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Abstract. Modern SAT solvers can emit independently checkable proof
certificates to validate their results. The state-of-the-art proof system
that allows for compact proof certificates is propagation redundancy (PR).
However, the only existing method to validate proofs in this system with
a formally verified tool requires a transformation to a weaker proof sys-
tem, which can result in a significant blowup in the size of the proof and
increased proof validation time. This paper describes the first approach
to formally verify PR proofs on a succinct representation; we present (i) a
new Linear PR (LPR) proof format, (ii) a tool to efficiently convert PR
proofs into LPR format, and (iii) cake_lpr, a verified LPR proof checker
developed in CakeML. The LPR format is backwards compatible with
the existing LRAT format, but extends the latter with support for the
addition of PR clauses. Moreover, cake_lpr is verified using CakeML’s
binary code extraction toolchain, which yields correctness guarantees for
its machine code (binary) implementation. This further distinguishes our
clausal proof checker from existing ones because unverified extraction and
compilation tools are removed from its trusted computing base. We ex-
perimentally show that LPR provides efficiency gains over existing proof
formats and that the strong correctness guarantees are obtained without
significant sacrifice in the performance of the verified executable.

Keywords: linear propagation redundancy · binary code extraction

1 Introduction

Given a formula of propositional logic, the task of a SAT solver is to decide if
there exists an assignment that satisfies the formula. Such a satisfying assign-
ment, if found by a SAT solver, is easily verifiable by independent checkers and
so one does not need to trust the inner workings of the solver. The situation
with unsatisfiable formulas, i.e., where no satisfying assignment exists, is not as
straightforward. Here, SAT solvers must produce an unsatisfiability proof. Ide-
ally, the proof system (and proof format) for such proofs should be sufficiently
expressive, allowing SAT solvers to efficiently produce proofs that correspond to
the SAT solving techniques they use at runtime. At the same time, the resulting
proofs ought to be efficiently checkable by independent and trustworthy tools.
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The de facto standard proof system for propositional unsatisfiability proofs is
known as Resolution Asymmetric Tautology (RAT) [24]. The associated DRAT
format [36] combines clause addition based on RAT steps and clause deletion.
Independent checking tools can validate proofs in the DRAT format; they have
been used to check the results of the SAT competitions since 2014 [36] and
in industry [15]. Enriching DRAT proofs with hints is the main technique for
developing efficient verified proof checkers, e.g., existing verified checkers use the
enriched proof formats LRAT [6] and GRAT [28].

A recently proposed proof system, called Propagation Redundancy (PR) [21],
generalizes RAT. There exist short PR proofs without new variables for many
problems that are hard for resolution, such as pigeonhole formulas, Tseitin prob-
lems, and mutilated chessboard problems [19]. Due to the absence of new vari-
ables it is easier to find PR proofs automatically [20], and it is considered unlikely
that there exist short RAT proofs for these problems that do not introduce new
variables nor reuse eliminated variables [21]. Such PR proofs can be checked di-
rectly [21], or they can first be transformed into DRAT proofs or even Extended
Resolution proofs by introducing new variables [18,25]. In theory, the blowup is
small, i.e., polynomial-sized. However, in practice, the transformed proofs can be
significantly more expensive to validate compared to the original PR proofs [21].

A natural question arises: why should proof checkers be trusted to correctly
check proofs if we do not likewise trust SAT solvers to correctly determine satisfi-
ability? One answer is that proof checkers are much easier to implement so their
code can be carefully audited. Another answer is that the algorithms underlying
proof checkers have been formally verified in a proof assistant [6, 15, 28]. How-
ever, to get executable code for these verified checkers, some additional unverified
steps are still required. Although unlikely, each of these steps can introduce bugs
in the resulting executable: (1) the algorithms are extracted by unverified code
generation tools into source code for a programming language; (2) unverified
parsing, file I/O, and command-line interface code is added; (3) the combined
code is then compiled by unverified compilers down to executable machine code.

The contributions of this paper are: (i) a new Linear PR (henceforth LPR)
proof format that enriches PR proofs with hints and is backwards compatible
with the LRAT format; (ii) a tool to efficiently enrich PR proofs with hints; and
(iii) cake_lpr, an efficient verified LPR proof checker with correctness guaran-
tees, including for steps (1)–(3) enumerated above. The cake_lpr tool is publicly
available at https://github.com/tanyongkiam/cake_lpr and it was used to val-
idate the unsatisfiability proofs in the 2020 SAT Competition because of its
strong trust story combined with easy compilation and usage. Moreover, the
stronger proof system could be supported in future competitions.

Section 3 shows how PR proofs can be enriched to obtain LPR proofs and
presents the corresponding LPR proof checking algorithm (Contributions i & ii).
Notably, existing LRAT proof checkers can be extended in a clean and minimal
way to support LPR proofs. Section 4 explains the implementation of our checker
in CakeML, as well as the correctness guarantees and high-level verification strat-
egy behind the proofs (Contribution iii). Section 5 benchmarks our proof format

https://github.com/tanyongkiam/cake_lpr
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Table 1. A comparison of SAT proof checkers that have been verified in various proof
assistants [6,15,28]. Green background (cells with +) indicates desirable properties, e.g.,
LPR is based on a stronger proof system than LRAT and GRAT, while red backgrounds
(cells with ×) indicate less desirable properties. Yellow backgrounds (cells with −) are
also undesirable but to a lesser extent.

