
CAVE: Caching 360° Videos at the Edge

Downloaded from: https://research.chalmers.se, 2024-04-26 02:48 UTC

Citation for the original published paper (version of record):
Ali-Eldin Hassan, A., Goel, C., Jha, M. et al (2022). CAVE: Caching 360° Videos at the Edge.
NOSSDAV 2022 - Proceedings of the 2022 Workshop on Network and Operating System Support
for Digital Audio and Video, Part of MMSys 2022: 50-56.
http://dx.doi.org/10.1145/3534088.3534350

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

CAVE: Caching 360° Videos at the Edge
Ahmed Ali-Eldin †, Chirag Goel ‡, Mayank Jha‡, Bo Chen*, Klara Nahrstedt*, Prashant Shenoy‡
† Chalmers University of Tech., ‡ University of Massachusetts Amherst, * University of Illinois Urbana-Champaign
† ahmed.hassan@chalmers.se, ‡ {cgoel, mkjha}@cs.umass.edu, * {boc2,klara}@illinois.edu, ‡ shenoy@cs.umass.edu

ABSTRACT
While 360° videos are gaining popularity due to the emergence
of VR technologies, storing and streaming such videos can incur
up to 20X higher overheads than traditional HD content. Edge
caching, which involves caching and serving 360° videos from edge
servers, is one possible approach for addressing these overheads.
Prior work on 360° video caching has been based on using past
history to cache tiles that are likely to be in a viewer’s field of view
and has not considered methods to intelligently share a limited edge
cache across a set of videos that exhibit large variations in their
popularity, size, content, and user abandonment patterns. Towards
this end, we present CAVE, an adaptive edge caching framework
that intelligently optimizes cache allocation across a set of videos
taking into account video content, size, and popularity. Our ex-
periments using realistic video workloads shows CAVE improves
cache hit-rates, and thus network saving, by up to 50% over state-
of-the-art approaches, while also scaling to up to two thousand
videos per edge cache. In addition, in terms of scalability, our de-
veloped algorithm is embarrassingly parallel, allowing CAVE to
scale beyond state-of-the-art solutions that typically do not support
parallelization.

CCS CONCEPTS
•Networks→Location based services;Networkmanagement.
ACM Reference Format:
Ahmed Ali-Eldin †, Chirag Goel ‡, Mayank Jha‡, Bo Chen*, Klara Nahrstedt*,
Prashant Shenoy‡. 2022. CAVE: Caching 360° Videos at the Edge. In The
32nd edition of the Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV’22), June 17, 2022, Athlone, Ireland. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3534088.3534350

1 INTRODUCTION
While 360° videos are becoming popular since they provide a more
immersive experience to users compared to traditional HD videos.
However, streaming a high resolution 360° video can require more
than 500 Mb/s in comparison to 25 Mb/s for a 4K high definition
2D video, i.e., a 20x increase in bandwidth. Streaming at such high-
bandwidth over the Internet can be problematic, therefore the use
of edge caching is appealing. Since the size of 360° videos is sub-
stantially larger than traditional videos, more intelligent caching
schemes that make efficient use of storage space at the edge without

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NOSSDAV’22, June 17, 2022, Athlone, Ireland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9383-6/22/06. . . $15.00
https://doi.org/10.1145/3534088.3534350

compromising network bandwidth saving are desirable. As a result,
several research efforts have recently proposed intelligent caching
schemes for 360° videos [5, 19, 23].

One such promising approach to reduce storage and bandwidth
requirements at the edge, is to employ Field-of-View (FoV) aware
caching [19, 23]. Since the human eye is only capable of focusing
on a limited area, spanning around 60° horizontally) and around
55° vertically [26], the key premise of FoV-aware caching methods
is that multiple users watching the same video have similarities
in their FoVs in terms of what portions and objects within each
360° frame are viewed. Thus, caching popular FoVs in the video at
the highest bit-rate, while caching less popular FoVs at lower bit-
rates can significantly reduce the storage requirements at the edge.
Typically, a 360° video streams at 30 to 120 frames per second [16],
with each frame divided into tiles. A FoV is thus composed of
a subset of spatially contiguous tiles (see Figure ??). FoV-aware
approaches cache all tiles of a frame at low resolution and the tiles
of common FoV at high resolution. In doing so, they save substantial
storage space at the edge cache while ensuring the most likely tiles
to be viewed are delivered from the edge at high resolution, yielding
network bandwidth and storage savings.

While FoV-aware caching shows promise for more efficient stor-
age space usage on edge proxy servers, current approaches in the
literature have some limitations. First, current 360° edge caching
methods do not perform any active cache space management—by
virtue of treating each video independently and using a passive
LRU/LFU cache. However, intelligent cache management across
multiple videos and even within a video can improve hit rates while
maximizing network bandwidth savings. Today, to the best of our
knowledge, there are no existing active caching methods for 360°
videos that optimize cache space across videos. Video popularity
distributions typically follow a Zipf distribution. Hence, allocat-
ing higher storage space to cache more tiles of popular videos can
yield disproportionately higher network saving. Similarly, variance
between FoVs of users for a single video, varies considerably as
seen in Figure 2 with some tiles very popular while others seldom
viewed. Hence, rather than caching a fixed number of tiles per
frame, adapting the number of tiles based on FoV variance, or lack
thereof, coupled with video and frame/FoV popularities can yield
better savings compared to existing caching solutions.

