CHALMERS

UNIVERSITY OF TECHNOLOGY

Deductive Verification of Floating-Point Java Programs in KeY

Downloaded from: https://research.chalmers.se, 2024-04-17 14:50 UTC

Citation for the original published paper (version of record):

Abbasi, R., Schiffl, J., Darulova, E. et al (2021). Deductive Verification of Floating-Point Java
Programs in KeY. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 12652 LNCS: 242-261.
http://dx.doi.org/10.1007/978-3-030-72013-1 13

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



®

Check for
updates

Deductive Verification of Floating-Point
Java Programs in KeY

Rosa Abbasi!® (), Jonas Schifi2®, Eva Daruloval
Mattias Ulbrich?@®, and Wolfgang Ahrendt?

)

! MPI-SWS, Kaiserslautern and Saarbriicken, Germany, {rosaabbasi,eva}@mpi-sws.org
2 Karlsruhe Institute of Technology, Karlsruhe, Germany,
{jonas.schiffl,ulbrich}@kit.edu
3 Chalmers University of Technology, Géteborg, Sweden, ahrendt@chalmers.se

Abstract. Deductive verification has been successful in verifying inter-
esting properties of real-world programs. One notable gap is the limited
support for floating-point reasoning. This is unfortunate, as floating-point
arithmetic is particularly unintuitive to reason about due to rounding
as well as the presence of the special values infinity and ‘Not a Num-
ber’ (NaN). In this paper, we present the first floating-point support in
a deductive verification tool for the Java programming language. Our
support in the KeY verifier handles arithmetic via floating-point decision
procedures inside SMT solvers and transcendental functions via axioma-
tization. We evaluate this integration on new benchmarks, and show that
this approach is powerful enough to prove the absence of floating-point
special values—often a prerequisite for further reasoning about numeri-
cal computations—as well as certain functional properties for realistic
benchmarks.

Keywords: Deductive Verification - Floating-point Arithmetic - Tran-
scendental Functions.

1 Introduction

Deductive verification has been successful in providing functional verification for
programs written in popular programming languages such as Java [4,23,41,49|,
Python [29], Rust [6], C [25,54], and Ada [19,50]. Deductive verifiers allow a
user to annotate methods in a program with pre- and postconditions, from which
they automatically generate verification conditions (VCs). These are then either
proven directly by the verifier itself, or discharged with external tools such as
automated (SMT) solvers or interactive proof assistants.

While deductive verifiers fully implement many sophisticated data represen-
tations (including heap data structures, objects, and ownership), support for
floating-point numbers remains rather limited — solely Frama-C and SPARK offer
automated support for floating-point arithmetic in C and Ada [32]. This state
of affairs is at least partially a result of previous limitations in floating-point
support in SMT solvers. Consequently, deductive verification has been used for

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 242-261, 2021.
https://doi.org/10.1007/978-3-030-72013-1 13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_13&domain=pdf
http://orcid.org/0000-0003-1495-3470
http://orcid.org/0000-0002-9882-8177
http://orcid.org/0000-0002-6848-3163
http://orcid.org/0000-0002-2350-1831
http://orcid.org/0000-0002-5671-2555

Deductive Verification of Floating-Point Java Programs in KeY 243

floating-point programs only by experts with considerable manual effort [15,32].
This is unfortunate as it makes deductive verification unavailable for a large
number of programs across many domains including embedded systems, machine
learning, and scientific computing. With the increasing need for parallelization
in code, scientific computing specifically has recently experienced algorithmic
challenges for which formal methods may contribute to a solution [10, 56].

One of the main challenges of floating-point arithmetic is its unintuitive
behavior and the special values that the IEEE 754 standard [39] introduces.
For instance, an overflow or a division by zero results in the special value
(positive or negative) infinity, and not a runtime exception. Similarly, invalid
operations like sqrt(-1.0) result in a Not a Number (NaN) value. These special
values are problematic as seemingly straight-forward identities do not hold (x
== x or x * 0.0 == 0.0). In addition, every operation on floating-point numbers
potentially involves rounding, which compromises familiar rules like associativity
and distributivity. Hence, reasoning support for writing correct floating-point
programs is indispensable.