Property ACL2 checker [15] Coq checker [6] GRATchk [28] cake_lpr

Proof System
(Section 3)

− LRAT − LRAT − GRAT + LPR

Executable Code
(Section 4)

− Directly
Executed

× Unverified
Extraction

× Unverified
Extraction

+
Binary Code
Extraction

Checking Speed
(Section 5)

+ Fast × Slow + Very Fast + Fast

and proof checker against existing implementations. A summary comparison of
the new proof checker against existing verified proof checkers is in Table 1.

2 Background

This section provides background on CakeML and its related tools. It also recalls
the standard problem format and clausal proof systems used by SAT solvers.

2.1 HOL4 and CakeML

HOL4 is a proof assistant implementing classical higher-order logic [34]. CakeML
is a programming language deeply embedded in HOL4, i.e., its abstract syntax
is represented as a HOL datatype and its semantics is formalized within HOL4.
Several tools for developing verified CakeML software are used in this work to
fill the verification gaps in the correspondingly enumerated items in Section 1:

(1) Two tools are used to produce (or extract) verified CakeML source code:
– the CakeML proof-producing translator [32] automatically synthesizes

verified source code from pure algorithmic specifications;
– the CakeML characteristic formula (CF) framework [14] provides a sep-

aration logic which can be used to manually verify (more efficient) im-
perative code for performance-critical parts of the proof checker.

(2) CakeML provides a foreign function interface (FFI) and a corresponding
formal FFI model [10]. These are used to verify system call interactions, e.g.,
file I/O and command-line interfaces, under carefully specified assumptions.

(3) Most importantly, CakeML has a compiler that is verified [35] to preserve
the semantics of source CakeML programs down to their compiled machine
code implementations. Hence, all guarantees obtained from the preceding
steps can be carried down to the level of machine code.
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The combination of these tools enables binary code extraction [27] where
verified machine code is extracted directly in HOL4. Several other CakeML-based
programs have been verified using these tools, including: certificate checkers for
floating-point error bounds [3] and vote counting [13], and an OpenTheory article
checker [1]. Œuf provides a similar toolchain in the Coq proof assistant [31].

2.2 SAT Problems and Clausal Proofs

Fix a set of boolean variables x1, . . . , xn, where the negation of variable xi is
denoted xi, and the negation of xi is identified with xi. Variables and their
negations are called literals and are denoted using l. The input for propositional
SAT solvers is a formula F in conjunctive normal form (CNF) over the set
of variables x1, . . . , xn. Here, CNF means that F consists of an outer logical
conjunction F ≡

∧m
i=1 Ci, where each clause Ci is a disjunction over some of

the literals Ci ≡ li1 ∨ li2, · · · ∨ lik. Formulas in CNF can be represented directly
as sets of clauses and clauses as sets of literals. The empty clause is denoted
⊥. An assignment α assigns boolean values to each variable; α can be partial,
i.e., it only assigns values to some of the variables. Like formulas and clauses,
a (partial) assignment can be represented as the set of literals assigned the
boolean value true by that assignment. The negation of an assignment, denoted
α, assigns the negation of all literals in α. An assignment α satisfies a clause
C iff their set intersection is nonempty. Additionally, we define C |α = > if
α satisfies C; otherwise, C |α denotes the result of removing from C all the
literals falsified by α, i.e., C |α = C \ α. For a formula F , we define F |α =
{C |α | C ∈ F and C |α 6= >}. Intuitively, F |α contains the remaining clauses
in formula F after committing to the partial assignment α.

The task of a SAT solver is to determine whether F is satisfiable, i.e., whether
there exists a (possibly partial) assignment α such that F |α is empty. Any sat-
isfying assignment can be used as certificate of satisfiability. Formulas without
a satisfying assignment are unsatisfiable. Certifying unsatisfiability is more diffi-
cult and typically uses a clausal proof system [21]. The idea behind these proof
systems is briefly recalled next, using the key concept of clause redundancy.

Definition 1. A clause C is redundant with respect to formula F iff F ∧C and
F are both satisfiable or both unsatisfiable, i.e., they are satisfiability equivalent.

A clause C that is redundant for F can be added to F without changing
its satisfiability. Clausal proof systems work by successively adding redundant
clauses to F until the empty clause ⊥ is added, as illustrated below:

F
+ redundant C1︷︸︸︷

=⇒ F ∧ C1

+ redundant C2︷︸︸︷
=⇒ F ∧ C1 ∧ C2

+ redundant C3︷︸︸︷
=⇒ · · · =⇒ F ∧ C1 ∧ C2 ∧ · · · ∧ ⊥

Satisfiability is preserved along each =⇒ step because of redundancy, e.g.,
satisfiability of F implies satisfiability of F ∧ C1. Since the final formula is un-
satisfiable, the sequence of redundant clause addition steps C1, C2, . . . ,⊥ corre-
sponds to a proof of unsatisfiability for F . Deciding clause redundancy is as hard
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as solving the SAT problem itself because ⊥ is always redundant for unsatisfiable
formulas. The difference between clausal proof systems is how the redundancy
of a (proposed) redundant clause C is efficiently certified at each proof step.

Many notions of redundancy are based on unit propagation. A unit clause
is a clause with only one literal. The result of applying the unit clause rule to
a formula F is the formula F |l where (l) is a unit clause in F . The iterated
application of the unit clause rule to a formula F until no unit clauses are left
is called unit propagation. If unit propagation on F yields the empty clause ⊥,
denoted by F `1 ⊥, we say that F implies ⊥ by unit propagation. The notion of
implied by unit propagation is also used for regular clauses as follows: F `1 C iff
F ∧ ¬C `1 ⊥ with ¬C =

∧
l∈C(l). Observe that ¬C can be viewed as a partial

assignment that assigns the literals l, for l ∈ C, to true. For a formula G, F `1 G
iff F `1 C for all C ∈ G. The main clausal proof system used in this paper is
based on propagation redundant clauses, which are defined as follows.