Motivated by the above observations, we present, CAVE, an
adaptive approach to CAche V ideos at the Edge. Our paper makes
the following contributions:

• Our approach uses observed popularity of videos along with
user viewing variance to optimally partition the cache space
across multiple videos to maximize network savings.
• Our approach also performs fine-grain caching adaptation
within a video. It adaptively varies the numbers of tiles
cached per frame based on the FoV viewing patterns, while
taking into account video abandonment [25, 28] .

50

https://doi.org/10.1145/3534088.3534350
https://doi.org/10.1145/3534088.3534350

NOSSDAV’22, June 17, 2022, Athlone, Ireland Ahmed Ali-Eldin †, Chirag Goel ‡, Mayank Jha‡, Bo Chen*, Klara Nahrstedt*, Prashant Shenoy‡

Figure 1: An equi-rectangular representation of a 360° video
divided into 40 tiles. The brighter a tile, the more popular it
is among the users in the dataset. (based on the roller-coaster
video from [9])

• We show using real and synthetic video traces that CAVE
improves cache hit-rates under realistic user-abandonment,
and popularity dynamics by up to 50% over state-of-the-art
caching methods. In addition, our system is parallelizable,
and is capable of handling thousands of videos in parallel.

2 BACKGROUND
There has been many recent advances in the field of 360°videos,
360°streaming, and on edge-caching. We hence start by providing a
background on these areas.

2.1 360° Videos
A 360° video encompasses a 360° view of a scene from the perspec-
tive of the camera with each frame providing an omnidirectional
spherical view of the captured scene [16]. The spherical view is
mapped onto a 2D plane for purposes of encoding To view the video,
users typically use a head mounted display (HMD) that provides
an immersive view of the captured scene. A 360° video sphere is
divided into a number of tiles (see Figure 1). A tile is a motion-
constrained rectangle, typically of fixed size, that is encoded using
DASH [29]. A head mounted display can display only a portion
of the 360° video frame at any instant. This subset is referred to
as the user Field of View (FoV). HMDs have sensors that track the
user’s head movement as the user turns their head, and the FoV
corresponding to the the head’s orientation is displayed from the
360° image, allowing for an immersive experience. Typically, an
FoV covers a 120°×55° portion of the 360° scene. Since only a small
subset of the tiles in each frame are actually viewed by the user (as
shown in Figure 1 where the darkest tiles are never viewed), it is
quite wasteful from a network standpoint to transmit all the tiles
in each frame when only a subset of them will be displayed.

2.2 Adaptive 360° Streaming
To address the above issue, researchers have developed adaptive 360°
streaming techniques based on DASH. These adaptive streaming
techniques predict head movement. The predictions are used by the
client to estimate a FoV and prefetch tiles of the predicted FoV at
higher resolution [4, 27]. If tiles of the video are encoded at multiple
resolutions, the tile outside the predicted FoV can be prefetched at
lower resolution in case the head prediction is incorrect. Therefore,
client-side prefetching still allows for the tiles in the actual FoV to
be displayed but at a lower quality. Such adaptive techniques yield

Figure 2: A Violin plot of the distribution of the number of
tiles viewed in a frame from the dataset in [17] with 50 users
viewing each video. The percentage of tiles viewed per frame
varies widely within a video and across different videos.
significant bandwidth savings over a naive approach of fetching all
tiles of each frame at high resolution from the server[12, 22, 31].

2.3 360° Edge Caching
While head-movement predictions and adaptive FoV prefectching
by the end-client yield network savings, streaming 36-° videos over
the Internet still consume considerable bandwidth. Consequently,
researchers have studied approaches for caching 360° videos on
edge proxies, serving DASH streaming requests from the edge to
further reduce the network bandwidth usage [19, 23]. However, the
large sizes of 360° videos imply that storing the entire videos at high
resolution on edge servers is not feasible [23]. Consequently, similar
to FoV prediction-based adaptive 360° streaming approaches, edge
caching approaches can estimate a possible FoV for each frame and
cache a subset of the tiles in the estimated FoV at full resolution
and other tiles at lower resolution [23].

There are two main approaches to 360° caching, namely, tile-
based global caching [23] and history-based FoV caching [19]. Tile-
based caching methods, e.g., in [23], uses an optimization based
on multi-choice knapsack to determine which subset of tiles to
cache to minimize error. The system solves a global optimization
problem that considers every tile in every video as part of the
optimization of the entire system. The main shortcoming with
this approach is that it does not scale beyond a limited number
of videos. The second approach, FoV aware caching, uses actual
histories of viewing patterns to determine a common FoV based on
correlations of FoVs across users [19]. This approach does resolve
many of the issues with the tile-based method. Nevertheless, the
approach on looks at videos individually, not considering how
videos vary in popularity, and hence does not provide adaptive
methods for sharing the cache space across multiple 360° videos.
Optimally partitioning the cache space across multiple competing
videos is challenging and prior 2D caching methods [28] do not
directly apply due to new challenges raised by 360° videos.

Within each video, correlation between FoV across users may
vary from scene to scene. To show an example, Figure 2 shows the
distributions of the number of tiles viewed in each frame across
all users as a violin plot in a video dataset with 50 users. The
distributions vary considerably with some video frames having
all their tiles viewed, while some other frames will see that less
than 50% of their tiles viewed. This Figure suggests that splitting

51

CAVE: Caching 360° Videos at the Edge NOSSDAV’22, June 17, 2022, Athlone, Ireland

the cache equally between all videos will have diminishing returns
since some videos have a much smaller variance when it comes to
which tiles are viewed by a user.

