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Abstract
The thermodynamic properties of materials are of great interest for both scientists and
engineers. A large contribution to many properties stems from the vibrational motion
of the atoms in thematerial. An understanding of the dynamics of the vibrating atoms is
therefore important for many other areas as well, including, e.g., electronic and optical
properties. Since many materials of particular technological interest are crystalline,
the vibrations can be studied in the framework of lattice dynamics. One of the main
challenges in lattice dynamics is to acquire the force constants that describe the atomic
interactions. Using crystal symmetries it is possible to reduce and cast this problem to
a linear regression problem. This approach has been implemented in the present work
in the hiphive package. The force constants (an interatomic potential) can be fitted to
forces obtained from, e.g., density functional theory calculations.

Although the problem of linear regression is well studied from a theoretical point of
view the number of unknown coefficients in the force constant expansion is typically
very large. Obtaining good models from limited data is possible via regularized regres-
sion, which has been successfully applied in many areas of physics. However, howwell
these techniques work in general for practical problems involving force constants is
not well understood. By interfacing with the sciKit-leaRn package, here, the hiphive
package has been used to explore how well these techniques work in practice. It is
found that many concepts from machine (or statistical) learning can be useful in order
to predict macroscopic properties and quantify model uncertainties.

Moving beyond the domain of pure lattice dynamics we also studied the thermal con-
ductivity of rotationally disordered layered materials, which feature weak van-der-
Waals interactions between the layers. These structures exhibit a remarkably low through-
plane thermal conductivity and their dynamic properties can be described as one-dimensional
glasses (a property worth further studies). By performing molecular dynamics simula-
tions on state-of-the-art graphical processing units using the Green-Kubo formalism
excellent agreement with experiments could be achieved.

Keywords: Force Constants, Molecular Dynamics, Peierls-BoltzmannTransport, Green-
Kubo, Lattice Thermal Conductivity
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1
Ab initio modeling of atomic

vibrations

Applications rely on materials with specific properties. In order to improve upon old
materials and design new ones we must understand why they behave as they do. For a
coherent understanding in general we wish to explain their properties from the ground
up — from ab initio. This means that starting from a microscopic theory based on quan-
tum mechanics we wish to be able to predict macroscopic properties. The study of
materials also provide insight into physics in general. While many properties can be
understood qualitatively using pen and paper calculations, to get quantitative predic-
tions wemust in general use computers. Fortunately, the available computer power has
increased exponentially while at the same time advanced algorithms have been devel-
oped and become widely available [1–3]. We are now in a position where we can study
materials at the atomic scale. This field is commonly known as atomic scale materials
modeling. Since it provides a valuable link between theory and reality, the studies are
sometimes referred to as computer experiments [4].

This thesis is mainly concerned with the thermodynamic properties associated with
the ionic (atomic nuclei) degrees of freedom (DOFs) in materials. This can be motivated
by the use of the Born-Oppenheimer (BO) approximation where, for certain properties
and materials, the electronic DOFs can be effectively neglected and only the motion of
the atomic nuclei are concerned. Thus the atomic nuclei will be modeled as classical
or quantum mechanical particles moving around on a potential energy surface (PES)
defined by the instantaneous ground state of the electrons. This ab initio PES is often
provided by density functional theory (DFT) calculations [5, 6] which is in principle
an exact theory without free parameters although in practice approximations must be
made. For simplicity, here we will, however, consider the DFT PES as the true PES and
our goal is to approximate it as well as we can with minimal effort. However when
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Chapter 1. Ab initio modeling of atomic vibrations

comparing to experiments care must be taken as the approximations made, the choice
of exchange-correlation (XC) potential, can affect the results.

Now, the starting point of this thesis is the Hamiltonian

𝐻 = ∑
𝑖

𝒑2
𝑖

2𝑚𝑖
+ 𝑉DFT(𝒙) (1.1)

of the positions 𝒙𝑖 and momenta 𝒑𝑖 of the atomic nuclei labeled by 𝑖 with mass (chem-
ical element) 𝑚𝑖. The function 𝑉 of the atomic coordinates is called the interatomic
potential defining the PES and is the central object we need to understand and work
with. The next step is to find a map from this PES to the time dependent phase space
distribution function of the system, i.e.,

𝑉DFT(𝒙) → 𝜌(𝒙(𝑡), 𝒑(𝑡), 𝑡). (1.2)

The time evolution of the phase space function and the Hamiltonian is commonly car-
ried out via molecular dynamics (MD) simulations, which are the topic of Chapter 2.
The field dealing with atomic motion and vibrations in a crystal is called lattice dynam-
ics (LD) and is the topic of Chapter 3. By using, e.g., MD or LD we get access to the
dynamics of the system in the thermodynamic sense as the phase space function, in
principle, determines the macroscopic properties. However, for the ab initio potential
𝑉DFT this is in many cases exceedingly expensive (especially in the case of MD simula-
tions) and a simpler interatomic potential 𝑉model is used instead

𝑉DFT(𝒙) → 𝑉model(𝒙) → 𝜌(𝒙(𝑡), 𝒑(𝑡), 𝑡). (1.3)

Some examples of suchmodels will be discussed in Chapter 2 and Chapter 3. Thismodel
is typically constructed by sampling configurations (𝒙, 𝒇 ) (consisting of positions and
forces) from the true potential and then using a regression method to fit the (potential
part of the) model Hamiltonian (Chapter 4).

𝑉DFT(𝒙) → (𝒙, 𝒇) → 𝑉model(𝒙) → 𝜌(𝒙, 𝒑, 𝑡), (1.4)

where the forces 𝒇 = −∇𝒙𝑉 (𝒙) are given by the gradient of the potential. Finally for
many purposes we need an explicit method to compute macroscopic properties from
the time-dependent phase space distribution. In other words, we need a map from the
time-dependent phase space distribution to a macroscopic property 𝐴, which could for
example be the temperature dependent thermal conductivity 𝜅(𝑇 )

𝑉DFT(𝒙) → (𝒙, 𝒇) → 𝑉model(𝒙) → 𝜌(𝒙(𝑡), 𝒑(𝑡), 𝑡) → 𝐴 (1.5)

Such methods for computing the thermal conductivity will be discussed in Chapter 5.
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1.1. Outline

We will in turn explore these five concepts where one realization of this procedure
could be

𝑉CX(𝒙) →
MC

(𝒙, 𝒇 ) →
𝐿2

𝑉FCP(𝒙) →
MD

𝜌(𝒙(𝑡), 𝒑(𝑡), 𝑡) →
GK

𝜅(𝑇 ) (1.6)

In other words, a Monte Carlo (MC) method (e.g., Metropolis-Hastings [7, 8]) is used
to sample the DFT PES where energies and forces are obtained using DFT calculations.
Ordinary least squares (OLS) is then used to construct a model in the form of a force
constant potential (FCP) from the sampled data. Finally, MD simulations are carried out
and the Green-Kubo (GK) method is used to calculate the thermal conductivity from
the time correlation functions of the heat current.

One important observation is that if the model 𝑉 is simple enough, the maps to
macroscopic observables are analytically solvable. For example if the model potential
is quadratic in the atomic displacements 𝒖 = 𝒙 − 𝑿 away from equilibrium 𝑿, i.e., the
harmonic approximation 𝑉model ∝ 𝒖2, the system is analytically solvable and expres-
sions exist for many properties of interest. The simple models also provide a framework
and language to discuss anharmonic vibrations as discussed in Chapter 3. The art is to
choose the method and model carefully to strike a balance between resources needed
and accuracy/precision in each step above. This can be highly dependent on the system
at hand and the application in mind.

1.1 Outline
We will begin with a general introduction to interatomic potentials and MD simula-
tions in Chapter 2. The concepts of empirical pair and many-body potentials as well as
modernmachine learning (ML) based potentials are outlined. A general overview of the
basics of MD simulations is presented, including ensembles and the ergodic hypothesis.

Next a specific form of an interatomic potential namely the FCP (or force constant
(FC) expansion) is presented in Chapter 3. Its basic components such as clusters and
orders are discussed as well as symmetries and constraints. Together with the FCP
the framework of LD is presented introducing harmonic phonons as a basis for atomic
vibrations in a crystal. We will also address how higher order force constants introduce
phonon-phonon interaction leading to frequency shifts and finite lifetimes. Briefly the
concept of self-consistent phonons will be discussed.

Following that, some methods for sampling the PES to generate fit data will be pre-
sented in Chapter 4, together with a brief introduction to regularized regression as a
method for combating over-fitting.

Finally in Chapter 5 twomethods for thermal conductivity calculations are presented;
the LD based Peierls-Boltzmann transport equation (PBTE) and theMDbasedGKmethod.
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2
Molecular dynamics

MD is a computational technique where the equations of motion for a system of atoms
are (numerically) integrated in time. The forces acting on the atoms are computed
from some (conservative) force field as the gradient of the interatomic potential with
respect to the positions. Since the force is the gradient of the energy with respect to
positions the force field is a gradient of a scalar potential, hence the name interatomic
potential. For small systems and short time scales it is in principle possible to perform
so-called ab initio molecular dynamics (AIMD) simulations in order to analyze the mo-
tion of atoms. Then the atomic forces (and other DOFs) are calculated by solving the
(electronic) Schrödinger equation and integrating the equations of motion. For large
systems this becomes, however, exceedingly expensive due to the poor scaling of DFT
calculations (especially with respect to system size, as the cost scales approximately
with the cube of the number of electrons). Thus we want to approximate the BO PES
with a simple analytical form involving only the positions of the ions¹ in order to study
large systems on long time scales. Such an approximation of the PES is captured by an
interatomic potential and can be roughly divided into two classes: traditional analytical
(or empirical) potentials with comparably few parameters and simple functional forms,
and modern, heavily parameterized potentials often incorporating ML techniques in ei-
ther the construction of the potential or in the functional form itself. We will start this
chapter with a brief overview of interatomic potentials and the need for ML potentials
and end with an overview of the MD technique.

