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Improved prediction of gene expression 
through integrating cell signalling models 
with machine learning
Nada Al taweraqi1,2* and Ross D. King3,4,5 

Background
Scientific understanding is demonstrated by making successful experimental predic-
tions. The traditional approach to prediction in science is to build a model, mathematical 
or computational, that directly reflects the causation in the underlying physical system. 
For example, to predict gene expression levels one first builds a model of cell signalling 
and the control of gene expression that involves the genes/proteins known to involved, 
and then from initial conditions one uses the model to simulate the system to make 

Abstract 

Background: A key problem in bioinformatics is that of predicting gene expression 
levels. There are two broad approaches: use of mechanistic models that aim to directly 
simulate the underlying biology, and use of machine learning (ML) to empirically 
predict expression levels from descriptors of the experiments. There are advantages 
and disadvantages to both approaches: mechanistic models more directly reflect the 
underlying biological causation, but do not directly utilize the available empirical data; 
while ML methods do not fully utilize existing biological knowledge.

Results: Here, we investigate overcoming these disadvantages by integrating mecha-
nistic cell signalling models with ML. Our approach to integration is to augment ML 
with similarity features (attributes) computed from cell signalling models. Seven sets of 
different similarity feature were generated using graph theory. Each set of features was 
in turn used to learn multi-target regression models. All the features have significantly 
improved accuracy over the baseline model - without the similarity features. Finally, 
the seven multi-target regression models were stacked together to form an overall 
prediction model that was significantly better than the baseline on 95% of genes on 
an independent test set. The similarity features enable this stacking model to provide 
interpretable knowledge about cancer, e.g. the role of ERBB3 in the MCF7 breast cancer 
cell line.

Conclusion: Integrating mechanistic models as graphs helps to both improve the pre-
dictive results of machine learning models, and to provide biological knowledge about 
genes that can help in building state-of-the-art mechanistic models.
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predictions. In contrast, machine learning (ML) has been repeatedly shown to be able 
to make successful scientific predictions by learning input/output models. In the case of 
predicting gene expression levels the inputs are descriptions of the experimental condi-
tions, and the output is gene expression levels. This ML approach does not necessarily 
reflect the underlying physical systems. However, in practice ML predictions are often 
more accurate than using models that directly reflect the underlying physical system. 
This is possible because many cases there is insufficient knowledge of the underlying sys-
tem to form good mechanistic models, e.g. important structural elements or parameters 
may be missing or incorrect. It is also possible that computationally required approxima-
tions in the simulation result in inaccurate predictions.

When comparing traditional modelling and ML it is instructive to compare weather 
forecasting and protein structure predictions. The currently most successful approach 
to weather forecasting is to physically simulate weather systems [1], and machine learn-
ing for weather forecasting has been less successful [2]. The opposite situation occurs 
with protein structure prediction, where the currently most successful approach is to use 
machine learning, while simulation of protein folding has been less successful [3–5].

Predicting gene expression levels

Predicting gene expression levels is a fundamental task in bioinformatics. There are two 
broad approaches: application of mechanistic models that aim to directly simulate the 
underlying biology, and use of machine learning (ML) to learn models that map cell 
input state to output expression levels. (Note that the term ‘model’ is used quite differ-
ently in these two approaches.) The two types of models, machine learning and mech-
anism-based, have their strengths and weaknesses: mechanistic models more directly 
reflect the underlying biology, but do not directly utilize the available empirical data; 
while ML methods do not fully utilize existing biological knowledge. One way to over-
come these limitations might be to integrate both of them into a single framework. The 
simplest way to achieve this is use the mechanistic models to assist the ML models.

Mechanism-based cell signalling models can be used to directly predict gene expres-
sions, as they describe the way different genes and proteins communicate and the results 
of their interactions. We define mechanistic models as in [6]: ‘an internal division of 
causal labour whereby different components perform different causal roles’. These mod-
els reflect the causal relationships between different genes and their interactions with 
drugs within pathways. The knowledge in such models can be divided into two parts: 
declarative (encyclopaedic), and procedural (simulation). While such mechanistic mod-
els have proven to be extremely useful, they are still, by definition, limited, and do not 
fully exploit the explosion of available biomedical data [7].

