FPGA-based Optical Kerr Effect Emulator

Downloaded from: https://research.chalmers.se, 2022-08-11 03:21 UTC

Citation for the original published paper (version of record):

N.B. When citing this work, cite the original published paper.
FPGA-based Optical Kerr Effect Emulator

Keren Liu1, Erik Börjeson1, Christian Häger2, and Per Larsson-Edefors1

1Dept. of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden
2Dept. of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
perla@chalmers.se

Abstract: We propose a digital emulator of the optical Kerr effect, suitable for FPGA implementation. In addition, we study a combined PMD and Kerr emulator implementation with respect to DSP hardware aspects such as fixed-point performance. © 2022 The Author(s)

1. Introduction

In fiber-optic communication, there are several impairments that affect the BER performance at the receiver. The linear polarization-mode dispersion (PMD) and the nonlinear optical Kerr effect have a combined detrimental effect on the transmitted signal \cite{1}, but this effect can be complex to study as PMD varies over time. To thoroughly assess the impact of the combined PMD-Kerr effect on a receiver DSP implementation, one option is to conduct optical transmission experiments. However, besides requiring expensive equipment, experimental setups can be challenging to integrate with real-time DSP and often lack precise control of the underlying channel parameters.

The Fiber-on-Chip approach \cite{2} offers an alternate way to perform real-time analysis of a fiber-optic communication system. Here, a digital system model runs in real-time on an FPGA, making real-time control and analysis straightforward. This paper extends our previous work in \cite{2,3} and proposes a digital emulator of the optical Kerr effect that, in combination with the PMD emulator in \cite{3}, forms a real-time PMD-Kerr emulator that is suitable for implementation on an FPGA.

2. Digital Emulation of Optical Kerr Effect

Our digital Kerr effect emulator is based on a numerical solution to the Manakov-PMD equation \cite{4}, in which a fiber is divided into multiple PMD sections. Each section’s Kerr effect is modeled as \(\hat{u} = u \exp(i\gamma\|u\|^2) \), where \(u = [u_x(t,z), u_y(t,z)] \) is the Jones vector of the complex baseband signals in the \(x \) and \(y \) polarizations, \(t \) and \(z \) are the propagation time and distance, respectively, and \(\gamma = \frac{8}{9} \gamma \) represents the Kerr parameter \(\gamma \) multiplied by the section length \(L \) and the averaging coefficient \(\frac{8}{9} \). This model can be further written as

\[
\begin{align*}
\hat{u}_{xi} &= u_{xi} \cos(\phi) - u_{xq} \sin(\phi) \\
\hat{u}_{xq} &= u_{xi} \sin(\phi) + u_{xq} \cos(\phi)
\end{align*}
\]

where \(u_x = u_{xi} + j u_{xq} \) and \(u_y = u_{yi} + j u_{yq} \) are the inputs and \(\Box \) denotes the outputs.

Fig. 1 shows a block diagram of the digital Kerr effect emulator, which is pipelined to balance the timing paths and increase the clock speed. A look-up table (LUT), which comprises all sine values, is indexed by the input angle \(\phi \) with a range of \([0, \pi/2]\). The Limit block converts the angle to the range \([0, \pi/2]\).

3. Emulator Structure

The combined PMD-Kerr emulator developed in this paper uses a transmitter from the CHOICE environment \cite{5,6} and PMD emulator components developed in \cite{3}. Fig. 2 illustrates the system structure, inside which emulation of the combined impacts of PMD and the Kerr effect is realized. The pseudo-random data sequence used for transmission over two polarizations is modulated to QPSK before being upsampled to two samples per symbol and convolved with a 51-tap root-raised-cosine (RRC) filter with a roll-off factor of 0.1.

\[
\text{Fig. 1: Block diagram of the Kerr effect emulator. Registers are represented by } z^{-1}. \text{ The boxed rotation block is shown only for the } x \text{ polarization, and the rotation block for the } y \text{ polarization is a duplication of the shown one. The inputs to the rotation block are also delayed by three } z^{-1} \text{ which are not shown.}
\]
The digital PMD model consists of multiple concatenated sections [3] and the Kerr emulator is inserted in each section after the PMD emulator. Each PMD section contains one Rotation and one Delay component. The former rotates the x and y polarization with an angle of θ_k in section k, while the latter utilizes an n-tap Lagrange fractional-delay filter (similar to [7]) to apply a differential group delay (DGD) of τ between the two polarizations. Here, τ is a fraction of the symbol period (T). The rotation angle θ_k can be time varying and different for each section, while the DGD τ and the Kerr parameter γ are kept the same in all sections for simplicity.

4. Analysis of Performance and Resource Utilization

We first perform floating-point MATLAB simulations to compare the time-domain (TD) PMD-Kerr model, which uses an n-tap Lagrange filter to realize DGD, with a reference frequency-domain (FD) PMD-Kerr model, which uses a DGD based on FFT/IFFT. The system assumptions are $\overline{\gamma} = 1.4$ rad/W (assuming $\gamma = 1.4$ rad/W/km and $L = 100$ km) and an overall transmitted power of 0 dBm. The θ_k, $k = 1, 2, ..., K + 1$ is randomly generated with a uniform distribution on $[-\pi, \pi]$ and is kept unchanged during the simulations. Fig. 3 shows the results for a 16,384-sample simulation, where n is varied from 5 to 15, while $\tau \in \{0.06T, 0.24T\}$ and $K \in \{1, 5, 10\}$. The error is calculated as $\overline{\gamma} = \frac{1}{n} \sum_{\tau} \log_{10}(\text{error})$.

To further evaluate our proposed emulator, we use logic simulations to compare the fixed-point implementation against a TD MATLAB implementation, with $\overline{\gamma} = \frac{1}{n} \sum_{\tau} \log_{10}(\text{error})$ for $K = 10$ and a 5-tap Lagrange filter. The wordlengths a, b, c, d and e are individually varied from 8 to 16: a corresponds to the data sample x_0, x_1, x_2, y_1, and y_2, b to the Kerr parameter γ, c to the rotation angle θ_k and the Kerr angle ϕ, d to the FIR taps of the Lagrange filter, and e to the RRC taps. All parameters are represented in signed fixed-point format. To average the rounding error caused by the different values of θ_k, for each symbol in the simulation, i.e., two samples, a new set of θ_k, $k = 1, 2, ..., K + 1$ is randomly generated with a uniform distribution on $[-\pi, \pi]$. Fig. 4 shows the results for a simulation with 16,384 samples.

To analyze the resource utilization, we synthesized the system in Fig. 2 to a Xilinx VC709 development board with a 100 MHz clock. We choose 12-bit wordlengths for all signals and use section counts K between 1 and 10. As can be expected, the usage of LUT and DSP resources grows linearly with an increasing K. As Table 1 shows for $K = 10$, the DSP slices are the bottleneck and this 10-section system utilizes 26% of the available DSPs, which leaves enough room for implementing an equalizer on the same FPGA.

Table 1: Resource utilization on Xilinx VC709. The K entry includes all Kerr modules in the system. The values are given as number of used blocks (ratio of used blocks to available blocks).

References