¹In MD simulations the terms ions and atoms/atomic nuclei are often used interchangeably

5



Chapter 2. Molecular dynamics

2.1 Analytical potentials
The first serious use of an interatomic potential was perhaps the work of Fermi, Pasta,
Ulam, and Tsingou in the 1950ies[9, 10]. They used the newly constructed MANIAC
system to study the interactions between particles in a linear chain, a standard problem
in solid state physics. The particles were connected by simple harmonic springs with
a small anharmonic perturbation and what they found was a surprising recurrence of
the phase space path breaking the ergodic hypothesis, a cornerstone of MD.

After the linear chain and other simple systems such as interacting hard spheres, the
Lennard-Jones (LJ) ² liquid was analyzed by computational means in the 1960s. The LJ
potential is one of the simplest analytical interatomic interactions and still widely used
today. The term analytical potential comes from the possibility to write down an ana-
lytical expression for the interaction. The LJ potential consists of a weak attractive part
modeling the van der Waals (vdW) interactions and a strong repulsive core modeling
the Pauli exclusion principle. The functional form is

𝑉 (𝑟) = 4𝜖 [(
𝜎
𝑟 )

12
− (

𝜎
𝑟 )

6

] (2.1)

and the potential is plotted in Fig. 2.1. The free parameters 𝜎 and 𝜖 determine the length
and the strength of the interaction and are specific for a given system, say Argon or
Helium. Despite its simplicity the LJ potential exhibits interesting behavior such as
phase transitions.

The LJ potential is a simple example of a pair potential that works well for gases and
some liquids, and pair potentials in general are heavily used in generalized vdW theory
[11] (also known as classical DFT). Pair potentials are also typically the starting point
when deriving expressions for instantaneous (i.e., possible to calculate at a single point
in phase space) thermodynamic properties and pair forces. Often the functional form
consists of just a few parameters which makes them well behaved in MD simulations.
For gases (low density) and liquids (high disorder) two body potentials work well or
when the Coulomb pair-interaction dominates in ionic materials.

During the 1970smany systemswere investigated using pair potentials such aswater,
molecules, and even proteins. But in order to describe more complex materials many-
body affects must be taken into account. Such models emerged during the 1980ies and
include, e.g., embedded atom method (EAM) potentials [12], which can be cast in the
form

𝑉 = ∑
𝑖𝑗

𝑉2(𝑟𝑖𝑗) + ∑
𝑖

𝐹 [ ∑
𝑗

𝜌(𝑟𝑖𝑗)]. (2.2)

Here 𝑉2 is a pair potential and 𝐹 is called the embedding functional. The form is well
suited to model metals where the atoms move in a sea of electrons and the many-body

²Named after Sir John Lennard-Jones
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2.1. Analytical potentials
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Figure 2.1: The Lennard-Jones potential. To the left of the minimum the strong repulsive part
modeling the Pauli exclusion force dominates, while on the right the weak van-der-Waals attrac-
tive part dominates. The minimum is located at a distance of 6√2𝜎 where the potential energy
is −𝜖. Notice how the potential is nearly zero beyond approximately 3𝜎.

effects enter as a density dependent two-body interaction 𝜌. These types of potentials
are sometimes called (pair) functionals as they are parameterized via functions instead
of real parameters. This idea can be seen as a precursor to the modern types of heavily
parameterized potentials.

For more complex molecules or covalently bonded materials such as silicon we need
also angular dependence which enters as a “true” three-body effect (e.g., via angles)
instead of an aggregated effect such as the density, see Fig. 2.2. One such potential is the
bond order potentials (BOPs) developed in the late 1980s by Abell [13] and Tersoff[14]

𝑉 = ∑
𝑖𝑗

𝑉 𝑅
2 (𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑉 𝐴

2 (𝑟𝑖𝑗), (2.3)

where 𝑏𝑖𝑗 depends on all angles 𝜃𝑖𝑘𝑗 . For more information on analytical potentials see
[15].

During the 1990s and 2000s these types of potentials were successfully used for many
systems including multi-component systems and also combinations of several types of
potentials. However, they are hard to develop and systematically improve. Thus in
tandem with faster hardware and development of the ML field new types of potentials
emerged during the 2010s which were heavily parameterized with no easy functional
form. For more information about the historical development of analytical potentials
see [16, 17].
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Chapter 2. Molecular dynamics

Figure 2.2: A cluster of three atoms described by three parameters, two bond distances and one
bond angle. The potential energy 𝑉 (𝑟12, 𝑟13, 𝜃) is an explicit function of the angle and can in
general not be described/decomposed into pure two-body interactions. This model would be
suitable for e.g. the internal forces in a water molecule.

2.2 Machine learning potentials
With the growth of the field of ML and the increasing performance of computers an-
other class of potentials has emerged called ML potentials. For a good overview of
ML potentials see [18]. The aim is to bridge the gap between pure ab initio methods
and analytical potentials. The main problem with analytical potentials is that for com-
plex systems it becomes difficult to construct a suitable functional form to describe all
the interactions. The idea behind ML potentials is that a very flexible functional (e.g.,
neural networks (NNs)[19–21] or Gaussian process (GP) [22, 23]) can be trained given
enough data. The drawback with these types of potentials is that the functional form
is not easily (if at all) interpretable by a human and thus gives little insight into the un-
derlying physics. Furthermore the parameter landscape is typically vast and care must
be taken during the optimization to mitigate both overfitting and underfitting. Finally,
these potentials have essentially no extrapolation capacity but should be considered
as pure interpolations of the configuration space seen during training. It is thus very
important to choose training structures spanning the phase space of interest.

The first part of a ML potential are the descriptors which capture the local environ-
ment around an atom and serve as inputs to the functional form instead of the raw
atomic coordinates. There are a huge number of atomic descriptors and the challenge
is to create descriptors such that the resulting PES obeys relevant global symmetries
such as translational and rotational invariance. The construction of (good) descriptors
is difficult. They must be simple enough to be fast to calculate but span a complex
enough space so that different atomic configurations are discernible. They should also
be robust so that similar descriptors represent similar structures. Some examples of
atomic descriptors commonly used in materials physics are distances, angles, Coulomb-
matrices, smooth overlap of atomic potentials (SOAP), atom-centered symmetry func-
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2.2. Machine learning potentials

DescriptorsDeep neural network

E

Figure 2.3: Illustration of a machine learning potential. To the right is a configuration of atoms.
Two descriptor functions transform the Cartesian coordinates of the neighboring atoms around
the atom in the center to suitable input to a deep neural network. The network outputs the
energy of the center atom.

tions (ACSF), and many-body tensor representation (MBTR), see, e.g., [24]. Typically
the number of descriptors (i.e., the complexity or size of the basis) should be systemat-
ically expandable until it is, in principle, possible to reconstruct the original configura-
tion.

The functional form takes the output from the descriptors and calculates the energy
(or other properties) of the system, see Fig. 2.3. To be useful for MD purposes deriva-
tives of the descriptors and the functional form must be available in order to calculate
forces and virials. The functional form can for example be based on GPs (Gaussian
approximation potential (GAP)[22]), NNs[19, 25] or cluster/series expansions [26, 27],
but any regression model can in principle be used.

The training method for ML potentials follows the general procedure as outlined in
the section about regularized regression Chapter 4 except that non-linear optimization
is needed. Typically the functional forms are comparably well understood and the
techniques to train them well tested in many fields. Typical methods include stochastic
gradient descent, evolutionary algorithms, and maximum likelihood estimation [28].

ML potentials are typically described as interpolation techniques and as such some-
times behave unexpectedly when posed with unseen structures or local environments.
Analytical potentials on the other hand are often constructed based on physical insight
and only contain a handful of parameters (highly regularized). As a result, they can
yield at least somewhat sensible results beyond the training regime. While the choice
of descriptors and functional forms as well as optimization techniques are fairly well
understood, the selection of training structures is still a rather delicate aspect. Here,
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Chapter 2. Molecular dynamics

physical intuition and experience play a large role as well as prior understanding of
the material at hand. There are various techniques to systematically choose good train-
ing data based on active learning and entropymaximization but this is ongoing research
[29]. For a nice comparison and discussion of ML potentials see [30].

2.3 Ensembles and the ergodic hypothesis
Sampling the phase space of an interacting many body system is typically done using
MC and MD techniques, see, e.g., Frenkel and Smit [31]. MD is the key technique used
to model atomic motion in materials as it gives access to time-dependent quantities.
The idea is to integrate the equations of motions 𝑭 = 𝑚𝒙̈ (a second order non-linear
differential equation) where the force is given as the gradient of the interatomic poten-
tial 𝑭𝑖 = −∇𝒙𝑖𝑉 (𝒙) with respect to the atomic positions 𝒙𝑖. Many advanced integrators
are available that can take multiple steps which can sometimes be useful in AIMD but
for practical purposes when dealing with empirical potentials almost always a variant
of the Verlet algorithm [4] is used such as velocity Verlet. The most important thing for
an integrator is to be able to conserve the energy of the system in order to properly rep-
resent the microcanonical (NVE) ensemble. The ergodic hypothesis can then be used
to calculate thermodynamic properties via time averages instead of ensemble averages

⟨𝐴⟩ = 1
𝑇 ∫

𝑇

0
𝐴(𝑡) d𝑡, (2.4)

where the angle bracket denotes an ensemble average corresponding to the macro-
scopic observable 𝐴. Limitations of MD include quantum effects and computational
cost, MD being somewhat of a brute force approach. The quantum mechanical aspect
can to some degree be remedied by using path integral MD [32] but in this case time-
correlations are not well defined, whence one cannot extract, e.g., transport coefficients.
Fortunately there is a weak relation between temperature and quantum effects and of-
ten at low temperatures where quantum effects start to become important other tech-
niques can be used due to the harmonic nature of the potential at low temperatures.