In addition, caching more tiles per frame for a very popular video
and fewer tiles per frame for a less popular one will yield higher
network savings over a static approach that caches a fixed number
of tiles per frame for all videos. Similarly, caching fewer tiles for
a frame with highly correlated FoVs and more for a frame with
overlapping, but less correlated FoVs, may increase hit rate over
caching a constant number of tiles per frame. Such adaptive caching
algorithms across and within omnidirectional videos have not been
explored previously.

3 CAVE OVERVIEW
3.1 Problem Statement
We assume an edge caching service where the content owner would
like to cache a mixture of videos that are predicted to be popular,
e.g., a newly released episode in a popular series, or a movie that is
anticipated to be popular, along with videos that are already highly
popular. We assume that the caching storage size at the edge is
limited, and that the edge proxy can only cache a fraction of the
video catalogue. The goal of our paper is to develop an adaptive
360° edge caching system with the following characteristics:

• The edge cache should perform adaptive cache management
that uses video popularities to adapt the cache space used for
each video so as to optimize hit rate and network savings; the
allocations should adapt as popularities change over time.
• The edge cache should employ adaptation within a video
using FoV correlation data to adapt how many tiles of each
frame should be cached.

Our adaptive caching approach is guided by a key observation:
different videos should be allocated a proportion of the cache that
is dependent on the video popularity, the video size, the frame order,
and the per tile popularity. As video popularities change over time,
so should the cache allocations. When new videos are pushed to
the cache (e.g., by a content provider that is releasing a new show
or movie), a content-based method should be used to intelligently
seed the cache with tiles that are likely to see the most hits.

3.2 Formulating Edge Optimization
Consider an edge cache with size 𝑆 . The cache hosts a set 𝑉𝑐𝑎𝑐ℎ𝑒 =

{𝑣𝑐1, 𝑣𝑐2, ..., 𝑣𝑐𝑛} of 𝑛 360° videos chosen out of a large video cat-
alogue 𝑉𝑐𝑎𝑡 = {𝑣1, 𝑣2,, 𝑣𝑐 }, i.e., 𝑉𝑐𝑎𝑐ℎ𝑒 ⊂ 𝑉𝑐𝑎𝑡 . Each video 𝑣𝑖 is
composed of a set of frames 𝐹 = {𝑓𝑖1, 𝑓𝑖2, ..., 𝑓𝑖 𝑗 }, and each frame 𝑓𝑖 𝑗
of video 𝑣𝑖 is composed of a set of 𝑇 = {𝑡𝑖 𝑗1, 𝑡𝑖 𝑗2, ..., 𝑡𝑖 𝑗𝑘 } tiles, each
of which can be cached at either low resolution, or a high resolution.
Each tile 𝑡𝑖 𝑗𝑘 has a popularity based on the number of users 𝑢𝑖 𝑗𝑘
who viewed the tile in their FoV over the past 𝜏 hours. Each video
𝑣𝑖 in the catalogue 𝑉𝑐𝑎𝑡 has popularity 𝑢𝑖 representing the number
of users who have streamed any part of 𝑣𝑖 over the past 𝜏 hours.
Our goal is to select the subset of the videos forming 𝑉𝑐𝑎𝑐ℎ𝑒 , from
the catalogue, to be cached at the edge. The selected videos should
be a combination of videos with minimal or no history (based on
anticipated popularity by the content owner), and popular videos.

Once a video is selected, the entire parts of the video that have
been viewed, i.e., in case of abandonment, is cached in some reso-
lution. Cached tiles can either be stored at low resolution or high
resolution. Our goal is to maximize the number of high resolution
tiles served to users from the edge caching layer across all videos,
i.e., a perfect cache would only host the tiles from the FoVs that will
be viewed by future users in the highest possible resolution—as any
other tiles waste cache space. To achieve this goal, the optimization
problem can be formulated as a knapsack problem where we are
trying to maximize the success rate of selecting high resolution tiles
streamed from the cache, which only happens if the most popular
tiles are cached. We first define a per tile score for a tile 𝑡𝑖 𝑗𝑘 based
on both the popularity of the tile, and the frame to which the tile
belongs. We define the per tile score to be, ℎ𝑖 𝑗𝑘 , where 𝑢𝑖 𝑗𝑘 is a
history based score. The per tile score can be viewed as the utility
of a tile. The knapsack problem is then aiming to maximize the
utility of all cached tiles. This can be formulated as:

Maximize
𝑉𝑐𝑎𝑡∑ 𝐹∑ 𝑇∑

𝑢𝑖 𝑗𝑘 𝜒𝑖 𝑗𝑘 . (1)

where 𝜒𝑖 is a decision variable whether a tile 𝑡𝑖 𝑗𝑘 is cached. Assum-
ing that each tile has a size of 𝐵 MB, then the above optimization is
subject to the following constraints,

𝜒𝑖 𝑗𝑘 ∈ {0, 1}, (2)
𝑢𝑖 𝑗𝑘 ≥ 𝑃𝑡𝑖𝑙𝑒 , (3)
𝑉𝑐𝑎𝑡∑ 𝐹∑ 𝑇∑

𝐵𝜒𝑖 𝑗𝑘 ≤ 𝑆ℎ𝑖𝑔ℎ𝑅𝑒𝑠 , (4)

where 𝑃𝑡𝑖𝑙𝑒 is the minimum number of viewers that need to have
the tile in their FoV for that tile to be cached, and 𝑆ℎ𝑖𝑔ℎ𝑅𝑒𝑠 is the
cache space available for high-resolution tiles. In this formulation,
the first constraint is the decision constraint on which tiles to cache.
The second constraint is a constraint on the per tile popularity
which discards tiles that are not-popular is users’ FoVs. The third
constraint states that the sum of all the cached tiles should fit in
the given cache size.