Definition 2. Let F be a formula, C a nonempty clause, and α the smallest
assignment that falsifies C. Then, C is propagation redundant (PR) with respect
to F if there exists an assignment ω which satisfies C and such that F |α `1 F |ω.

Intuitively, a PR clause C is redundant because any satisfying assignment for
F that does not already satisfy C can be modified to a satisfying assignment
for F ∧ C by updating its literals assigned to true according to the (partial)
witnessing assignment ω [21]. Propagation redundancy is efficiently checkable
in polynomial time using the witnessing assignment and PR generalizes various
other notions of clause redundancy, including the de facto standard Resolution
Asymmetric Tautology (RAT) proof system (see [21, Theorem 2]) that is able to
compactly express all current techniques used in state-of-the-art SAT solvers [24].

In practice, clausal proof formats also contain deletion information to speed
up proof validation. Hence, unsatisfiability proofs for formula F are modeled
as sequences I1, . . . , In of instructions that either add or delete a clause. An
addition instruction is a triple 〈a, C, ω〉, where C is a clause and ω is a (possibly
empty) witnessing assignment ; a deletion instruction is a pair 〈d, C〉 where C is
a clause. The sequence I1, . . . , In gives rise to formulas F1, . . . , Fn with F0 = F
as follows, where Fj is the accumulated formula up to the j-th instruction:

Fj =

{
Fj−1 ∪ {C} if Ij is of the form 〈a, C, ω〉
Fj−1 \ {C} if Ij is of the form 〈d, C〉

A PR proof of unsatisfiability is valid if the last instruction adds the empty
clause In = 〈a,⊥, ∅〉, and, for all addition instructions Ij = 〈a, Cj , ωj〉, it holds
that Cj is PR with respect to Fj−1 using witness ωj . In case an empty witness
is provided for Ij , then Fj−1 `1 C should hold.

3 Linear Propagation Redundancy

This section describes a new clausal proof format called LPR (short for Linear
Propagation Redundancy). The format is designed to allow efficient validation
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〈proof〉 = {〈line〉}
〈line〉 = (〈lpr〉 | 〈delete〉), “\n”
〈lpr〉 = 〈id〉, 〈clause〉,〈witness〉,“0”, 〈idlist〉, {〈reduced〉}, “0”
〈delete〉 = 〈id〉, “d”, 〈idlist〉, “0”
〈reduced〉 = 〈neg〉, 〈idlist〉
〈idlist〉 = {〈id〉}
〈id〉 = 〈pos〉
〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | . . .
〈neg〉 = “−”, 〈pos〉
〈clause〉 = {〈lit〉}
〈witness〉 = {〈lit〉}

Fig. 1. The grammar for the LPR format. Additions compared to the LRAT gram-
mar [6] are highlighted in bold.

of PR clauses using a (verified) proof checker. We also enhanced the DPR-trim
tool3 to efficiently add hints to PR proofs, thereby turning them into LPR proofs.
Throughout the section, we emphasize how LPR can be viewed as a clean and
minimal extension of the existing LRAT proof format, which thereby enables its
straightforward implementation in existing LRAT tools.

The most commonly used proof format for SAT solvers is DRAT, which com-
bines deletion with RAT redundancy [36]. DRAT proofs are easy for SAT solvers
to emit and top-tier SAT solvers support it, but have some disadvantages for
verified proof checking. In particular, checking whether a clause is RAT requires a
significant amount of proof search to find the unit clauses necessary for showing
the implied-by-unit-propagation property. This complicates verification of the
proof checking algorithm and slows down the resulting verified proof checkers.
The idea behind the Linear RAT (LRAT) [6, 15] and GRAT [28] formats is to
include these unit clauses as hints so that verified proof checkers can follow the
hints directly without the need for proof search. The LPR format lifts this idea
to allow fast validation of the PR property.

An assignment ω reduces a clause C if C |ω ⊂ C and C |ω 6= >. To check the
PR property F |α `1 F |ω, it suffices to check, for each clause C ∈ F reduced
by ω, that F |α `1 C |ω. Hence, in practice, a smaller ω yields a cheaper PR
check. The LPR format extends the PR format by adding, for each clause that
is reduced by the witness, a list of all unit clause hints required for showing the
implied-by-unit-propagation property. Additionally, in order to point to clauses,
the LPR format includes an index for each clause at the beginning of each line.
The grammar of the LPR format is shown in Fig. 1.

Our extension to DPR-trim enriches input PR proofs by finding and adding
all required unit clause hints. It also shrinks the witness ω where possible: every
literal in ω ∩ α is removed as well as any literal in ω that is implied by unit
propagation from F |α. The shrinking was shown to be correct [21], but has
3 LPR hint addition is now part of the public GitHub version available at
https://github.com/marijnheule/dpr-trim using the command-line option -L.

https://github.com/marijnheule/dpr-trim
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DIMACS file

p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0
10 11 12 0

-1 -4 0
-2 -5 0
-3 -6 0
-1 -7 0
-2 -8 0
-3 -9 0
...