In designing a ML approach to predicting gene expression there are two broad choices 
to make: the type of learning method, and the type of bioinformatic information to use 
for the learning. Many machine learning methods have been used to predict variations 
in gene expression levels. Bayesian networks were used by Beer et al. [8], who utilised 
gene sequence information to predict a predefined expression pattern. These expression 
patterns were defined based on the k-means clustering algorithm. Predictions have also 
been made using deep learning, such as Chen et al. [9], who used a deep learning model 
with dropout as a regularization to infer the gene expression level for 21.000 target genes 
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from a subset of genes that do not exceed 1000; Singh et al. [10], who developed a convo-
lutional neural network (CNN) system called “DeepChrome”, predicts the gene expres-
sion levels using histone modifications as input.

When predicting gene expression levels we are typically interested in predicting the 
expression levels of many genes in parallel. This suggest the use of multi-task or transfer 
machine learning. Multi-task learning [11] is the branch of machine learning in which 
related problems (tasks) are learned simultaneously, with the aim of exploiting similari-
ties between the problems to improve performance. The idea of transfer learning is simi-
lar, to utilise knowledge from one or more source domains, and reuse this knowledge in 
a target domain where data is scarce, with the aim of building better performing learning 
models in the target domain [12].

This work aims to predict gene expression levels simultaneously, utilizing knowledge 
of their interactions taken from the literature. We report the results with and without 
this extra element to validate the influence of adding mechanism knowledge to the 
model. The baseline model is the model without this knowledge. The general approach 
of our research is illustrated in Fig. 1.

Results
Prediction results

We compared (1) the baseline ML method, (2) the baseline method augmented with 
information from the seven graph structure methods, and (3) stacking all the meth-
ods together. The results of the first round of training are shown in Additional file  1: 
Table S1. In Additional file 1: Table S2 in the appendix, the results of the second round, 
where the accuracy of the models is measured by R2 . Figure 2 shows the performance of 
each model.

As it is a multi-target problem, where we build multiple models for equally significant 
targets, we measure the quality of the method based on the number of times the model 
scored the highest accuracy for each target. In this way, we can rank methods based on 
their accuracy, as in Fig. 2. Also, we directly compare each method with the baseline in 
Fig. 3, as we are looking at the possible improvement any of these methods can achieve.

For example, in Fig.  2, the entropy-based model registered the highest accuracy 
in the models for only 14 genes, compared to stacking- which is the best perform-
ing method- this is considered a poor result. However, it is still better than the local 
bath index method for example. Compared to the baseline as in Fig. 3, the entropy-
based method noticeably outperforms the baseline model in more than 60 per cent of 

Fig. 1 An overview of the general approach. We take advantage of graph analysis algorithms to convert 
knowledge from the literature to features that enhance the performance of multi-target machine learning 
models
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genes. With the null hypothesis that there is no difference in performance between 
the baseline and entropy-based models, the significance test resulted in the p-value of 
3.7e−08, which is strong evidence against the null hypothesis. We therefore conclude 
that the knowledge extracted from the entropy-based model enhanced prediction.

Fig. 2 The results of models built based in different methods, b: baseline, nn: common neighbour, ib: local 
path index, ent: entropy-based method , ll: locally linear embedding, le: Laplacian eigenmaps, n2v: Nod2vec, 
dw: Deepwalk , st: stacking model. The figure shows the number of times a model outperformed other 
models for each gene, Stacking model surpassed other models by a wide margin

Fig. 3 A pairwise comparison between baseline and models built based on graph methods, b: baseline, 
nn: common neighbour, ib: local path index, ent: entropy-based method , ll: locally linear embedding, le: 
Laplacian eigenmaps, n2v: Nod2vec, dw: Deepwalk , st: stacking model. The y axis shows the number of times 
a model outperformed the other. When compared to the base model, all graph-based models recorded 
higher scores
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Looking at the figures, we first notice that the staking model outperformed all 
other models. in a sense that, it had the best performing model for the majority of 
genes as shown in Fig. 1. Compared to the baseline model alone as shown in Fig. 2, it 
outperformed the baseline model in 292 genes, leaving only 14 genes model for the 
baseline. With the null hypothesis that there’s no difference in performance between 
the stacking model and the baseline model, the significant test showed a p-value of 
4.4e−244, Therefore the null hypothesis can be rejected with a significance level of 
0.01.