Abstract interpretation-based tools can prove the absence of runtime errors
and special values [20, 43], and bound roundoff errors due to floating-point’s
finite precision [11,21,26,36,57]. SMT decision procedures [18] or SAT-based
model-checking [24,56], on the other hand, can prove intricate properties requiring
bit-precise reasoning. However, these techniques and tools largely support only
purely floating-point programs or program snippets, or analyze programs only
up to a predefined depth of the call stack. General reasoning about real-world
object-oriented programs, however, also requires support for features such as the
(unbounded) heap, necessitating different analyses which need to be combined
with floating-point reasoning.

Handling floating-points in a deductive verifier has unique advantages. First,
the deductive verification approach already comes with the infrastructure for
reasoning about complex control and data structures (like exception handling and
heap). Second, it allows one to flexibly combine the verifier’s symbolic execution
reasoning with external decision procedures. Third, depending on the theory
support, the verifier or external solver may also generate counterexamples of a
property and thus help program debugging — something an abstract interpretation-
based approach fundamentally cannot provide.

We report on adding floating-point support to the KeY deductive verifier,
providing the first automated deductive floating-point support for the Java
programming language. We focus mainly on proving the absence of the special
values infinity and NaN. While these are helpful in certain circumstances, for most
applications they signal an error. Hence, showing their absence is a prerequisite
for further (functional) reasoning. That said, our extension also allows one to
express and discharge arbitrary functional properties expressible in floating-point
arithmetic, including bounds on roundoff errors for certain programs, and bounds
on differences between two similar floating-point programs

We exploit both KeY’s symbolic execution and external SMT support. On
the one hand, we handle arithmetic operations by relying on a combination of



244 R. Abbasi et al.

KeY’s symbolic execution to handle the heap and SMT based decision procedures
to handle the floating-point part of the VCs. On the other hand, we support
transcendental functions via axiomatization in the KeY prover itself.

Transcendental functions such as sine are a common feature in numerical
programs, but are not supported by floating-point decision procedures. We explore
two ways of supporting them soundly but approximately, by encoding them as
axiomatized uninterpreted function symbols once directly in the SMT queries,
and once in additional calculus rules in KeY. Our evaluation shows that even
though such reasoning is approximate, it is nonetheless sufficient to prove the
absence of special values in many interesting programs.

We evaluate KeY’s floating-point support on a number of real-world floating-
point Java programs. Our benchmark set allows us to evaluate recent progress in
SMT floating-point support in Z3 [28], CVC4 [8] and MathSAT [22] on yet unseen
benchmarks. For instance, we observe that quantifiers are challenging even if they
do not affect satisfiability of SMT queries. Our benchmarks are openly available,
and we expect our insights to be useful for further solver development.

Contributions In summary, we make the following contributions:

— we implement and evaluate the first automated deductive verification of
floating-point Java programs by combining the strength of rule based and
SMT based deduction;

— we collect a new set of challenging real-world floating-point benchmarks in
Java (available at https://gitlab.mpi-sws.org/AVA/key- float-benchmarks/);

— we compare different SMT solvers for discharging floating-point VCs on this
new set of benchmarks;

— and we develop novel automated support for reasoning about transcendental
functions in a deductive verifier.

2 Background

2.1 Introduction to KeY

KeY [4] is a platform for deductive verification of Java programs, working at a
source code level. The input is a Java program annotated in the Java Modeling
Language (JML) [45], encouraging a Design by Contract (|46,51]) approach to
software development. The user specifies the expected behavior of Java classes
with class invariants that the program has to maintain at critical points. Methods
are specified with method contracts, consisting mainly of pre- and postconditions,
with the understanding that if the precondition holds when the method is called,
the postcondition has to hold after the method returns.