In order to sample other ensembles such as the canonical (NVT) or isothermal-isobaric
(NPT) ensembles a thermostat and/or a barostat is needed. These can be based on in-
stantaneous expressions for the thermodynamic properties they try to regulate or on
time-averaged properties. In general the temperature is comparably easy to control
via, e.g., the equipartition theorem. Typically the integrator is modified in order to in-
corporate and additional term in the Hamiltonian modeling the heat bath exchanging
energy with the system. Care must be taken to have a sufficiently large system so that
the effect of the thermostat is comparably weak when sampling dynamical properties.
This is motivated by the fact that for large systems the NVE and NVT ensembles are
equivalent. Thermostats will appear again later in Chapter 5 during the discussion of
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2.3. Ensembles and the ergodic hypothesis

Figure 2.4: Typical dispersion relation calculated using velocity auto-correlation functions. To
the left is longitudinalmodeswhere the vibrations are in the direction of themomentum (such as
sound waves). To the right are transverse mode with motion perpendicular to the momentum
(such as electro-magnetic waves). The acoustic modes originate from the gamma (Γ) point
while the optical modes appear as horizontal bands. This example is bulk MoS2 in the through-
plane direction taken from Paper III. The line-width of the dispersion is very thin indicating a
harmonic systemwith long lifetimes. The striped appearance appears since a supercell can only
represent a finite number of momentum transfer vectors.

thermal conductivity as they can be used to transport heat or to probe the response
function of a system. Commonly used thermostats include the Nosé-Hoover family,
the Bussi–Donadio–Parrinello [33] thermostat, and the Langevin thermostat.

Barostats typically require more detailed information about the interatomic poten-
tial in question. In principle the instantaneous stress tensor must be calculated which
requires the virials, which can be challenging for many-body potentials and when pe-
riodic boundary conditions are present [34]. The presence of many-body effects on
state variables is in general well understood in terms of hydrodynamic variables but in
practice challenging to implement explicitly.
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Chapter 2. Molecular dynamics

2.4 Time dependence and correlation functions
Many interesting properties are directly accessible from trajectories obtained fromMD
simulations such as microscopic mechanisms for diffusion of defects [35]. Macroscopic
properties of interest such as free energies are more difficult to sample. Typically ad-
ditional techniques must be used on top of the MD that require many individual simu-
lations at different temperatures, volumes etc. One of the main advantages of the MD
technique overMC is that it also gives us the possibility to sample time-dependent prop-
erties such as time-correlation functions. In the near-equilibrium limit the fluctuation-
dissipation theorem and linear response theory give us direct access to non-equilibrium
properties such as thermal conductivities (see Chapter 5) given that suitable observables
can be defined. There is also the possibility to sample properties far from equilibrium
such as phase transitions.

One important property is the spectral function which can be calculated from the
auto-correlation functions of the atomic motion [36, 37]. The spectral function is the
dispersion relation of a material and relates the wavelength of lattice waves/phonons
to the frequency of the same waves, see Fig. 2.4. This provides us with a method to
non-perturbatively sample the dispersion relation and lifetimes/widths of the system
that can be compared to results obtained from theoretical methods using LD or to ex-
periments via, e.g., inelastic scattering with neutrons [38] or X-rays.
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3
Lattice dynamics

In this chapter first an overview of FCs is presented and then their application in the
context of LD is discussed. For FCs suitable sources include the text books by Born and
Huang [39], Ziman [40], Choquard [41], Wallace [42] and Srivastava [43].

3.1 Force constant expansions
In order to analyze vibrations in a crystal we need a model Hamiltonian describing
the interactions between the atoms. By using the BO approximation we can write the
lattice contribution to the energy of the crystal as a Taylor expansion in displacements
𝑢 around the lattice points 𝑅,

𝐻 = 𝐾 + 𝑉 = 𝐾 + 𝐸0 + Φ𝑖𝑢𝑖 + 1
2!Φ𝑖𝑗𝑢𝑖𝑢𝑗 + 1

3!Φ𝑖𝑗𝑘𝑢𝑖𝑢𝑗𝑢𝑘 + … , (3.1)

where 𝐾 is the kinetic energy of the atoms and Φ are the FCs, named such as they
relate energy and displacements. The indices here are compound indices 𝑖 = {𝜇, 𝛼, 𝒏}
where 𝜇 enumerates the basis of the crystal, 𝛼 denotes the (Cartesian) direction, and
𝒏 ∈ ℤ enumerates the primitive cells.

The first coefficient 𝐸0 is the cohesive energy of the crystal. The second term Φ𝑖 is
exactly zero if the crystal is in its equilibrium configuration at zero temperature where
all forces are zero. The second-order term is the basis for the harmonic analysis of crys-
tals to be discussed later. Third and higher-order terms are referred to as anharmonic
terms and play an important role in phase transitions and thermal transport. These
concepts are illustrated in Fig. 3.1.

The goal is to find the FC coefficients describing the material in question and then
use the above Hamiltonian to calculate properties of interest or to study microscopic
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Figure 3.1: Illustration of the potential energy surface of a system. The harmonic approximation
is only good for low energies (low temperatures). The cubic correction would improve the
description of the landscape close to the origin but makes the potential unstable after about 1
distance unit. The quartic potential stabilizes the surface and are needed in general to describe
dynamically stabilized phases.

mechanisms. Notice that this is an interatomic potential that, provided we can find the
coefficients, can be systematically improved by increasing the order of the expansion.
The force is simply the gradient of the above expansion with respect to the atomic
positions

𝐹𝑖 = −𝜕𝑉
𝜕𝑢𝑖

= −Φ𝑖 − Φ𝑖𝑗𝑢𝑗 − 1
2!Φ𝑖𝑗𝑘𝑢𝑗𝑢𝑘 − … (3.2)

and is still linear in the free parameters (the FCs). Thus, for a fixed set of configurations
(displacements) this can be written in matrix form as

𝐹𝑖 = 𝑈𝑖𝑎Φ𝑎, (3.3)

where 𝑈𝑖𝑎 is a matrix mapping for all the displacements and Φ𝑎 is the collection of FCs
flattened to an array

Φ𝑎 = [Φ0, Φ1, … , Φ𝑁 , Φ00, Φ01, … , Φ𝑁𝑁 , Φ000, … ]. (3.4)

Thus to find the coefficients we usually use OLS to fit the expansion to ab initio forces
calculated using, e.g., DFT.
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3.1. Force constant expansions
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Figure 3.2: Illustration of possible clusters in a lattice system. To each cluster belongs a set of
FCs which must obey the lattice symmetries.

However, this expansion must be truncated in some way in order to keep the number
of unknown coefficients manageable. First and foremost we cut off the expansion after
some order. For harmonic models only second order terms are kept. If we want to study
heat transport at least third order terms must be included while dynamically stabilized
materials might need fourth order terms to adequately describe the PES.

It is also possible to incorporate our physical intuition that atoms far away from
each other only interact weakly. Thus we can view the above expansion as a cluster
expansion where each force constant coefficient Φ𝑖𝑗𝑘… represents a cluster of atoms
(𝑖𝑗𝑘 … ). For example a cluster (𝑖𝑗𝑘𝑘) would be a 3-body, fourth order cluster; see
Fig. 3.2 for an illustration of clusters and crystal symmetries. Now we postulate that if
two atoms 𝑖 and 𝑗 are further away from each other than some cutoff 𝑐 all FCs where
these two atoms are present must be zero, i.e., Φ…𝑖…𝑗 = 0. In addition, we know that in
general 𝑛-body clusters are more important than 𝑛 + 1-body clusters and higher orders
are typically less important for most applications.

The FCP has advantages and disadvantages compared to other interatomic potentials.
It is mathematically well studied and forms the basis of the standard theory of LD.
Thus, it makes it straightforward to combine and compare (computer aided) theoretical
techniques with direct computer simulations such as MD. The functional form is also
simple to implement on, e.g., graphical processing units (GPUs) which, in principle,
should make it fast to evaluate for, e.g., MD. There is no limit (other than computer
memory and speed) to include larger clusters and higher order thus making the model
scalable and tunable. The FC expansion is also linear in the unknown coefficients (the
FCs) which makes it easier to analyze and fit compared to ML potentials.

On the other hand, the number of free parameters to determine grows rapidly with
increasing anharmonicity (order), range (cutof), and disorder (number of atoms in the
primitive cell) making it difficult to use for, e.g., glasses. The expansion is also firmly
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Chapter 3. Lattice dynamics

rooted in the lattice and when the PES is shallow and the atoms move far from the
lattice points the expansion can quickly become unstable. This can for example happen
near a phase transition or when the defect formation energy is low.

Next, themain features of the FC expansionwill be presented andwhatmust be taken
into account in order to make the extraction of the coefficients feasible in practice.

3.1.1 Crystal symmetries
The crystal lattice imposes certain symmetries on the FCs. For example the equality of
mixed partials enforces

Φ𝑖𝑗… = Φ𝑃 (𝑖𝑗… ), (3.5)
where 𝑃 is any permutation. The crystal/molecular symmetries 𝑆𝑖′𝑖 impose further
conditions on the FCs

Φ𝑖′𝑗′… = 𝑆𝑖′𝑖𝑆𝑗′𝑗 … Φ𝑖𝑗… (3.6)
along with the translational invariance of the lattice for crystals

Φ(𝑛, 𝑛′, … ) = Φ(𝑛 + 𝑁, 𝑛′ + 𝑁, … ), (3.7)

where 𝑛 and 𝑁 index the primitive cell. Note that they are all expressed as linear
constraints and thus relatively easy to handle computationally. All these symmetries
are used in hiphive via spglib [44] in order to reduce the number of free parameters.
More information can be found in Paper I.