4 OPTIMIZING CACHE ALLOCATIONS
Knapsack problems are NP-hard making the previously formulated
problem intractable for any realistic 360° video caching service with
long videos and/or a large catalog of videos. We thus use a heuristic
approach to solving the problem; dividing the optimization into two
sub-problems, the first of which is to find which videos to cache
and how much to allocate for each video. The second one solves
the problem of which tiles within a selected video will be cached
in the allocated cache space.

To motivate our heuristic based approach, we make the follow-
ing observation; the popularity 𝑢𝑖 𝑗𝑘 of any tile 𝑡𝑖 𝑗𝑘 is less than or
equal to the number of views 𝑢𝑖 𝑗 of the encompassing frame. Since
each frame contains anywhere between tens to a few hundred tiles,
using a heuristic solution that considers frame popularity as an
indirect measure to the tile popularity, we significantly simplify
the optimization problem and reduce the solution space. However,
since some frames will have users looking everywhere, only rely-
ing on frame popularity might result in caching tiles with lower
popularity—as tiles in less popular frames with all viewers having

52

NOSSDAV’22, June 17, 2022, Athlone, Ireland Ahmed Ali-Eldin †, Chirag Goel ‡, Mayank Jha‡, Bo Chen*, Klara Nahrstedt*, Prashant Shenoy‡

overlapping FoVs have a higher 𝑢𝑖 𝑗𝑘 . In order to mitigate this prob-
lem, we couple the frame popularity with the statistical variance
in the popularity of the number of views per tile within a frame.
Higher variance between tile popularities of a frame indicate that a
few tiles in the frame have large𝑢𝑖 𝑗𝑘 values, and thus are popular tiles,
while the rest of the frame tiles have low or no views. Low variance
would indicate that user views tend to be equally distributed across
all tiles of the frame, and therefore viewers are looking everywhere in
that frame. These two observations for the basis of our cache size
optimization algorithm.

4.1 Cross-video cache allocation
Streaming service videos have popularity dynamics that typically
follows a Zipf like distribution [2][33]. Hence, only popular videos
or videos that are expected to have high popularity in the near
future should be cached. Videos with no view history are cached
based on their content only. In addition, the subset of videos that
have a popularity higher than a threshold 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are also cached,
but based on the history viewing patterns. Algorithm 1 describes
our popularity based scoring approach to videos. We first filter all

Data: Size of Cache 𝑆 , Video Catalogue 𝑉𝑐𝑎𝑡 , video
popularity 𝑢𝑖 , Tile popularity 𝑢𝑖 𝑗𝑘 , video popularity
threshold 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Result: Score for every 𝑣𝑖 and 𝑓𝑖 𝑗

1 𝑉𝑐𝑎𝑐ℎ𝑒 ← [] ;
2 Find set of videos 𝑉𝑐𝑎𝑐ℎ𝑒 with 𝑢𝑖 > 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;
3 for each video 𝑣𝑖 in 𝑉𝑐𝑎𝑐ℎ𝑒 do
4 𝜙𝑖 𝑗 ← Calculate frame-wise score using eq 5;
5 𝜙𝑖 ← mean of top scores ℎ𝑖 𝑗 that fit 𝑆/𝑛 cache size;
6 ℎ𝑖 ← 𝑢𝑖/𝜙𝑖 ;
7 Calculate allocation for each video 𝐴𝑖 ← ℎ𝑖𝑆∑

𝑛 ℎ𝑖
;

Algorithm 1: Finding a score for each video to cache

videos in the catalogue choosing the ones with popularity greater
than 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . This leaves us with a set of 𝑛 videos to be cached
based on history. We note that some of these videos will have high
user abandonment, and thus only a fraction of these videos will be
streamed. Caching abandoned content that will not be streamed is
a waste of the edge resources.

As noted, to decide which tiles to cache, video frames with less
variability in FoVs between users would require relatively less cache
space as compared to videos with higher variations. FoV variations
in video frames can be calculated using the variance in the tile
popularity for each frame. Hence, a frame with high popularity
and with views concentrated on a subset of tiles, i.e., having higher
statistical variance, is the most desirable to cache while a frame
with low popularity and equal distribution of views across all tiles,
hence low statistical variance, is less desirable. We calculate a per
frame score, 𝜙𝑖 𝑗 , for each frame 𝑓𝑖 𝑗 of a video 𝑣𝑖 based on the tile
views variance 𝜎𝑖 𝑗 and the number of users 𝑢𝑖 𝑗 who viewed that
frame as follows,

𝜙𝑖 𝑗 = 𝑢𝑖 𝑗 ∗ 𝜎2𝑖 𝑗 . (5)