After loading an annotated program, KeY translates it to a formula in
Java Dynamic Logic [4] (JavaDL), an instance of Dynamic Logic [37] which
enables logical reasoning about Java programs. Logical rules are provided for
the translation of programs into first-order logic, and for closing the resulting
goals, or proof obligations. KeY is semi-interactive in that it allows manual rule


https://gitlab.mpi-sws.org/AVA/key-float-benchmarks/

Deductive Verification of Floating-Point Java Programs in KeY 245

application, while also offering powerful built-in automation and macros. In
addition, it is also possible to translate an open goal into SMT-LIB format [9]
and call an external SMT solver. For specific theories, SMT solvers can be much
more efficient than KeY’s own automation. This makes it possible to prove some
goals, which depend on SMT supported theories, by using an SMT solver, while
others are proved internally, using KeY’s own automation.

2.2 Floating-Point Arithmetic in Java

In the following, we summarize some central characteristics of Java floating-point
numbers, loosely following [53]. Each normal floating-point number x can be
represented as a triplet (s,m,e), such that x = (—1)® * m % 2°, where s € {0,1}
is the sign, m (called significand) is a binary fixed-point number with one digit
before the radix point and p—1 digits after the radix point (note that 0 < m < 2),
and e (exponent) is an integer such that emin, < e < ep4,. Java supports two
floating-point formats (both in base 2): float (‘single’) precision with p = 24, and
minimal and maximal exponent €,,;, = —126, €,,4, = 127 and double precision
with p = 53, epmin = —1022, €54, = 1023.

Whenever the result of a computation cannot be exactly represented with
the given precision, it is rounded. IEEE 754 defines various rounding modes, of
which Java only supports round to nearest, ties to even. Rounding is exact, as if
one would first compute the ideal real number, and round afterwards.

The triple representation gives us two zeros, +0 and —0, represented by
(0,0,0) and (1,0,0), respectively. If the absolute value of the ideal result of a
computation is too small to be representable as a floating-point number of the
given format, the resulting floating point number is +0 or —0. In addition, there
are three special values, +00, —oo, and NaN (Not a Number). If the absolute
value of the ideal result of a computation is too big to be representable as a
floating-point number of the given format, the result is 400 or —oo. Also, division
by zero will give an infinite result (e.g., 7.13/+0 = 400). Computing further with
infinity may give an infinite result (e.g., +00 + +00 = 4+00), but may also result
in the additional ‘error value’ NaN (e.g., +00 —+00 = NaN). Due to the presence
of infinities and NaN, floating-point operations do not throw Java exceptions.

By default, the Java virtual machine is allowed to make use of higher-precision
formats provided by the hardware. This can make computation more accurate,
but it also leads to platform dependent behaviour. This can be avoided by using
the strictfp modifier, ensuring that only the single and double precision types
are used. This modifier ensures portability.

3 Floating-Point Support in KeY

3.1 Arithmetics

In order to be able to specify and verify programs containing floating-point
numbers, we made several extensions to the KeY tool. First, we added the float



246 R. Abbasi et al.

Listing 1.1: The Rectangle.scale benchmark

/*@ public normal_behavior
@ requires \fp nice(arg0.x) && \fp_nice(arg0.y)
@ && \fp_nice(argl) && \fp_nice(arg2);
@ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y) &&
@ I fp_nan(\result.width) && !\fp_nan(\result.height);
@ also
@ public normal_behavior
@ requires -5.53 <= arg0.x && arg0.x <= -3.38 &&
@ -5.53 <= arg0.y && argl.y <= -3.38 &&
@ 3.1 < arg0.width && arg0.width <= 3.7332 &&
@ 3.0000001 < arg0.height && arg0.height <=4.0004 &&
@ 3.0003001 < argl && argl <= 4.0024 &&
@ -6.4000003 < arg2 && arg2 <= 3.0001;
@ ensures !\fp nan(\result.x) & !\ fp_nan(\result.y)&&
@ I\ fp_nan(\result.width) &&!\fp _nan(\result.height);
@x/
public Rectangle scale(Rectangle arg0d, double argl, double arg2){
Area vl = new Area(argo);
AffineTransform v2 = AffineTransform.getScaleInstance(argl, arg2);
Area v3 = vl.createTransformedArea(v2);
Rectangle v4 = v3.getRectangle2D();
return v4;

