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Abstract
Purpose Tumor growth inhibition (TGI) models are regularly used to quantify the PK–PD relationship between drug con-
centration and in vivo efficacy in oncology. These models are typically calibrated with data from xenograft mice and before 
being used for clinical predictions, translational methods have to be applied. Currently, such methods are commonly based 
on replacing model components or scaling of model parameters. However, difficulties remain in how to accurately account 
for inter-species differences. Therefore, more research must be done before xenograft data can fully be utilized to predict 
clinical response.
Method To contribute to this research, we have calibrated TGI models to xenograft data for three drug combinations using 
the nonlinear mixed effects framework. The models were translated by replacing mice exposure with human exposure and 
used to make predictions of clinical response. Furthermore, in search of a better way of translating these models, we estimated 
an optimal way of scaling model parameters given the available clinical data.
Results The predictions were compared with clinical data and we found that clinical efficacy was overestimated. The esti-
mated optimal scaling factors were similar to a standard allometric scaling exponent of − 0.25.
Conclusions We believe that given more data, our methodology could contribute to increasing the translational capabilities of 
TGI models. More specifically, an appropriate translational method could be developed for drugs with the same mechanism 
of action, which would allow for all preclinical data to be leveraged for new drugs of the same class. This would ensure that 
fewer clinically inefficacious drugs are tested in clinical trials.

Keywords Translational research · Combination therapy · Oncology · Mathematical modeling · Nonlinear mixed effects

Introduction

A major problem in the drug development process in oncol-
ogy is translating results from preclinical studies to a clinical 
setting [1, 2]. Clinical efficacy is frequently overpredicted, 
which means that test compounds showing promising pre-
clinical results fail when they enter clinical trials [3, 4]. This 
is one of the main reasons for the high attrition rates seen 

for anticancer drugs [5]. However, there exists a correlation 
between preclinical efficacy, estimated from studies using 
either patient-derived xenografts (PDXs) or traditional 
xenografts based on cell lines, and clinical efficacy [6–8]. 
This shows the potential of using xenograft mice for testing 
compounds, in particular PDXs as they represent the human 
disease condition better [9], but also highlights the need for 
further translational research.

Combination therapies have come to play a leading role 
in anticancer treatment during the last decades [10]. The 
strengths of this type of treatment are, e.g., synergistic 
effects between the drugs and slower onset of resistance 
[11, 12]. However, giving two drugs concomitantly leads to 
complex pharmacokinetic (PK) as well as pharmacodynamic 
(PD) interactions that need to be analyzed [13]. Moreover, 
these effects can differ between species, making translational 
efforts even more challenging [14].
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Mathematical modeling is a powerful tool for drug 
development and, in particular, for evaluating combination 
therapies [15]. Typically, a tumor growth inhibition (TGI) 
model is developed and calibrated to xenograft tumor vol-
ume data [16–18], and then used to investigate the efficacy 
of alternative treatments scenarios such as different drug 
doses or treatment schedules [19]. However, inter-species 
differences have to be accounted for to make clinical predic-
tions [20]. The translational methods that are currently used 
can primarily be divided into two categories: replacement of 
model components, e.g., growth rate parameter, exposure, or 
even the entire PK model; and scaling of model parameters 
[21, 22]. However, these methods are often insufficient to 
accurately translate the relationship between drug dose or 
concentration and in vivo efficacy due to the physiologi-
cal differences between tumor xenograft in mice and cancer 
progression in human [23]. A potential contributing factor is 
also inadequate experimental design [24]. Therefore, addi-
tional model-based translational approaches are needed to 
make full use of preclinical data and minimize drug attrition 
rates.

In this paper, we calibrate preclinical TGI models using 
xenograft data from the literature for three drug combina-
tions. We then replace mice PK with human PK, accounting 
for differences in protein binding, and formulate a math-
ematical optimization problem to find how to best scale the 
PD rate parameters to describe published clinical data. We 
hypothesize that the optimal scaling factors could be drug/
cancer type specific and could thus be used to leverage all 
preclinical data when developing new drug combinations for 
the same cancer type and with the same drug mechanisms of 
action. Finally, we compare the optimal scaling factor with 
the standard allometric scaling factor for rate parameters.