LPR proof file

23 -3 -10 -3 -10 1 12 0 -5 17 -8 20 -19 7 -22 10 0
24 -3 -11 -3 -11 2 12 0 -6 18 -9 21 -19 7 -22 10 0
25 -3 0 23 24 4 13 0
26 -6 -10 -6 -10 4 12 0 -5 11 -13 7 -14 20 -22 16 0
27 -6 -11 -6 -11 5 12 0 -6 12 -13 7 -15 21 -22 16 0
28 -6 0 26 27 4 19 0
29 -9 -10 -9 -10 7 12 0 -8 11 -13 10 -14 17 -19 16 0
30 -9 -11 -9 -11 8 12 0 -9 12 -13 10 -15 18 -19 16 0
31 -9 0 29 30 4 22 0
32 -2 0 6 9 28 31 2 3 14 0
33 -5 0 6 15 25 31 1 3 8 0
34 0 25 28 32 33 1 2 5 0

Fig. 2. (Left) The first ten clauses of pigeonhole formula (4 pigeons, 3 holes) in the
DIMACS format used by SAT solvers. (Right) The LPR refutation consisting of clause-
witness pairs and unit clause hints. The first bold integer in each line is the clause index
while other bold integers are the unit clause hints. Dropping the bold integers yields a
proof in the PR format. Redundant spaces have been added to improve readability.

not been implemented so far. We observed that the witnesses in the PR proofs
produced by SaDiCaL [20] can be substantially compressed using this method.

Fig. 2 (left) shows an example formula in the standard DIMACS problem
format. The DIMACS format includes a header line starting with “p cnf ” fol-
lowed by the number of variables and the number of clauses. The non-comment
lines (not starting with “c ”) represent clauses, and they end with “0”. Positive
integers denote positive literals, while negative integers denote negative literals.
Fig. 2 (right) shows a corresponding proof in LPR format. Deletion lines in LPR
are formatted identically to LRAT [6] (not shown here). For clause addition
lines, the LPR format only differs from LRAT in case the clause to be added
has PR but not RAT redundancy. A clause addition line in LPR format consists
of three parts. The first part is the first integer on the line, which denotes the
index of the new clause. The second part consists of the clause and the witness;
the first group of literals is the clause. The (potentially empty) witness starts
from the second occurrence of the first literal of the clause until the first 0 that
separates the unit clause hints. The second part exactly matches the PR proof
format [21]. The third part (after the first 0) are the unit clause hints, which
exactly matches the LRAT format [6].

The checking algorithm for LPR, shown in Fig. 3, overlaps significantly with
that for LRAT (see [6, Algorithm 1]). The only differences are Steps 4 and
5.1. In Step 4, the witness is used (if present) instead of always using the first
literal in Cj . In Step 5.1, clauses are skipped if they are satisfied by the witness.
Notice that a clause can only be both reduced and satisfied by a witness if the
witness consists of at least two literals, while in the LRAT format witnesses
always consist of exactly one literal. Note also that the algorithm does not check
whether Cj |ω = >, which is a requirement for PR. This omission is allowed
because the first literal in ω in the LPR (and PR) format is the same as the first
literal in Cj .
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Input: CNF F = {Ci}i∈I and line ` an LPR step.
Output: YES if parsed clause Cj proved PR for F by `,

NO otherwise.
1. parse ` as

[
j, Cj ,ωj , 0, ĩ0, {−ik, ĩk}nk=1

]
instantiating variables with (vectors of) positive integers.

2. set α← ¬Cj

3. for i ∈ ĩ0
3.1. set C′

i ← Ci |α
3.2. if C′

i = ⊥, return YES
3.3. if C′

i = > or |C′
i| ≥ 2, return NO

3.4. set α← α ∪ C′
i

4. if ωj 6= ∅ then set ω← ωj else set ω ← (Cj)1
(if Cj = ⊥, return NO)

5. for i ∈ I
5.1. if Ci is satisfied by ω or is not reduced by ω,

skip to next iteration of Step 5.
5.2. find k such that ik = i (from `)

(return NO if no such k exists)
5.3. if Ci |(α \ ω) = >, skip
5.4. set α′ ← α ∪ (¬Ci \ ω)
5.5. for m ∈ ĩk

5.5.1. set C′
m ← Cm |α′

5.5.2. if C′
m = ⊥, skip to next iteration of Step 5.

5.5.3. if C′
m = > or |C′

m| ≥ 2, return NO
5.5.4. set α′ ← α′ ∪ C′

m

5.6. return NO
6. return YES

Fig. 3. Algorithm to check a single clause addition step in the LPR format. The bold
parts show the additions compared to LRAT proof checking [6].

4 CakeML Proof Checking

This section explains the implementation and verification of cake_lpr, our veri-
fied CakeML LPR proof checker. Section 4.1 focuses on the high-level verification
strategy which we used to reduce the verification task to mostly routine low-level
proofs (the latter details are omitted). Section 4.2 highlights important verified
performance optimizations used in the proof checker.

4.1 Verification Strategy

The development of cake_lpr proceeds in three refinement steps, where each
step progressively produces a more concrete and performant implementation of
the proof checker. These refinements are visualized in the three columns of Fig. 4.

Step 1 formalizes the definition of CNF formulas and their unsatisfiability, as
well as the PR proof system described in Section 2.2. The inputs and outputs to
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Abstract CNF
Formula

Concrete CNF
Formula

DIMACS
Input File

w
(lift repr.)

w
(parse)

PR Proof
System

LPR Checker
(Fig. 3)

cake_lpr
w

(pure impl.)
w

(imp. impl.)

Valid Proof
(unsat.) ?

