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Abstract—Objective: Spike sorting of muscular and neural 

recordings requires separating action potentials that overlap in 

time (superimposed action potentials (APs)). We propose a new 

algorithm for resolving superimposed action potentials, and we 

test it on intramuscular EMG (iEMG) and intracortical 

recordings. Methods: Discrete-time shifts of the involved APs are 

first selected based on a heuristic extension of the peel-off 

algorithm. Then, the time shifts that provide the minimal residual 

Euclidean norm are identified (Discrete Brute force Correlation 

(DBC)). The optimal continuous-time shifts are then estimated 

(High-Resolution BC (HRBC)). In Fusion HRBC (FHRBC), two 

other cost functions are used. A parallel implementation of the 

DBC and HRBC algorithms was developed. The performance of 

the algorithms was assessed on 11,000 simulated iEMG and 14,000 

neural recording superpositions, including two to eight APs, and 

eight experimental iEMG signals containing four to eleven active 

motor units. The performance of the proposed algorithms was 

compared with that of the Branch-and-Bound (BB) algorithm 

using the Rank-Product (RP) method in terms of accuracy and 

efficiency. Results: The average accuracy of the DBC, HRBC and 

FHRBC methods on the entire simulated datasets was 

92.16±17.70, 93.65±16.89, and 94.90±15.15 (%). The DBC 

algorithm outperformed the other algorithms based on the RP 

method. The average accuracy and running time of the DBC 

algorithm on 10.5 ms superimposed spikes of the experimental 

signals were 92.1±21.7 (%) and 2.3±15.3 (ms). Conclusion and 

Significance: The proposed algorithm is promising for real-time 

neural decoding, a central problem in neural and muscular 

decoding and interfacing.  
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I. INTRODUCTION 

eurons produce action potentials, also termed spikes in 

signal processing terminology, that are detected in 

extracellular recordings [1] [2]. These signals can be recorded 

with microelectrodes. With current technologies, it is now 

possible to measure hundreds to thousands of neurons 

concurrently [3-5]. The identification and classification of 

individual neurons’ spikes from extracellular recordings is a 

processing task known as spike sorting [2, 6]. It has similar 

procedures as intramuscular electromyographic signal (iEMG) 
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Fig. 1. Procedure of decoding of multiunit signals, which is similar in 

intramuscular electromyographic signal (iEMG) decomposition and spike 

sorting. 
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decomposition into the constituent trains of motor unit action 

potentials (MUAPs) [7]. Direct analysis of neural codes on such 

multiunit recordings, either by spike sorting or iEMG 

decomposition, is known as neural decoding [8]. 

 

Neural decoding is an essential and challenging step in 

processing neural and muscular signals. It has applications in 

neuroscience and neurotechnology, such as in subthalamic 

nucleus recordings in Parkinson’s disease [6], brain-computer 

interfacing [1, 9], monitoring the activity of single neurons in 

vivo [10], and so on. The steps of multiunit signal decoding are 

shown in Fig. 1. A central problem in this decoding task is 

identifying action potentials overlapping in time (a.k.a., 

superimposition of different spikes) [1]. Superimposed action 

potentials must be identified to extract the complete neural code 

and identify physiological mechanisms, such as neural 

synchronization [1, 4, 11]. 

 

Various spike sorting algorithms have been proposed in the 

literature [3, 5, 11-26], and some include the analysis of 

overlapping spikes [5, 11, 15-17, 21-26]. Zhang et al. [24] 

combined different templates to minimize the residual variance 

using the 𝜒2test. They generated 14 overlapping spikes from 

two to three templates with background noise and resolved six 

of them correctly. Hulata et al. [25] used wavelet packet (WP) 

decomposition for spike sorting and selected the nine most 

discriminating WPs for the detection and classification of 

different spikes. Among 100 overlappings from up to four 

motor units (MUs), 66 overlappings were correctly resolved. 

Lewicki [26] proposed a spike sorting algorithm based on a 

Bayesian network, and among 408 overlappings, 264 cases 

were correctly identified. Franke et al. [15] proposed a neural 

decoding algorithm based on Bayes optimal template matching 

in which overlapping spikes were resolved. The results were 

promising for partially overlapped spikes with up to two 

templates. To the best of our knowledge, the superposition 

resolution algorithms proposed in the literature for spike sorting 

(those discussed above and others, including [5, 11, 15-17, 21-

23]) are suboptimal algorithms in which a maximum of four 

templates have been considered. Other examples of decoding 

overlapped action potentials can be found in the field of iEMG 

decomposition, as discussed in the following. 

 

EMG decomposition identifies the instants of activation of 

MUs from multiunit EMG recordings [27]. EMG 

decomposition can be mathematically expressed in the same 

way as neural spike sorting and has applications for the 

estimation of muscle architecture [28], the diagnosis of 

neuromuscular disorders [29], the study of muscle function and 

coordination, and the control of prosthetic devices [30]. As for 

spike sorting of neural signals, the most critical stage of iEMG 

decomposition is resolving superimposition, i.e., identifying 

action potentials of different MUs when they occur at similar 

time instants. The mathematical model of overlapped MUAPs 

is the same as that of overlapped spikes in neural recordings. 

Various methods have been proposed to resolve 

superimpositions for iEMG decomposition. The fastest and 

most common is the Peel-Off approach [31-34]. The cross-

correlation between the superimposed waveform and each 

template is first calculated with this technique. The most similar 

template is selected and then subtracted to create the residual 

signal. This procedure continues until the superimposition is 

fully analyzed [31]. 

 

The Peel-Off method is fast but has very low accuracy for 

constructive and destructive superpositions. Other methods 

proposed in the literature consider this problem as an 

optimization problem. Population-based optimization methods, 

such as particle swarm optimization (PSO) [35] and genetic 

algorithms (GA) [36], have been proposed in the literature to 

resolve MUAP superpositions. Another proposed method is 

based on branch and bound (BB) optimization [37], in which 

the entire set of feasible solutions is partitioned into smaller 

subsets (i.e., discrete-time shifts) to be evaluated 

systematically. The BB algorithm was shown to have superior 

performance compared with PSO, GA, and peel-off methods. It 

is generally an accurate and fast algorithm when up to five 

MUAPs. However, there are cases where the BB algorithm is 

too slow and thus not suitable for real-time applications [38]. 