Methods

Data

Preclinical data

We analyzed PDX data for combination therapies for which 
we were also able to find clinical data in the literature. The 
PDXs had either cutaneous melanoma (CM) or colorectal 
cancer (CRC) and data for combinations of binimetinib/
encorafenib (CM), binimetinib/ribociclib (CM), and cetuxi-
mab/encorafenib (CRC) were taken from Gao et al., 2015 
[7]. Data for vehicle groups of the two cancer types and sin-
gle agent data were also extracted. All-time series were cut 
at day 60 to better reflect a typical xenograft study. Exposure 
data for encorafenib and ribociclib in mice were extracted 
from the same publication, whereas data for the other two 
drugs were gathered from other sources [25, 26]. Treatment 

schedules and sample size of each treatment group can be 
found in the Supplementary Information (Table S1).

Anticancer drugs can have different efficacy depending 
on the specific cancer cells mutations the patient has [27]. 
We have, therefore, stratified the data into BRAF-mutants, 
NRAS-mutants, and all other mutants. In the binimetinib/
ribociclib combination group, there were five CM PDXs 
that had a mutation in the BRAF gene and five that had a 
mutation in the NRAS gene. There were 13 BRAF mutants 
and nine NRAS mutants in all other CM treatment groups. 
Among the CRC PXDs, there were only six BRAF mutants 
and a single NRAS mutant.

Clinical data

In clinical oncology studies, patient response is categorized 
using the RECIST criteria. The sum of the longest diameters 
for all target lesions (SLD) is measured at the start of treat-
ment (baseline) and at subsequent checkups. Each patient is 
categorized based on their best response using four response 
categories: Complete Response (CR), Partial Response (PR), 
Progressive Disease (PD), and Stable Disease (SD) [28].

Clinical RECIST data were obtained from ClinicalTrials.
gov. Data for the following treatment groups were available: 
binimetinib (NRAS/BRAF, CM) [29, 30], binimetinib/ribo-
ciclib (NRAS, CM) [31], encorafenib (BRAF, CM) [32], 
binimetinib/encorafenib (BRAF, CM) [32], cetuximab 
(CRC) [33], and encorafenib/cetuximab (CRC, BRAF) [34]. 
All drugs were given orally, except for cetuximab, which 
was given intravenously. Treatment schedule, sample size, 
checkup time, response rate, cancer type, and mutations for 
each clinical trial can be found in the Supplementary Infor-
mation (Table S1). For more information regarding each 
study, the reader is referred to the corresponding article.

Preclinical modeling

Exposure to anticancer drugs

Daily unbound average concentration, Cavg,u , was used to 
describe the exposure to all drugs except binimetinib for 
which unbound maximum concentration, Cmax,u was instead 
used, as maximal concentration has been shown to corre-
late better with clinical efficacy than overall exposure for 
this particular compound [26]. The unbound concentrations 
were computed by first estimating the total average or maxi-
mum concentration, Cavg,tot or Cmax,tot , and then adjusting for 
in vitro mean unbound protein fraction in mice, fu,Mouse(17) , 
according to

(1)
Cavg,u = Cavg,tot ⋅ fu,Mouse,
Cmax,u = Cmax,tot ⋅ fu,Mouse,
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fu,Mouse for each drug was extracted from the literature [25, 
35–37]. Compartmental models were fitted to the extracted 
exposure data of encorafenib and ribociclib. One-compart-
ment models were sufficient to describe the PK data of both 
compounds. For cetuximab, we used a one-compartment 
model from the literature [25]. These three models were used 
to estimate Cavg,tot of encorafenib, ribociclib, and cetuximab 
in the TGI model. Due to lack of an adequate PK model for 
binimetinib, the Cmax,tot value was gathered from the litera-
ture [26]. Total and unbound exposure for each drug and 
treatment schedule are summarized in Table 1. A detailed 
description of how these values were derived is available in 
the Supplementary Information.