and double types to the KeY type system, together with an enum type for the
different rounding modes of the IEEE 754 Standard.

We further introduced functions and predicate symbols to formalize opera-
tions (+, , ...) and comparisons (<, ==, ...) on floating-point expressions. The
translation supports both code with and without the strictfp modifier. However,
since the actual precision of non-strictfp operations is not known, the function
symbols remain uninterpreted. We extended KeY’s parser to correctly handle
programs and annotations containing floating-point numbers, and added logic
rules for translating floating-point expressions from Java or JML to JavaDL.

As an example, Listing 1.1 shows JML specifications of our Rectangle bench-
mark that contains floating-point literals and makes use of the fp_nan and fp_nice
predicates. fp_nan states that a floating-point expression is NaN and fp_nice,
which is shorthand for “not infinity and not NaN”, states that a floating-point
expression is not NaN or infinity. The scale method contains two contracts that
are checked separately, ensuring that the class fields of a scaled rectangle object
are not NaN, considering different preconditions. For the first contract, the SMT
solver produces a counterexample. In the second, we bound inputs by concrete
ranges that we picked arbitrarily and get the valid result. In practice, such ranges
would come from the context, e.g. from the kind of rectangles that appear in an
application, or from known ranges of sensor values.



Deductive Verification of Floating-Point Java Programs in KeY 247

Concerning discharging the resulting proof obligations, there were two main
ways to consider. One is to create a floating-point theory within KeY by adding
axioms and deduction rules, so that the desired properties can be proven in
KeY’s sequent calculus. The other way is to translate the proof obligations from
JavaDL to SMT-LIB and call an external SMT solver. While the KeY approach
traditionally favors conducting proofs within KeY, for this work, we partially
deviated from this way in order to harness the greater experience and efficiency of
SMT solvers when it comes to floating-point arithmetic. Our approach attempts
to get the best of both worlds by distinguishing between basic floating-point
arithmetic, i.e., elementary operations and comparisons, and more complex
functions which do not have an SMT-LIB equivalent (e.g., the transcendental
functions), or where the SMT-LIB function is not usefully implemented by current
SMT solvers (see Section 3.2.B).

Elementary operations and comparisons get translated to the corresponding
SMT-LIB functions. In SMT-LIB, all floating-point computations conform to the
IEEE 754 Standard. Therefore, only Java programs with the strictfp modifier
can be directly translated to SMT-LIB without loss of correctness.

We developed a translation from KeY’s floating-point theory to SMT-LIB.
In order to integrate it into KeY, we also overhauled the existing translation
from JavaDL to SMT-LIB to create a new, more modular framework, which
now supports all the features of the original translation, e. g., heaps and integer
arithmetic, but also floating-point expressions at the same time.

Floating-point intricacies sometimes require extra caution. For example, there
are two different notions of equality for floats: bitwise equality and IEEE754
equality. Our implementation ensures these are distinguished correctly, and that
the specification language remains intuitive for a developer to use.

Using the translation to SMT-LIB, we can specify and prove two classes of
properties in KeY: The absence of special values is specified using the fp_nan and
fp_infinite predicates (or the fp_nice equivalent). Furthermore, one can specify
functional properties that are expressible in floating-point arithmetic, e.g. one
can compare the result of a computation against the result of a different program
which is known to produce a good result or a reference value.