3.1.2 Global symmetries
Apart from the local symmetries the FC expansion must obey some global symmetries
namely translational and rotational invariance. These symmetries define so-called sum
rules which for the translational invariance take the form

∑𝜇
Φ𝛼

𝜇… = 0. (3.8)

The translational sum rule ensures that no force acts on the atoms under a translation
of the lattice. Note that the Cartesian component has been moved out of the compound
index 𝑖 as the sum has to be fulfilled for all three Cartesian directions independently.
The translational sum rule is important for the behavior of the dispersion relation near
the Γ point (i.e., at zero momentum) where it should tend to zero for acoustic phonons,
see Fig. 3.4.

There are two kinds of rotational sum rules [39, 42]. The (second-order) Born-Huang
sum rule reads

∑
𝑗

Φ𝛼𝛽
𝑖𝑗 𝑟𝛾

𝑗 = ∑
𝑗

Φ𝛼𝛾
𝑖𝑗 𝑟𝛽

𝑗 (3.9)
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3.1. Force constant expansions

Figure 3.3: Dispersion relation of MoS2 near the Γ-point (i.e., zero momentum) along the 100
direction. The translational (T) sum rules (3.8) are fulfilled as the dispersion goes to zero at Γ.
The Born-Huang (BH) sum rules (3.9) and Huang (H) constraints (3.10) are needed to enforce
the correct quadratic behavior of the lowest transverse acoustic mode.

and corresponds to no induced torque under a rotation of the lattice. In general, these
sum rules will couple different orders of the expansion to each other but only consid-
ering second-order sum rules is sufficient to enforce the quadratic behavior of out-of-
plane (ZA) modes in 2D materials [45].

Additionally, there are the Huang constraints enforcing the correct behavior of the
elasticity tensor

∑
𝑖𝑗

Φ𝛼𝛽
𝑖𝑗 𝑟𝛾

𝑖 𝑟𝛿
𝑗 = ∑

𝑖𝑗
Φ𝛾𝛿

𝑖𝑗 𝑟𝛼
𝑖 𝑟𝛽

𝑗 , (3.10)

which are important for the elastic constants to exhibit the correct symmetries. The
rotational sum rules are especially important in two-dimensional materials, where they
are needed to enforce the correct quadratic behavior of the transverse acoustic modes
near the Γ-point, see Fig. 3.3.

The two sets of symmetries (crystal and global) define a set of irreducible FCs 𝜙 where
any set of FCs obeying the above symmetries can be written as a linear combination of
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the irreducible ones, i.e.,
Φ = ∑

𝑘
𝑎𝑘𝜙𝑘. (3.11)

The most straightforward way to extract the new free parameters 𝑎 from ab initio cal-
culations is to fit them to forces of semi-random (see Chapter 4) configurations using
OLS which for the second-order FCs implies

𝐹𝑛𝑖 = −𝑎𝑘𝜙𝑘
𝑖𝑗𝑢𝑛𝑗 , (3.12)

where 𝑛 enumerates the configurations. This approach is sometimes called the regres-
sion approach and was introduced by Esfarjani and Stokes in 2008 [46].

3.1.3 Long range corrections
As long as the cutoffs are longer than the expected interactions in the material, the
above approach, using cutoffs to limit the number of free parameters, works well. In
some cases though there are long-range forces present. This can for example happen
in two-dimensional materials where the screening is weaker or in polar materials with
large dynamic (Born effective) charges. In these materials the displacements induce a
long-ranged electrostatic dipole-dipole interactions [47], which, in theory, have an infi-
nite range. This effect is the reason behind the so called longitudinal optic — transverse
optic (LO-TO) splitting where the longitudinal optical (LO) and transverse optic (TO)
modes have a seemingly non-analytical behavior near the Γ-point [48], see Fig. 3.4. This
can be effectively remedied using the technique introduced by Gonze and Lee [49, 50]
and the dispersion can be corrected around the Γ-point. It is important to remember
that if the FCs are constructed in a finite periodic supercell and all FCs are included,
the corresponding dispersion is correct at supported inverse lattice points [51]. If the
FCs are long-ranged the Fourier interpolation near the Γ-point at large wave lengths
will fail. In practice the fix is to use the Born effective charges calculated from density
functional perturbation theory (DFPT) to construct a long-ranged dynamical matrix via
Ewald techniques for the supercell in question and calculate the long-ranged real space
FCs Φ𝑡𝑒𝑥𝑡𝐿𝑅 due to the interacting Born-charges (dipoles). The short-ranged FCs ΦSR
are fitted to the remainder of the DFT forces

𝐹DFT − (−Φ𝐿𝑅𝑢) = −Φ𝑆𝑅𝑢. (3.13)
Now the FCs are separated in a long-ranged analytical part and a short-ranged fitted
part and the analysis can continue as usual for any intermediate points.

3.2 Phonons
This section provides a short introduction to LD and the theory of phonons. For a more
thorough overview see, e.g., [52] and the books listed in the beginning of this chapter.
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Figure 3.4: Dispersion relation of NaCl. The solid lines include the non-analytical correction
(NAC) and the LO-TO splitting for 𝒒 → Γ is correctly reproduced. The dotted lines are without
the NAC and thus no splitting is observed.

The basi(c)s for understanding the thermodynamics of vibrations in crystals is the
phonon picture. In the harmonic approximation only the second-order FCs are kept
and the Hamiltonian is exactly solvable. The solutions to this system in the framework
of quantum mechanics are called phonons (in classical mechanics they are sometimes
called normal modes). These solutions are typically regarded as quasi-particles but can
be equally categorized as collective excitations. Nevertheless, the particle picture is es-
pecially useful in the context of the PBTE which we will come across later in Chapter 5.
In addition, the exactly solvable model serves as a starting point for, e.g., mean field
theories or Green’s function methods to calculate higher-order corrections to physical
observables due to the anharmonicity. The theory is covered in many text books and
starts with the real space representation of the PES leading to the following Hamilto-
nian

𝐻 = ∑𝑛𝜇𝛼

|𝑝𝛼
𝜇(𝑛)|

2

2𝑚𝜇
+ 1

2 ∑
𝑛,𝑛′

𝜇𝜈
𝛼𝛽

Φ𝛼𝛽
𝜇𝜈(𝑛, 𝑛′)𝑢𝛼

𝜇(𝑛)𝑢𝛽
𝜈 (𝑛′). (3.14)
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Via the dynamical matrix

𝐷𝛼𝛽
𝜇𝜈 (𝑘) = ∑𝑛

Φ𝛼𝛽
𝜇𝜈(0, 𝑛)

√𝑚𝜇𝑚𝜈
𝑒−𝑖𝑘(𝑅𝜇−𝑅𝜈(𝑛)) = ∑𝑠

𝑊 𝛼
𝜇𝑠(𝑘)𝜔2

𝑠(𝑘)𝑊 𝛽
𝜈𝑠(𝑘) (3.15)

the new coordinates are in the form of lattice waves

𝑞𝑠(𝑘) = ∑𝜇𝛼𝑛
√𝑚𝜇𝑢𝛼

𝜇(𝑛)𝑊 𝛼
𝜇𝑠(𝑘) (3.16)

with polarization vectors 𝑊 and frequencies 𝜔. The Hamiltonian is thus diagonal and
can be expressed in first quantization as

𝐻 = 1
2 ∑

𝑘𝑠
(|𝑝𝑠(𝑘)|

2 + 𝜔2
𝑠(𝑘) |𝑞𝑠(𝑘)|

2
) (3.17)

or in the framework of second quantization in terms of creation and annihilation oper-
ators

𝐻 = ∑
𝑘𝑠

(
1
2 + 𝑎†

𝑠(𝑘)𝑎𝑠(𝑘)) ℏ𝜔𝑠(𝑘) (3.18)

following standard procedures. From this we can exactly calculate thermodynamic
properties of the crystal via, e.g., Helmholtz free energy 𝐹 as

𝐹 = ∑
𝑘𝑠

(
1
2ℏ𝜔𝑠(𝑘) + 𝛽−1 log (1 − e−ℏ𝛽𝜔𝑠(𝑘))) . (3.19)

From the above expressions it is apparent that the central objects of interest are the
dispersion relation 𝜔𝑠(𝑘) and the corresponding polarization vectors 𝑊 𝛼

𝑠𝜇(𝑘).

3.2.1 Anharmonic phonons
The harmonic model of vibrations in crystals works very well in many cases,especially
at low temperatures. However, with increasing temperature, anharmonic effects be-
come important. Most notably, the harmonic model has infinite lifetimes and lacks
thermal expansion. The phonons will move through the lattice without scattering and
the standard PBTE breaks down. A first attempt to fix this is via the quasi-harmonic
approximation where FCs are calculated at different volumes. From this information
the volume dependence of the free energy can be calculated and related properties ex-
tracted such as Grüneisen and thermal expansion parameters.