 

This article introduces a new method for resolving 

superimpositions in iEMG decomposition and spike sorting. Its 

performance and efficiency were assessed and compared with 

the state-of-the-art methods for superpositions of up to 8 APs. 

 

II. METHOD AND MATERIAL 

The algorithm involves two consecutive procedures. First, a 

set of discrete-time shifts are selected based on heuristic 

algorithms. Then, the Levenberg-Marquardt algorithm (LMA)  

[39] is used to find the continuous-time shifts starting from the 

selected discrete-time shifts. We propose the discrete algorithm, 

Discrete Brute force Correlation (DBC), and its two 

continuous-time versions, namely the high-resolution brute 

force correlation (HRBC) and its extension as fusion HRBC 

(FHRBC) (Fig. 2). We focus on the “known constituent” 

problem in which the set of templates involved in the 

superposition is known. However, the extension of the methods 

 
Fig. 2. Scheme of the overall algorithm. a) Discrete-time part of the 

algorithm. In this section, the permutation of the templates is tested and good 

local minima in the discrete space are found. The minimum l2-norm of the 

residual signal corresponds with the Discrete Brute-force Correlation (DBC) 

output. b) Continuous-time part of the algorithm. It starts from the selected 

local minimum in the discrete-time and find the local minima in the 

continuous-time using the Levenberg-Marquardt algorithm (LMA). While the 

minimum l2-norm of the residual signal is considered for continuous time-shift 

optimization in the High-Resolution BC (HRBC) algorithm, other cost 

functions (l1-norm, and are average amplitude change (AAC)) are also 

considered as inputs to the LMA algorithm in the Fusion HRBC (FHRBC) 

algorithm. The fusion step considers the best solution, with the minimum l2-

norm as the FHRBC output. 
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to the problem of unknown constituent templates out of a 

template dictionary is straightforward. The inputs to the 

algorithm are the superimposed waveform and the AP shapes 

(templates). The outputs are the estimated continuous-time 

shifts of the templates. The input waveforms ( )x nT are first 

interpolated by a factor of four using the discrete Fourier 

transform to increase the time resolution [40], as the following: 

𝑥(𝑡/𝐹) =
𝑋0

𝑁
+

1

𝑁
∑ [𝑋𝑘 × 𝑒𝑥𝑝 (

𝑗2𝜋𝑘𝑡

𝐹𝑁𝑇
) + 𝑋𝑘

∗ × 𝑒𝑥𝑝 (
−𝑗2𝜋𝑘𝑡

𝐹𝑁𝑇
)]

𝑁/2−1
𝑘=1  (1) 

where, N is the number of samples, T is the sampling interval, 

Xk is the discrete Fourier transform (DFT) of the sequence 

�̃�(𝑛𝑇), * denotes complex conjugation, and F is the 

interpolation factor set to four in our analysis. 

A.  Discrete Brute-Force Correlation (DBC) 

DBC finds discrete-time shifts of the templates that provide 

a good fit to the superimposed waveform. The concept is similar 

to the peel-off algorithm. We observed that peeling off the 

single template with the best correlation at each analysis 

iteration overlooks many plausible time shifts and often fails to 

find the best one. Thus, in DBC we try all the Nt! different 

permutations in which the Nt templates could be ordered. For 

each permutation, the templates are peeled off in the prescribed 

order. The discrete-time shift that maximizes its (circular) 

cross-correlation with the residual signal is determined for each 

template. Then the shifted template is subtracted to give the 

new residual signal. The set of time shifts that gives the best fit 

(least l2-norm of the final residual) is saved as the discrete 

brute-force correlation (DBC) result. 

 

 

 
Fig. 3. Block diagram of the FHRBC algorithm. 1* = Select the ith order of 

permutation array and name it as current_temps and then increment the index (i++). 

2* = Pick j template of current_temps array and calculate cross-correlation between 

it and superimposed waveform, then increment the index (j++). 3* = Find best 

match of cross- correlation result, save best match in shift array, subtract  shifted 

template from superimposed waveform and save result in residual vector. In fact, 

the entire Nt! different permutations are ordered in our method, where Nt is the 

number of templates. We, then, peel off the templates from the superposition 

waveform in the prescribed order for each permutation. To identify the location of a 

template with respect to the superposition waveform (at the first permutation order), 

or the residual signal (at the next orders), (circular) cross-correlation is used. A 

detailed practical example was provided in sub-section II.F for better clarification. 

 

 
  

 

Templates
Superimposition

i = 0
j = 0

Create permutation 
array with length L

Calculate cost function 
for each element of 

shift array

Calculate energy of 
residual vector and 

create energy residual 
vector

Calculate RMS for 
residual vector and 
create RMS vector

Give points for LMA 
algorithm 

Select the points that 
have lowest cost 

function

Chose this points as 
output

i=2
1*

i=3
1*

i=4
1*

i=L
1*

i=1
1*

2* 2* 2* 2* 2*

If 
j>number of templates

No

No No

No

Parallel
DBC 

No

 
Fig. 4. Block diagram of parallel FHRBC. 1* = Pick j template of 

current_temps array and calculate cross-correlation between it and the 

superimposed waveform, then increment the index ( j++). 2* = Find best match 

of cross-corr result, save best match in shift array,  substract shifted template 

from superimposed waveform and saveresult in residual vector. The DBC 

algorithm is implemented in parallel for the parallel FHRBC algorithm, as 

shown by “parallel DBC” in the flowchart. Each permutation set is performed 

as a separate process in a parallel structure. For example, if we have five input 

templates, 5! (=120) permutation sets must be analyzed. These sets are 

independent and could be implemented as separate procedures. However, the 

cost functions must be calculated when each of which is terminated. This 

implementation is efficient when the number of involved units is rather high, 

since the running time of the data exchanges and moderation of the parallel 

structures is not negligible when few units are analyzed. 
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B. High-Resolution Brute-Force Correlation (HRBC) 

The result of the DBC algorithm is passed on to the LMA 

procedure. The LMA algorithm (discussed in the following) 

uses the initial discrete-time points as the initial points and uses 

continuous-time optimization to fine-tune the results (HRBC). 