YES or NO
(Fig. 3)

VERIFIED UNSAT
or ERROR

Step 1 Step 2 Step 3

w
(verified)

w
(verified)

Input

Output

Fig. 4. The three step refinement used in the development of cake_lpr.

the proof system are abstract and not tied to any concrete representation at this
step. For example, input variables are drawn from an arbitrary type α, clauses
and CNFs are represented using sets. The correctness of the PR proof system is
proved in this step, i.e., we show that a valid PR proof implies unsatisfiability of
the input CNF. The proof essentially follows [21, Theorem 1].

Step 2 implements a purely functional version of the LPR proof checking al-
gorithm from Fig. 3. Here, the inputs and outputs are given concrete representa-
tions with computable datatypes, e.g., literals are integers (similar to DIMACS),
clauses are lists of integers, and CNFs are lists of clauses. These concrete rep-
resentations lift naturally to the abstract, set-based representation from Step 1.
The output is a YES or NO answer according to the algorithm from Fig. 3. The
correctness theorem for Step 2 shows that LPR proof checking correctly refines
the PR proof system, i.e., if it outputs YES, then there exists a valid PR proof for
the input (lifted) CNF; by Step 1, this implies that the CNF is unsatisfiable.4

Step 3 uses imperative features available in the CakeML source language, e.g.,
(byte) arrays and exceptions, to improve code performance; these optimizations
are detailed further in Section 4.2. This step also adds user interface features like
parsing and file I/O so that the input CNF formula is read (and parsed) from
a file, and the results are printed on the standard output and error streams.
The verification of this step uses CakeML’s proof-producing translator [32] and
characteristic formula framework [14] to prove the correctness of the source code
implementation of cake_lpr; this code is subsequently compiled with the veri-
fied CakeML compiler. Composing the correctness theorem for source cake_lpr
with CakeML’s compiler correctness theorem yields the corresponding correct-
ness theorem for the cake_lpr binary. The final correctness theorem is given
in AppendixA. Briefly, it shows that if the cake_lpr executable prints the
string “s VERIFIED UNSAT\n” to the standard output stream (in CakeML’s FFI
model [10]), then the input (parsed) DIMACS file is an unsatisfiable CNF.
4 If the output is NO, the input CNF could still be unsatisfiable, but the input LPR
proof is not valid according to the algorithm in Fig. 3.
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4.2 Verified Optimizations

To minimize verification effort, CakeML’s imperative features are only used for
the most performance-critical steps of cake_lpr. Our design decisions are based
on empirical observations about the LPR proof checking algorithm. These are
explained below with reference to specific steps in the algorithm from Fig. 3.

Array-based representations. In practice, many LPR proof steps do not re-
quire the full strength of a PR (or RAT) clause. Hence, a large part of proof
checking time is spent in the Step 3 loop of the algorithm and it is important to
compute the main loop bottleneck, Ci |α in Step 3.1, as efficiently as possible.
CakeML’s native byte arrays are used to maintain a compact bitset-like repre-
sentation of the assignment α, so that Ci |α can be computed in one pass over
Ci with constant time bitset lookup for each literal in Ci.

For proof steps requiring the full strength of PR clauses, Step 5 loops over
all undeleted clauses in the formula. Formulas are represented as an array of
clauses5 together with a lazily updated list that tracks all indices of the array
containing undeleted clauses. This enables both constant-time lookup of clauses
throughout the algorithm and fast iteration over the undeleted clauses for Step 5.
Deletion in the index list is done in (amortized) constant time by removing a
deleted index only when the index is looked up in Step 5.1. Additionally, for
each literal, the smallest clause index where that literal occurs (if any) is lazily
tracked in a lookup array; for a given witness ω, all clauses occurring at indices
below the index of any literal in ω can be skipped in Step 5.1.

Proof checking exceptions. There are several steps in the proof checking
algorithm that can fail (report NO) if the input proof is invalid, e.g., in Step 3.3.
In a purely functional implementation, results are represented with an option:
None indicating a failure and Some res indicating success with result res . While
conceptually simple, this means that common case (successful) intermediate re-
sults are always boxed within an option and then immediately unboxed with
pattern matching to be used again. In cake_lpr, failures instead raise excep-
tions which are directly handled at the top level. Thus, successful results can be
passed directly, i.e., as res , without any boxing. Support for verifying the use of
exceptions is a unique feature of CakeML’s CF framework [14].

Buffered I/O streams. Proof files generated by SAT solvers can be large, e.g.,
ranging from 300 MB to 4 GB for the second benchmark suite in Section 5. These
files are streamed into memory line by line because each proof step depends only
on information contained in its corresponding line in the file. This streaming
interaction is optimized using CakeML’s verified buffered I/O library [29] which
maintains an internal buffer of yet-to-be-read bytes from the read-only proof file
to batch and minimize the number of expensive filesystem I/O calls.
5 Deleted clauses are no longer referenced by the array and are automatically freed by
CakeML’s garbage collector.
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5 Benchmarks

This section compares the verified CakeML LPR proof checker against other
verified checkers on two benchmark suites and a RAT microbenchmark. The first
suite is a collection of problems with PR proofs generated by the satisfaction-
driven clause learning (SDCL) solver SaDiCaL [20], while the second suite con-
sists of unsatisfiable problems from the SAT Race 2019 competition.6 The RAT
microbenchmark consists of proofs for large mutilated chessboards generated by
a BDD-based SAT solver [5]. The CakeML checker is labeled cake_lpr (default
4GB heap and stack space), while other checkers used are labeled acl2-lrat
(verified in ACL2 [15]), coq-lrat (verified in Coq [6]), and GRATchk (verified
in Isabelle/HOL [28]) respectively. All experiments were run on identical nodes
with Intel Xeon E5-2695 v3 CPUs (35M cache, 2.30GHz) and 128GB RAM.
Configuration options specific to each benchmark suite are reported below.