The next step is to apply first-order perturbation theory with the third-order FCs as
a perturbation. In this way the corrections to the energy levels of the phonons can be
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determined and is to first order generally found to be imaginary with no shift in the
frequencies. The lifetime is related to the imaginary part of the self energy

𝜏−1
𝜆 = 36𝜋

ℏ2 ∑
𝜆′𝜆″

|Φ−𝜆𝜆′𝜆″|
2 [ (𝑛𝜆′ + 𝑛𝜆″ + 1)𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆″)+

(𝑛𝜆′ − 𝑛𝜆″)(𝛿(𝜔 + 𝜔𝜆′ − 𝜔𝜆″) − 𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆″)) ] ,

where 𝜆 is a compound index over the momentum coordinate 𝑘 and band index 𝑠. The
lifetimes depend on the Fourier transformed third-order interactions and the temperature-
dependent occupations 𝑛. This expression can be derived in a couple of ways see, e.g.,
[43, 53–55]. Since the interaction element contains crystalmomentum-conserving delta
functions the lifetimes depend not only on the strength of the interaction (anharmonic-
ity) but also on the geometry of the dispersion relation. For example in BAs, which
contains a large phonon band gap, higher order processes must be included to correctly
describe the dynamics in the crystal[56] as the higher energy states (bands) cannot be
reached from the low energy states via three-phonon processes due to energy (and
momentum) conservation laws. This leads to the necessity to include fourth-order in-
teractions in the thermal conductivity calculations motivating the efficient extraction
of higher-order FCs. The need for higher-order FCs can also show up when when
the harmonic phonons have negative energies (imaginary frequencies) as can happen
in dynamically stabilized materials such as body-centered cubic (BCC)-Ti. If the har-
monic phonons are still well behaved quasi-particles it is sometimes sufficient to calcu-
late second-order corrections to the energies and lifetimes with ordinary perturbation
theory. In second-order perturbation theory there is a contribution from both third
and fourth-order FCs to both frequencies and lifetimes. Typically Green’s function
or variational methods are used to construct effective harmonic FCs corresponding to
the renormalized propagators. For more information see, e.g., [57–59] and references
therein.
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4
Force constant extraction

As we saw in Chapter 3 the problem of extracting the free parameters for the FCs can
be stated as a linear regression problem 𝑀𝑥 = 𝐹 where the fit matrix is constructed
from displacements in a set of supercells and the forces are obtained from, e.g., DFT
calculations on the same supercells. In this chapter we will look at some methods to
generate the displacements and to solve the linear regression problem using regularized
regression methods.

In general, fitting a FC expansion (or any other type of interatomic potential) the
method to fit the free parameters proceeds as follows and contains four important parts
plus eventual feedback.

First an objective function (or loss function) must be defined. What do we want our
potential to achieve? What properties are important to predict? Is it important to gener-
alize? etc. Typical properties to include in the loss function are forces, energies, dimer
energies, elastic constants, energies for different phases, or defect formation energies.
For FCPs, however, they are due to their functional form quite limited to a specific
lattice system and thus only forces (and sometimes energies) are typically included. In
practice the loss function is almost always the squared error of the forces plus a penalty
on the parameters.

Next a method to minimize the loss function must be chosen. The loss function need
not be globally convex and thus the optimization procedure to find the global minimum
can be hard. However, often a local minima is enough and for linear models there are
a vast array of suitable methods that we will discuss below.

Next the training data must be generated. Here, there are essentially two classes.
Either the data is generated from some source/distribution such as enumerated con-
figurations, AIMD, or semi-random (see Sect. 4.1.2), or the data is generated from the
present model itself. The latter is a form of active learning and the preferred method
in most circumstances. It can also be thought of as a self-consistent effective model as
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well, as discussed later.
Finally themodel must be evaluated in order to combat overfitting by considering the

effect of changing hyper-parameters on the predictions of unseen data. Therefore there
exists a number of techniques for validation some of which will be briefly described.

4.1 Sampling of configurations

4.1.1 Systematic enumerations
Systematic enumeration is the most straightforward way to generate fit data. By dis-
placing only one or a few atoms in a supercell the FCs can be read of directly from the
forces or extracted via a simple least-squares fit. The procedure has been used exten-
sively in the past with very good results for second order FCs in many systems. The
procedure generates the exact amount of data needed in order to correctly identify all
FCs and each configuration contains minimal noise. The procedure can in principle
be used for higher order FCs as well but gets prohibitively expensive for disordered
systems or high orders. Many software packages implement this method, which is
often called the small displacement method introduced by Parlinski, Li, and Kawazoe
[51]. Examples include phonopy[60] for second-order FCs and thiRdoRdeR.py[61],
phono3py[53], and alamode[54] for third-order FCs.

4.1.2 Rattle and Monte Carlo-rattle
The fundamental issue with the systematic enumeration is the low information con-
tent per configuration. This can be achieved by randomly displacing all the atoms and
solving the corresponding regression problem that arises. This method is sometimes
called the regression method and was introduced by Esfarjani and Stokes [46]. They
also argued that the noise in the data is effectively canceled due to the random nature
of the displacements adding to the benefits of the increased information content. Many
methods exist for generating suitable configurations and the most simple one is the rat-
tle method where a random displacement drawn from a normal distribution is applied
to each atom individually. This can be seen as modeling the crystal as an Einstein crys-
tal. It is a simple method but can lead to unphysical configurations probing unwanted
anharmonicity in the crystal. The reason for this is that displacements for low temper-
atures are typically very correlated and heavier atoms typically move less. While it is
possible to work around this problem using constrained rattle methods based on, e.g.,
Monte Carlo approaches it is often better to go directly to the phonon-rattle method.
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4.1. Sampling of configurations

4.1.3 Phonon-rattle
The problem with the previous approaches are the unphysical and uninformed sam-
pling of the PES without any prior knowledge. Once an approximate harmonic model
has been generated from some set of data a new set can be generated by populating the
phonon modes of the current model at a low temperature. This can be accomplished
by drawing phonon occupations from a normal distribution with variance

𝜎2 = ℏ
2𝜔 coth 𝛽ℏ𝜔/2 (4.1)

as described in [62]. In this way a bootstrap procedure is introducedwhere a newmodel
is constructed based on the physically sound displacements of the previousmodel. Care
must be taken so that the displacement are large enough (i.e., the temperature should
not be too small) so the correct coefficients can be discerned from the noise in the
DFT data but small enough so that we are still sampling the harmonic regime. Thus
anharmonic terms are in general included in the expansion to mitigate the effect of
anharmonicity when the goal is to recover the true harmonic FCs not only when using
phonon-rattle. The phonon-rattle approach can be seen as the 0 K variant of the self
consistent phonon method to be discussed later.

4.1.4 Variational principles
The choice of fitting the forces has an interesting relation to a variational principle
via the Bogoliubov inequality. By applying Jensen’s inequality (𝜓(⟨𝑋⟩) ≤ ⟨𝜓(𝑋)⟩
for 𝜓 convex) to the Zwanzig free energy perturbation formula for the free energy 𝐹
difference Δ𝐹 between two systems with Hamiltonians 𝐻 and 𝐻̃

Δ𝐹 = ̃𝐹 − 𝐹 = −𝛽−1 log⟨𝑒−𝛽Δ𝐸⟩𝐻 = ⟨Δ𝐸⟩𝐻 − 𝛽
2 ⟨Δ𝐸2⟩𝐻 ≤ ⟨Δ𝐸⟩𝐻 , (4.2)

it is possible to establish a variational principle for the model (𝐻 ) free energy 𝐹 . In
other words, the model free energy is minimized under the constraint that the first
cumulant is zero. By applying this idea it is possible to show that using the ordinary
least-squares loss function for the forces 𝑓 on a harmonic model

min⟨(𝑓 − ̃𝑓)
2
⟩𝐻

subject to ⟨Δ𝐸⟩𝐻 = 0 (4.3)

is equivalent to
min𝐹 subject to ⟨Δ𝐸⟩𝐻 = 0. (4.4)

where the minimization is with respect to the free parameters of the model, i.e., the
FCs. In the true ensemble the same holds but the model free energy must be maximized
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Chapter 4. Force constant extraction

instead. Notice that in practice the constraint is trivially enforced by the constant term
in the model Hamiltonian.

This establishes a rationale for these methods and the above relations can also be
obtained in the quantum case. Two common methods to be described below are based
on this idea and differ whether the sampling is in the true ensemble or in the model
ensemble.

4.1.5 Self-consistent harmonic phonons
If the procedure is based on sampling the samemodel wewant to construct, it is called a
self-consistent method [59]. In LD it is often called the self-consistent harmonic approx-
imation (SCHA) or just the self consistent phonons (SCP) method and it is described
in, e.g., [42]. These methods have firm roots in theoretical techniques such as Green’s
function methods and diagrammatic perturbation theory or the statistical perturbation
method based on operator renormalization [63]. In practice on a computer we can
generate displaced configurations and fit an harmonic model to the forces iteratively
until the procedure has converged. The initial guess of the FCs is often in the form of
an Einstein crystal and then as the model improves new configurations are generated
using, e.g., the phonon rattle method. A variation of this method is the stochastic self-
consistent harmonic approximation (SSCHA) where the free energy is minimized using
a stochastic gradient descent method [63–67]. In practice this makes it easy to mini-
mize also the Gibbs free energy by varying the cell metric. One of the main problems
with any harmonic method is that it is only possible to effectively capture anharmonic
effects in the harmonic FCs up to a certain degree. This can be partly remedied by in-
cluding anharmonic effects in the sampling and in the model. The second large problem
is deterioration of the ensemble average as the model improves. The old configurations
are based on a different model than the present and thus all ensemble averages will be
short-term biased. Clever methods exist, however, to discard configurations deemed
to be of no use for the current model and thus the convergence can be sped up by
including less data, a kind of bias-variance trade-off.