 

C. Levenberg–Marquardt algorithm  

We consider the least square cost function of the 

superimposition problem in the frequency domain as the 

following [40] : 

 

𝑒2 =
1

𝑁
∑ |𝐷𝑘|2𝑁−1

𝑘=0                                        (2) 

 

where, 

 

𝐷𝑘 ≡ 𝑋𝑘 − 𝑆1,𝑘,𝜙1
− ⋯ − 𝑆𝑀,𝑘,𝜙𝑀

                                                 (3) 

 

𝑆𝑚,𝑘,𝜙  ≡ 𝑆𝑚,𝑘exp (
𝑗2𝜋𝑘𝜙

𝑁
)                                                    (4) 

 

 and where 𝑁 is the length of the signal, 𝑋 is the Fourier 

transform of the superimposition, 𝑆𝑚 is the Fourier transform 

of the 𝑚𝑡ℎ MUAP template. 

The Gradient and Hessian of the cost function are calculated 

as follows: 

 

𝜕𝑒2

𝜕𝜙𝑖
=

4

𝑁
∑ (

2𝜋𝑘

𝑁
) 𝐼𝑚{𝑆𝑖,𝑘,𝜙𝑖

𝐷𝑘
∗}

𝑁

2
−1

𝑘=1
                                         (5) 

 

𝜕2𝑒2

𝜕𝜙𝑖𝜕𝜙𝑗
=  {

4

𝑁
∑ (

2𝜋𝑘

𝑁
)

2
(𝑅𝑒{𝑆𝑖,𝑘,𝜙𝑖

𝐷𝑘
∗} + |𝑆𝑖,𝑘,𝜙𝑖

|
2

) 𝑖𝑓 𝑖 = 𝑗
𝑁

2
−1

𝑘=1

4

𝑁
∑ (

2𝜋𝑘

𝑁
)

2𝑁

2
−1

𝑘=1 𝑅𝑒 {𝑆𝑖,𝑘,𝜙𝑖
𝑆𝑗,𝑘,𝜙𝑗

}                    𝑖𝑓 𝑖 ≠ 𝑗

    

(6) 

where i and j are the MUAP template indices. 
 

Since this cost function is non-linear, the Levenberg-

Marquardt algorithm (LMA) was used for the optimization [41-

43]. The LMA, also known as damped least-squares, is used to 

solve non-linear least-squares problems. It can be formulated 

as: 

 

Φ(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛∅ 𝑒2                                                         (7) 

  

When our initial guess is close to the global minimum, the 

LMA algorithm converges to the global minimum. 

In the next iteration, the parameter ∅ is replaced with ∅ + 𝛿, 
and Equation (8) is obtained with linearization: 

 

𝑒2(∅ + 𝛿) =  𝑒2(𝜙) + 𝐽𝑖𝛿                                                  (8) 

 

where, 

 

𝐽𝑖 =  
𝜕𝑒2

𝜕𝜙𝑖
                                                                               (9) 

 

The first-order approximation of 𝑒2(𝜙 + 𝛿) in vector 

notation is the following: 

 

𝑒2(𝜙 + 𝛿)  ≈  ‖𝑋 − 𝑆𝑘𝜙 − 𝐽𝛿‖
2
                                         (10) 

 

After taking the derivative and setting it to zero, we have: 

 
(𝐽𝑇𝐽)𝛿 =  𝐽𝑇[𝑋 − 𝑆𝑘𝜙]                                                      (11) 

 

where 𝐽 is the Jacobian Matrix. By using Levenberg’s 

contribution, we obtain: 

 
(𝐽𝑇𝐽 + 𝜆𝐼)𝛿 =  𝐽𝑇[𝑋 − 𝑆𝑘𝜙]                                              (12) 

 

where 𝐼 is the identity matrix and 𝜆 is the damping factor.  

 

The LMA is, in fact, the combination of the Gauss-Newton 

and gradient descent algorithms. The method proposed by 

Marquardt [43] was used to tune the damping factor adaptively. 

It was initially set to 𝜆(0) =0.1 in our study. Its scaling factor 

(ν) was set to 2. The damping factor was scaled by the scaling 

factor if the sum square error (e2) is reduced at each iteration. 

Otherwise, the damping factor increased to reduce the sum 

square error. 

 

D. Fusion HRBC (FHRBC) 

The use of the l2-norm does not always result in a discrete-

time solution that converges to the globally best continuous-

time solution. This is partly due to the background noise and its 

distribution [35]. In FHRBC, two other cost functions were 

used in addition to the l2-norm (Fig. 3): the l1-norm, which is 

more robust to noise, and the average amplitude change (AAC) 

[44]. AAC was defined as follows: 

 

𝐴𝐴𝐶 =
1

𝑁
∑ |𝑥𝑖+1 − 𝑥𝑖 |

𝑁−1
𝑖=1                                                    (13) 

 

where, 𝑁 is the length of the residual signal, and 𝑥𝑖 is the 𝑖th 

element of the residual signal. 

E. Parallel Algorithm 

One of the benefits of the HRBC and FHRBC algorithms is 

that they can use a parallel implementation to improve 

efficiency. The block diagram of the parallel FHRBC algorithm 

is shown in Fig. 4. The discrete part of the algorithm (DBC) is, 

in fact, implemented in parallel in which different permuted 

time shift sets are tested as a separated process. The DBC 

algorithm implemented in parallel is referred to as the parallel 

DBC algorithm.   

 

F. An example of the FHRBC algorithm 

In this subsection, an example is provided to describe how 

the FHRBC algorithm works. A superposition was created by 

shifting templates 5, 4, and 8 of Fig. 5 by -7.0719, 2.9947, and 

-7.5464 samples, respectively, and adding them together along 

with background noise. Time shifts (∅) that are fractions of the 

sampling interval were computed by the inverse Fourier 

transform of the rotations in the frequency domain [40]: 

𝑋𝑘,∅ = 𝑋𝑘𝑒𝑥𝑝 (
𝑗2𝜋𝑘∅

𝑁
) 
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                         (14) 

The algorithm considered six permutations {(1,2,3), (1,3,2), 

(2,1,3), (3,1,2), (2,3,1), (3,2,1)}. The algorithm peeled off the 

templates in the prescribed order for each permutation, resulting 

in the six residual signals shown in Fig. S1: P1-P6. The FHRBC 

algorithm calculated the l2-norm, l1-norm, and AAC of each 

residual signal and chose the minimum for each norm. In this 

case, permutation P4 had the minimum l2-norm, and AAC and 

P5 had the minimum l1-norm. The corresponding sets of 

discrete-time shifts were sent to the LMA procedure, which 

used them as starting points to find the optimal continuous-time 

shifts. In our example, both P4 and P5 converged to the same 

set of continuous-time shifts: -6.9689, 2.8945, -7.5772 samples, 

with an l2-norm of 0.54. The final estimation errors of the time 

shifts were 0.10, 0.10, and 0.03 samples. Table S1 shows the 

estimated time shifts for each step of the algorithm. 