In order to find the per video cache allocation size, we first
assume that the cache is split equally among the chosen videos,
i.e., each video will be allocated 𝑆/𝑛 of the cache size. This is a
good approximation to start the allocation with when no history
is available. In addition, this assumption allows us to calculate a
weight ℎ𝑖 for the entire video 𝑣𝑖 that can be used for comparing the
utility of caching each of the videos. To do so, the frames across
each video are ranked based on their scores to find the top subset
of the frames that fit in 𝑆/𝑛 size of the cache. We note that this
weighting is not directly used to choose which frames to cache, but
are rather a first step towards finding the per video cache allocation.
The frame scores of each video are averaged to get (𝜙𝑖) for each
video 𝑣𝑖 . As The overall video popularity 𝑢𝑖 is then normalized by
𝜙𝑖 , such that, ℎ𝑖 = 𝑢𝑖/𝜙𝑖 . In effect, this normalization allows us to
normalize the overall video popularity with the average popularity
of all frames as the average popularity of all frames has a maximum
equal to 𝑢𝑖 , but can be lower based on user abandonment. Since 𝜙𝑖
also includes how concentrated are the FoVs of users are, this means
that ℎ𝑖 as a score would decrease the overall allocation to videos
with concentrated FoVs as they do not need a lot of space. Once all
videos are scored, the next step in CAVE’s cache optimization is
choosing the per video cache size 𝐴𝑖 using the following heuristic,

𝐴𝑖 =
ℎ𝑖𝑆∑
𝑛 ℎ𝑖

. (6)

4.2 Frame and Tile Level allocation
Once the per video allocation is set, CAVE then optimizes the per
frame and per tile allocation (as described in Algorithm 2). Each
frame is assigned a weight inversely proportional to its variance but
directly proportional to its popularity (Line 4 and 5). Since in almost
all cases, abandonment happens after viewing the first few minutes
of a video, earlier frames tend to have much higher 𝑢𝑖 𝑗 compared
to a later frame. This observation means that for DASH streaming,
all frames required for an earlier segment will be available.

The frames are then sorted based on their weights and their
position in the video (Line 6). For each frame, CAVE computes a
normalized weight𝜔𝑖 𝑗 (Line 9), that is then used to get an initial size
allocation 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 proportional to that weight (Line 10). However,
the actual size allocated to a frame is the minimum between three
values; 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , the remaining available cache size for the video 𝐴𝑖 ,
or the size 𝑇𝑖 of all tiles that have tile user views 𝑢𝑖 𝑗𝑘 > 𝑃𝑡𝑖𝑙𝑒 (Line
11). CAVE then recalculates the remaining cache space that can be
used for the rest of the frames until no remaining cache space is
available (Line 12).
Tile Scoring Each tile in a frame of a video is assigned a score.
After finalizing the video and frame allocation optimization, the
highest scoring tiles that fit every frame allocation are cached at
the highest resolution. The remaining tiles in the frame are cached
at the lowest resolution

5 EVALUATION
We implemented CAVE in Python 3.7 (around 1000 LoC). We in-
tegrate our implementation with an emulator for evaluating the
performance at scale. As there are limited datasets available for 360°
videos, the emulator either streams the 360° videos from the real
(alas limited) dataset or uses synthetic workloads as described next.

53

CAVE: Caching 360° Videos at the Edge NOSSDAV’22, June 17, 2022, Athlone, Ireland

Data: 𝑉𝑐𝑎𝑐ℎ𝑒 , ℎ𝑖 , 𝑢𝑖 𝑗𝑘 , 𝑆
Result: Cache allocation size for every 𝑣𝑖 and 𝑓𝑖 𝑗

1 𝐹𝑐𝑎𝑐ℎ𝑒 ← Cached frames for a video;
2 for each video 𝑣𝑖 in 𝑉𝑐𝑎𝑐ℎ𝑒 do
3 for each frame 𝑓𝑖 𝑗 in 𝑣𝑖 do
4 ℎ𝑖 𝑗 = 𝑢𝑖 𝑗/𝜎2𝑖 𝑗 ;
5 𝐹𝑖 ← sort frames based on ℎ𝑖 𝑗 and for frames with equal

score, sort earlier frames first;
6 for each frame 𝑓𝑖 𝑗 in 𝐹𝑖 do
7 while 𝐴𝑖 > 0 and ℎ𝑖 𝑗 > 0 do
8 𝜔𝑖 𝑗 ←

ℎ𝑖 𝑗∑
𝑣𝑖
ℎ𝑖 𝑗

;

9 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← 𝜔𝑖 𝑗𝐴𝑖 ;
10 𝐴𝑖 𝑗 ←𝑚𝑖𝑛(𝑇𝑖 , 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝐴𝑖);
11 𝐴𝑖 ← 𝐴𝑖 −𝐴𝑖 𝑗 ;

Algorithm 2: Frame and Tile Level optimization

5.1 Evaluation Setup
Datasets We use a real dataset [17] which includes traces from
50 users across 10 one-minute videos. The dataset is diverse, cov-
ering slow and fast paced videos. and includes computerized and
natural images. Every frame is divided into 200 tiles, and on av-
erage an FoV contains approximately 34 tiles. While the dataset
provides some key insights to how users view 360° videos, it is lim-
ited in the number of videos, the number of users, and the length
of videos. In addition, the dataset does not capture video popu-
larity dynamics or user abandonment as one would expect in a
streaming service.Video popularity in streaming services tend to
follow a gamma distribution, whereas user abandonment follows a
Zipf-Mandelbrot distribution [3, 6–8, 18].