4.1.6 Effective harmonic models
An alternative is to sample configurations from AIMD simulations. This ensures physi-
cal configurations but can be expensive depending on the underlying ab initio method,
code, system and so on. This method is sometimes called the temperature-dependent
effective potential (TDEP) method after the eponymous program [68–70]. With this
method effective harmonic models (EHMs) can be generated where higher-order FCs
have been captured (or renormalized) into the second-order FCs. This allows for the
calculation of temperature-dependent phonons and related quantities. Naturally also
higher-order models can be constructed in this way to access, e.g., lifetimes [71]. The
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4.2. Regularized Linear Regression

main downside of this method is the expensive sampling, especially if quantum effects
must be taken into account. This can be partly overcome by stochastic initialization and
up-sampling techniques. Effective harmonic models can also be used to access other-
wise hard to get properties via LD even when a cheap analytical potential is used where
properties are (in principle) accessible using other methods. In this fashion it is, for ex-
ample, possible to calculate free energies via an EHM instead of via thermodynamic
integration.

4.1.7 Anharmonic higher order models
Lastly there is the possibility to construct effective or self-consistent anharmonic FC
models. With this method anharmonic expansions are fitted to either AIMD or the
model itself is sampled using MC or MD.While MD has been performed using FCs [72],
to the best of my knowledge self-consistent anharmonic models were not done before
Brorsson et al. [73]. In the limit of infinite order and cutoff this method should produce
the same true expansion of the potential energy surface independent of whether the
sampling is in the true or model Hamiltonian. In practice this method using anhar-
monic FCs and MD allows for non-perturbative treatment of high-order perturbations,
e.g., up to fourth order in the energy expansion. This can be useful where normal per-
turbation theory struggles. In addition the self-consistent procedure ensures that the
PES is stable for reasonable configurations. Typically an anharmonic FCP will be some-
what unstable when running MD if the training data is not diverse enough. This can
often be fixed by including configurations from an MD run close to where the system
misbehaves. Unfortunately many systems exhibit natural defects which can be created
spontaneously in MD simulation when the PES is soft, e.g., close to melting [35]. In
theses situations FCPs are ill suited although there have been attempts to artificially
stabilize/constrain the expansion. The problem with anharmonic FCPs in general is
that even if a good model is found it is not necessarily easier to find accurate properties
of interest from this model compared to a lower order model. For example, the free
energy via perturbation theory from a self-consistent fourth-order model might not be
more accurate than the exact free energy from a self-consistent harmonic model due to
the extra level of approximations when dealing with fourth-order FCs.

4.2 Regularized Linear Regression
Once structures are generated the FC expansion can be constructed using linear regres-
sion as long as the corresponding properties are linear functions of the free parame-
ters (e.g., forces and energies). When there is plenty of training data, and the data is
homogeneous there is often no reason not to use OLS. In Fig. 4.1 a typical learning
curve is shown. For low amount of data the training error is very different from the
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Figure 4.1: Typical learning curve. As the training set increases the training error goes up (less
overfitting) while the validation error goes down until they meet at the noise level.

validation error indicating overfitting. However, even when the resulting fit matrix
is larger than the number of parameters, the matrix rank can still be lower and thus
the regression problem can still be ill-conditioned. This can, for example, happen in
systems with a large primitive cell. Regularized regression is a technique used to com-
bat over-fitting and used together with cross-validation to assess the performance of
the resulting model, see [74–76] for applications to FCs where it is sometimes called
compressive sensing (CS).

During regularized linear regression in addition to the (typically) squared error im-
posed on the difference in forces an extra term is introduced to penalize large parameter
vectors. Thus not only must we find an accurate model but we must find it using few or
small parameters. Two common approaches are least absolute shrinkage and selection
operator (LASSO) (𝐿1) and ridge regression (𝐿2) which are typically defined as

min
𝑥

‖𝐴𝑥 − 𝑏‖2 + 𝜆 ‖𝑝‖𝑛 (4.5)

where the choice 𝑛 = 1 is called LASSO and 𝑛 = 2 is called ridge regression. The
parameter 𝜆 is called the regularization parameter and controls the trade-off between
bias and variance errors. A high bias error means that the model is unable to predict
patterns in the data and is thus under-fitted. If the variance error is high the model is
sensitive to noise in the training data and is over-fitted.
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4.2. Regularized Linear Regression

Many regularization techniques can also be formulated in a Bayesian framework.
The LASSO method is for example equivalent to a Laplace prior distribution together
with an assumption of Gaussian noise. The reformulation of the regularization problem
in terms of Bayesian inference provides powerful tools to quantify uncertainties in the
models. It is, for example, possible to assess the effect of uncertainties in the PES on
the dispersion relation and use such error estimation to steer model construction.

4.2.1 Feature selection
A natural consequence of the regularization is that we get information about what fea-
tures in our model matter and which do not. Feature selection (and regularization in
general) has different names in different fields. In signal processing it is called com-
pressed sensing and is typically based on 𝑙1 regularization, i.e., LASSO. By assuming
sparse solutions of the problem the set of possible solutions can be reduced and con-
sequently signals can be recovered even when the amount of data is seemingly not
enough. From a Bayesian point of view we can regard it as a prior knowledge about
the correlation between the solution coefficients where we encode that not all coeffi-
cients can be large at the same time.

Popular methods include recursive feature elimination (RFE) and orthogonal match-
ing pursuit (OMP) which can be added on top of any standard training method. In RFE
the least important features are dropped iteratively starting from a full solution. InOMP
features are instead iteratively added from a zero solution. Bayesian methods include
automatic relevance determination regression (ARDR) which puts individual Gaussian
priors on the coefficients and eliminates coefficients if their magnitude relative to the
posterior falls below a pre-defined threshold.¹

All methods discussed have one or more hyper-parameters that must be tuned. They
can either be the number of features or some continuous parameter(s). In either case
cross-validation can be used to determine optimal hyper-parameter to use.

4.2.2 Cross validation
In order to assess the performance of the model and to mitigate both over and under-
fitting cross-validation should be performed. The generated data is divided in three
sets: training, validation, and testing. Typically the training set is large compare to
the two other sets. The training set is used to fit the model and the validation set is
used to optimize the regularization parameter. If a large amount of data is available the
training error and the validation errors are the same, see Fig. 4.1. This is equivalent to
saying that the learning curve has converged. If the validation error is at a minimum
with respect to the regularization parameter but much larger than the training error

¹The threshold value is a hyper-parameter of this method.
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Figure 4.2: Typical hyper-parameter scan with RFE.The training error decreases monotonically
as the model increases in complexity. At a certain point the validation error goes up indicating
overfitting. The minimum of the validation curve should in principle correspond to the best
generalization but in practice less complex models (less features) may be preferred.

we are in principle over-fitted but the error stems from lack of data, see Fig. 4.2 for an
illustration. Once the optimal hyper-parameters have been selected the final model can
be evaluated again against the test set. If the scores on the validation and test sets are
similar the optimal choice of hyper-parameters should be independent of the choice of
validation set.

In addition to the root mean squared error (RMSE) information criteria can be used,
such as Akaike information criterion (AIC) and Bayesian information criterion (BIC).
For Gaussian errors the BIC is given by (lower is better)

BIC(𝑘|𝑛) = 𝑛 log(MSE) + 𝑘 log(𝑛), (4.6)

where 𝑛 is the number of samples and 𝑘 the number of parameters. Here, we can see
that the BIC balances low error (low mean squared error (MSE)) against a complex
model (large 𝑘). Such criteria can aid in automatic determination of optimal models.
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5
Thermal transport

There are many approaches for calculating the thermal conductivity in condensed mat-
ter systems. Loosely they belong in three classes based on thermostats, fluctuations via
the GK relations, and PBTE[77], respectively.

The most straightforward approach is non-equilibrium molecular dynamics (NEMD)
where two separated regions in a MD simulation are held at different temperatures us-
ing thermostats. The heat will flow from the hot region to the cold via an intermediate
region, which evolves under NVE conditions. The thermal conductivity can simply be
calculated from the temperature gradient and the amount of heat that is pumped be-
tween two thermostated regions per unit time. This is a conceptually simple method
and very useful for measuring interface conductivities. For bulk conductivities, how-
ever, the method has some drawbacks. First, the temperature gradient is typically very
large as the temperature difference needs to be larger than typical fluctuations while
the length scales are typically quite short. Second, the spatial limitation, or boundary
conditions, in the simulation may impose an artificial wavelength/mean-free-path cut-
off similar to a boundary scattering term in PBTE [53, 78]. Since the low lying acoustic
modes, which have typically long mean free paths, carry much of the heat this can lead
to an underestimation of the lattice thermal conductivity (LTC). Fortunately, as the tem-
perature increases the mean free path decreases so this is typically more problematic
for low temperatures where other approaches (PBTE) can be taken instead.

The two other methods will be discussed in this chapter in some detail starting with
the PBTE.

5.1 Peierls-Boltzmann transport equation
When the motion of atoms in a solid is highly correlated it is often useful to make a
Fourier transform and instead describe the motion in terms of the resulting collective
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excitations (phonons) as described earlier in Chapter 3. The resulting phase space is
now given by the phonon coordinates and momenta, and the quasi-particles are ef-
fectively assumed to behave similarly to the particles in a dilute gas. This system is
called a weakly interacting Bose gas as the phonons follows the Bose-Einstein statistic.
Here the heat carriers are the phonon quasi-particles and the corresponding PBTE is
solved by constructing a scattering integral based on the phonon-phonon interactions
calculated from anharmonic FCs using, e.g., Green’s function methods as described in
Chapter 3. The method thus relies on an accurate description of the PES in terms of
FCs. Although the method contains a semi-classical leap of faith the possibility of in-
cluding quantum effects via the populations is very attractive. For many materials 0 K
or effective third-order FCs are enough but for some materials 4-phonon interactions
are important and thus the corresponding rates must be included [56, 79]. The main
issue with PBTE is the computational cost of constructing FCs and solving the PBTE
for systems with large primitive cells, e.g., systems with complex crystal structures or
disordered systems.

