (11) is
a routing efficient solution (see Section 3.3 and Definition 5) for time period t with respect to the
feasible set Y t (ξ t−1, γ ).

Sequentially, for t = 1, . . . , T , given the values of z̄t
jk in (x̄t, s̄t, n̄t, z̄t ) = ȳt ∈ Ȳ t (ξ t−1, γ ), the co-

efficients ξ t
jk, k ∈ N j , j ∈ J , are computed as ξ 0

jk := 1 and

ξ t
jk :=

{
0, if

(
z̄t

jk = 1 ∧ ξ t−1
jk = 1

)
∨ ξ t−1

jk = 0,

1, otherwise,
t = 1, . . . , T − 1. (12)

If Y 1(ξ 0, γ ) = ∅, then there is no feasible solution to the model (1)–(2), that is, Y (τ, γ ) = ∅. This is
due to the qualification capacity γ being too low for the qualifications necessary in time period 1.
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If, for t = 1, a feasible solution to the model (11)t is found, the index t is increased by one and
the model (11)t is solved with ξ t−1 as input and ȳt as output. A solution obtained for a certain value
of t may not be changed; hence, for any t > 1, the model (11)t may be infeasible even if the original
feasible set—as defined in (1)—is nonempty. For an infeasible model (11)t, feasibility is achieved by
an increase of the value of γ (temporarily, for this value of t). The feasibility loop terminates when
either a feasible solution to the model (11)t is found or the constraint (1f)t is not in an irreducible
inconsistent subsystem5 (IIS); see Parker and Ryan (1996, Section 2). In the latter case, the original
model (1) is infeasible, since neither the constraints (1e)t nor (1f)t can be in IIS, which implies that
one of the other time-disconnected constraints (1a)t–(1d)t or variable bounds (1g)t–(1j)t are in IIS,
which cannot be resolved. Hence, the model is infeasible. After exiting the outer loop the values
[s̄t]t∈T are used for resolving any infeasibility in [z̄t]t∈T through the time-connected linear program
(LP) (see Proposition 2) defined as

Ẑ([s̄t]t∈T , γ ) := arg min
z∈Z([s̄t ]t∈T ,γ )

{g2(y)}, (13)

where the set Z([s̄t ]t∈T , γ ) is defined analogously as in (6). The LP (13) can be solved efficiently
by any commercial solver; if infeasible, however, the heuristic terminates without any conclusion
about the feasibility of the model (1).

5. Criterion space search method

According to Proposition 3, the TRAP has only isolated NDPs. With some care for the respective
algorithmic properties, we may now use ideas from BOIP algorithms to find (almost) all NDPs of
the TRAP (1)–(2).

5.1. Search for nondominated points by the ε-constraint and AWT methods: strengths and weaknesses

We briefly describe the ε-constraint and the AWT methods along with their main properties; below,
h1 and h2 denote the objective functions, h(x) = (h1(x), h2(x))	, href is a reference point, 1 = (1, 1)	,
and X is an integer set.

The ε-constraint method yields the scalarization for a BOIP as minx∈X {h1(x) | h2(x) ≤ ε} or
minx∈X {h2(x) | h1(x) ≤ ε}. An optimal solution to a given scalarization is guaranteed to be weakly
efficient; Chankong and Haimes (1983). Further, all efficient solutions can be found by setting ap-
propriate values for ε. Since no feasible solution is available when solving a given scalarized prob-
lem, computing times may be longer as compared to the case of an available feasible solution. This
issue can be resolved by a bi-directional (BD) variant of the ε-constraint method, denoted the BD-
ε method; see (Boland et al., 2015a, Section 5.1) and Algorithm 2. Then, the ε-constraint method
is applied alternately to the two objectives, such that a previously identified efficient solution is

5An IIS is a subset of the constraints of a model such that (a) the model including all constraints in the subset is infeasible,
and (b) the model including all but one constraint in the subset is feasible.
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Algorithm 2. Modified bi-directional ε-constraint

available when solving the scalarized problem. The bi-directional approach does not require solv-
ing an infeasible problem as the last scalarized problem, cf. the original ε-constraint method.