Moreover, we observed that each of the graph structure methods outperformed 
the baseline method, as they scored higher accuracy in more genes than the base-
line. However, no graph structure method clearly outperformed the others. The best 
method was local linear embedding, which outperformed the base model in 194 
cases in comparison to the base model’s 109 genes. Even common-neighbour based 
model, which is the model that has the weakest permanence, generally, outper-
formed baseline once they are compared as a pair. The pairwise comparison between 
the baseline and each of the methods clearly shows that all graph structure methods 
recorded higher accuracy compared to the baseline. This result is shown in Fig. 3.

Analysis

Useful interpretable biological knowledge can be extracted by analysing the machine 
learning gene models. For example, the TP53 model revealed that the most impor-
tant gene in enhancing predictions about it is ERBB3, which is a member of a tyros-
ine receptor kinase that is implicated in many cancers [13]. However, ERBB3 is not 
usually overexpressed in MCF-7 [14]. ERBB3 has a known role in therapy resistance 
as its downstream pathways include PI3K/AKT, MAPK/ERK and JAK/STAT [15–
18]. Previous research has investigated the role of ERBB3 in tumour progression in 
mcf7, and concluded that there was an effect on the drugs targeting the er-α recep-
tor once it coupled with a drug that targeted ERBB3 [19].

The ERBB3 model also plays a role in improving the predictions for CDK4, which 
is known to participate in inactivating RB gene in many cancers through loss of pro-
liferation control [20]. CDK4 inhibitors such as Palbociclib and Ribociclib are known 
to prolong progression-free survival when combined with hormone therapy [21, 22].

Another example is in the CCNA2 model. CCNA2 is a cyclin and commonly over-
expressed in many cancers [23]. Interestingly, the BIRC5 model is the model that 
affect CCNA2 gene predictions the most and vice versa. The BIRC5 gene is an apop-
tosis inhibitor, a member of the apoptosis pathway, and has no direct connection 
with CCNA2. However, it is known to be a good target for cancer therapy, as it is 
abundant in cancerous cells in the opposite of normal cells [24], yet there is no exist-
ing drug to target it available, or in clinical trials [25]. Both genes are associated with 
drug resistance [26, 27], and there is evidence that both genes are expressed in simi-
lar levels in mcf7 in response to different stimuli; however, they are rarely linked in 
literature [28].

Full details of gene associations based on the machine learning models is available 
in Additional file 1: Table S3.
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Discussion
Gene expression levels are subject to modification by many factors inside and outside 
the cell. This study has utilised mechanistic models that describe cellular signalling path-
ways to infer gene relationships. Although current signalling pathways are known to be 
incomplete, they provide a framework that describe the mechanisms controlling cell 
behaviour. Therefore, this knowledge is important in building models that predict this 
behaviour.

In this research we have exploited the fact that genes that share the same pathway or 
upstream regulator tend to have correlated behaviour. We have applied similarity heuris-
tics, and embedding techniques, to generate input features for machine learning. Such 
heuristics reflect causal relationships in the cell that are likely to impact gene expression 
levels.

Graph-based methods are well suited for fast processing, they do not require parame-
ters that are hard to obtain, in contrast of simulation-based and equation-based models. 
They are also arguably more general. However, graphs only capture the structure of sig-
nalling pathways, they do not capture the dynamics of the network, nor include pathway 
context. They therefore only represent a partial and simplistic picture of the actual phe-
nomenon. Therefore, one way to improve the predictions would be to expand the model 
to include more aspects of the biological system, such as dynamics, or the contexts of 
the models. Methods that capture the causality of the system are likely to improve the 
performance of predicting gene expression levels even further.