However, in order to relate the motion of the phonons with macroscopic transport
we need to have some kind of notion of localization. While formally the phonons are
only exact excitations for an infinite/periodic crystal and thus spread out over a large
region they can be localized in space by considering wave packets. The physical picture
is thus that phonons are created at a certain macroscopic point in space and travel for
a time as a wave packet and are annihilated at another point in space later, resulting in
the transfer of energy and heat. Theses wave packets thus have a frequency 𝜔, a speed
of propagation 𝑣 = 𝜕𝑞𝜔 and a lifetime 𝜏 . In addition we can think of each wave packet
carrying some energy ℏ𝜔 and thus a wave packet that is created (excited) at a point 𝑥 in
the system will carry an energy ℏ𝜔 with speed 𝑣 for a time 𝜏 before being annihilated
at a point 𝑥′ = 𝑥 + 𝑣𝜏 = 𝑥 + Λ where Λ is the mean free path. The reason why there is
a flow of heat is because of the difference in phonon populations at different points in
space due to the thermal gradient. It is this difference in populations we calculate using
the PBTE. Now the formalism will be briefly described. For a more extensive account
of PBTE see, e.g., [40, 80] and for ab initio thermal transport in general see [81].

The Peierls-Boltzmann theory of thermal transport begins with the assumption of a
well defined local equilibrium distribution function

𝑛0
𝜆(𝑇 (𝑥)) = 1

eℏ𝜔𝜆/𝑘B𝑇 (𝑥) − 1
(5.1)

for the mode 𝜆 which is defined by the lattice momentum and band index. The spatial
variation enters through the spatial variation of the temperature. The phonon transport
equation is now equivalent to the transport in the kinetic theory of gases. First the
Liouville equation is integrated down to a single particle distribution function to yield
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5.1. Peierls-Boltzmann transport equation

the Boltzmann equation

d𝜌
d𝑡 = 0 ⟹ d𝑛𝜆

d𝑡 = 𝑆(𝑛) (5.2)

with the assumption that the scattering integral 𝑆 depends only on the single particle
distribution itself. In more detail we have

𝜕𝑛𝜆
𝜕𝑡 + 𝜕𝑛𝜆

𝜕𝑥 𝑣𝜆 = 𝑆(𝑛). (5.3)

In equilibrium with no spatial temperature gradients this turns into

𝜕𝑛0
𝜆

𝜕𝑡 = 𝑆(𝑛0). (5.4)

If we assume that the change in occupation due to the thermal gradient is a small per-
turbation to the equilibrium distribution 𝑛 = 𝑛0 + 𝑛′ we arrive at

𝜕𝑛′
𝜆

𝜕𝑡 +
𝜕𝑛0

𝜆
𝜕𝑇

𝜕𝑇
𝜕𝑥 𝑣𝜆 = 𝑆(𝑛) − 𝑆(𝑛0) (5.5)

after the assumption that the gradient of 𝑛′ with respect to 𝑇 is small. If we assume
the temperature gradient to vanish, we see that the scattering integral brings the out-
of-equilibrium occupation back to the equilibrium one, at which point we introduce
the relaxation time approximation (RTA) which states that the backwards transition is
proportional to the perturbation. The lifetime can be taken to be the inverse of the self
energy of each phonon as described earlier and will depend on the occupations via the
scattering rates. In the steady state regime (𝜕𝑡𝑛′ = 0) the linearized PBTE within the
RTA reads

𝐶𝜆
ℏ𝜔𝜆

∇𝑇 𝑣𝜆 = −
𝑛′

𝜆
𝜏𝜆(𝑛) (5.6)

with the heat capacity 𝐶 = ℏ𝜔𝜕𝑇 𝑛0. Here, we see a problem as the lifetime depends on
the unknown perturbation. In the single-mode relaxation time approximation (SMRTA)
we simply set the lifetime to be that of the unperturbed system, in which case the
change in occupations can be written as

𝑛′
𝜆 = −𝜏𝜆(𝑛0) 𝐶𝜆

ℏ𝜔𝜆
∇𝑇 𝑣𝜆. (5.7)

This equation makes sense as the negative occupation means less phonons are going in
the positive direction towards higher temperatures.

The above equation can also be exactly solved via iterative approaches where the
occupations are reinserted to calculate the new lifetimes or via direct inversion. The
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main drawback of the SMRTA is that it underestimates the so called repopulation of
modes which is important for some materials [82]. It is also possible to include higher-
order processes when calculating the relaxation times as described in Chapter 3 and as
implemented in [79].

For the final expression the heat current is defined by the formula

𝐽 = − 1
𝑉 ∑

𝜆
ℏ𝜔𝜆𝑛′

𝜆𝑣𝜆 (5.8)

which is basically multiplying the energy per mode, the number difference of phonons
in the mode, and the velocity of the mode. With the above expression for the perturba-
tion the thermal conductivity coefficient is

𝜅 = 1
𝑉 ∑

𝜆
𝐶𝜆𝑣𝜆Λ𝜆 (5.9)

where Λ = 𝑣𝜆𝜏𝜆 is the mean free path and 𝐶 is the heat capacity of the mode.
Novel insights into PBTE include theWigner formulation described in [83, 84] where

glass-like transport ismore readily handled. Themethod is implemented in both phono3py
and Kaldo[85].

5.2 Green-Kubo thermal transport
For an excellent overview of the GK formalism see [86] which is the basis for this
short introduction. In the 1950s Green and Kubo developed a theory of linear transport
based on the work of Callen and Welton on the fluctuation-dissipation theorem. The
theory relates equilibrium fluctuations expressed as time correlation functions with the
corresponding transport coefficients.

𝜅 ∝ ∫
∞

0
⟨𝐽(𝑡)𝐽 (0)⟩ d𝑡 (5.10)

Thus a MD simulation can be performed in the NVE ensemble and the auto-correlation
of the heat flux 𝐽 is measured to provide the thermal conductivity coefficient 𝜅. This
equilibrium molecular dynamics (EMD) approach is thus a very general method and in
principle free from bias as the system evolves without any external perturbation.

Compared to the NEMD method the effect of boundary conditions is not as severe.
Although the allowed wave vectors are limited their mean free paths are not as the
the modes are free to propagate through the periodic boundary conditions. The main
problem lies in the challenge to adequately sample the correlation function, especially
for harmonic materials with long life times (i.e., materials with a large LTC). This can
be overcome by the use of clever methods from signal analysis allowing even the direct
use of AIMD, see again [86].
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5.2. Green-Kubo thermal transport

5.2.1 Local energy and the continuity equation
For amacroscopic systemwe stipulate that there exists a energy density function 𝑒(𝑥, Γ)
that measures the local energy at a point 𝑥 in the system in state Γ. This density is
related to the total energy of the system via

∫ 𝑒(𝑥, Γ)d𝑥 = 𝐻(Γ), (5.11)

where Γ is a point in the phase space of the system and d𝑥 is large compared to the
range of the interatomic interactions. The energy is furthermore a (locally) conserved
quantity and thus the energy density obeys the continuity equation

− 𝑖𝜔𝑒(𝑞, 𝜔) = −𝑖𝑞𝑗(𝑞, 𝜔) (5.12)

for some heat current density 𝑗. The long-wavelength parts of conserved densities are
called hydrodynamic variables and our goal now is to find their equations of motion.

5.2.2 Linear constitutive equations
In the small field limit the equation of motion for the energy density can be linearized
in Fourier space

− 𝑖𝜔𝑒(𝑞, 𝜔) = Λ(𝑞, 𝜔)𝑒(𝑞, 𝜔) (5.13)

and we can thus identify the heat current density as

𝑗(𝑞, 𝜔) = 1
−𝑖𝑞 Λ(𝑞, 𝜔)𝑒(𝑞, 𝜔). (5.14)

From general considerations the constant and linear term must vanish in Λ due to
causality and parity considerations. As such, the macroscopic flux 𝐽 = ∫ 𝑗 d𝑥 and the
macroscopic density gradient 𝐷 = ∫ ∇𝑒 d𝑥 are linearly related via 𝐽 = 𝜆𝐷. Because
of assumptions of local equilibrium of the state variables we can also write the relation
in terms of the thermodynamic force 𝐹 = ∫ ∇𝛽 d𝑥 where 𝛽 = 1/𝑇 is the intensive
conjugate variable to the internal energy and we arrive at

𝐽 = 𝐿𝐹 (5.15)

for some parameter 𝐿 and force 𝐹 to be determined. Note here that the natural cause
of a heat current is actually the gradient of the inverse temperature. Nevertheless, in
the linear regime any equivalent measure can be used and the corresponding transport
coefficient will only differ by a function of the equilibrium state variables.

35



Chapter 5. Thermal transport

0 20 40 60 80 100

τ(ps)

0.00

0.05

0.10

0.15

0.20

H
A

C
(e

V
3
/a

m
u

)

Figure 5.1: Heat current auto correlation (HAC) in the through plane direction of Graphite
at 600 K. The gray curves are 100 individual simulations overlayed and the red curve is the
unfiltered mean. At around 40 ps the correlation is almost zero and should be enough to get a
converged value of the thermal conductivity.