3.2 Transcendental Functions

Floating-point decision procedures in SMT solvers successfully handle programs
consisting of arithmetic and square root operations. Many numerical real-world
programs, however, include transcendental functions such as sin and cos. In Java
programs, these functions are implemented as static library functions in the class
java.lang.Math.

Unlike arithmetic operations, transcendental functions are much more loosely
specified by the IEEE 754 Standard—only an upper bound on the roundoff
error is given. Libraries are thus free to provide different implementations, and
even tighter error bounds. Exact reasoning in the same spirit as floating-point
arithmetic would thus have to encode a specific implementation. Given that these
implementations are highly optimized, this approach would be arguably complex.



248 R. Abbasi et al.

We observe, however, that such exact reasoning about transcendental functions is
often not necessary and a sound approximate approach is sufficient and efficient.

In this section, we introduce an axiomatic approach for reasoning about
programs containing transcendental functions. We observe that with the flexibility
of deductive verification and KeY itself, we can instantiate it in two different ways.
We encode transcendental functions as uninterpreted functions and axiomatize
them in the SMT queries. Alternatively, we encode these axioms in KeY as logical
inference rules.

(A) Axiomatization in SMT We encode library functions as uninterpreted
functions and include a set of axioms in the SMT-LIB translation for each
method that is called in a benchmark. That is, we extended KeY such that when
a transcendental function exists in the proof obligation, its definition alongside
all the axioms for that function are added to the translation.

For the axiomatization of transcendentals, we did not add rules that expand
to a definition or allow a repeated approximation of the function value (like
expansion into a Taylor series). Instead, we added a number of lemmata encoding
interesting properties related to special values. For instance, the following axiom
states that if the input to the sin function is not a NaN or infinity, then the
returned value of sin is between —1.0 and 1.0:

(assert (forall ((a Float64)) (=>
(and (not (fp.isNaN a)) (not (fp.isInfinite a)))
(and (fp.leq (sinDouble a) (fp #b0O #b01111111111 #b0OGO...000000))
(fp.geq (sinDouble a) (fp #bl #b01111111111 #b00EO...000000))))))

Note that this implies that the result is not a NaN or infinity. The other axioms
are similar in spirit, so we do not list them.

These axioms are expressed as quantified floating-point formulas and capture
high-level properties of library functions complying with the specifications in the
IEEE 754 Standard. Clearly, since we do not have the actual implementations of
these functions, we are not able to prove arbitrary properties. However, such an
axiomatization is often sufficient to check for the (absence of) special values, i.e.
NaN and infinity, as our experiments in Section 4.4 show.

(B) Taclets in KeY Reasoning about quantified formulas in SMT is a long-
lasting challenge [34]. We have also observed in our experiments with only
arithmetic operations (Section 4.3) that SMT solvers struggle with quantifiers in
combination with floating-points. We have therefore implemented an alternative
approach encoding the axioms not in the SMT queries, but instead as deductive
inference rules (so-called taclets) in KeY.

The rules encode the same logical information as the universally quantified
assertions that we add in SMT-LIB (and where we leave the choice of instantia-
tions entirely to the SMT/SAT solver). With our taclet approach, we instantiate
a quantifier (only) to one’s needs. We note that for proving a property correct,
this results in a correct (under)approximation. However, the prize for achieving