Methods and data
Data

The data was taken from the Library of Integrated Network-based Cellular Signatures 
Phase 2 (LINCS), which measured the responses of different cell lines to different drug 
perturbations [29]. The data contains the expression levels for around 1000 genes as the 
ground truth, and associated experimental conditions: drug-related data, such as drug 
dosages, time point and properties of the drugs used to perturb the cells; cell line details, 
such as the source of cell lines, cancer types; and general patient data.

The data was first pre-processed by deleting missing values, fixing the inconsistency 
problem in some features, and deleting duplicated values. Then expression leves were 
normalised by scaling the data to be in the range from 0 to 1. We then we randomly 
chose 300 genes to predict from the MCF-7 cell line data. To keep track of how features 
were used in this study, we will call these the standard features to distinguish them from 
features generated by the mechanism models, which will be added later.

The mechanism-based models were taken from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [30]. We focused on the declarative information in KEGG, and 
extracted it as undirected graphs. The knowledge included genes associations with other 
genes within pathways, pathways memberships and drugs associations.

Mutations in several cell lines were extracted from COSMIC [31], these were then 
added to the model as ‘super nodes’ to enhance the amount of knowledge that could be 
extracted from the graph. Among the 300 genes selected for this study, only 177 genes 
have known direct connection with other genes. Which means that 123 genes don’t have 
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any direct neighbours, and therefore, they are not part of the original graph. However, 
there is another type of knowledge associated with these genes, such as them being part 
of a specific pathway or a target for a specific drug. Therefore, we used this knowledge 
to fill the gaps as we add pathways and drugs and cell lines as ‘super nodes’ that have an 
association with these genes.

Methods

The signalling pathways were represented as graphs. Several graph processing methods 
were used in this study: three similarity heuristics, and four embedding methods. Graph 
processing was used to generate gene similarity features (attributes, descriptors), these 
were utilised by the machine-learning methods. Figure  4 shows the general workflow, 
explained in detail below.

The first step was to extract features from the mechanistic model, represented as a 
graph, where each gene was treated as a node connected to other genes belonging to the 
same pathway. The drugs were represented as nodes to show the influence they had on 
genes and pathways in general. In this approach, if a drug affects a specific gene, it might 
influence all genes linked to that gene. Few known targets were found for each drug in 
the databases, which is reasonable, as drugs are generally designed to be very specific. 
However, treating a cell with a single drug usually causes a cascade of changes due to 
the high connectivity of cellular networks. Therefore, our representation could capture 
expected changes in the behaviour of some genes when they are not the drug’s direct 
target. Pathways were represented as nodes that connected the genes belonging to them, 
to deal with the expected gaps in the models that arise from our incomplete bioinfor-
matic knowledge.

We formalised the problem as follows: let G be the signalling pathways model, G = 
(V, E) , where V are the members of the signalling network, and E are edges connect-
ing V. The goal is to learn vector X ∈v×s , where s is the number of latent dimensions. 

Fig. 4 The general workflow describing the integration of signalling pathways models into the machine 
learning model
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Then X is used in training the machine learning models. We implemented the 
machine learning method multi-target regressor stacking (MTRS) [32]. This learning 
algorithm consisted of two stages. In the first stage, an independent model hj : X → R 
is learned for every single gene. In the second round, meta models h∗j  : X ∗ Y  → R are 
learned for each gene. The meta models were learned using transformed training set 
D = ( x∗1i ,y1j ),...,(x

∗n,ynj  ) where x = [ xj
1
. . . x

j
n , ŷ1i . . . ŷ

m
i  ] are meta features consisting of 

the original features in addition to predictions obtained for each gene from the first 
stage models of other genes.

To extract the relations between different nodes, it is required to find similarities 
between different genes based on graph structure. There are many heuristic methods 
that can be used to compute such gene similarities, such as those that detect local simi-
larities, for example, the common neighbour, the Jaccard index [33], the preferential 
attachment [34] and resource allocation [35]. There are also methods that can identify 
similarities based on the global structure of the network, such as, the Katz index [36] 
and random walk [37]. Other methods include path-based methods, such as the shortest 
path [38] and the local path index [39]. An alternative approach is to use a local proba-
bilistic approach, such as the relative entropy-based method [40].