5.1 SaDiCaL PR Benchmarks

The SaDiCaL solver produces PR proofs for hard SAT problems in its benchmark
suite [20] and it is experimentally much faster than a plain DRAT-based CDCL
solver on those problems [20, Section 7]. The PR proofs are directly checked
by cake_lpr after conversion into LPR format with DPR-trim. For all other
checkers, the PR proofs were first converted to DRAT format using pr2drat (as
in the earlier approach [20]), and then into LRAT and GRAT formats using the
DRAT-trim and GRATgen7 tools respectively. All tools were ran with a timeout
of 10000 seconds and all timings are reported in seconds (to one d.p.). Results
are summarized in Tables 2 and 3.

All benchmarks were successfully solved by SaDiCaL except mchess19 which
exceeded the time limit. For the remaining benchmarks, generating and check-
ing LPR proofs required a comparable (1–2.5x) amount of time to solving the
problems, except mchess, for which LPR generation and checking is much faster
than solving (Table 2). Unsurprisingly, direct checking of LPR proofs is much
faster than the circuitous route of converting into DRAT and then into either
LRAT or GRAT (Table 3). Unlike LPR, checking PR proofs via the LRAT route
is 5–60x slower than solving those problems; this is a significant drawback to
using the route in practice for certifying solver results.

The backwards compatibility of cake_lpr is also shown in Table 3, where
it is used to check the generated LRAT proofs. Among the LRAT checkers,
acl2-lrat is fastest, followed by cake_lpr (LRAT checking), and coq-lrat. Al-
though cake_lpr (LRAT checking) is on average 1.3x slower than acl2-lrat, it
scales better on the mchess problems and is actually much faster than acl2-lrat
on mchess18. We also observed that the GRAT toolchain (summing SaDiCaL,
pr2drat, GRATgen and GRATchk times) is much slower than the LRAT toolchains

6 The suites are available at http://fmv.jku.at/sadical/ and http://sat-race-2019.ciirc.
cvut.cz/ respectively.

7 GRATgen, the only tool that supports parallelism, was ran with 8 threads.

http://fmv.jku.at/sadical/
http://sat-race-2019.ciirc.cvut.cz/
http://sat-race-2019.ciirc.cvut.cz/
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Table 2. Timings for PR benchmarks with conversion into LPR format. The “Total
(LPR)” column sums the generation and checking times. The timing for mchess19 is
omitted because SaDiCaL timed out; timings for the Urquhart U.-s3-* benchmarks are
omitted because they took a negligible amount of time (< 1.0s total).

Problem SaDiCaL DPR-trim cake_lpr
(LPR)

Total
(LPR)

hole20 1.0 0.5 0.7 2.2
hole30 6.9 2.4 6.1 15.4
hole40 31.3 10.0 25.1 66.3
hole50 101.7 35.5 87.9 225.1
mchess15 18.5 1.1 2.1 21.7
mchess16 21.7 1.2 2.1 25.0
mchess17 34.8 1.6 3.4 39.8
mchess18 59.8 2.3 5.2 67.2

Problem SaDiCaL DPR-trim cake_lpr
(LPR)

Total
(LPR)

U.-s4-b1 0.7 0.6 0.3 1.6
U.-s4-b2 0.3 0.4 0.2 0.8
U.-s4-b3 0.4 0.4 0.2 1.0
U.-s4-b4 0.3 0.5 0.3 1.1
U.-s5-b1 2.5 0.9 1.3 4.7
U.-s5-b2 1.2 0.6 0.7 2.4
U.-s5-b3 3.2 1.5 2.0 6.8
U.-s5-b4 5.5 1.5 3.2 10.1

Table 3. Timings for PR benchmarks, first converted to DRAT and subsequently
converted into LRAT and GRAT formats. The “Total (LRAT)” and “Total (GRAT)”
columns sum the fastest generation and checking times for the LRAT and GRAT
formats respectively. The “Total (LPR)” column (in bold, fastest total time) is repro-
duced from Table 2 for ease of comparison. Fail(T) indicates a timeout. Timings for
the mchess19 and U.-s3-* benchmarks are omitted as in Table 2.

Prob. pr2drat DRAT-trim cake_lpr
(LRAT)

acl2-lrat coq-lrat GRATgen GRATchk Total
(LPR)

Total
(LRAT)

Total
(GRAT)

hole20 0.8 4.4 18.5 7.9 966.7 4.6 18.2 2.2 14.2 24.6
hole30 6.8 61.4 180.4 105.9 Fail(T) 24.5 647.9 15.4 181.0 686.1
hole40 32.4 460.0 1039.5 711.8 Fail(T) 101.3 Fail(T) 66.3 1235.5 -
hole50 108.6 2663.0 4697.4 3292.2 Fail(T) 337.2 Fail(T) 225.1 6165.5 -
mchess15 7.7 48.2 49.3 36.2 Fail(T) 48.4 2023.1 21.7 110.6 2097.7
mchess16 9.0 62.0 59.8 53.2 Fail(T) 55.2 2903.8 25.0 145.9 2989.6
mchess17 14.5 105 97.3 88.5 Fail(T) 86.1 7050.9 39.8 242.7 7186.3
mchess18 25.1 195.0 152.7 296.8 Fail(T) 135.9 Fail(T) 67.2 432.5 -
U.-s4-b1 0.5 2.5 3.6 3.3 135.7 3.6 44.8 1.6 7.0 49.7
U.-s4-b2 0.2 0.8 1.4 1.0 23.2 1.7 8.2 0.8 2.3 10.4
U.-s4-b3 0.3 1.3 2.0 1.5 49.2 2.4 16.2 1.0 3.5 19.3
U.-s4-b4 0.3 1.1 1.8 1.4 38.3 2.0 10.3 1.1 3.1 12.9
U.-s5-b1 4.2 13.6 16.7 12.5 3048.7 17.4 933.2 4.7 32.8 957.3
U.-s5-b2 1.7 5.6 7.3 5.5 614.7 7.7 189.6 2.4 13.9 200.2
U.-s5-b3 5.0 18.4 26.3 22.2 8750.5 21.1 2316.3 6.8 48.8 2345.6
U.-s5-b4 11.3 34.2 36.9 30.1 Fail(T) 40.6 Fail(T) 10.1 81.0 -