The AWT method yields the scalarization for a BOIP as minx∈X {max{α1(h1(x) − href
1 ); α2(h2(x) −

href
2 )} + λ1	(h(x) − href)}. The method recursively searches for a yet-unknown nondominated point

by minimizing the maximum weighted (by α ∈ R2
+) distance (the l∞-norm) from href. The second

term (the l1-norm) is added to avoid generating too many weakly nondominated points (NDPs),
using a suitable value of λ ≥ 0. The AWT method can identify all the NDPs and is used in many
interactive multi-objective optimization approaches (Steuer and Choo, 1983). Dächert et al. (2012)
establish that too small values of λ cause numerical difficulties, while too large values may result in
oversight of some NDPs; they also derive problem dependent (adaptive) formulae for calculating
α1, α2, and λ; these are, however, applicable only for pure BOIPs with integer valued objective
functions. Dächert et al. (2012) has shown computational superiority of their adaptive formulae
(for the algorithm presented in Ralphs et al. (2006)) over using fixed parameters instead. Steuer and
Choo (1983) present a lexicographic weighted Tchebycheff method that guarantees that all NDPs are
found, without requiring input parameters α1, α2, and λ; it requires, however, the solution of two
optimization problems and is computationally expensive, as empirically verified by Miettinen et al.
(2006); to linearize the max-function additional variables and constraints are included, which may
increase the solution times as well.

As discussed in Ehrgott (2006, Section 4.4), a drawback of the ε-constraint method for solv-
ing a BOIP is that the ε-constraint is a knapsack constraint; this may reduce the computational
tractability of the scalarized problem (Ehrgott, 2006, Sections 2.2 & 3.2). In a branch-and-bound
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tree corresponding to a given ε-constraint scalarization, the contradictory nature of the two objec-
tives implies that the ε-constraint will be active in an optimal solution at several nodes if possible;
hence, many branch-and-bound nodes need be explored before reaching a node with inactive ε-
constraints (see Appendix A.1).

Ehrgott (2006, Section 4) suggests replacing the ε-constraint by a so-called elastic constraint.
The idea is to allow violation of the ε-constraint at the expense of a weighted penalty variable
added to the objective function. The approach has been successful in several applications (see, e.g.,
Ehrgott and Ryan, 2002 for an implementation for a crew-scheduling problem). Finding appropriate
values for the coefficient of the penalty variable is, however, tricky and the computational efficiency
depends hugely on the type of problem and instance.

We propose and investigate a modified version of the bi-directional ε-constraint method, in which
the second stage uses the reference-point based AWT method, which also avoids the ε-constraints
(an example showing one of the differences between the scalarization of the two methods is high-
lighted in Appendix A.1).

5.2. Implementation of the modified bi-directional ε-constraint method

Our proposed approach, the modified bi-directional ε-constraint method, combines the BD-ε
method with the AWT method; it is described below and summarized in Algorithm 2.

Description of the algorithm. The input to Algorithm 2 are the two initial nondominated points
gTOP and gBOT, defined in (5), and which constitute the initial points in the set NDP of nondominated
points. The two points gTOP and gBOT are used to initialize g1 and g2, respectively. The parameter
φ ∈ (0, 1) determines when to switch from the BD-ε method to the AWT, while the parameter ψ1

(ψ2) denotes the value by which g2
1 (g1

2) is reduced while applying the ε-constraint on g1(y) (g2(y)).
Since the qualification cost parameter β jk is integral, we set ψ2 := 1. We propose switching to

the AWT method if the area of the rectangle B(g1, g2) to be explored for yet-unknown nondom-
inated points fulfills A(g1, g2) ≤ φ · A(gTOP, gBOT) (see Fig. 1). We made computational tests for
φ ∈ {0.25, 0.35} and ψ2 = 0.01, which are reasonable for our problem instances. We set a time
limit, tlim of 5000 seconds for solving each scalarized problem, after which the solver terminates
the computations (see Section 6, §1 for details about the termination criteria used).