We therefore synthesize two larger traces based on the real
dataset. We generate video popularities using the gamma distribu-
tion parameterized based on video view-counts on Youtube. The
generated dataset construct synthetic videos ten times longer than
the real dataset. To capture user abandonment behaviour, length of
streaming session is varied using the Zipf-Mandelbrot distribution.
For each frame, the probability of every FoV is calculated using the
data from the dataset with an added Gaussian noise. We generate
two datasets, "Workload A" which has a total of 955 user traces, and
"Workload B", which has a total of 1910 user traces.
Performance Comparison. To evaluate the performance of our
approach, we run experiments comparing CAVE to the FoV based
caching described in [19]. However, since the work in [19] focuses
on passive caching, and our focus is on active caching, we adapt the
approach for active caching operation. We refer to [19] as history-
based in the rest of this Section. In addition, we compare a mini-
malist version of CAVE with no cross-video optimization, but only
using tile scores from historical data and content based analysis,
to the full CAVE with all added optimization levels. This mini-
mal version of CAVE is akin to adding content-based caching plus
frame-based optimization to approaches such as the one in [19].

5.2 Evaluating CAVE
Evaluating the need for Cross Video Optimization. To show
why inter-video cache adaptation is desirable for maximal cache

Figure 3: Since some videos have varying slopes, we can ex-
ploit their higher returns on lower cache sizes.

Figure 4: Comparison with State of the Art: Hit rates of
history-based approach and CAVE.

utility, we plot the cache hit-rates for the individual videos in the
dataset when only using frame-level adaptations as shown in Fig-
ure 3. We make multiple observations; first, there are diminishing
returns for increase cache sizes for a video beyond a certain point as
less popular FoVs do not really add to the cache performance even
if stored. For example, if the 25% top scoring tiles from the Pacman
video are cached, the cache hit-rate is around 92%. Even doubling
the allocated cache size to this video will result in no material ben-
efits. The second observation we make is that the hit-rate varies
widely between videos, suggesting that instead of using the extra
caching capacity available for videos with hit-rates already above
90%, the capacity should be reallocated to videos that can see an
improvement by utilizing this extra cache capacity, thus increasing
the overall systems performance and cache hit-rates.

5.3 Comparison With History-based Methods
We now show how CAVE improves the caching performance with
realistic popularity dynamics and also compare it with the state
of the art history-based approach. In this experiment, we use the
two synthetic datasets—described previously—in the emulator to
emulate the user viewing patterns when the cache size amounts
to 35% (2 times average FoV size) of the total video sizes. We also
evaluate the full CAVE on the limited real dataset that we use
without modifying anything in that dataset. Figure 4 shows the
hit-rate when popularity dynamics are present in the workload. We
compare CAVE with inter and intra video allocation optimizations
along with object, tile, and frame scoring mechanisms in addition to

54

NOSSDAV’22, June 17, 2022, Athlone, Ireland Ahmed Ali-Eldin †, Chirag Goel ‡, Mayank Jha‡, Bo Chen*, Klara Nahrstedt*, Prashant Shenoy‡

Table 1: Comparison of QoE (Workload B)

History-Based CAVE

Macular Vision 71.8% 90.05%
Near Peripheral 69.8% 89.88%
Mild Peripheral 61.2% 89.06%

history-based approaches. Our results show that CAVE outperforms
history-based approaches, increasing the hit-rate by over 50%. Even
with no optimizations, our approach outperforms history-based
approaches by over 25% increase in cache hit-rate. These gains, not
only translate to better caching performance, but also to network
savings. Every cache miss results in the user device requiring to
(expensively) fetch data from the remote content owner servers.
This translates to much worse delays at the user devices, and a
much higher bandwidth requirements for the content provider. We
also measured the cache sizes CAVE allocates to different videos
in all experiments. In the interest of space, we report only that the
diving video in the real dataset was 29% of the entire cache, and the
minimum cache allocation was for the pacman video which was
allocated 5% of the entire cache size. These are the videos with the
most and least FoV variations in the dataset (see Figure 2).

5.4 Quality of Experience
360° videos are very interactive and appealing but also bring chal-
lenges in quality of experience. For example, having a mix of high
resolution and low resolution tiles within a FoV can cause motion
sickness, headache, dizziness, etc. This effect gets amplified when
it’s within the user’s macular vision as compared to the user’s pe-
ripheral vision (see Figure ??). Hence, it is important for caching
and streaming algorithms to take this as a metric for evaluation as
a high hit rate alone might not be sufficient to build an effective sys-
tem. In Table 1 we compare CAVE with history-based approaches
w.r.t. the percentage of tiles from different areas of vision that get
served from the cache. We see that CAVE, in efforts to increase hit
rate, did not imply a drop in QoE for macular vision which remains
to be the best performing as compared to the peripheral vision.

5.5 System Scalability
Using frame level (and not on tile level) optimization in CAVE
results in increased optimization scalability. The optimization is
highly parallelizable as the frame and tile level allocations are in-
dependent across videos, while the cross video optimization being
mostly parallelizable also. Since CAVE is an active cache, cache
reallocation is run periodically as defined by the provider, but pos-
sibly every couple hours. To show the scalability of CAVE, we ran
three experiments assuming that the cache holds 500, 1000, and
2000 videos respectively, with an average video length of 20 min-
utes, and an average video size of 2.5 GB. We ran the experiments
for edge cache sizes 0.5 TB, 1 TB and 2 TB respectively. When
using one core on a laptop to run the optimizations, the average
computation times for each of the above scenarios is, 10 minutes,
25.67 minutes, and 44 minutes respectively However, the compu-
tations are embarrassingly parallel, so for an 8-core edge server,
the average computation times are 1.25 minutes, 3.5 minutes, and
8 minutes respectively. Given that the optimization run every few
hours, we believe that the time taken by CAVE is adequate even

when the dataset size is much larger since using a 32 core processor
would significantly cut the time. In addition, these optimizations
do not need to run on the edge nodes themselves, but can be rather
run on a more powerful server in the cloud. In comparison, prior
approaches are less scalable and not amenable to parallelization.