Tumor growth inhibition model

To quantify the preclinical anticancer efficacy of each drug 
and drug combination, a one-compartment TGI model was 
calibrated to each tumor type. The choice of this relatively 
simple model was made to balance model complexity with 
the amount of available data. In the model, all tumor cells 
are assumed to be proliferating and located in a single com-
partment. A schematic representation of the model is shown 
in Fig. 1.

Turnover of tumors cells exposed to drug i as single agent 
is described by the following differential equation,

where V is the volume of tumor cells, V0 the initial 
tumor volume, kng the net tumor growth rate constant, ai the 
potency of drug i, and Ci average or maximum unbound drug 
concentration. T

(2)
dV

dt
=
(

k
ng
− a

i
⋅ C

i

)

V(t),V(0) = V0,

Table 1  Preclinical and clinical 
drug exposure

Specification of both total and unbound preclinical and clinical exposure for each drug and treatment 
schedule

Drug Dose schedule Total exposure f u Unbound exposure

Preclinical
 Cetuximab 20 mg/kg 2.q.w. 3235 μg∕mL 1 3235 μg∕mL

20 mg/kg q.2.w. 893 μg∕mL 893 μg∕mL

 Encorafenib 20 mg/kg b.i.d. 28 μg∕mL 0.042 1.2 μg∕mL

20 mg/kg q.d. 14 μg∕mL 0.6 μg∕mL

 Ribociclib 250 mg/kg q.d. 16 μg∕mL 0.2 3.2 μg∕mL

 Binimetinib 10 mg/kg b.i.d. 1.2 μg∕mL 0.015 0.02 μg∕mL

Clinical
 Cetuximab [34, 38] 400/250 mg/m2 q.w. 3236 μg∕mL 1 3236 μg∕mL

 Encorafenib [32] 300 mg q.d. 6.60 μg∕mL 0.14 0.92 μg∕mL

 Encorafenib [32, 35] 450 mg q.d. 8.25 μg∕mL 0.14 1.15 μg∕mL

 Ribociclib [31] 200 mg q.d. 4.00 μg∕mL 0.3 1.2 μg∕mL

 Binimetinib[32] 45 mg b.i.d. 0.60 μg∕mL 0.03 0.02 μg∕mL

Fig. 1  A schematic representation of the TGI model for two drugs. 
V denotes the volume of the proliferating cells and kng the net tumor 
growth rate constant before start of treatment. Ci and ai are the 
unbound concentration and potency of drug i, respectively. There is 
also a possible interaction term between the two drugs, denoted by 
�i,j.
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When two drugs, i and j, are given in combination, the 
turnover is instead described by,

where �i,j is included to describe a potential synergistic or 
antagonistic effect between the drugs [9].

Mathematical modeling and parameter estimation were 
performed using an NLME framework (more details are 
found in Computational Methods). One TGI model for each 
cancer type was fitted to the data and log-normal between-
subject variability (BSV) was accounted for on the param-
eters kng and V0 in both models and on the potency param-
eter of binimetinib, aBini , in the CM model. No correlation 
between random effects was assumed and a proportional 
observation error was used in the model based on residual 
analysis. We also investigated if there was a significant dif-
ference between parameter estimates if treatment groups 
were stratified in BRAF-mutants, NRAS-mutants, and 
others.

Clinical modeling

Translational

To predict clinical response, translational methods were 
applied to the preclinical TGI models. Initially, we only 
replaced mouse exposure with human exposure, after 
accounting for differences in protein binding [20, 21]. For 
each drug, reported AUCtot or Cmax,tot values were taken from 
the clinical study if available, or otherwise values from simi-
lar studies. The exposure was then adjusted by in vitro mean 
unbound protein fraction in humans, fu,Human [6, 24, 35, 36]. 
Total and unbound exposures for each drug and treatment 
schedule are summarized in Table 1. A detailed description 
of how values were derived is available in the Supplemen-
tary Information.