(summing SaDiCaL, pr2drat, DRAT-trim and fastest LRAT checking times).
This is in contrast to the SAT Race 2019 benchmarks below (Fig. 5), where we
observed the opposite relationship. We believe that the difference in checking
speed is due to the various checkers having different optimizations for checking
the expensive RAT proof steps produced by conversion from PR proofs.

5.2 SAT Race 2019 Benchmarks

We further benchmarked the verified checkers on a suite of 117 unsatisfiable
problems from the SAT Race 2019 competition. For all problems, DRAT proofs
were generated using the state-of-the-art SAT solver CaDiCaL before conversion
into the LRAT or GRAT formats. Notably, proofs generated by CaDiCaL on this
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Table 4. A summary of the SAT Race 2019 benchmark results. The N/A row counts
problems that timed out or failed in an earlier step of the respective toolchains.

Status CaDiCaL DRAT-trim acl2-lrat cake_lpr coq-lrat GRATgen GRATchk

Success 102 97 96 97 36 100 100
Timeout 15 5 0 0 61 0 0
Failure 0 0 1 0 0 2 0
N/A 0 15 20 20 20 15 17
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Fig. 5. (Top) Total SAT Race 2019 proofs checked within a given (per instance) time
limit for the LRAT proof checkers. (Bottom) Total SAT Race 2019 proofs generated and
checked within a given (per instance) time limit for the LRAT and GRAT toolchains.

suite rarely require RAT (or PR) steps, so the checkers are stress-tested on their
implementation of file I/O, parsing, and Step 3.1 from Fig. 3; cake_lpr is the
only tool with a formally verified implementation of the former two steps. All
tools were ran with the SAT competition standard timeout of 5000 seconds.

A summary of the results is given in Table 4. All proofs generated by CaDiCaL
were checked by at least one checker. The acl2-lrat checker fails with a parse
error on one problem even though none of the other checkers reported such an
error; GRATgen aborted on two problems for an unknown reason. Plots com-
paring LRAT proof checking time and overall proof generation and checking
time (LRAT and GRAT) are shown in Fig. 5. From Fig. 5 (top), the relative
order of LRAT checking speeds remains the same, where cake_lpr is on av-
erage 1.2x slower than acl2-lrat, although cake_lpr is faster on 28 bench-
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Table 5. Timings for the RAT microbenchmark. The number of proof steps and file size
of the proofs (in MB) are shown in the last two columns. Fail(T) indicates a timeout.

Problem pgbdd lrat-check cake_lpr acl2-lrat coq-lrat LRAT Steps File Size

mchess20 3.9 0.5 0.5 19.6 3405.2 125752 5.1
mchess40 47.5 1.0 3.5 453.4 Fail(T) 769287 36
mchess60 311.7 2.7 10.6 4885.2 Fail(T) 2300522 114
mchess80 1164.1 4.8 22.6 Fail(T) Fail(T) 5089457 259
mchess100 3599.0 9.3 44.2 Fail(T) Fail(T) 9506092 499

marks. From Fig. 5 (bottom), both LRAT toolchains are slower than the GRAT
toolchain (average 3.5 times slower for cake_lpr and 3.4 times for acl2-lrat).
Part of the speedup for GRAT comes from GRATgen, which is the only tool that
can be ran in parallel (with 8 threads). This suggests that adding native support
for GRAT-based input to cake_lpr could be a worthwhile future extension.

5.3 Mutilated Chessboard RAT Microbenchmarks

The final microbenchmark suite tests the LRAT checkers on large mutilated
chessboard problem instances (up to 100 by 100) solved by pgbdd, a BDD-based
SAT solver [5]. Unlike the previous two suites, LRAT proofs are emitted directly
by the solver so additional DRAT-trim conversion is not needed. All tools were ran
with a timeout of 10000 seconds and all timings are reported in seconds (to one
d.p.). For additional scaling comparison, we also report results for lrat-check,
an unverified LRAT proof checker implemented in C.

The results in Table 5 show the impact of cake_lpr’s RAT optimizations
(Section 4.2). Notably, cake_lpr scales essentially linearly in the size of the
proofs (up to ≈ 10 million proof steps). As a result, cake_lpr is significantly
faster than acl2-lrat and coq-lrat on these RAT-heavy proofs and it comes
within a 5x factor of the unverified lrat-check tool.