6 RELATEDWORK
With newer open-source and proprietary 360° datasets [9, 11, 13,
15, 17, 21, 32], there has been a surge in research on 360° streaming.
Workload characterization of 360° videos has been extensively
studied. This includes characterizing user head movement behavior
and analyzing the aggressiveness of tile prefetching versus required
storage [4], characterizing the bitrates of thousands of YouTube 360°
videos [1], studying cross-user similarities between viewers of the
same video and utilizing them for caching [5], and saliency analysis
of videos and their correlation with user viewing behavior [21].
Streaming 360°videos is another well studied problem with many
proposed approaches [10, 34]. The Navigation Graph [24] approach
models both the temporal and spatial viewing behaviors for per-
forming view predictions. Guan et al. [14] utilize the moving speed
of user’s viewpoint (degs/sec), change in luminance and difference
in depth-of-fields to as quality-determining factors to model user-
perceived quality. The authors then introduce Pano, a streaming
system that leverages the above factors providing variable-sized
tiling schemes to balance encoding efficiency and QoE. Finally,
CAVE can be easily integrated withmany of the proposed streaming
techniques in the literature. One particularly interesting approach
is the ones developed in BAS-360° [30] and in ClusTile [35]. BAS-
360°introduces the concept of macro-streaming units consisting of
a set of tiles representing a meaningful visual part while rendering.
ClusTile develops , a method to compute tiling of 360-degree videos
to reduce streaming bandwidth. CAVE can use these units as the
basis for caching, reducing the computational cost of CAVE while
allowing for much better cache optimizations..
Caching 360° videos has also received some attention. Caching
videos at small base stations has been proposed. [20] for content
caching and delivery that relies on the coding of 360° videos into
multiple tiles and layers to determine where a video should be
placed in the network. A caching scheme the decides the per tile
resolution based on the previous viewing statistics of the videos
has also been proposed [23].

7 CONCLUSION
This paper presented CAVE, an active edge caching framework for
360° videos taking that leverages video popularity, content, length,
and abandonment rate. We proposed content-based FoV estimation
based on saliency maps and objects in each frame that indicate
viewer interest, and adaptively combined it with viewer FoV his-
tories. We presented intelligent methods to adaptively partion the
edge cache across videos and across frames and tiles within each
video. Our results showed that CAVE can provide up to 50% improve-
ment in cache hit-rates, and thus network bandwidth reduction
over the current state-of-the-art. Our future work will involve use
of segment-based caching and use of other vision-based methods
for further inter and intra-video cache optimization.

55

CAVE: Caching 360° Videos at the Edge NOSSDAV’22, June 17, 2022, Athlone, Ireland

AcknowledgmentThisworkwas funded byNSF grants 1836752
and 2105494, Army Research Lab contract W911NF-17-2-0196, and
NGI-Atlantic grant #04-336.

REFERENCES
[1] S. Afzal, J. Chen, and K. Ramakrishnan. Characterization of 360-degree videos.

In Proceedings of the Workshop on Virtual Reality and Augmented Reality Network,
pages 1–6, 2017.

[2] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Analysis and characterization of
a video-on-demand service workload. In Proceedings of the 6th ACM Multimedia
Systems Conference, pages 189–200, 2015.

[3] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Analysis and characterization
of a video-on-demand service workload. In Proceedings of the 6th ACM Multi-
media Systems Conference, MMSys ’15, page 189–200, New York, NY, USA, 2015.
Association for Computing Machinery.

[4] M. Almquist, V. Almquist, V. Krishnamoorthi, N. Carlsson, and D. Eager. The
prefetch aggressiveness tradeoff in 360 video streaming. In Proceedings of the 9th
ACM Multimedia Systems Conference, pages 258–269, 2018.

[5] N. Carlsson and D. Eager. Had you looked where i’m looking: Cross-user
similarities in viewing behavior for 360° video and caching implications. In
Proc. ACM/SPEC International Conference on Performance Engineering (ACM/SPEC
ICPE),, 2020.

[6] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S.Moon. I tube, you tube, everybody
tubes: Analyzing the world’s largest user generated content video system. In
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC
’07, page 1–14, New York, NY, USA, 2007. Association for Computing Machinery.

[7] X. Cheng, C. Dale, and J. Liu. Statistics and social network of youtube videos. In
2008 16th Interntional Workshop on Quality of Service, pages 229–238, 2008.

[8] X. Cheng, J. Liu, and C. Dale. Understanding the characteristics of internet
short video sharing: A youtube-based measurement study. IEEE Transactions on
Multimedia, 15(5):1184–1194, 2013.

[9] X. Corbillon, F. De Simone, and G. Simon. 360-degree video head movement
dataset. In Proceedings of the 8th ACM on Multimedia Systems Conference, pages
199–204, 2017.

[10] M. Dasari, A. Bhattacharya, S. Vargas, P. Sahu, A. Balasubramanian, and S. R.
Das. Streaming 360-degree videos using super-resolution. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pages 1977–1986. IEEE, 2020.

[11] E. J. David, J. Gutiérrez, A. Coutrot, M. P. Da Silva, and P. L. Callet. A dataset of
head and eye movements for 360 videos. In Proceedings of the 9th ACMMultimedia
Systems Conference, pages 432–437, 2018.