Clinical predictions

We used our translated preclinical TGI models to predict 
the proportion of patients in each RECIST category. To do 
this, two important aspects first had to be considered. First, 
the RECIST criteria are based on SLD, whereas predictions 
from the models are on volumes. Therefore, we converted 
the volume predictions to SLD by assuming either spheri-
cal or ellipsoid tumors [39]. In the ellipsoid case, prolate 
ellipsoids were assumed as well as that tumor growth or 
shrinkage only occurs along the longest radius. This leads 
to the volumetric change being the same as the change in 
SLD between two time points. For the spherical case, the 
volumetric change has to be greater than the SLD change 

(3)
dV

dt
=
(

k
ng
− a

i
⋅ C

i
− a

j
⋅ C

j
− �

i,j
C
i
C
j

)

V(t),

to achieve CR/PR or PD [28, 39, 40]. Both assumptions of 
spherical and ellipsoid tumors were evaluated in this paper.

Second, only the best response, which can occur at any 
checkup, for each patient is reported in the clinical studies. 
Therefore, we made the simplifying assumption that the best 
response occurred at the first evaluation, i.e., at week 6 or 8, 
and we called this time T . We subsequently investigated how 
the predictions were affected if a different T  was chosen.

To make the predictions, we used the translated preclini-
cal model (formed by the preclinical tumor model combined 
with the human PK) to generate 1000 studies with the same 
number of individuals as in the original study. The time evo-
lution of tumor volume of each individual was simulated 
and converted to SLD. After that, the percentage change 
between baseline and week T  was calculated, using the fol-
lowing equation,

A patient is classified as CR&PR ifΔSLD ≤ −30 , as PD 
if ΔSLD ≥ 20 , and as SD if −30 ≤ ΔSLD ≤ 20 [28]. This 
process of generating and categorizing individuals is illus-
trated in Fig. 2.

Each individual’s ΔSLD was compared with the RECIST 
thresholds and thus, the proportion of patients in each 
RECIST category was estimated for each study. Subse-
quently, mean and 95% confidence interval (PCI) of each 
RECIST category was calculated. We considered a predic-
tion to be adequately good if the PCI covers the clinical data 
observation.

Optimization

After making our predictions with the translated models 
we wanted to investigate how the parameters in the model 
should be scaled to describe the clinical data better. The 
parameters that we focused on were the PD rate parameters, 
kng , ai , and �i,j . We allowed the scaling of these parameters to 
be different and denoted the optimal scaling factors for them 
by A, B, and C, respectively. The optimal scaling factors 
were introduced to the model using the following expres-
sions and were found by formulating and solving an opti-
mization problem.

(5)ΔSLD = 100 ⋅
SLDT − SLD0

SLD0

.

kH
ng

= A ⋅ kM
ng

aH
i
= B ⋅ aM

i

(6)�
H = C ⋅ �

M
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Here the superscript, M , denotes that the parameter is 
estimated from PDX data and, H , that the parameter is 
scaled for human predictions.

To formulate the optimization problem, we denoted the 
clinically observed and predicted percentage of patients in 
RECIST category i for treatment group j by yij and y∗

ij
, 

respectively. Furthermore, y∗
ij
 is a function of the scaling 

factors x = (A,B,C). A least-squares problem was formu-
lated to find x such that the difference between yji and y∗

ij
 is 

minimized for all i and j. Mathematically this is described 
by the equation,

However, this objective function can lead to optimal 
solutions where some RECIST categories are not ade-
quately predicted, which is compensated by very accurate 
predictions of other categories. Thus, to improve the pre-
dictions, on a study level, we penalized the solution for 
each RECIST category in y that was not covered by the 
PCI. This promotes solutions with as many adequate pre-
dictions as possible and was done by introducing the fol-
lowing penalty term,

where � is a penalty constant and,

(7)f (x) =
∑

i,j

(

y∗
ij
(x) − yij

)2

.