 

G. iEMG Datasets 

Two sets of MUAP templates, taken from iEMG signals from 

the public domain database at www.emglab.net, were used in 

our study. They were sampled at 10 kHz and high-pass filtered 

at 1 kHz [38]. The first set had ten MUAPs with a variety of 

energies (5000-130,000)(𝜇𝑉)2 (Fig. 5), while the second set 

had six MUAPs with a high degree of similarity (average 

bivariate correlation coefficients of 0.59 ± 0.28) (Fig. 6). In the 

first set, we simulated 7000 superimpositions from 2 to 8 

MUAPs, while in the second set, we simulated 4000 

superimpositions from 2 to 5 MUAPs. The time shifts of the 

MUAPs were randomly distributed between -1ms to +1ms, 

which produced more constructive and destructive rather than 

partial superimpositions.  

 

For simulating practical situations, we added uniform random 

noise that varied from -5% to 5% of the difference between 

maximum and minimum of the signal to each of the samples of 

the resulting superimposition. Also, for simulating the effect of 

movement of electrodes, we randomly changed the MUAP 

amplitudes involved in the superimposition to improve the 

generalization of the results [38]. The amplitude gain was 

randomly distributed between 0.7 and 1.3, and was randomly 

applied to the involved MUAPs. 

H. Neural Recording Dataset 

The benchmark dataset proposed by Pedreira et al. [45] was 

used for spike sorting. Spike-triggered averaging was used to 

extract different spikes [46]. Two spike sets were then 

generated. The first set had 10 spikes with a wide variety of 

energies (0.75 – 9.79) (μV)2 (Fig. 7) while the second set had 

11 spikes with a high degree of similarity (correlation 0.58 ±
0.24) (Fig. 8). This dataset was recorded with a 24 kHz 

sampling frequency.  

For each spike set, 1000 different superimpositions of 

combinations of 2 to 8 spikes (a total of 14000 for the entire set) 

were simulated. Electrode movement and background noise 

were simulated as with iEMG.  

 

 
Fig. 5. Ten MUAP templates in the set 1 of iEMG decomposition dataset and 

some examples of the noisy superimpositions along with the constituent MUAP 

templates. 

 

 
 

 

Fig. 7. Different Spikes in the set 1 of neural recording dataset and some 

examples of noisy superimpositions (overlapping Spikes) (bottom). 

 

 
 

Fig. 6. Six MUAP templates of the set 2 of iEMG decomposition dataset 

and some examples of noisy superimpositions along with their constituent 

MUAP templates . 

 

 

http://www.emglab.net/
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I. Real-time decomposition of experimental signals 

The performance of the proposed DBC algorithm was further 

assessed in conjunction with a real-time iEMG decomposition 

algorithm on experimental signals. The iEMG decomposition 

algorithm proposed by Karimimehr et al. [47] was used in our 

study. In this algorithm, superimposed MUAPs were not 

resolved. The active segments with superimposed MUAPs were 

thus resolved by the DBC algorithm. The identities of the MUs 

involved in the superposition were estimated from the expected 

firing times of the MUs based on the firing times of their 

surrounding discharges [46, 48].  

 

Experimental signals recorded from biceps femoris long-

head (BFlh), tibialis anterior (TA), and Vastus Medialis 

obliquus (VM) muscles were used in our study. The 

experimental protocol was described elsewhere [47]. Briefly, 

the constant force plateau regions of isometric contractions 

were analyzed. The levels of contractions were 5% and 10% 

MVC for BFlh (five subjects, all men) and 10% and 30% MVC 

for VM (five subjects, all men). The subjects were asked to 

increase the strength of the contraction of the TA muscle until 

the iEMG signal contained from 6 to 12 active MU trains, as 

judged by the investigators. All subjects were informed about 

the study protocol in accordance with the Declaration of 

Helsinki and approved by the local ethics committee. To check 

the results of the DBC algorithm, the single-channel signals 

were decomposed by EMGLAB [46] and then manually 

corrected by an experienced operator. The decomposition 

results were then corrected using a rigorous a posteriori 

statistical analysis [49]. These results were considered the gold 

standard [50].  

J. Validation 

The results of each algorithm were compared with the actual 

or gold-standard time shifts of the MUAPs or spikes in the 

superimpositions. Each time-shift error was classified as being 

in one of these three classes: <  ±0.1 𝑚𝑠 (essentially correct), 

≤  ±0.5 𝑚𝑠 (close), and >  ±0.5 𝑚𝑠 (incorrect) [37, 49]. The 

Identification rate (Id) was used [35, 38] to assess the accuracy 

of the algorithms: 

𝐼𝑑 =  
𝑛𝑐

𝑛𝑖+𝑁𝑡
                                                                           (15) 

where 𝑛𝑐 is the number of essentially correct time shifts, 𝑛𝑖 

is the number of incorrect time shifts, and 𝑁𝑡 is the total number 

of ground truth MUAPs (or spikes) involved in this 

superimposition. The analyzed algorithms were ranked overall 

on the entire datasets using the Rank Product (RP) [38, 51]. 

Moreover, the complexity of the experimental iEMG signals 

was assessed by the superposition percentage (% Sup), defined 

as the number of superimposed spikes divided by the total 

number of spikes detected in the iEMG signal. A margin of 3 

ms was used to define superimposed spikes [7, 52].  

 

 The running time of the superposition resolution algorithms 

was also reported as a measure of computational complexity. 

The running time of the algorithms was assessed on an Intel(R) 

Core (TM) i7-8750H 2.20GHz CPU with 16 GB of RAM. 

K. Statistical Methods 

Results are reported as mean ± standard deviation. We used 

the Generalized Estimating Equation (GEE) method to model 

factors associated with repeated responses [53]. GEE was used 

to find significant factors (e.g., set number and number of APs) 

affecting the performance of the superposition resolution 

algorithms. The Friedman test was further used to compare the 

performance of the DBC, HRBC, and FHRBC methods. The 

Wilcoxon signed-rank test with the Bonferroni correction was 

used for pairwise comparison, and also to assess whether initial 

interpolation was required for the DBC, HRBC, and FHRBC 

methods. Adjusted P-values less than 0.05 were considered 

significant. The statistical analysis and calculations were 

performed using the IBM SPSS Statistics for Windows, version 

24.0, Released 2016 (IBM Corp., Armonk, NY). 