An alternative approach is to use graph embedding techniques to project genes into 
lower dimensions, where every gene is represented by a vector describing its context as 
a node within the graph. In principle this preserves much of the structure of the graph 
by keeping nodes that share the same cluster close to each other. The embedding can be 
done based on different approaches. One type is graph embedding based on matrix fac-
torization techniques such as HOPE [41] and Laplacian eigenmaps [42]. There are also 
methods based on a random walk with deep learning, such as deepwalk [43] and nod-
2vec [44]. There are also methods based on deep learning without random walks such as 
SDNE [45], and GCN [46]

In this work, the representation for each node was calculated based on a selected sub-
set of methods: common neighbour, local path index and entropy-based similarity. The 
embedding was calculated using Laplacian eigenmaps, locally linear embedding, deep-
walk, and nod2vec.

Similarity measures

The common neighbour method In this the similarity score between two genes is defined 
by their shared neighbours in the signalling network. The heuristic is that if two genes 
share many neighbours, they are likely to be similar and affect the same function of the 
cell. The common neighbour score is computed by the following equation:

In this equation, x and y are nodes (genes) and Ŵx and Ŵy are the neighbours of each 
node. This results in features for each gene which utilised later as features for the learn-
ing process.

The local path index method This similarity measure represents a balance between the 
local and global measures. In this setting the similarity between two genes is based on 
the lengths of the paths that connect them and are defined as follows:

(1)S = |Ŵx ∩ Ŵy|
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In this equation, B is a free parameter, and l is the length of paths. The value paths is the 
number of paths of length l that connect the two genes. If l is equal to two then this will 
give a result equal to the common neighbour method. If l is set to ∞ , then it will be equal 
to the Katz index, which is a global and computationally expensive similarity measure. In 
the case of local path index, l is usually set to 3, where it calculates all paths of length 3 
between two genes due to algorithm complexity. Therefore, it is more general than the 
common neighbour method and it can be computed within a reasonable time limit.

The relative entropy-based method This similarity measure is based on considering a 
network’s local structure as information. It uses the relative entropy between two genes 
to measure the difference between them. If the difference is small then the two genes 
are similar, and vice versa. This method works by first examining the local network for 
each node by measuring its degree distribution. Each node, i, will be defined by the set 
Li(N ,D) , where N is the number of genes in the local network, and D is the degree dis-
tribution for each k of N. Then, the probability distribution for each gene, P(i), is calcu-
lated and used to get the relative entropy. This probability distribution is calculated as 
following:

In this equation, D(k) is the degree of gene k in the local network, Degree(i) is the degree 
of gene i and m is the largest degree in all networks plus 1. In order to calculate the rela-
tive entropy, the probability set for each node is reordered in decreasing order. Then, the 
relative entropy is calculated for each couple of genes as follows:

In this equation, m′ is m′ = min(D(i),D(j))+ 1 . In the end, the similarity score, Si,j , for 
genes i and j is calculated as follows:

Graph embedding techniques

Laplacian eigenmaps This method projects a graph structure into a low-dimension 
representation based on the Laplacian concept of a graph. This representation pre-
serves the node’s neighbourhood information by constructing a weighted graph and 
adding edges between ‘close’ nodes, which require a definition of closeness based 
on one of two techniques. The first technique is the k-nearest neighbour method, 
where nodes i and j have edges if i is one of the k-nearest neighbours of j. The sec-
ond technique is to set a threshold ‘ ǫ ’ that adds an edge between two nodes i and j 
if the squared distance between them is less than ǫ . Both techniques have their pros 

(2)Sx,y =

l

i=2

Bl
.|pathslx,y|

p(i, k) =

{

D(k)
∑m

k=1 D(k)
k ≤ Degree(i)+ 1

0 k > Degree(i)+ 1

(3)DKL(P(i)||P(j)) =

m′
∑

k−1

P(i, k)ln
P(i, k)