(8)�

∑

i,j

gij(x) = 0,

(9)gij(x) =

{

0 if yij ∈ PCIj
1 if yij ∉ PCIj.

Combining this penalty term with Eq. 7 results in the 
following equation,

The optimization problem was formulated as,

The optimization procedure was validated by first syn-
thesizing data with known optimal scaling factors and then 
re-estimating these known factors. To give an idea of the 
uncertainty of the estimates, a non-parametric bootstrap was 
performed to calculate RSE % of each optimal scaling factor.

Allometric scaling

The heart rate of organisms has been shown to be propor-
tional to the body weight of the organism raised to power 
of −0.25 [41]. This is the underlying rationale for some to 
propose that parameters associated with tumor growth can 
also be allometric scaling with exponent −0.25 [42]. Stand-
ard values of the body weight of a human and a mouse are 
assumed to be 70 kg and 20 g, respectively, which results 
in a scaling factor of approximately 0.13. We compared this 
scaling factor with the optimal scaling factors we found 
through our optimization procedure.

Computational methods

Mathematical modeling and parameter estimation were 
performed using an NLME modeling approach based on 

(10)L(x) = f (x) + �

∑

i,j

gj(x).

(11)minimize L(x), subject to −∞ < x ≤ 0.

Fig. 2  An illustration of 
how clinical predictions are 
performed. The color of green, 
blue, and red denotes classifica-
tion into PR/CR, SD, or PD, 
respectively. The change in SLD 
between baseline and week 8 
(black, vertical line) is com-
pared to classify each individual



 Cancer Chemotherapy and Pharmacology

1 3

the first-order conditional estimation (FOCE) method. The 
computational framework used was developed at the Fraun-
hofer-Chalmers Research Centre for Industrial Mathemat-
ics (Gothenburg, Sweden) [43]. The preclinical TGI models 
were simultaneously fitted to tumor volume data from all 
treatment groups of the same cancer type. The models were 
introduced based on the precision of estimated parameters, 
individual fits, empirical Bayes estimates (EBEs), Akaike 
information criterion (AIC), and visual predictive checks 
(VPC). We used Simulated Annealing and set � to 1000 to 
solve the optimization problem. Mathematica was used to 
create all figures and to perform all computations.

Results

Preclinical modeling

Pharmacodynamics

The preclinical TGI models were able to describe the xeno-
graft data adequately. Two outliers were removed from the 

cetuximab (CRC) and encorafenib (CM) treatments groups. 
Examples of individual fits and parameter estimates are 
shown in Fig. 3 and Table 2, respectively. Fits to the entire 
dataset can be found in the supplementary information (Figs. 
S4–S13). VPCs can be found in the Supplementary Informa-
tion (Figs. S1 and S2). All model parameters were estimated 
with acceptable precision.

Mutations did not significantly affect the net tumor 
growth rate constant or initial tumor volume. However, a 
significant difference in potency of encorafenib and bini-
metinib was found between different mutations. BRAF 
mutated PDXs responded considerably better to encorafenib 
than other PDXs. The potency parameter of encorafenib 
for BRAF-mutated CM PDXs was estimated to be 0.12 
mL∕(�g ⋅ day) , whereas no effect could be estimated for non 
BRAF-mutated CM PDXs. Since there were only six BRAF 
mutated CRC PDXs among 43, no significant encorafenib 
potency could be estimated for this sub-group either. Only 
the model describing the combination of cetuximab with 
encorafenib required an interaction term, which was esti-
mated with good precision to 2.6 ⋅  10–5 mL2∕(�g2 ⋅ day).