Algorithm 2 starts by the BD-ε method (i.e., if A(g1, g2) > φ · A(gTOP, gBOT)), which is expressed
by the scalarizations referred to as TOP and BOT; TOP and BOT apply an ε-constraint on the qual-
ification cost and the excess resource loading, respectively. The model TOP is solved and the value
of g1 is updated; if the solver does not verify optimality in a user-defined time limit it terminates (see
Sections 6 and 1 for criteria to verify optimality). The model BOT is solved and the value of g2 is
updated. (In Fig. 1, g2

1 = gBOT
1 = 2.48 and ψ1 = 0.01, while g1

2 = gTOP
2 = 24 and ψ2 = 1.) If the area

of the remaining rectangle fulfills A(g1, g2) ≤ φ · A(gTOP, gBOT), Algorithm 2 switches to the AWT
method, which is provided two nondominated points, g1 and g2. The AWT method searches for yet-
unknown nondominated points in the interior of B(g1, g2); cf. Section 5.1 The adaptive formulae
used to calculate α and λ are found in (Dächert et al., 2012, Table 2), and are guaranteed to yield
only efficient solutions when both objective functions take only integer values (for this purpose, one
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Fig. 1. BD-ε with switch to the AWT. The green points are nondominated, the red-dashed lines represent ε-constraints,
and the purple-dashed rectangles represent the switch to the AWT method for φ = 0.35 and 0.25, respectively. The

respective latest updated values of g1 and g2 are defined as functions of φ.

could alter nt such that it represents exact time units above a given, integer valued capacity thresh-
old). The method AWT (Section 5.1) identifies and includes all nondominated points in the set NDP
(for details, see Steuer and Choo, 1983) provided that the parameters α and λ are set appropriately.
The while-loop ends when at least one side of the rectangle B(g1, g2) is below a certain limit (i.e.,
g2

1 − g1
1 ≤ ψ1 or g1

2 − g2
2 ≤ ψ2).

Harvesting efficient solutions. Algorithm 2 only searches for yet-unknown nondominated points
in the interior of B(gTOP, gBOT). To initialize the algorithm, the solution (x̄, s̄, n̄, ẑ) from the heuris-
tic (Algorithm 1) is provided as input to computing gTOP = g(yTOP), as defined in (5a). The so-
lution yTOP is then provided as input to computing gBOT = g(yBOT), as defined in (5b). Setting
y2 := yBOT, the solution y2 is used as a starting feasible solution for solving the model TOP and
computing g1 = g(y1); then the solution y1 is used as a starting feasible solution for solving the
model BOT and computing g2 = g(y2). This procedure is repeated, providing updates of the non-
dominated points g1 and g2 and the corresponding solutions y1 and y2; the former are included
in the set NDP of efficient solutions, while the latter are provided as initial feasible solution to the
solver.

6. Computational details, tests, and results

We generate 60 instances expected to sufficiently capture most of the realizations of actual data
that the model might encounter at GKN Aerospace. All the computations are performed in Python
3.7 using Gurobi 9 on a system with 1.70 GHz processor, 4 cores, and 16 GB RAM. Algorithm 2
terminates when at least one of the following criteria is met: (i) the running time for a scalarized
problem exceeds 5000 seconds; (ii) the (relative) MIP duality gap is < 0.0005; (iii) MIP absolute
gap limit is ≤ 0.01 and there has been no improvements in the duality gap for the previous 1000
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nodes of the branch-and-bound tree.6 Note that optimality is verified (see Algorithm 2) only if the
solution satisfies (ii) or (iii).

6.1. Generating the industrial test instances

We have the data for most of the parameters and sets mentioned in Table 2, however, we do not
have processing times p jk of jobs j ∈ J in machines k ∈ N j (qualification required), and the qual-
ification cost parameters β jk, j ∈ J , k ∈ N j . In order to generate instances that represent possible
realizations of the actual data, we introduce the following distributions that are based on knowledge
of the managers.

Skewness of processing times. The skew normal distribution is a generalized normal distribution
allowing for nonzero skewness (Weisstein, 2021).7 We generate processing times p jk, k ∈ N j , j ∈ J ,
for newly qualified machines from three differently skewed normal distributions with mean μ and
skewness/shape parameter α: positive skew (α=1 > 0), negative skew (α=−1 < 0), and zero skew
(α = 0). A location parameter/mean μ is based on the expected processing time of a given job
type j on an already qualified machine k ∈ K j \ N j and which is similar to that of the machine
being qualified. For all these distributions, we set the scale parameter σ := 0.1 · μ; according to
the internal statistical process control data (and managerial experience), processing times of newly
qualified allocations have a standard deviation of 10% of the expected value.