P(j, k)

(4)Si,j = DKL(P(i)||P(j))+ DKL(P(j)||P(i))
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and cons. In our study, we used the k-nearest neighbour method as it does not usu-
ally produce disconnected graphs like the latter method [42]. The second step of the 
algorithm is to add the weights to the edges using either a heat-kernel method or 
setting all connected nodes to 1 and unconnected nodes to 0. Finally, compute the 
eigenvalues and eigenvectors by solving the eigenvector problem:

In this equation D is the diagonal weight matrix and Di,j = �Wi,j , L = D −W  . Data is 
projected into n eigenvectors, where n is selected by the user.

Locally linear embedding The locally linear embedding method [47] assumes that 
each node can be represented as a linear combination of its neighbours. It attempts 
to minimize the difference between the actual data points and their reconstructions. 
The algorithm consists of three main steps [48]. First, it finds the neighbours for 
each node. These neighbours can be determined by any local metric, but they are 
usually determined based on the Euclidean distance of k neighbours. Then, the algo-
rithm computes the weights, Wi,j , that minimize the following cost function:

Finally, the algorithm computes the vector, Yi , best reflected by the weights Wi,j , mini-
mising the following equation to its lowest non-zero eigenvectors:

Deepwalk Deepwalk is an embedding method that learns the latent representation of a 
graph based on random walks. It preserves neighbourhood information by using many 
random walks to represent nodes. Then, it processes the resulting walk as a sentence 
that maintains the context of the node. DeepWalk also adapts one of the most beneficial 
concepts of natural language processing models, which is the skip-gram model [49]. This 
model is the core of word2vec [50], which maps text to vectors in order to make it easier 
for the computer to process text. The context of the node is used by a neural network to 
preserve the structure by minimizing the following function:

The resulting representation will capture the neighbourhood similarities, since close 
nodes will have similar representations.

Node2vec The Node2vec method is similar to deepWalk in that it depends on a 
skip-gram model. However, node2vec uses a biased random walk to capture the con-
text of a node by considering its role in the graph and its communities. This is done 
by changing the policy that is followed to generate the walk from random to biased, 
where the algorithm enables the user to prefer the depth-first or breadth-first walks.

(5)Lf = �Df

(6)ǫ(Wi) =
∑

i

|
−→
X i −

∑

j

Wij
−→
X j|

2

(7)�(Y ) =
∑

i

|
−→
Y i −

∑

j

WijYj|
2

(8)minimize − logPr( vi−w , . . . , vi+w}|�(vi))
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Machine learning

To run the machine learning, the seven sets of learning features, which comprise the 
gene similarity features based on the above methods, were added in turn to the stand-
ard features. Then, these were used to train seven different models. MTRS was imple-
mented using Python [51] and the library Scikit-learn [52]. This learning algorithm 
involves independently building a random forest model for each gene of 300 genes 
were selected to conduct this study. Random forests are widely used in bioinformat-
ics applications due to their high accuracy and plausible interpretability, such as in 
[53]; in this research, the random forest was used to predict DNA N6-methyladenine 
sites. Also, in [54] random forest classifier was used to identify neuropeptides. In 
our study, we randomly split the data into testing and training sets, each model was 
trained using 10,000 examples for each gene, and tested on around 3000 examples. 
Three hundred trees were used to construct the random forest for each model, with 
no restrictions on tree depth or leaf nodes.

Finally, for each gene, different methods models were stacked into a final model. The 
baseline model is a random forest model trained as MTRS without the extra features 
generated from graph processing. The stacking method used was an ensemble method 
where predictions of different previously trained models are combined to improve pre-
diction results. By using stacking, we take advantage of different methods altogether. Dif-
ferent ML models behave differently on different genes, and combining them together in 
a stacking model enables the formation of a model that performs well on the majority of 
genes [55]. There are different implementation approaches to stacking. Our implementa-
tion directly combines the predictions without using an extra meta model.
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