III. RESULTS 

A. Simulated Signals 

The results of the different algorithms on the iEMG sets 1 and 

2 for superpositions involving 2 to 5 MUAPs are provided in 

Tables I and II. The results for the spike sorting sets 1 and 2 for 

 
 

Fig. 8. Different Spikes in the set 2 of neural recording dataset and some 

examples of noisy superimpositions (overlapping Spikes) (bottom). 

 

TABLE I  

RESULTS OF DIFFERENT ALGORITHMS ON THE IEMG SET 1 FOR COMBINATION 

OF 2 TO 5 MUAPS 

Combination Algorithm Id (%) Time (s) 

2 

 

 

DBC 99.45±6.10 0.001±0.0001 

HRBC 99.70±04.99 0.006±0.0009 

FHRBC 99.70±4.99 0.007±0.0020 

BB 99.90±2.23 0.004±0.0008 

3 

 

 

DBC 97.47±11.34 0.001±0.0002 

HRBC 98.33±9.83 0.008±0.0028 

FHRBC 98.88±8.38 0.012±0.0065 

BB 99.27±6.06 0.012±0.0055 

4 

 

 

DBC 93.51±16.34 0.006±0.0003 
HRBC 94.93±15.17 0.015±0.0033 

FHRBC 96.83±12.07 0.027±0.0104 

BB 96.33±12.78 0.042±0.0356 

5 

 

 

FHRBC 90.86±18.87 0.089±0.0195 
BB 92.38±17.30 0.231±0.2957 

DBC 85.52±22.20 0.033±0.0013 

HRBC 86.94±22.24 0.045±0.0073 
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superpositions involving 2 to 5 spikes are provided in Tables III 

and IV. 

 

 

The GEE test showed that the ranking of the methods in terms 

of Id variable was BB, FHRBC, HRBC, and DBC (P-value < 

0.05) on the iEMG and neural recording datasets. The ranking 

for running time was DBC, HRBC, FHRBC, and BB (P-value 

< 0.05). Thus, BB had the best accuracy on both datasets and 

DBC had the best running time. The dataset and number of APs 

significantly influenced the accuracy (P-value < 0.05).  

 

Combining the accuracy and running time results, the RP 

method provided the following overall ranking for 

combinations of 2-5 APs: DBC, BB, FHRBC, and HRBC.  

 

Although the resolution of superpositions of two to five APs 

is usually considered in the literature [35-38, 54], it is also 

necessary to assess the performance of such algorithms when 

more APs overlap, as it may happen in practice [48]. Thus, we 

TABLE II  

RESULTS OF DIFFERENT ALGORITHMS ON THE IEMG SET 2 FOR COMBINATION 

OF 2 TO 5 MUAPS 

Combination Algorithm Id (%) Time (s) 

2 

 

 

DBC 99.15±8.47 0.001±0.0001 
HRBC 99.50±7.05 0.005±0.0010 

FHRBC 99.60±6.31 0.007±0.0021 

BB 100.00±0.00 0.005±0.0026 

3 

 

 

DBC 97.89±10.85 0.001±0.0001 
HRBC 98.45±10.04 0.008±0.0021 

FHRBC 99.13±7.80 0.012±0.0050 

BB 100.00±0.00 0.019±0.0072 

4 

 

 

DBC 96.10±13.06 0.006±0.0002 

HRBC 98.01±10.33 0.015±0.0032 

FHRBC 98.70±8.61 0.026±0.0116 

BB 99.92±1.76 0.114±0.0756 

5 

 

 

DBC 92.62±18.03 0.033±0.0014 

HRBC 94.34±17.19 0.044±0.0055 

FHRBC 96.67±13.42 0.097±0.0238 

BB 99.48±5.02 1.026±0.9991 

 

 
TABLE III  

RESULTS OF DIFFERENT ALGORITHM IN THE SPIKE SORTING SET 1 FOR 

COMBINATIONS OF 2 TO 5 DIFFERENT SPIKES 

Combination Algorithm Id (%) Time (s) 

2 

 

 

DBC 96.60±16.84 0.001±0.0002 

HRBC 97.90±14.34 0.008±0.0014 

FHRBC 97.90±14.34 0.012±0.0045 

BB 100.00±0.00 0.012±0.0037 

3 

 

 

DBC 94.98±17.40 0.004±0.0002 

HRBC 96.10±16.25 0.013±0.0042 

FHRBC 96.20±16.48 0.023±0.0102 

BB 100.00±0.00 0.065±0.0357 

4 

 

 

DBC 93.85±15.23 0.017±0.0007 

HRBC 96.20±13.46 0.030±0.0052 

FHRBC 95.97±14.40 0.060±0.0196 

BB 99.92±1.76 0.560±0.4733 

5 

 

 

DBC 93.34±14.72 0.103±0.0037 

HRBC 96.28±12.10 0.119±0.0077 

FHRBC 96.04±13.56 0.227±0.0372 

BB 99.76±2.42 6.291±7.2151 

 

 

TABLE VI  

RESULTS OF DIFFERENT ALGORITHMS ON SPIKE SORTING SET 1 FOR 

COMBINATIONS 6 TO 8 DIFFERENT SPIKES 

Combination Algorithm Id (%) Time (s) 

6 

 

DBC 91.78±15.15 0.441±0.0202 

HRBC 95.15±13.16 0.512±0.0626 

FHRBC 94.91±14.49 1.186±0.1233 

7 

 

DBC 90.04±15.67 3.473±0.2346 

HRBC 93.19±15.18 3.598±0.2848 

FHRBC 93.71±14.78 10.033±2.6471 

8 

 

DBC 87.61±16.57 37.842±3.6410 

HRBC 91.03±16.37 37.927±3.1644 

FHRBC 92.28±15.30 78.861±9.1368 

 

 

 

 

TABLE IV  

RESULTS OF DIFFERENT ALGORITHM IN THE SPIKE SORTING SET 2 FOR 

COMBINATIONS OF 2 TO 5 DIFFERENT SPIKES 

Combination Algorithm Id (%) Time (s) 

2 

 

 

DBC 99.60±4.45 0.001±0.0002 

HRBC 99.95±1.58 0.007±0.0009 

FHRBC 99.95±1.58 0.011±0.0032 

BB 100.00±0.00 0.011±0.0040 

3 

 