Qualification cost. The exact cost for qualifying a machine for a job type is not known a priori
and accurate predictions require detailed simulation work by the engineering team. Thus, the input
received are so-called cost levels, assigned to each qualification. For testing our model and proposed
modifications, we define 20 cost levels, H = {1, . . . , 20}, and select the qualification costs from dif-
ferent discrete distributions over the discrete domain H. Letting πh be the frequency of cost level
h ∈ H, its relative frequency is π̂h := (

∑
i∈H πi)−1πh; we also define π̂0 = 0. To determine a cost β jk,

a sample α is drawn from the interval [0,1]. Then,

β jk :=
{

h ∈ H :
∑h−1

i=0 π̂i ≤ α <
∑h

i=0 π̂i, α ∈ [0, 1),
|H|, α = 1.

The frequency distributions are defined as follows. For each h ∈ H, πh = 1 (Uniform), πh =
h (Right), πh = |H| − (h − 1) (Left), πh = min{ h ; |H| − (h − 1) } (Symmetric), and πh =
min{ h ; |H| − (h − 1) ; max{h − �|H|−1

2 � ; � |H|+1
2 � − (h − 1)}} (Bimodal).

6Criterion (iii) is particularly useful while minimizing g1 as the corresponding lower bounds are often close to 0.

7Given the probability density function (pdf) of the standard normal distribution φ(x) = 1√
2π

e
−x2

2 and the cumulative

distribution function �(x) = ∫ x
−∞ φ(t)dt, the pdf of the skew normal distribution with skewness/shape parameter α is

given by f (x) = 2φ(x)�(αx). The transformation to standard form from the location μ and scale σ parameters is given
by x → x−μ

σ
.
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Fig. 2. Distribution of the range for g2, which affects the maximum number of nondominated points, for different
instances.

6.2. Constant data across 60 instances

The demand is from quarterly forecasts made at GKN Aerospace in January 2015 (denoted by J15)
and December 2015 (denoted by D15) for the period 2016–2019. The minimum, maximum, and me-
dian values of the demand of job types (# of orders) are 1, 172, and 11, respectively. For processing
times over the job types and machines, the corresponding values are 0.1, 89.7, and 5.63 hours, re-
spectively. Each machine has a yearly capacity of 5000 hours; the available hours per machine and
quarter are thus 1250. The planning period of four years with quarterly time buckets yields T = 16
time periods. There are K = 125 machines, and J = 517 unique job types, each having integral de-
mand per time period. The number of possible assignments of job types to machines during the
entire planning period thus amounts to ∼106. We employ the parameter values τ = 3, γ = 4, and
ζk = 0.7, k ∈ K. The instances vary based on (i) distributions used to draw samples of qualification
cost parameters (denoted by β̄ ∈ {Left,Right,Symmetric,Uniform,Bimodal}), and processing
times (denoted by p̄ ∈ {skew+,skew-,skew0}), (ii) demand forecast (denoted by ā ∈ {J15, D15}),
and (iii) whether a new product is included (with new) or not (without new). Consequently, we
have 60 instances. Figure 2 shows box plots for the effect of the above mentioned variations8 on the
range of g2(·), that is, gTOP

2 − gBOT
2 , which also sets the upper limit gTOP

2 − gBOT
2 + 1 on the number

of nondominated points.

6.3. Results and insights

We compare various state-of-the-art solution approaches with our proposed approach. For each
approach, the objectives are combined using augmentation (Aug) or lexicographically (Lex). The
criterion space search method used is either the bi-directional ε-constraint (BD-ε) or the balanced
box (BB) method. A switch to the AWT method is denoted by AWT; an ∅ means that there is
no such switch. The solution approaches compared are defined by the 3-tuples (Aug,BD-ε,AWT)

8Demand forecasts are not shown in Fig. 2 as the two corresponding box plots for the range of g2(·) were identical.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies



S. Fotedar et al. / Intl. Trans. in Op. Res. 0 (2022) 1–29 21

Table 3
Results from the methods (Aug,BD-ε,AWT) (i.e., φ = 0.25) and (Aug,BD-ε,∅) (i.e., φ = 0) for 60 instances

With new product Without new product

Distributions Forecast Solution time [s] Solution time [s]