Fig. 3  Tumor volume versus time for one individual per treatment group and drug combination. Continuous lines are model predictions and dots 
experimental observations

Table 2  Parameter estimates

Estimated PD parameters after fitting the two TGI models to the xenograft tumor volume data
RSE relative standard error

Parameter Unit Estimate (RSE %) BSV (RSE %)

Colorectal cancer kng 1∕day 0.05 (6) 71 (12)
Vo mm3 235 (2) 24 (12)
aCetu mL∕(μg ⋅ day) 9.4⋅  10–6 (9)
aEnco mL∕(μg ⋅ day) 0 (-)
�Cetu,Enco mL2∕

(

μg2 ⋅ day
)

2.6⋅  10–5 (9)
Cutaneous melanoma kng 1∕day 0.06 (6) 53 (15)

Vo mm3 200 (2) 22 (14)
aEnco mL∕(μg ⋅ day) 0.12 (10)
aRibo mL∕(μg ⋅ day) 0.013 (9)
aBini mL∕(μg ⋅ day) 1.7 (19) 61 (35)
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Clinical modeling

Clinical predictions

The preclinical TGI models were translated and clinical pre-
dictions were made for each treatment group where clinical 
data was available. As the predictions using ellipsoid tumors 
were in better agreement with the clinical data for the time-
frame we used, we only present these predictions. A plot 
showing how the predictions are affected by the choice of T  
can be found in the Supplementary Information (Figure S3). 
The predictions, including predictions using allometric scal-
ing, plotted against the clinical data for each treatment group 
are shown in Fig. 4, and in Table S4 in the Supplementary 
Information.

Optimization

The result of the validation procedure of the optimiza-
tion method is found in the Supplementary Information 
(Table S2). The optimization problem, formulated in, Eq. 11, 
was solved separately for four monotherapy treatment 
groups. The optimal scaling factors (A, B) for each drug, 
along with RSE of each estimate and clinical predictions, 
can be found in the Supplementary Information (Table S3).

The optimization problem was also solved for the drug 
combinations. The preclinical cetuximab/encorafenib TGI 
model was the only combination with an interaction term 
and, therefore, three scaling factors. Results from the opti-
mization for each drug combination are shown in Table 3. 
How well the translated models, using these optimal scaling 
factors, were able to describe the clinical data are shown in 
the last row of Fig. 4 and in the Supplementary Information 
(Table S4).

Fig. 4  (Row 1 and 2) Clinical predictions plotted against clinical data 
for all drug combinations and using both replacement of PK and allo-
metric scaling. (Row 3) Illustration of how well the translated model, 

using the optimal scaling factors could describe the clinical data. 
Color denotes treatment group and circles represent the response cat-
egories CR/PR and squares CR/PR + SD
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Discussion

Preclinical modeling

Exposure

The use of unbound concentrations is vital to account for 
differences in protein binding of species. This is especially 
the case for highly bound drugs, as a slight difference in 
protein binding can significantly affect the active drug con-
centration at the target site [44]. However, a limitation of 
using unbound fractions, estimated in vitro, is that it can be 
misleading as it does not necessarily describe the free con-
centration at the target site accurately [45]. Despite this, we 
do still believe that the approach we have used is the most 
appropriate for the data available to us.

In the final preclinical PD model we used a single value 
(Cavg,u or Cmax,u ) to represent the exposure of the different 
drugs. These were chosen based on information from the 
literature what correlated best with clinical efficacy. We also 
tested using the simulated PK profiles of both encorafenib 
and binimetinib to drive the PD model, but this did not alter 
the fit.

Since clinical tumor measurements are typically per-
formed quite infrequently (e.g., once every  8th week) we do 
not believe that a more dynamical PK model than the one 
we used would significantly improve the model predictions.

Pharmacodynamics

Pharmacodynamic model

The PK-PD relationship between drug concentration and 
in vivo efficacy is commonly described by linear expres-
sions, with the possible inclusion of an interaction term [46, 
47]. Since the drugs we investigated were only tested at one 
dose level, the preclinical TGI models used need to match 

this lack of richness in the experimental data. The choice of 
a relatively simple model was made after testing other mod-
els as well, e.g., the Simeoni model (13), but not being able 
to estimate all parameters with sufficient precision given the 
available data.