5.2.3 Linear response
The GK relations allow us to calculate the parameter 𝐿 by studying the equilibrium
fluctuations of the flux 𝐽 . Specifically for a perturbation 𝑉 = ∫ 𝑣(𝑥)𝑒(𝑥) d𝑥 with some
coupling constant 𝑣 (the driving field) to the original Hamiltonian the corresponding
thermodynamic force is given by

𝐹 = 𝛽0 ∫ ∇𝑣 (5.16)

and the corresponding transport coefficient is

𝐿 = ∫
∞

0
⟨𝐽(𝑡)𝐽 (0)⟩0 d𝑡. (5.17)

For a coupling field 𝑣 = −Δ𝑇 /𝑇0 the (mechanical) perturbation mimics the effect of
a temperature field. This will be important later for the homogeneous non-equilibrium
molecular dynamics (HNEMD) method where this observation allows us to study the
heat current response to a perturbation. Continuing, the corresponding force for the

36



5.2. Green-Kubo thermal transport

above perturbation just becomes the temperature (𝑇 ) gradient and the final value for
the thermal conductivity is given by

𝜅 = 1
𝑉 𝑘𝐵𝑇 2 ∫

∞

0
⟨𝐽(𝑡)𝐽 (0)⟩0 d𝑡. (5.18)

Now the only thing left is a local definition of heat or internal energy that is consis-
tent and compatible with both our microscopic and macroscopic understanding. This
can be conceptually challenging due to the ambiguity in the localization of the internal
energy. Recent research has, however, shown that the exact definition of the energy
density on the atomic level is not important [86]. As long as general principles are
obeyed all definitions should give equivalent results. Thus from the conservation of
energy and from the local character of the interatomic potential we stipulate that in
the thermodynamic limit of coarse graining there must exist a local measure of the in-
ternal energy obeying the continuity equation for a suitable definition if the heat flux.
In practice the energy is divided up into atomic energies

𝐸 = ∑
𝑖

𝐸𝑖 = ∑
𝑖

𝑝2
𝑖

2𝑚𝑖
+ 𝑉𝑖(𝑥) (5.19)

and each atom is considered a heat carrier and the corresponding current is analogous
to, e.g., a mass or charge current.

5.2.4 Homogeneous non-equilibrium molecular dynamics
The EMD method can also be combined with a perturbing thermostat in order to ar-
tificially increase the fluctuations and thus provide a stronger signal to noise ration,
leading to faster computational convergence. Evans et al. [87] showed that a time-
dependent field 𝐹 (𝑡) could be used to drive the system out of equilibrium, enhancing
the fluctuations. By studying the correlation between the driving force and the re-
sponse of the heat current the thermal transport coefficient can be calculated using a
simple formula relating the force to the induced heat current

⟨𝐽(𝑡)⟩
𝑇 𝑉 = 𝜅𝐹 (𝑡). (5.20)

Fan et al. generalized this method to many-body potentials [88] and implemented it
specifically for HNEMD [89] in the gpumd software package used in Paper III.
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Figure 5.2: Running thermal conductivity corresponding to Fig. 5.1. The gray lines show the
results from 100 individual simulations while the red curve shows the mean and standard devi-
ation. After around 40 ps the thermal conductivity is converged within the specified error.
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6
Summary of papers

Paper I
The Hiphive Package for the Extraction of High-Order Force Constants by Machine Learn-
ing.

Paper I is the first of a set of papers related to the extraction and application of FC
expansions. In this paper we present methods and workflows as well as some demon-
strations of the hiphive package that we developed. The focus is on the advantages
of an easy framework to work with FCs and how to use auxiliary software such as
sciKit-leaRn to accelerate the regression extraction. The main features of hiphive are
presented as well as the concepts necessary to work with FCs in practice. We success-
fully implemented proper handling of both local crystal symmetries as well as global
symmetries such as translational and rotational invariance. hiphive handles FC expan-
sions up to arbitrary order allowing for accurate descriptions of complex PESs. This
allows, for example, exact non-perturbative treatments of properties of interest. The
translational symmetries are exactly fulfilled by using integer numerics to find the ker-
nel of the translational sum rule constraint matrix. Demonstrations include proper
handling of rotational invariance and phonon dispersions of the two-dimensional ma-
terial MoS2 as well as the thermal conductivity. Furthermore we demonstrate how to
use higher-order FCPs to run MD via the ase library.

Paper II
Efficient construction of linear models in materials modeling and applications to force con-
stant expansions.

39



Chapter 6. Summary of papers

In paper II we used hiphive in conjunction with sciKit-leaRn to benchmark and test
the use of compressive sensing and related techniques to the FC extraction problem in
the setting of the regression approach. The regression method can vastly cut down the
number of DFT calculations needed and we tested several different methods including
LASSO, adaptive LASSO, RFE, and ARDR on different systems. In terms of methods
RFE with OLS works well in many cases while ARDR tend to suffer from bad scaling
as the training size increase.

The single most important thing when fitting FCs is to tune the cutoffs properly.
While the regularized regression methods should in principle be able to find the correct
parameters and discard clusters that are outside the interaction length of the potential
the size of the training size might be too large to handle for some algorithms.

The second important observation is that for some physical properties the accuracy
does not scale with the RMSEmeasure. This highlights the pitfalls of blindly optimizing
for this measure and led us to conjure that using estimators from information theory
such as BIC and AIC should provide more sensible models. Furthermore the highly pop-
ular LASSO method does not perform as well as some other methods and suffers from
over-selection. Therefore post-LASSO methods should be preferred such as adaptive-
LASSO. Finally we demonstrated that temperature-dependent thermal conductivities
including fourth-order effective renormalization and beyond is computationally feasi-
ble.

In conclusion, despite CS being somewhat useful for configurational cluster expan-
sions [90, 91], we did not find the methods very useful for our systems compared to
Zhou et al. [92]. For FC expansions it is much easier to generate new data as each
configuration contributes 3𝑁 new data points for systems where the cutoffs are com-
parable or longer than the size of the system. We also found that a naïve use of advanced
regularized regression methods can sometimes add a significant cost so care must be
taken.

Paper III
Extremely anisotropic van der Waals thermal conductors.

In paper III we tried to confirm and explain the extremely low through-plane con-
ductivity of rotationally disordered MoS2 van-der-Waals structures. The work was a
collaboration with the groups of David Muller, David Cahill, and Jiwoong Park who
performed the synthesis and experimental measurements. The main challenge was the
complexity of the unit cell for these kind of materials. Molybdenum disulfideMoS2 con-
sists of stacked layers of single sheets much like graphite is build from stacked layers
of graphene. These types of materials have been studied before [93] in the bulk config-
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uration with small unit cells using PBTE and the transport mechanism is rather well
understood. For rotational disorder, however, things become complicated as the size of
the cell grows rapidly at low inter-planar angles. While many studies has been done on
so-called Moiré structures where for some magic angles two layers rotated relative to
each other can fit in the same supercell the studies have been mostly on bilayers. It is
also computationally prohibitive to use PBTE directly on such systems as the primitive
cell is very large.

Thus we came up with an algorithm to stack many layers on top of each other with
random interlayer rotations while allowing for some strain in each layer. To calculate
the thermal conductivity we used the HNEMDmethod [87] together with an analytical
potential [94] implemented in gpumd [95]. Using this approach we could replicate
nearly quantitatively the experimental measurements, most crucially the drop in the
through-plane conductivity confirming the claim of an extremely high anisotropy in
the thermal conductivity. We speculate that the microscopic mechanism can be related
to the extreme softening of the through-plane transversemodes. However, it might also
be due to general disorder arguments as the coupling between longitudinal through-
plane and in-plane modes increases.
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7
Outlook

The maturity of the present array of software and methods made available during the
last decades opens upmany possibilities: From a practical point wewant accuratemeth-
ods that can predict properties with low computational cost and limited human input.
This is the goal of so-called high-throughput studies [96] but unfortunately this is hard
to pull of in practice as there are as many details as there are materials. Another angle
is to make certain types of standard procedures semi-automatic for the end user. One
such attempt is active learning of ML potentials which has been successfully applied
to a range of systems, see, e.g., [97, 98]. A third approach is to sacrifice computational
cost for human cost and go directly from ab initio calculations to properties of inter-
est via exact methods such as Green-Kubo [99, 100]. Of course this is kind of kicking
the can down the road you can argue as there are approximations made even in DFT,
nevertheless this type of methods will probably grow in popularity.

As methods become more and more precise the question of accuracy becomes more
important. At one point the errors made in certain approximations such as, e.g., the
PBTEwill be smaller than the errors in input data obtained from ab initio techniques. In
addition many properties of condensed matter systems are ignored such as interactions
of phonons with other excitations and DOFs such as electrons and spins as well as
structural properties such as defects and boundaries.

For the construction of FCs some questions are still open (at least from my per-
spective) concerning the relationship between different methods. For example, when
should EHMs be preferred over SCP? What is actually being optimized in the differ-
ent self consistent procedures? How are the derived properties related to the observed
properties? One interesting idea is to compare PBTE and GK directly by using a FCP
directly as input. The details of recent progress of relating PBTE and GK can thus be
explored in practice on the same footing.

In terms of future development of hiphive there is still missing the ability to handle
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Chapter 7. Outlook

cell deformations. This can also naturally be related to FC expansions in internal coor-
dinates similar to classical intra-molecular force fields used in chemistry. This would
also be a natural framework to start for studying disordered systems. Of course there
is always a point for any basis when its efficacy breaks down and with the increased
popularity of ML potentials many properties could perhaps more easily be obtained by
constructing a suitable ML potential. However, at the end we wish to learn something
about the underlying physics and thus there will remain a need for simpler potentials.
Just as ML potentials bridge analytical potentials and ab initio methods, maybe there
is something between a deep NN and an analytical potential? After all it is the inter-
mittent models that define the framework and language we use to explain physical
phenomena.

Many of the above points culminate in the study of thermal conductivity in disor-
dered vdW structures that continues beyond the third paper in this thesis. The nature
of the thermal transport in these types of materials is still not completely understood.
This despite there being accurate potentials providing the correct numbers.
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