β̄ p̄ ā Instance φ = 0 φ = 0.25 |NDP| Instance φ = 0 φ = 0.25 |NDP|
Left skew+ J15 1y 571 − 4 1n 446 − 4
Left skew- J15 2y 528 − 3 2n 259 − 4
Left skew0 J15 3y 570 − 3 3n 357 − 3
Right skew+ J15 4y 3334 2032 6 4n 2556 1556 6
Right skew- J15 5y 2020 2905 6 5n 2238 2280 6
Right skew0 J15 6y 2414 − 8 6n 2106 − 6
Uniform skew+ J15 7y 1214 − 5 7n 1159 − 4
Uniform skew- J15 8y 1300 933 5 8n 1123 1002 5
Uniform skew0 J15 9y 744 − 5 9n 744 − 3
Symmetric skew+ J15 10y 2745 2044 6 10n 2046 − 6
Symmetric skew- J15 11y 2043 1942 6 11n 2245 − 6
Symmetric skew0 J15 12y 2383 − 8 12n 2102 − 5
Bimodal skew+ J15 13y 1233 − 5 13n 1128 1345 4
Bimodal skew- J15 14y 1165 − 5 14n 1009 − 5
Bimodal skew0 J15 15y 752 − 4 15n 732 − 3
Left skew+ D15 16y 849 − 4 16n 287 − 3
Left skew- D15 17y 0 − 2 17n 0 − 2
Left skew0 D15 18y 721 − 4 18n 298 − 3
Right skew+ D15 19y 3762 2556 6 19n 6071 2285 6
Right skew- D15 20y 5090 − 6 20n 4018 − 6
Right skew0 D15 21y 4652 2347 6 21n 6280 2010 4
Uniform skew+ D15 22y 1264 1380 6 22n 1209 1210 5
Uniform skew- D15 23y 1452 − 4 23n 988 − 4
Uniform skew0 D15 24y 1619 − 4 24n 2772 2255 4
Symmetric skew+ D15 25y 3913 2662 6 25n 11720 2277 6
Symmetric skew- D15 26y 4958 − 6 26n 4222 − 6
Symmetric skew0 D15 27y 4960 2249 6 27n 6325 2008 4
Bimodal skew+ D15 28y 1128 1282 5 28n 1277 1138 5
Bimodal skew- D15 29y 1722 1596 4 29n 935 − 4
Bimodal skew0 D15 30y 1297 − 4 30n 823 − 4

(for the values of φ ∈ {0.25, 0.35}), (Aug,BD-ε, ∅), (Aug,BB,∅), and (Lex,BD-ε,AWT), in total five
variants.

Performance. Table 3 compares solution times and provides numbers of nondominated points9

|NDP| for the methods (Aug,BD-ε,AWT), labeled φ = 0.25, and (Aug,BD-ε, ∅), labeled φ = 0. Each
row consists of two instances having equal distributions and forecasts, one with new product
and one without. Solution times refer to total wall clock time used to find the nondominated

9Since we employ a time limit for solving each scalarized problem, it is not guaranteed that all nondominated points are
found. However, all methods compared in Fig. 3 found the same nondominated points.
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Fig. 3. Performance profiles of the different solution methods while exploring the strict interior of B(gTOP, gBOT).

points—excluding the computation of gTOP and gBOT.10 Comparisons for solution times should
be made between columns labeled as φ = 0.25 and φ = 0, and for the same instance. A “−” indi-
cates that the solution times for (Aug,BD-ε,AWT) and (Aug,BD-ε, ∅) are equal, since the switch to
the AWT method did not occur. There are 23 instances for which the switch to the AWT method did
occur. Six of these 23 instances have either moderately shorter or equal solution times for (Aug,BD-
ε, ∅) as compared to (Aug,BD-ε,AWT); for the remaining instances, the (Aug,BD-ε,AWT) method
is computationally superior.

Figure 3 compares the five variants of solution methods mentioned above, as applied to the 60
instances by means of performance profiles (see Dolan and Moré, 2002), with the performance
ratio defined as rps := tps

minr∈S {tpr} , and tps denoting the time used by the method s ∈ S for solving
instance p ∈ P . The probability that method s solves each of the instances within the ratio ω of the
time spent by the fastest method for that instance (i.e., the cumulative distribution function for the
performance ratio of method s) is defined as

Ps(ω) := |P|−1
∣∣{p ∈ P : rps ≤ ω

}∣∣, ω ∈ [1, 10], s ∈ S. (14)