Deductive Verification of Floating-Point Java Programs in KeY 249

Benchmark Details Automode Statistics

, # method # arith. library # goals closed # goals to be # rules automode

benchmark # classes . . .
calls ops functions by KeY closed externally  applied time (s)
Complex.add (2) 1 0 - 3/3 1/4 185 /286  0.7/0.2
Complex.divide (2) 1 0 1 - 10 /8 2/8 483 / 625 0.7/0.8
Complex.compare 1 0 2 - 3 2 216 0.2
Complex.reciprocal (2) 1 1 6 - 1/1 2/2 402 / 406 0.4 /0.5
Circuit.impedance 2 1 3 - 1 4 360 0.5
Circuit.current (2) 2 3 14 - 11 /11 4/1 1267 / 1238 4.0 / 4.1
Matrix2.transposedEq 1 3 3 - 3 1 735 0.9
Matrix3.transposed Eq 1 4 34 - 3 1 1786 5.1
Matrix3.transposedEqV2 1 4 34 - 3 1 1796 5.4
Rectangle.scale (2) 341 23 2 - 32 /32 32 /16 5990 / 5617 18.4 / 14.5
Rotate.computeError 1+1 6 26 - 108 8 3693 74.2
Rotate.computeRelErr 1+1 6 28 - 120 8 3898 79.6
FPLoop.fploop 1 0 1 - 2 4 99 0.1
FPLoop.fploop2 1 0 1 - 2 4 99 0.1
FPLoop.fploop3 1 0 1 - 2 4 99 0.1
Cartesian.toPolar 2+1 3 6 sqrt, atan 1 4 438 0.5
Cartesian.distanceTo 1+1 1 5 sqrt. 2 1 191 0.1
Polar.toCartesian 2+1 3 4 cos, sin 1 2 364 0.5
Circuit.instantCurrent 2+1 14 23 sqrt, atan, cos 17 2 1686 14.1
Circuit.instant Voltage 1+1 1 4 cos 0 2 138 0.1
Table 1: Benchmark details and KeY automode statistics, time is measured in
seconds

more closed proofs and shorter running times is that for disproving a prop-
erty, not considering all possible quantifier instantiations may lead to spurious
counterexamples, i.e., false positives.

A heuristic strategy applies the rules automatically using the occurrences
of transcendentals as instantiation triggers. However, instantiating the axioms
too eagerly, considerably increases the number of open goals, which is why we
assume that the user selects the axioms to apply manually (and did so in the
experiments). After the application the proof obligation can either be closed, i.e
proven, by KeY automatically, or be given to the SMT solver as before for final
solving.

Currently, the set of axioms (in the SMT-LIB translation and as taclets in
KeY) only contains axioms for the transcendental functions occurring in our
benchmarks. So far we have 10 axioms; however, adding more axioms (also for
further transcendentals like exponentiation or logarithm) is straightforward. The
full set of axioms is included in the Appendix of the technical report [3].

4 Evaluation

4.1 Benchmark Programs

We collected a set of existing floating-point Java programs representing real-
world applications in order to evaluate the feasibility and performance of KeY’s
floating-point support.

The left half of Table 1 provides an overview of our benchmarks. Each
benchmark consists of one method, which is composed of arithmetic operations



250 R. Abbasi et al.

Listing 1.2: The Circuit.instantCurrent benchmark

public class Circuit {
double maxVoltage, frequency, resistance, inductance;
/7 ...

/*@ public normal_behavior
@ requires 1.0 < this.maxVoltage && this.maxVoltage < 12.0 &&
@ 1.0 < this.frequency && this.frequency < 100.0 &&
@ 1.0 < this.resistance && this.resistance < 50.0 &&
@ 0.001 < this.inductance && this.inductance < 0.004 &&
@ 0.0 < time && time < 300.0;
@ ensures !\fp_nan(\result) && !\fp_infinite(\result);
@x/
public double instantCurrent(double time) {
Complex current = computeCurrent();
double maxCurrent = Math.sqrt(current.getRealPart() * current.getRealPart() +
current.getImaginaryPart() * current.getImaginaryPart());
double theta = Math.atan(current.getImaginaryPart() / current.getRealPart());
return maxCurrent * Math.cos((2.0 * Math.PI x frequency * time) + theta);

1}

and method calls to potentially other classes. The invocations of methods from
java.lang.Math (e.g. Math.abs) are marked by “+1” in Table 1; these are resolved
by inlining the method implementation. For benchmarks that contain calls to
transcendental functions and square root, the called functions are listed; these are
handled by our axiomatization. We include sqrt in this list, as we have observed
that exact support can be expensive, so it may be advantageous to handle sqrt
axiomatically. Benchmarks Rectangle, Circuit, Matrix3 and Rotation are partially
shown in Listings 1.1, 1.2, 1.3 and 1.4 respectively.