 

DBC 99.03±6.51 0.004±0.0002 

HRBC 99.66±4.93 0.012±0.0016 

FHRBC 99.66±4.93 0.020±0.0063 

BB 100.00±0.00 0.037±0.0201 

4 

 

 

DBC 98.91±5.97 0.017±0.0006 

HRBC 99.58±4.28 0.028±0.0048 

FHRBC 99.53±4.56 0.049±0.0131 

BB 99.97±0.79 0.164±0.1368 

5 

 

 

DBC 98.26±7.26 0.101±0.0028 

HRBC 98.91±6.41 0.117±0.0050 

FHRBC 99.18±5.32 0.189±0.0305 

BB 99.83±2.23 0.834±0.8904 

 

x 

TABLE V  

RESULTS OF DIFFERENT ALGORITHMS ON IEMG SET 1 FOR COMBINATIONS 6 

TO 8 DIFFERENT MUAPS 

Combination Algorithm Id (%) Time (s) 

6 

 

DBC 77.11±24.91 0.240±0.0157 

HRBC 79.29±25.37 0.261±0.0173 

FHRBC 85.26±22.66 0.467±0.0531 

7 

 

DBC 69.43±24.98 1.976±0.1197 

HRBC 71.10±25.23 2.032±0.1609 

FHRBC 77.74±23.97 3.476±0.5272 

8 

 

DBC 62.06±24.73 18.369±1.038 

HRBC 63.29±25.49 18.037±0.7383 

FHRBC 69.34±25.27 26.839±2.6023 

 

TABLE VII  

RESULTS OF DIFFERENT ALGORITHMS ON SPIKE SORTING SET 2 FOR 

COMBINATIONS 6 TO 8 DIFFERENT SPIKES 

Combination Algorithm Id Time 

6 

 

DBC 97.29±8.88 0.457±0.0462 

HRBC 98.24±7.66 0.511±0.0663 

FHRBC 98.60±6.86 0.825±0.1176 

7 

 

DBC 95.91±10.04 3.580±0.1060 

HRBC 97.34±9.13 3.806±0.4226 

FHRBC 97.91±7.67 6.261±0.9126 

8 

 

DBC 96.31±8.72 37.945±3.8665 

HRBC 97.73±7.43 38.791±4.6103 

FHRBC 97.98±7.07 61.685±8.6438 

 



TBME-02167-2021.R2 8 

also considered cases with six to eight APs. The performance 

of the proposed algorithms was assessed on the iEMG set 1 

(Table V), spike sorting set 1 (Table VI), and set 2 (Table VII). 

Since the BB algorithm is relatively slow (e.g., sometimes 

taking more than days in complex cases involving more than 5 

APs), it was not included in the extended analysis. The 

extended analysis provided the following ranking in terms of 

accuracy: FHRBC, HRBC, and DBC (P-value <0.05), and 

running time: DBC, FHRBC, and HRBC (P-value <0.05). The 

number of APs significantly affected the accuracy of the 

analyzed methods for the extended analysis (P-value < 0.05).  

 

Combining the accuracy and running time results, the RP 

method provided the following overall ranking for 

combinations 6-8: DBC, FHRBC, and HRBC.  

 

The initial interpolation significantly improved the 

performance of the DBC and HRBC algorithms (adj. P-value 

<0.05) but not the FHRBC algorithm. Also, the FHRBC and 

HRBC algorithms significantly outperformed the DBC 

algorithm in terms of the Id values (adj. P-value <0.05), 

showing that it is possible to benefit from the optimization 

block of the HRBC and FHRBC algorithms. 

 

B. Experimental signals 

The performance of the DBC algorithm on the experimental 

iEMG signals is shown in Table VIII. The number of MUs 

ranged from four to 11, while the superposition percentage 

ranged from 14.14% to 26.96%. The criterion for an essentially 

correct identification used in the Id formula (Eq. 13) is 0.1 ms 

(i.e., one sampling interval with the sampling frequency of 10 

kHz). Thus, we performed a more rigorous performance 

assessment than other state-of-the-art studies [7, 52], which 

used a 1 ms criterion. The superposition percentage and the 

number of MUs in our study are similar to that of Yu et al. [7].  

The accuracy values provided in Table VIII reflect the DBC 

algorithm’s performance and the MU discharge estimation 

algorithm. A correctly resolved superposition from the TA 

muscle is shown in Fig. 9. Five MUAPs were involved, and the 

running time of the DBC algorithm was 3.24 ms.  

 

TABLE VIII 

RESULTS OF THE DBC ALGORITHMS ON THE REAL IEMG SIGNALS 

Muscle % 

MVC 

DUR 

(s) 

#MU % 

Sup 

CORR Time 

(ms) 

Id 

 (%) 

 

 

BFlh 

 

 

 

5 

 

 

 

 

10 

7 19.19 

0.13-

0.98 

1.29± 

1.02 

96.38± 

14.19 

4 12.86 

0.48-

0.90 

1.24± 

0.97 

89.62± 

22.04 

5 14.14 

0.35-

0.97 

1.23± 

0.96 

95.30± 

16.32 

10 

6 17.60 

0.17-

0.97 

1.30± 

1.30 

92.26± 

23.09 

7 20.27 

0.54-

0.97 

1.21± 

0.97 

88.33± 

28.52 

VM 

 

10 

7 19.13 

-0.30-

0.92 

1.29± 

1.15 

92.03± 

19.09 

30 

11 24.07 

-0.76-

0.81 

6.06± 

34.00 

95.61± 

13.77 

TA 

- 20 

7 26.96 

0.56-

0.96 

4.70± 

26.78 

86.87± 

30.21 

 

BFlh: Biceps Femoris long-head; VM: Vastus Medialis; TA: Tibialis Anterior; 

DUR: duration of the signal; #MU: the number of active MUs in the gold 

standard; % Sup: the superposition percentage; CORR: the range of the 

correlation between MUAPs; Time: the average analysis time 10.5 ms spike 

epochs; Id: the accuracy of superposition resolution. 

 

 

T 

 
 

Fig. 9. A sample superimposed MUAP signal from the TA muscle (top, 

dashed-dotted black), and the reconstructed signal (top, solid blue). The 

residual signal is shown in the middle. The inclusion of five MUAP templates 

were identified by the MU discharge estimation algorithm, while their firing 

times were estimated by the DBC algorithm.    