The method (Aug,BB,∅) performs quite badly for our class of problems. One explanation is that BB
solves at most 3|Yeff| scalarized problems (Boland et al., 2015a, Proposition 5), while BD-ε solves
at most 2|Yeff| + 1 scalarized problems (see Chankong and Haimes, 1983), where Yeff is the set of
nondominated points. Figure 4 presents a performance profile to highlight the effect of using the
starting heuristic (Algorithm 1) within the computation of gTOP, which along with the correspond-
ing solution yTOP is the input to Algorithm 2 (i.e., (Aug,BD-ε,AWT) with φ = 0.25). Additionally,
we compare the performance of our algorithm with NSGA-II, implemented using the python li-
brary pymoo (described in Blank and Deb, 2020). For all the instances, our algorithm resulted in
larger hypervolume (as defined in Zitzler et al., 2003) than NSGA-II that implies that our algorithm
yields a better approximation of the efficient frontier. The ratio of hypervolumes is presented in
Fig. 5 for all the instances. Since all the nondominated points were not obtained by NSGA-II, we
have not compared it in Fig. 3. For details on parameters used for NSGA-II, we provide access to
a jupyter notebook in https://bit.ly/3JKE4DA and corresponding data in our github repository

10Instances 17y and 17n have solution time 0, as no NDP exist in the interior of B(gTOP, gBOT), indicated by gTOP
2 − gBOT

2 =
1.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies

https://bit.ly/3JKE4DA


S. Fotedar et al. / Intl. Trans. in Op. Res. 0 (2022) 1–29 23

Fig. 4. Performance profiles when (x̄, s̄, n̄, ẑ) is provided (H) and when no such solution is provided (WH), while
searching for gTOP.

Fig. 5. Ratio of hypervolumes of (Aug,BD-ε, AWT), that is, hy(Aug,BD-ε,AWT) for φ = 0.25 and hypervolume of NSGA-II,
that is, hyNSGA−II for all the 60 instances.

https://bit.ly/3iAV4Ao. We have used the feasible solutions obtained from the starting heuristic
Algorithm 1 in the initial population and terminated NSGA-II after 3600 seconds.

As a quality check for the starting heuristic, we compare the resulting values for the objectives
g1 and g2 with gTOP, which is the nondominated point possessing the minimum possible value for
g1 (see definition in Section 3.3; cf. also the objective in (11)). Figure 6 shows normalized (with
respect to ‖gTOP − gBOT‖1) distances between g1(·) and gTOP

1 (where gTOP
1 = 0 for all 60 instances),

and between g2(·) and gTOP
2 , respectively. The measures indicated are thus given by |gTOP

2 −g2(x̄,s̄,n̄,ẑ)|
gTOP

2 −gBOT
2

and g1(x̄,s̄,n̄,ẑ)
gBOT

1
, where (x̄, s̄, n̄, ẑ) denotes the solution obtained from Algorithm 1. Note that, out of

the 60 instances, the normalized distance equals 0 for six instances of the objective g1, and for 36
instances of g2.
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Fig. 6. Normalized distance of the objective values provided by the heuristic, with respect to gTOP for 60 instances. The
average value of the normalized distances equal 0.1 and 0.27 for g1 and g2, respectively. See Section 6.1 for details on

instances.

Fig. 7. Ratio of solution times for (Aug,BD-ε,∅) versus (Aug,BD-ε,AWT) for the 23 instances in Table 3 for which the
switch to AWT did occur (φ = 0.25). The number of instances in each category is specified above the corresponding box.

Variations among the instances. Figure 7 shows box plots for the ratio of solution times for
(Aug,BD-ε, ∅) versus (Aug,BD-ε,AWT) (for φ = 0.25). The top-left and top-right plots divide the
23 instances with respect to the skewness of processing times and the distributions of qualification
costs, respectively. Furthermore, the bottom-left and bottom-right plots indicate observed varia-
tions for new product’s inclusion and demand forecast, respectively. It is clear that the instance type
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has an impact on the magnitude of computational superiority of switching to the AWT. However,
for all the 23 instances where AWT is used, we see the ratio is always either close to 1 or significantly
greater than 1. It is to be noted that in all tests performed, most of the computation time is spent
on improving the lower bounds (verifying optimality). In Fig. A4, we illustrate the efficient frontier
for instance 5y.