[12] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu. Fixation
prediction for 360 video streaming in head-mounted virtual reality. In Proceedings
of the 27th Workshop on Network and Operating Systems Support for Digital Audio
and Video, pages 67–72, 2017.

[13] S. Fremerey, A. Singla, K. Meseberg, and A. Raake. Avtrack360: an open dataset
and software recording people’s head rotations watching 360° videos on an hmd.
In Proceedings of the 9th ACM Multimedia Systems Conference, pages 403–408,
2018.

[14] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang. Pano: Optimizing 360 video
streaming with a better understanding of quality perception. In Proceedings of
the ACM Special Interest Group on Data Communication, pages 394–407. 2019.

[15] H.-N. Hu, Y.-C. Lin, M.-Y. Liu, H.-T. Cheng, Y.-J. Chang, and M. Sun. Deep 360
pilot: Learning a deep agent for piloting through 360 sports videos. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1396–1405.
IEEE, 2017.

[16] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-dof vr videos with a single 360-camera.
In 2017 IEEE Virtual Reality (VR), pages 37–44. IEEE, 2017.

[17] W.-C. Lo, C.-L. Fan, J. Lee, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu. 360 video
viewing dataset in head-mounted virtual reality. In Proceedings of the 8th ACM
on Multimedia Systems Conference, pages 211–216, 2017.

[18] L. Maggi, L. Gkatzikis, G. Paschos, and J. Leguay. Adapting caching to audience
retention rate. Computer Communications, 116, 12 2017.

[19] A. Mahzari, A. Taghavi Nasrabadi, A. Samiei, and R. Prakash. Fov-aware edge
caching for adaptive 360 video streaming. In Proceedings of the 26th ACM inter-
national conference on Multimedia, pages 173–181, 2018.

[20] P. Maniotis, E. Bourtsoulatze, and N. Thomos. Tile-based joint caching and deliv-
ery of 360° videos in heterogeneous networks. IEEE Transactions on Multimedia,
2019.

[21] A. Nguyen and Z. Yan. A saliency dataset for 360-degree videos. In Proceedings
of the 10th ACM Multimedia Systems Conference, pages 279–284, 2019.

[22] A. Nguyen, Z. Yan, and K. Nahrstedt. Your attention is unique: Detecting 360-
degree video saliency in head-mounted display for head movement prediction.
In Proceedings of the 26th ACM international conference on Multimedia, pages
1190–1198, 2018.

[23] G. Papaioannou and I. Koutsopoulos. Tile-based caching optimization for 360
videos. In Proceedings of the Twentieth ACM International Symposium on Mobile

Ad Hoc Networking and Computing, pages 171–180, 2019.
[24] J. Park and K. Nahrstedt. Navigation graph for tiled media streaming. In Pro-

ceedings of the 27th ACM International Conference on Multimedia, MM ’19, page
447–455, New York, NY, USA, 2019. Association for Computing Machinery.

[25] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia streams.
In IEEE INFOCOM, volume 3, pages 1310–1319 vol.3, 1999.

[26] R. H. Spector. Visual Fields–Clinical Methods: The History, Physical, and Laboratory
Examinations. Butterworths, 1990.

[27] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai. Multi-path multi-
tier 360-degree video streaming in 5g networks. In Proceedings of the 9th ACM
Multimedia Systems Conference, pages 162–173, 2018.

[28] K.-L. Wu, P. S. Yu, and J. L. Wolf. Segment-based proxy caching of multimedia
streams. In Proceedings of the 10th international conference on World Wide Web,
pages 36–44, 2001.

[29] M. Xiao, C. Zhou, Y. Liu, and S. Chen. Optile: Toward optimal tiling in 360-degree
video streaming. In Proceedings of the 25th ACM international conference on
Multimedia, pages 708–716, 2017.

[30] M. Xiao, C. Zhou, V. Swaminathan, Y. Liu, and S. Chen. Bas-360: Exploring spatial
and temporal adaptability in 360-degree videos over http/2. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications, pages 953–961. IEEE, 2018.

[31] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo. 360probdash: Improving qoe of 360
video streaming using tile-based http adaptive streaming. In Proceedings of the
25th ACM international conference on Multimedia, pages 315–323, 2017.

[32] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao. Gaze prediction in dynamic
360 immersive videos. In proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5333–5342, 2018.

[33] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. Understanding user behavior in
large-scale video-on-demand systems. ACM SIGOPS Operating Systems Review,
40(4):333–344, 2006.

[34] Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li. Drl360: 360-degree video
streaming with deep reinforcement learning. In IEEE INFOCOM 2019-IEEE Con-
ference on Computer Communications, pages 1252–1260. IEEE, 2019.

[35] C. Zhou, M. Xiao, and Y. Liu. Clustile: Toward minimizing bandwidth in 360-
degree video streaming. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 962–970. IEEE, 2018.

56

	Abstract
	1 Introduction
	2 Background
	2.1 360° Videos
	2.2 Adaptive 360° Streaming
	2.3 360° Edge Caching

	3 CAVE Overview
	3.1 Problem Statement
	3.2 Formulating Edge Optimization

	4 Optimizing Cache Allocations
	4.1 Cross-video cache allocation
	4.2 Frame and Tile Level allocation

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Evaluating CAVE
	5.3 Comparison With History-based Methods
	5.4 Quality of Experience
	5.5 System Scalability

	6 Related Work
	7 Conclusion
	References