All treatment groups with PDXs created from the same 
cancer type were fitted simultaneously and the models were 
able to describe the xenograft tumor volume data adequately. 
All model parameters were estimated with acceptable preci-
sion. The models were able to describe the data on both an 
individual level as well as on a population level, as can, e.g., 
be seen in the individual fits and VPCs, respectively.

Analysis of mutations

Our predictions of the potency of each drug with regards 
to mutation are in agreement with the result from previous 
studies. BRAF-inhibitors, to which encorafenib belongs, 
are efficacious against BRAF-mutated CM but not against 
NRAS-mutated CM, which is what the model also predicted 
[48]. Moreover, the CRC PDXs seemed to be insensitive to 
encorafenib, given as monotherapy, however, the analysis 
is biased by the limited number of CRC BRAF-mutants in 
the dataset used.

Clinical predictions

Predictions versus data

Clinical predictions were made for all three drug combi-
nations using the translated preclinical TGI models. With 
mice PK replaced with human PK, the model tended to 
overpredict the drug efficacy. This overprediction can, to 
some extent, be explained by the fact that the drugs were 
only tested on one preclinical dose level and, therefore, the 
model potency functions had to be extrapolated. Moreover, 
encorafenib was found to only have an effect when it was 
given as a combination to CRC PDXs, and thus the need to 
extrapolate the interaction term further explains the over-
prediction of the cetuximab and encorafenib combination. 
Having preclinical data for multiple dose levels would have 
been optimal, to minimize prediction errors coming from 
extrapolation.

Another aspect that must be considered is BSV and inter-
study variability (ISV). BSV was included in on the tumor 
growth rate parameter to account for significant variability 
observed in the preclinical vehicle group. However, as there 
are no vehicle group in clinical studies it could be hard to 
quantify how much of the clinical variability comes from 
differences in tumor growth and drug sensitivity. ISV can be 
quite large when studies are conducted at different time peri-
ods, locations, or by different scientists [38]. As the data we 

Table 3  Optimization results

Optimal scaling factors, with RSE, for each drug and drug combina-
tion

Treatment (cancer) A (RSE %) B (RSE %) C (RSE %)

Monotherapies
 Enco (CM-BRAF) 0.20 (9) 0.20 (6) –
 Bini (CM-BRAF) 0.17 (3) 0.23 (3) –
 Bini (CM-NRAS) 0.14 (5) 0.18 (7) –
 Cetux (CRC) 0.85 (16) 0.78 (16) –

Combinations
 Bini/Enco 0.07 (19) 0.09 (17) –
 Bini/Ribo 0.12 (10) 0.14(11) –
 Cetux/Enco 0.21 (15) 0.09 (45) 0.13 (10)
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have used have been taken from different literature sources, 
we expected significant inter-study variability.

Furthermore, the predictions are also affected by the 
choice of model. We used semi-mechanistic models, and it 
would be interesting to investigate how much the predictions 
could be improved if more mechanistic models instead were 
used. To better mimic the human disease condition tumor 
regrowth or the appearance of new lesions could for example 
be included in the model. However, the model complexity 
is limited by shortcomings of PDXs such as they e.g., only 
have one tumor lesion.

To evaluate what type of model is more suitable for this 
type of translational research, the cost, in terms of model 
complexity and biological knowledge, could be compared 
with the improvement in predictions. To perform such an 
evaluation, richer datasets, including different dose lev-
els both in monotherapy and in combination may also be 
needed.

Assumptions

We made two assumptions in our clinical prediction: how 
to convert volumetric model predictions to diameters and 
when the best response of the patients occurred. Evidence 
has previously been put forward that assuming an ellipsoid 
tumor geometry is a better prognostic indicator of overall 
survival than a spherical one [39, 40]. Overall survival is 
thought to be correlated to response rates [49] and thus, it 
follows that ellipsoids should be more suitable for classify-
ing patient response. Our findings further showed the superi-
ority of assuming ellipsoid tumors, as these predictions were 
in better agreement with the clinical data.