 

TABLE IX  

THE PERFORMANCE (ID) OF THE DBC ON DATASETS WITHOUT NOISE AND THE 

RUNNING TIME OF THE PARALLEL DBC ON THE NOISY DATASETS 

Dataset Set Combinations Id (%) Time (s) 

iEMG 

 

 

 

 

 

 

  1              

 

 

 

 

2 99.75±4.18 0.018±0.0265 

3 99.02±8.08 0.017±0.0037 

4 98.81±6.38 0.029±0.0063 

5 97.97±6.89 0.057±0.0096 

6 98.29±6.18 0.181±0.0262 

7 98.55±4.97 1.126±0.0765 

8 98.25±4.92 10.460±0.9795 

  2 

 

 

2 99.70±3.86 0.018±0.0352 

3 98.83±7.29 0.019±0.0228 

4 98.88±6.11 0.027±0.0118 

5 98.35±5.67 0.056±0.0208 

Spike 

Sorting 

 

 

 

 

 

 

 

 

  1 

 

 

 

 

2 96.65±16.78 0.013±0.0063 

3 95.37±15.57 0.018±0.0096 

4 94.87±13.36 0.036±0.0089 

5 94.36±12.97 0.104±0.0241 

6 94.13±11.50 0.520±0.0399 

7 94.45±10.16 3.778±0.2342 

8 93.84±9.70 42.946±1.8461 

  2 

 

 

 

 

2 99.50±5.90 0.015±0.0040 

3 99.32±5.26 0.021±0.0078 

4 99.36±4.75 0.038±0.0087 

5 99.17±4.60 0.104±0.0062 

6 98.94±4.75 0.503±0.0495 

7 98.98±4.27 3.864±0.1904 

8 98.84±4.27 37.175±2.4920 
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C. Influence of the Background Noise 

Resolving superpositions is an NP-hard problem in 

optimization [36]. Moreover, it is not a convex optimization 

problem. The background noise in the superimposed waveform 

further increases the complexity of the problem by changing the 

location of the global optimum so that the global minimum of 

the cost function does not always correspond to the actual time 

shifts of the involved templates [36]. Our preliminary studies 

suggested that using a different norm besides the l2-norm in the 

DBC algorithm might improve its accuracy. In our results, 

however, the improvement using the FHRBC algorithm was 

relatively small. Therefore, for practical purposes, the DBC 

algorithm using the l2-norm is acceptable. 

 

 We investigated the performance of the analyzed algorithms 

for superpositions of two APs with different noise levels (Fig. 

10). With the noise level up to 8%, none of the analyzed 

methods showed decreased accuracy. It is thus essential to 

provide high-quality recorded signals to increase the 

performance of the superposition resolution algorithms. 

Moreover, the performance of the proposed DBC algorithm was 

assessed without adding the noise to the superimposed 

waveforms (Table IX, Id column). The average accuracy of the 

DBC algorithm was above 97% for the iEMG dataset 

(combination 2-8). Such values were higher than 93% on the 

neural recording dataset. We further implemented the parallel 

DBC algorithm, whose running time analysis is provided in 

Table IX. The average running time of the parallel 

implementation was less than 500 ms for the combinations 2-6, 

where at most 720 permutations must be analyzed. However, 

when resolving 7-8 MUs, 5040 to 40320 permutations must be 

analyzed, thus significantly increasing the running time. The 

running time of the parallel DBC algorithm was further 

assessed on a server (Table S2). 

 

D. The complexity of the superpositions of the analyzed 

datasets 

 

The superpositions considered in our study were not easy to 

 
Fig. 10. The accuracy of different algorithms to resolve superimpositions of two MUs for different noise levels. The BB, FHRBC, HRBC, and DBC algorithms 

were shown in dashed black, solid red, dotted cyan and dashed dotted blue.  

 

TABLE X  

RESULTS OF THE PEEL-OFF ALGORITHM ON DIFFERENT COMBINATIONS OF THE 

SET 1 AND 2 OF THE IEMG AND NEURAL RECORDING DATASETS  

Dataset Set Combinations Id (%) Time (s) 

iEMG 

 

 

 

 

 

 

  1              

 

 

 

 

2 49.98±32.88 0.001±0.0001 

3 31.92±21.13 0.001±0.0001 

4 25.74±16.89 0.001±0.0001 

5 21.49±13.84 0.001±0.0001 

6 19.06±11.96 0.001±0.0057 

7 18.10±10.73 0.001±0.0009 

8 17.01±9.79 0.001±0.0007 

  2 

 

 

2 49.77±37.33 0.001±0.0001 

3 30.21±23.06 0.001±0.0001 

4 24.82±17.93 0.001±0.0001 

5 20.48±14.15 0.001±0.0001 

Spike Sorting 

 

 

 

 

 

 

 

 

  1 

 

 

 

 

2 57.95±35.62 0.001±0.0001 

3 28.79±18.77 0.001±0.0001 

4 21.21±14.43 0.001±0.0001 

5 17.50±10.26 0.001±0.0001 

6 15.37±9.36 0.001±0.0001 

7 13.50±7.43 0.002±0.0014 

8 12.30±7.22 0.002±0.0008 

  2 

 

 

 

 

2 53.38±35.12 0.001±0.0001 

3 27.92±19.05 0.001±0.0001 

4 21.07±14.34 0.001±0.0001 

5 16.66±10.82 0.001±0.0001 

6 15.07±9.55 0.001±0.0008 

7 13.51±8.18 0.002±0.0008 

8 12.01±7.47 0.002±0.0008 
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resolve. The result of the peel-off algorithm is provided in Table 

X as a measure of the complexity of the superpositions. The 

accuracy of the peel-off algorithm ranged from 57.95 % for 

superpositions involving 2 APs in spike sorting set 1 to 12.01 

% for superpositions involving 8 MUs in spike sorting set 2. 

Overall, its average accuracy was 25.39±23.16 (%). The peel-

off algorithm peels off the templates in one specific order, and, 

as our results show, this does not always lead to the best 

solution. However, versions of it are still being used in the 

literature [55]. This might be because the algorithm is fast and 

works fairly well for partial superpositions [38]. 

 

IV. DISCUSSION 

 

A. Evaluating the Results 

 

Resolving APs is a critical final step when complete 

decomposition is envisioned. It is time-consuming, especially 

when interactive decomposition programs are used [46]. 