Each benchmark also includes a JML contract that is to be checked. For
some methods, we specify two contracts (marked by “(2)” in the first column
of Table 1), each serving as an independent benchmark. The contracts for most
of these benchmarks check that the methods do not return a special value i.e
infinity and/or NaN, the preconditions being that the variables are not themselves
special values and possibly are bounded in a given range. For the Matrix, FPLoop
and Rotate benchmarks, we check a functional property (see Section 4.3). FPLoop,
which has three contracts, additionally shows how to specify floating-point loop
behavior using loop invariants.

4.2 Proof Obligation Generation

To reason about the contract of a selected benchmark, we apply KeY, which
generates proof obligations or ‘goals’. Some of these goals (heap-related) are
closed by KeY automatically. The remaining open goals are closed by either SMT
solvers with floating-point support directly (Section 3.1 and Section 3.2.A), or



Deductive Verification of Floating-Point Java Programs in KeY 251

with a combination of transcendental KeY taclets and floating-point SMT solving
(Section 3.2.B).

Columns 6 and 7 in Table 1 show the number of proof obligations closed by
KeY directly and to be discharged by external solvers, respectively. The next two
columns show the number of taclet rules that KeY applied in order to close its
goals, and the time this takes. For benchmarks with two contracts we show the
respective values separated by ‘/’.

We run our experiments on a server with 1.5 TB memory and 4x12 CPU cores
at 3 GHz. However, KeY runs single-threadedly and does not use more than 8GB
of memory.

For our set of benchmarks, the symbolic execution process is fully automated.
Note that the machinery can deal with loop invariants, if they are provided. Loop
invariant generation is, however, particularly challenging for floating-points due
to roundoff errors [27,40], and a research topic in itself.

4.3 Evaluation of SMT Floating-Point Support

Previous work [32] reported that SMT support for floating-point arithmetic is
rather limited. However, with recent advances [18], we evaluate the situation
again. Most benchmarks used to evaluate SMT solvers’ decision procedures [1]
aim to check (individual) specialized (corner case) properties of floating-point
arithmetic. The proof obligations generated from our set of benchmarks are
complementary in that they are more arithmetic heavy, while nonetheless relying
on accurate reasoning about special values and functional properties.

For each open goal not automatically closed, KeY generates one SMT-LIB
file that is fed to the solvers for validation. We compare the performance of the
three major SMT solvers with floating-point support CVC4 [8] (version 1.8, with
the SymFPU library [18] enabled), Z3 (4.8.9) [28] and MathSAT (5.6.3) [22]. For
this we set a timeout of 300s for each proof obligation. While KeY is able to
discharge proof obligations in parallel, for our experiments, we do so sequentially
to maintain comparability.

KeY’s default translation to SMT includes quantifiers. These quantifications
are not related to floating-point arithmetic, but are used to logically encode
important properties of the Java memory model, like the type hierarchy and
the absence of dangling references on any valid Java heap. If we reason about
floating-point problems in isolation, they are not needed, but if we want to
consider Java verification more holistically with questions combining aspects of
heap and floating point reasoning, they become essential. We manually inspected
that the proof obligations without our axiomatized treatment of transcendental
functions do not depend on these properties and investigate the quantifier support
by including or removing them from the SMT translations. We do not report
results with quantifiers for MathSAT, since it does not support them.