6.4. Conclusion

A new resource allocation model for a large tier-1 supplier of aerospace engine systems is presented
and analyzed. We have proved various mathematical properties of the tactical resource allocation
problem (TRAP) model, one of them resulting in a relaxation of the integrality constraints on
some of the variables that is utilized in a specialized heuristic for the TRAP (see Algorithm 1). The
solution from the heuristic is used as a starting feasible solution that resulted in significant reduc-
tions of solution times (Fig. 4). We tested a tailored modified bi-directional ε-constraint method,
which reduces the solution time for a majority of the instances. The algorithm attempts to use the
strengths of the ε-constraint method while avoiding some of its drawbacks by switching to the aug-
mented weighted Tchebycheff AWT in later stages when the ε-constraint is not likely to be tractable.
Further tests should be conducted to check the performance of our algorithm as applied to other
problem classes.

Future work may involve further polyhedral analysis of the problem aiming at a tighter formula-
tion, and investigating exact decision space search methods, such as branch-and-bound for BOIP.
The model (1)–(2) should be extended to a robust formulation, incorporating uncertainty in pro-
cessing times and qualification costs of newly qualified jobs. To incorporate more preferences of
the decision makers, new objectives and/or alternative combinations of the current objectives can
be explored as well. Further, we intend to investigate how the inclusion of inventory modeling at
different stages of the production planning affects the trade-off between objectives.
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Appendix

A.1. Comparison of branch–and–bound trees for the AWT and BD-ε or ε-constraint scalarized
problems

Consider a BOIP with two constraints, two integer variables, and objective functions gi := xi, i =
1, 2:

min
x∈Z2+

{
(x1, x2)

∣∣ 3x1 + 2x2 ≥ 11, 11x1 + 10x2 ≤ 51, x1 ≤ 4, x2 ≤ 4
}
. (A1)
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Fig. A1. Feasible region of the LP relaxation of (A1), with gref = (1, 0)	. Red dots mark nondominated points. Gray
and blue squares mark solutions at the root node of (A2) and (A3), respectively.

The points gTOP = (1, 4)	 and gBOT = (4, 0)	 are known and the ideal (reference) point is gref =
(1, 0)	; see Fig. A1. For comparison of the (bi-directional) ε-constraint (BD-ε) method with the
AWT method, we examine the branch–and–bound trees corresponding to their respective scalar-
ized problems. In the BD-ε method, the first step is to add the ε-constraint x2 ≤ 3 and solve the
scalarized problem

min
{
x1 + 1

5 x2
∣∣ x ∈ X, x2 ≤ 3

}
, (A2)

where X is the set defined by the constraints in (A1) and the coefficient 1
5 is small enough to yield

at least a weakly efficient solution. In the AWT method, the first scalarized problem to be solved is
defined by the reference point gref = (1, 0)	, as

min
f ≥0,x∈X

{
f + λ(x1 − 1 + x2)

∣∣ f ≥ α1(x1 − 1), f ≥ α2x2
}
, (A3)

where the parameters λ, α1, and α2 are derived as in (Dächert et al., 2012, Table 2). The branch–
and–bound trees for the two scalarized problems in (A2) are shown Figs. A2 and A3.11 At the root
node to (A2), x∗

2 = 3, such that the ε-constraint x2 ≤ 3 is active, whereas at the root node to (A3),
x∗

2 = 2.05. The conflicting nature of the two objectives typically keeps the ε-constraint active for
several nodes (in our small example its just once) while solving a scalarization in the BD-ε method,
while this is not the case for the AWT method.

A.2. The resulting efficient frontier for instance 5y

In Fig. A4, we show nondominated points identified for instance 5y. The two rectangles marked
in magenta have area less than φ · A(gTOP, gBOT), where φ = 0.25, gBOT = (2.25, 17)	 and gTOP =
(0, 28)	. Hence, AWT is applied in this instance.

11The scalarized problems have an initial feasible solution of (4, 0)	, used to evaluate upper bounds in Fig. A2.
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Fig. A2. Branch–and–bound tree for (A2). The two 2-tuples at each node correspond to optimal values of x ∈ R2
+ and

(lower bound, upper bound), respectively.

Fig. A3. Branch–and–bound tree for (A3) with gref = (1, 0)	, α1 = 0.612, α2 = 0.388, and λ = 0.262.

Fig. A4. Nondominated points for instance 5y.
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