6 Related Work

Verified Proof Checking. There are several RAT-based verified proof checkers,
in ACL2 [15], Coq [6], and Isabelle/HOL [28]. All three checkers are based on
extensions of DRAT, which is itself an extension of the DRUP format [16]; the
Coq checker is based on a predecessor for the GRIT [7] format. The ACL2 checker
can be efficiently and directly executed (without extraction) using imperative
primitives native to the ACL2 kernel [15]. However, the implementation of these
features in ACL2 itself must be trusted to trust the proof checking results, hence
the yellow background in Table 1. SMTCoq [2, 9] is another certificate-based
checker for SAT and SMT problems in Coq. Its resolution-based proof certificates
can be checked natively using native computation extensions of the Coq kernel.

Applications. SAT solving is a key technology underlying many software and
hardware verification domains [4, 23]. Certifying SAT results adds a layer of
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trust and is clearly a worthwhile endeavor. Solver-aided mathematical results [17,
22, 26] are particularly interesting and challenging to certify because these of-
ten feature complicated SAT encodings, custom (hand-crafted) proof steps, and
enormous resulting proofs [22]. Our cake_lpr checker can handle the latter two
challenges effectively. For the first challenge, the SAT encoding of mathematical
problems can also be verified within proof assistants. This was demonstrated for
the Boolean Pythagorean Triples problem building on the Coq proof checker [8].

Verified SAT Solving. An alternative to proof checking is to verify the SAT
solvers [11, 12, 30, 33]. This is a significant undertaking but it would allow the
pipeline of generating and checking proofs to be entirely bypassed. Furthermore,
such verification efforts can yield new insights about key invariants underlying
SAT solving techniques compared to prior pen-and-paper presentations, e.g., the
2WL invariant [12]. However, the performance of verified SAT solvers are not
yet competitive with modern (unverified) SAT solving technology [11,12].

7 Conclusion

This work presents the new LPR proof format for verified checking of PR proofs.
It demonstrates the feasibility of using binary code extraction to verify a perfor-
mant LPR proof checker, cake_lpr, down to its machine code implementation.

Given the strength of the PR proof system, there is ongoing research into the
design of satisfaction-driven clause learning techniques [20, 21] for SAT solvers
based on PR clauses. Our proof checker opens up the possibility of using a verified
checker to help check and debug the implementation of these new techniques.
It also gives future SAT competitions the option of providing PR as the default
(verified) proof system for participating solvers.

Acknowledgments. We thank Jasmin Blanchette and the anonymous review-
ers for their helpful feedback on earlier drafts of this paper, Peter Lammich for
help with GRATgen, and Stefan O’Rear for help with profiling CakeML programs.
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ACI-1445606 at the Pittsburgh Supercomputing Center (PSC).

A Correctness Theorem for cake_lpr

The correctness theorem for cake_lpr verified in HOL4 is shown in Fig. 6. The
assumptions (1) (in red) are routine for compiled CakeML programs that use
its basis library. The first line assumes that the command-line cl and file system
fs models are well-formed. The second line assumes that the compiled code is
correctly placed into (code) memory according to CakeML’s x64 machine model.
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` wfcl cl ∧ wfFS fs ∧ std_streams fs ∧ hasFreeFD fs ⇒
installed_x64 cake_lpr_code (basis_ffi cl fs) mc ms ⇒
machine_sem mc (basis_ffi cl fs) ms ⊆
extend_with_resource_limit
{ Terminate Success (cake_lpr_io_events cl fs) } ∧

∃ out err .
extract_fs fs (cake_lpr_io_events cl fs) =
Some (add_stdout (add_stderr fs err) out) ∧

if out = «s VERIFIED UNSAT\n» then
(length cl = 3 ∨ length cl = 4) ∧ inFS_fname fs (el 1 cl) ∧
∃mv fml .
parse_dimacs (all_lines fs (el 1 cl)) = Some (mv ,fml) ∧
unsatisfiable (interp fml)

else if length cl = 2 ∧ inFS_fname fs (el 1 cl) then
case parse_dimacs (all_lines fs (el 1 cl)) of
None ⇒ out = «»
| Some (mv ,fml) ⇒ out = concat (print_dimacs fml)

else out = «»

}
(1) (2)
(3)

 (4)

Fig. 6. The end-to-end correctness theorem for the CakeML LPR proof checker.

The first guarantee (2) (in blue) is that the machine code implementation
always terminates normally according to CakeML’s x64 machine code semantics.
In particular, the code never crashes and may emit some I/O events when run;
however, it possibly terminates with an out-of-memory error (extend_with_re-
source_limit) when CakeML runs out of stack or heap space.

The main correctness guarantee for cake_lpr is (3) (in green) and (4) (in
black). Briefly, (3) says that the only observable change to the filesystem after
executing cake_lpr are strings printed on standard output out and standard
error err . According to (3), if the string “s VERIFIED UNSAT\n” is printed onto
standard output, then cake_lpr was provided with a file (in its first command-
line argument), and the file parses in DIMACS format to a formula fml which is
unsatisfiable. The remaining else case (4), says that the only other possibilities
for standard output are either (i) a printed version of the parsed DIMACS file (if
no LPR proof file is provided), or (ii) the empty string. All other error messages
are printed onto standard error.

In addition, the DIMACS parser (parse_dimacs) is proved to be left inverse
to the DIMACS printer (print_dimacs) in the following sense:

` wf_fml fml ⇒
∃mv fml ′.
parse_dimacs (print_dimacs fml) = Some (mv ,fml ′) ∧ interp fml = interp fml ′

Briefly, this says that for any well-formed formula fml , printing that for-
mula into DIMACS format then parsing it yields another formula fml ′ which is
guaranteed to have the same interpretation according to the semantics of CNFs
formalized in HOL4. All parsed formulas are well-formed (not shown here).
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