Furthermore, we assumed that the best response of all 
patients occurred at the first checkup, i.e., after 6 or 8 weeks 
from the start of treatment. We based this assumption on two 
studies that found that change in tumor volume at week 8 
[50] and after two cycles of chemotherapy [51] correlated 
significantly with overall survival. We also analyzed how 
this assumption affects the predictions by varying the time 
of best response, which we call T  . The number of patients 
that are classified as SD will shrink towards zero as T  is 
increased. Moreover, the predictions from our approach will 
converge towards those using the Tumor-Static Concentra-
tion concept [52], as T becomes sufficiently large (see Figure 
S3 in the Supplementary Information). Figure S3 could be 
used to investigate what the best choice of T is. However, in 
our approach we chose to fix T and instead focus the inves-
tigation on how the predictions were affected by scaling the 
model parameters.

Other researchers who also have predicted clinical 
response rates from PDX data have made similar time frame 
assumptions. For example, Wong et al. [6] compared pre-
clinical TGI after three weeks with clinical response rates 

and Lindauer et al. [22] simulated tumor volumes and cat-
egorized the population at 0, 1, 3, and 6 months after treat-
ment started. Pierrillas et al. proposed a different approach 
for comparing preclinical and clinical efficacy based on 
allometric scaling of the time frame [53]. They compared 
preclinical model predictions with human PD responses 
after 42 days of treatment, which compares well with our 
assumption of 6–8 weeks.

Optimal scaling factors

Optimization problem

The optimization problem was first solved for single 
agents and then for all three drug combinations. RSE of 
the optimal scaling factors was also calculated through a 
bootstrap procedure. The results from single agent opti-
mization showed that the optimal scaling factors were all 
estimated with acceptable precision and were greater than 
the allometric scaling factor.

The optimal scaling factors for the cetuximab/
encorafenib combination ranged from 0.09 to 0.21, which 
is significantly larger than the range of the factors of the 
other two combinations. However, as it was the only com-
bination that showed a significant interaction effect, this 
difference in range is somewhat hard to interpret. It could 
indicate the need for different scaling approaches than the 
one we used when modeling combination therapies with 
significant potency interaction effects.

Comparison with allometric scaling

The allometric scaling relationship applies to endogenous 
mouse and human tumors, and some consideration has to 
be made to PDXs. In PDXs, human tumors are growing in 
mouse microenvironments and, therefore, there may exist a 
scaling factors that better captures the differences between 
PDXs and humans.

The optimal scaling factors that we found were quite 
close to the standard allometric scaling factor, giving 
some validity to the idea of scaling TGI models in this 
way. However, as can be seen in Fig. 4, standard allomet-
ric scaling was not sufficient to predict clinical response 
for all the combinations under study. Thus, showing that 
in order for the predictions from the translated preclini-
cal TGI models to fit the clinical data for the combina-
tion therapies under study, the PD rate parameters had 
to, in general, be scaled down more than the allometric 
theory suggests. This demonstrates the need for new and 
improved scaling techniques, which might be found by 
testing our optimized scaling method on a more extensive 
dataset. A more suitable scaling factor, possibly specific to 
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cancer type and mechanism of action of the drug(s), could 
then be proposed. This factor would be used to describe 
the differences between humans and xenograft mice more 
accurately and would allow all preclinical data to be lever-
aged early in the drug development process. This should 
help in reducing the risks of bringing clinically ineffica-
cious drugs to the clinical development stage.

Conclusions

The predicted clinical efficacy of the three drug combina-
tions was generally overestimated from the translated pre-
clinical TGI models. More informative preclinical data in 
combination with a more complex model could potentially 
improve the predictions.

We developed a methodology for finding an appropriate 
scaling factor for TGI models. The methodology was applied 
to the drug combinations and we found that the optimal 
scaling factors were generally smaller than what allometric 
scaling suggests. However, more drug combinations have 
to be analyzed before a general factor can be proposed. To 
continue exploring and improving the translation capability 
of semi-mechanistic model, more data is required.
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