Various algorithms have been proposed in the literature to 

resolve superimposed APs [38, 54]. However, in principle, they 

are not suitable for online neural decoding. Moreover, their 

performance significantly drops when several APs overlap. 

Some attempts were made to bypass this step in online 

decoding, including applying Cumulative Discharge Rate 

(CDR) and estimating approximate firing times of MUs to use 

incomplete decomposition results [47]. However, such an 

approximation is not suitable when the precise timing of each 

MU is required [48]. The literature also shows that resolving 

superimposed MUAPs can significantly increase 

decomposition accuracy [7, 47, 52, 56]. Thus, this study aimed 

to propose an accurate and efficient method to resolve 

superimposed MUAPs that could also be implemented in 

parallel (Fig. 4).  

 

The DBC algorithm was superior to the other methods 

analyzed in terms of accuracy and running time. Its average 

running time was 33 ms and 102 ms for the combinations of 

five MUs in the iEMG (Tables I, II) and spike sorting (Tables 

III, IV) datasets. Its parallel implementation could be used, in 

principle, for online decoding. It is too slow, however, to be 

used online for superpositions involving more than 5 APs, but 

it may still be helpful offline, showing an average accuracy of 

87.61% and 96.31% for 8 MUs (Tables VI, VII). An 

exhaustive-search algorithm must calculate the entire 𝑁𝑁𝑡 

residual signals, while in the DBC method 𝑁 × (𝑁𝑡)! residual 

signals must be evaluated. For example, if we limit the number 

of discrete-time shifts to (N=42), the number of residual signals 

for Nt=8 templates are 9.68E+12, and 1.69E+6 for the 

exhaustive search and the DBC algorithms, respectively.  

 

For signals with sharp spikes sampled near the Nyquist rate, 

using interpolation to increase the time resolution is essential 

for increasing the accuracy of algorithms based on discrete-time 

shifts. We found that interpolation by a factor of four provided 

sufficient time resolution so that the discrete-time DBC 

algorithm showed high accuracy. Fine-tuning the results using 

the continuous-time LMA algorithm provided only a slight 

improvement. However, sub-sampling superposition resolution 

is a critical step in decreasing the clusters’ dispersion, MUAP 

template variability for spike-triggered averaging. Such sub-

sampling time shifts are important when investigating MUAP 

jitter, and such values affect the accuracy of neural decoding 

algorithms in the validation steps [36, 48]. It must also be noted 

that the formulation of the Gradient vector and Hessian matrix 

was originally proposed by McGill and Dorfman [40], and our 

main contribution is the development of the heuristic DBC 

algorithm and using three cost functions to find the best 

discrete-time solution. Our main message is that, unlike the 

peel-off algorithm, we must consider all the permutations of the 

templates that could provide suitable candidates for time shift 

estimation. Such a procedure is accurate and efficient (Tables 

III-VIII), and is promising for real-time neural decoding. 

  

B. Resolving destructive superpositions 

Destructive superimpositions are usually created when a 

MUAP is out of phase with another MUAP, or in a more general 

case, some MUAPs cancel out the others. When destructive 

superimpositions occur, the superimposed waveform is not 

similar to any of the MUAPs involved in the superimposition. 

The correlation of the involved MUAPs and the superimposed 

waveform is not thus a suitable method to resolve destructive 

superpositions. Resolving superimposed MUAPs can be 

formulated as the following, in a more general case: 

−𝑥𝑖(𝑡 + 𝜑𝑖) ≈ −𝑠(𝑡) + ∑ 𝑥𝑗(𝑡 + 𝜑𝑗)
𝑗=1,…,𝑁𝑡;𝑗≠𝑖

    (16) 

where xi is the ith MUAP, s is the superimposed waveform, 

and 𝜑𝑖 is the time shift of the xi. In fact, we try to fit the right-

hand side of the eq. (14) to each MUAP (i.e., i=1,..,Nt). The case 

with the best residual norm is considered the solution. The DBC 

algorithm was thus used for the implementation. Over the entire 

multiunit sets and the combinations of two to five MUs, this 

extension significantly improved the average accuracy of the 

superposition resolution by 2% (P-value<0.001). Since the 

DBC method must run Nt times, this extension is suitable for 

offline algorithms. 

C. Applications in Other Fields 

The problem of resolving superimpositions (overlapping 

waveforms) also arises in other areas, such as nuclear magnetic 

resonance spectroscopy [57], the overlapping of asphaltenes in 

the oil industry [58], and the spectral overlapping of phosphors 

in light-emitting diodes [59]. The algorithms proposed here 

could be used in these applications.    

D.  Limitation and Future Works 

The present study has some limitations. The cost functions 

used in our study are not entirely robust to the background noise 

(Fig. 9). The background noise could resemble the background 

activity, and the performance of the proposed algorithms drops 

in signals with high background activities. Other cost functions 

should be examined in the future. The DBC algorithm is a sub-
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optimal heuristic method. Although it was converged to the 

global minimum in 79% of the entire cases (i.e., the percentage 

of the cases with the Id of 100%), the global convergence is not 

guaranteed. Using hidden convexity in nonconvex quadratic 

optimization is thus a focus of our future activities. 

The firing time estimation method used in our study and the 

a-posterior accuracy assessment algorithm work on isometric 

constant-force contractions. Signals recorded during ramp 

contractions must also be analyzed, and other firing time 

estimation methods with more flexibility [60, 61] must be used. 

Also, low-to-moderate contraction levels were used in our 

study. Various experimental signals and higher contraction 

levels must be used for extensive validation, which will be a 

focus of future work.    

 Having compared the running time of the sequential DBC 

algorithm and its parallel implementation (Table IX), the 

parallel implementation is more efficient when more than five 

MUAPs are involved in superpositions. Due to the management 

between CPU cores, such an implementation is inefficient with 

fewer MUAPs.  

V. CONCLUSION 

In conclusion, new algorithms were proposed to resolve 

superimposed MUAPs for iEMG decomposition and neural 

spike sorting. Various simulated and synthetic signals were 

used to assess the accuracy and efficiency of the algorithms. 

Overall, the parallel DBC algorithm was superior to the other 

proposed methods (i.e., HRBC and FHRBC). It had comparable 

accuracy in comparison with the state-of-the-art (BB, [38]). 

However, its running time was significantly better than that of 

the BB method. The DBC algorithm is a simple and accurate 

method and could be used, in principle, for real-time neural 

decoding. 
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