Table 2 summarizes the results of our experiments. Column 4 shows the
number of expected valid or invalid goals for all benchmarks. For each solver we
show the number of goals that each solver can validate or invalidate, together
with the average time (in seconds) needed. The goals resulting in timeout were



252 R. Abbasi et al.
index experiment quantified oals CVC4 73 MathSAT

P axioms 7§08k # goals decided avg. # goals decided avg. # goals decided avg.
1 valid v 80 79 4.1 25 18.4 -
2 contracts X 80 79 4.0 52 35.0 80 8.8
3 invalid v 9 0 3.4 0 34 -
4  contracts X 9 8 36.7 7 27.6 9 3.9
5 axioms in SMT v 10 9 33.2 4 63.4 - -
6 axioms as taclets X 10 10 33.4 5 74.2 8 0.9
7 fp.sqrt X 7 7 46.2 1 23.5 5 0.4
8 axiomatized sqrt X 7 5 2.4 5 282.8 5 5.7

Table 2: Summary of valid / invalid goals correctly decided and average running
times of each solver for the SMT translations with and without quantified axioms

300.0 300.0 ® Cvca

® MathSat
® 73

100.0 100.0

Time(s) (Logl0 scale)
-
< <
Time(s) (Log10 scale)

. 01{ *®

Goal Goal

Fig. 2: Runtimes for valid goals with
SMT translations without quantifiers

Fig. 1: Runtimes for valid goals with
SMT translations with quantifiers

excluded from the computation of the average time. Column 3 shows whether
the SMT queries include quantifiers or not.

Rows 1 and 2 of Table 2 show the results for benchmarks with valid contracts.
This experiment thus represents the common behavior of KeY, whose main goal
is to prove contracts correct. Rows 3 and 4 of Table 2 demonstrate the results
for benchmarks with invalid contracts, i.e. for those we expect a counterexample
for at least one of the goals. The Appendix of the technical report [3] contains
the detailed results for each experiment separated by benchmark. Figure 1 and
Figure 2 show a more detailed view of the solvers’ running time for the valid
benchmarks. The x-axis shows the number of open goals that are discharged by
the SMT solvers, sorted by running time for each solver individually. The k-th
point of one graph shows the minimum running time needed by the solver to
close each of the k fastest goals. Note that each solver may have different goals
which are its k fastest. The y-axis shows the time on a logarithmic scale.

We conclude that in the presence of quantified axioms and floating-point
arithmetic solvers’ performance deteriorate for both valid and invalid goals.
In particular, none of the solvers is able to find counterexamples for any of
the invalid goals. However, when the quantified axioms are removed from the



Deductive Verification of Floating-Point Java Programs in KeY 253

SMT translations, their performance improves. For valid contracts, CVC4 and
MathSAT perform better than Z3, in terms of both number of goals validated
and the running time per goal. In particular, MathSAT is able to prove all goals.
However, the running time performance of CVC4 is better than MathSAT’s. For
invalid contracts, solvers are able to produce the expected counterexamples at
least partially. Particularly, MathSAT has a better performance than CVC4 and
73 in terms of both running time and the number of proof obligations for which
it can produce counterexamples.

We conducted another experiment on our Rectangle.scale benchmark to assess
the solvers’ sensitivity to various changes, applied to the benchmark’s contract
or its implementation. We considered modifications such as reducing the number
of classes while keeping the same functionality, having tighter and larger bounds
for variables, reducing the number of arithmetic operations etc. The details of
this experiment can be found in the Appendix of the technical report [3]. In
summary, solvers’ performance seems to be sensitive to slight innocuous looking
changes such as the number of classes involved and variable bounds. For example,
constraining arg2 in the original benchmark more tightly allows CVCA4 to validate
all goals (1 more). This behavior could be potentially exploited by e.g. relaxing a
variable’s bounds.

Proving Functional Properties Listings 1.3 and 1.4 show examples of functional
properties that are expressible in floating-point arithmetic and that KeY can
handle. The verification results are included in rows 1 and 2 of Table 2, for more
details see the Appendix of the 